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Abstract

Generative modelling has undergone a paradigm shift with Ian Goodfellow’s concep-

tion of the Generative Adversarial Network (GAN)[1]. In the three years since, this

architecture and its numerous variants have made breathtaking advances in many do-

mains, particularly in image synthesis. It is now possible for GANs to generate photo-

realistic, hitherto unseen images, involving complex natural objects and scene dynam-

ics. Until this year, a major drawback of GANs was their large sensitivity to hyperpa-

rameters and unstable training dynamics. These issues were effectively alleviated with

the Wasserstein GAN[2] (WGAN) and its extension WGAN-GP[3].

This work aims to build upon these advancements by exploring the effect that mul-

titask learning (MTL) has on GANs. MTL is a method of forcing models to simulta-

neously learn different, but related, tasks, thus increasing the generalisation power of

their hidden representations. This has been proven to be very successful for discrimi-

native models, as seen in the work of Rich Caruana[4].

This is where we begin, with MTL in discriminative networks, focusing on a form

of MTL that shares weights between a main task classifying images from CIFAR-100

and an auxiliary task classifying the same images, only with coarser labels. We then

turn to GANs, laying some foundational theory into how they work and how they

are evaluated. This motivates our choice of using FID evaluation over the previously

popular inception score and using WGAN-GP as a base architecture. This choice of

WGAN-GP is later affirmed when comparing results against vanilla GAN architec-

tures. We then extend this WGAN-GP model with different forms of class condition-

ing and MTL. Of these proposed models, many successfully condition upon class for

CIFAR-100, i.e. the class of the generated images can be controlled.

Our most successful model works by conditioning similarly to Auxiliary Classifier

GAN[5] but, inspired by our initial investigations into MTL, with an additional aux-

iliary classifier in the discriminator that classifies coarse labels. We incorporate this

"MTL trick" into a state of the art ResNet WGAN to find a significant improvement in

FID and image diversity.

i



Acknowledgements

I thank my supervisor Peter Bell for being a great soundboard and source of inspira-

tion. I wish him all the best with George.

I thank Leo for his help and look forward to one day visiting him in Hunan.

I thank Buster, who, despite his cruciate ligament surgery, was faithfully by my side

through the late nights.

I thank Jane & Ed for making my undergraduate studies possible.

I thank my family for the unending cups of tea and support.

Last but not least, I thank my friends, for the weekend we’re finally about to have.

ii



Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Ben Carr)

iii



This one goes out to Dave

iv



Contents

1 Introduction 3
1.0.1 Supervised and Unsupervised Learning . . . . . . . . . . . . 3

1.0.2 Generative Adversarial Networks . . . . . . . . . . . . . . . 4

1.0.3 Class Conditioning with GANs . . . . . . . . . . . . . . . . 5

1.0.4 Finding Good Representations . . . . . . . . . . . . . . . . . 5

1.0.5 Multitask Learning . . . . . . . . . . . . . . . . . . . . . . . 7

1.0.6 Multitask Learning in this Thesis . . . . . . . . . . . . . . . 8

1.0.7 Which Dataset to Work with? . . . . . . . . . . . . . . . . . 8

1.0.8 The CIFAR-100 Dataset . . . . . . . . . . . . . . . . . . . . 9

1.0.9 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.0.10 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.0.11 Overview of Thesis . . . . . . . . . . . . . . . . . . . . . . . 16

2 Multitask Learning with Classification 18
2.0.1 MTL Classifier Implementation Details . . . . . . . . . . . . 19

2.0.2 Comparing Auxiliary Tasks . . . . . . . . . . . . . . . . . . 20

2.0.3 Comparing MTL Hyperparameters . . . . . . . . . . . . . . . 22

2.0.4 Number of Shared Layers b . . . . . . . . . . . . . . . . . . 22

2.0.5 Soft-sharing Hyperparameter λ . . . . . . . . . . . . . . . . . 23

2.0.6 Size of Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.0.7 Soft-Sharing Versus Hard-Sharing . . . . . . . . . . . . . . . 24

2.0.8 MTL Classification Conclusion . . . . . . . . . . . . . . . . 26

3 Generative Adversarial Network Theory 28
3.0.1 Before GANs: Maximum Likelihood Estimation . . . . . . . 28

3.0.2 The Original GAN . . . . . . . . . . . . . . . . . . . . . . . 29

3.0.3 Evaluating GAN Quality . . . . . . . . . . . . . . . . . . . . 31

v



3.0.4 Wasserstein GAN . . . . . . . . . . . . . . . . . . . . . . . . 33

3.0.5 Enforcing the Lipschitz Constraint by Clipping Weights . . . 35

3.0.6 Deriving the Training Steps . . . . . . . . . . . . . . . . . . 36

3.0.7 Enforcing the Lipschitz Constraint by Gradient Penalisation . 37

3.0.8 Class Conditioning GANs . . . . . . . . . . . . . . . . . . . 39

3.0.9 Conditional GAN . . . . . . . . . . . . . . . . . . . . . . . . 39

3.0.10 Conditional WGAN . . . . . . . . . . . . . . . . . . . . . . 39

3.0.11 Auxiliary Classifier WGAN . . . . . . . . . . . . . . . . . . 40

3.0.12 MTL-based Extension to AC-WGAN . . . . . . . . . . . . . 41

3.0.13 Separate Classifier WGAN . . . . . . . . . . . . . . . . . . . 43

3.0.14 Incorporating MTL into SC-WGAN . . . . . . . . . . . . . . 44

3.0.15 Other Ideas for Incorporating MTL into a WGAN . . . . . . . 44

4 GAN Implementation Details 47
4.0.1 Wasserstein GAN Implementation . . . . . . . . . . . . . . . 47

4.0.2 Conditional WGAN Implementation . . . . . . . . . . . . . . 49

4.0.3 Auxiliary Classifier WGAN Implementation . . . . . . . . . 49

4.0.4 Separate Classifier WGAN Implementation . . . . . . . . . . 50

4.0.5 Normal GAN Implementation . . . . . . . . . . . . . . . . . 50

4.0.6 Calculating FID and IS . . . . . . . . . . . . . . . . . . . . . 52

5 Results and Discussion 53
5.0.1 cWGAN Results . . . . . . . . . . . . . . . . . . . . . . . . 54

5.0.2 Auxiliary Classifier WGAN Results . . . . . . . . . . . . . . 56

5.0.3 Separate Classifier WGAN Results . . . . . . . . . . . . . . 57

5.0.4 Normal GAN Results . . . . . . . . . . . . . . . . . . . . . . 58

5.0.5 Comparison of Best Models . . . . . . . . . . . . . . . . . . 60

5.0.6 Evidence that the Models are not Memorising . . . . . . . . . 60

5.0.7 Interpolating in Latent Space . . . . . . . . . . . . . . . . . . 65

5.0.8 Criticism of Results . . . . . . . . . . . . . . . . . . . . . . 66

5.0.9 ResNet WGAN Results . . . . . . . . . . . . . . . . . . . . . 67

6 Conclusion 71
6.0.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A Extended WGAN Results 74

vi



B Kantorovich-Rubenstein Duality 79

C Conditional Instance Normalisation 82
C.0.1 Batch Normalisation . . . . . . . . . . . . . . . . . . . . . . 82

C.0.2 Instance Normalisation . . . . . . . . . . . . . . . . . . . . . 83

C.0.3 Conditional Instance Normalisation . . . . . . . . . . . . . . 83

D ResNet WGAN 85

Bibliography 88

vii



List of Figures

1.1 Original GAN architecture . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Different forms of parameter sharing . . . . . . . . . . . . . . . . . . 7

1.3 Example of class hierarchy . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Hierarchy of CIFAR-100 classes . . . . . . . . . . . . . . . . . . . . 10

1.5 Comparison of different class conditional GAN architectures . . . . . 15

2.1 A "good" baseline classification model . . . . . . . . . . . . . . . . . 21

2.2 Auxiliary task comparison . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Varying number of shared layers b . . . . . . . . . . . . . . . . . . . 23

2.4 Varying soft-sharing hyperparameter λ . . . . . . . . . . . . . . . . . 24

2.5 Effect on difference in parameters with varying λ . . . . . . . . . . . 25

2.6 Hard-sharing versus soft-sharing . . . . . . . . . . . . . . . . . . . . 25

3.1 Comparison of Fréchet inception distance and inception score . . . . 33

3.3 Example of the Wasserstein distance for a discrete case . . . . . . . . 34

3.2 WGAN architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Conditional WGAN architecture . . . . . . . . . . . . . . . . . . . . 40

3.5 Auxiliary Classifier WGAN architecture . . . . . . . . . . . . . . . . 41

3.6 Separate Classifier WGAN architecture . . . . . . . . . . . . . . . . 43

5.1 Example of successful class conditioning . . . . . . . . . . . . . . . 54

5.2 Example of unsuccessful class conditioning . . . . . . . . . . . . . . 55

5.3 FID and IS results for cWGAN.a and cWGAN.b against a WGAN

baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.4 FID and IS results for AC-WGAN.a, AC-WGAN.b and AC-WGAN.c

against a WGAN baseline. . . . . . . . . . . . . . . . . . . . . . . . 56

5.5 FID and IS results for SC-WGAN.a and SC-WGAN.b against a WGAN

baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

viii



5.6 FID and IS results for the failed SC-WGAN.c model. . . . . . . . . . 58

5.8 FID and IS results for normal GAN experiments. . . . . . . . . . . . 60

5.9 Samples from a mode-collapsed model. . . . . . . . . . . . . . . . . 61

5.10 FID and IS results up to 4e5 iterations for AC-WGAN.b and the WGAN

baseline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.11 FID and IS results for AC-WGAN.a, AC-WGAN.b and AC-WGAN.c

against a WGAN baseline. . . . . . . . . . . . . . . . . . . . . . . . 62

5.12 Discriminator and Generator costs for cWGAN.b, AC-WGAN.b and

SC-WGAN.b against a WGAN baseline. . . . . . . . . . . . . . . . . 63

5.7 Wall-clock comparison of different GANs. . . . . . . . . . . . . . . . 64

5.13 Snapshots of the same generation through training . . . . . . . . . . . 65

5.14 Interpolating between orange apples and red apples . . . . . . . . . . 66

5.15 Interpolating between small apples and large apples . . . . . . . . . . 66

5.16 Interpolating between small bottles and large bottles . . . . . . . . . . 66

5.17 Interpolating between a normal sky and a sunset . . . . . . . . . . . . 67

5.18 Interpolating between two different houses . . . . . . . . . . . . . . . 67

5.19 The MTL trick applied to a state-of-the-art ResNet WGAN architecture 68

5.20 Generated images from ResNet.a . . . . . . . . . . . . . . . . . . . . 69

5.21 Generated images from ResNet.b . . . . . . . . . . . . . . . . . . . . 70

A.1 WGAN (baseline) results . . . . . . . . . . . . . . . . . . . . . . . . 74

A.2 cWGAN.a results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.3 cWGAN.b results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

A.4 AC-WGAN.a results . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.5 AC-WGAN.b results . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A.6 AC-WGAN.c results . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.7 SC-WGAN.a results . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A.8 SC-WGAN.b results . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.9 SC-WGAN.c results . . . . . . . . . . . . . . . . . . . . . . . . . . 78

D.1 Residaual learning . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

D.2 ResNet WGAN architecture . . . . . . . . . . . . . . . . . . . . . . 87

ix



List of Tables

2.1 State-of-the-art classification accuracies on CIFAR . . . . . . . . . . 21

2.2 MTL classification accuracies for different dataset sizes . . . . . . . . 26

4.1 An overview of the different forms of MTL and class conditioning that

were implemented . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Default hyperparameters . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3 Default dimensions for generator, discriminator and classifier . . . . . 49

5.1 Inception scores for state-of-the-art unsupervised and supervised GANs 63

5.2 FID and IS results for different WGANs . . . . . . . . . . . . . . . . 64

D.1 ResNet WGAN layer dimensions . . . . . . . . . . . . . . . . . . . . 86

x



List of Algorithms

1 Training algorithm used for GAN. . . . . . . . . . . . . . . . . . . . 31

2 Training algorithm used for WGAN-GP. . . . . . . . . . . . . . . . . 38

3 Training algorithm used for AC-WGAN. . . . . . . . . . . . . . . . . 42

4 Training algorithm used for SC-WGAN. . . . . . . . . . . . . . . . . 45

xi



Nomenclature

Abbreviations

MTL Multitask Learning

STL Single Task Learning

GAN Generative Adversarial Network

G Generator

D Discriminator

C Classifier

MLE Maximum Likelihood Estimation

WGAN Wasserstein GAN

WGAN-GP WGAN with Gradient Norm Penalisation

cGAN Conditional GAN

cWGAN Conditional Wasserstein GAN

AC-GAN Auxiliary Classifier GAN

AC-WGAN Auxiliary Classifier Wasserstein GAN

SC-GAN Separate Classifier GAN

SC-WGAN Separate Classifier Wasserstein GAN

IS Inception Score

FID Fréchet Inception Distance

SGD Stochastic Gradient Descent

BN Batch Normalisation, often referred to as Batchnorm

IN Instance Normalisation

CIN Conditional Instance Normalisation

1



LIST OF ALGORITHMS 2

Mathematical Symbols

pG Probability distribution of the generator’s output

pz Probability distribution of random noise

pdata Probability distribution of training data

λ Soft-sharing hyperparameter

b Number of layers that are shared

z Data point sampled from pz

x Data point sampled from pdata

y Class of data point sampled from pdata

ReLU Activation function with f (x) = max(0,x)

LeakyReLU Activation function with f (x) = αx if x < 0,x otherwise

L Loss function

θ Generator’s parameters

w Discriminator’s parameters

φ Classifier’s parameters

s Frequency that the classifier is trained

DJS(p||q) Jenson-Shannon divergence between two distributions p and q

DKL(p||q) Kullback-Leibler divergence between two distributions p and q

sup(x) The least upper bound of x, can be thought of as the maximum

inf(x) The greatest lower bound of x, can be thought of as the minimum

η Gradient penalisation hyperparameter

c Weight clipping constant

‖ f‖L ≤ 1 f is 1-Lipschitz, its gradient does not exceed a magnitude of 1

‖ f‖L ≤ K f is K-Lipschitz, its gradient does not exceed a magnitude of K



Chapter 1

Introduction

This thesis explores the intersection of generative adversarial networks and multitask

learning. Before stating specific contributions we will give some background and

motivation for both of these topics. This chapter also aims to motivate our choice

of dataset, CIFAR-100, and provide context by discussing related contemporary work.

1.0.1 Supervised and Unsupervised Learning

Until recently, most major advancements in deep learning have been in supervised

learning. These successes have come from a wide array of domains, perhaps the most

spectacular from vision[6][7][8][9] and speech[10][11][12]. A supervised learning

model learns how to classify after training on large quantities of labelled data. How-

ever, a vast proportion of the data collected in the world today is unlabelled, for exam-

ple, most of the endless stream of images, video and audio uploaded to the internet.

It is thus beneficial for A.I. systems to be designed such that they can harness this

data in their learning. The prime example of unsupervised learning that we have is in

ourselves. Our intelligence is, for the most part, learned through unsupervised obser-

vation, not by being taught the name for every event and object. For example, we don’t

need to be told that an object continues to persist after it has been obscured from view,

we learn this through observation. It is commonly believed that to someday achieve

artificial general intelligence, huge developments in unsupervised learning will have to

be made.

3



Chapter 1. Introduction 4

1.0.2 Generative Adversarial Networks

Recently, the most promising step in unsupervised learning has been in generative

modelling with generative adversarial networks (GANs), introduced by Goodfellow et

al.[1]. These are deep neural networks that strive to generate new samples that look as

if they’ve come from the training data. Loosely speaking, the measure of their success

is in how "realistic" their generated samples are. To quantify this for an image is hard,

and will be discussed later. This generation is usually done without the aid of labels,

so is indeed a form of unsupervised learning. However GANs can benefit greatly from

the addition of class information, not only in performance but also in allowing control

of their output. We will mainly be exploring these supervised GANs in this work.

The adversarial element of a GAN comes from the fact that there are actually two

networks in the model, both pitted against each other, as depicted in Figure 1.1. The

generator network learns to create new samples whereas the discriminator network

learns to identify whether a sample has been generated or if it is a real one from the

dataset. By training these two networks in parallel the discriminator gets better at

spotting fakes while the generator gets better at fooling the discriminator by generating

more realistic fakes, eventually the quality of these generated samples can be very high.

The situation is often dramatised as an art forger and police detective pitted against

each other. As the police detective gets better at spotting a forgery, so too must the

forger get better in fooling her/him.

One might reasonably ask why these generative models are worth researching. We

have no scarcity of data in the world, why generate more? Why are GANs such an

important step forward for unsupervised learning? Three important reasons to pursue

GANs are:

• Reinforcement Learning. GANs can be incorporated into reinforcement learn-

ing agents to allow them to efficiently generate future possible states, condi-

tioned on the current state. From these states, the agent can plan its actions

accordingly. Additionally, for dangerous environments, by imagining states and

actions, an agent can virtually explore an environment without risk of damage.

• Semi-Supervised Learning. GANs can help fill in missing data for semi-supervised

tasks. This is of large practical value given that most data is unlabelled or only

partly labelled.

• Representation Learning. To generate realistic samples, GANs must learn
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powerful hidden representations of the data. These representations, once cap-

tured, can be used downstream for a variety of other models and tasks, e.g. for

classification.

1.0.3 Class Conditioning with GANs

Figure 1.1: The GAN archi-

tecture proposed by Goodfel-

low et al. in 2014. The gen-

erator G transforms random

noise z into fake samples.

The discriminator D classifies

samples as either real or fake.

As mentioned, without labels, in a purely unsupervised

setting, there is no way to control what class of image

a GAN will generate. It might learn to generate diverse

images of each class, but there is no way of knowing

beforehand which inputs will generate which class. To

overcome this, a GAN can be conditioned on by the

class information, in both the discriminator and gener-

ator. "Conditioned by" here can be as simple as using

the class vector as an additional input into the network.

When successful, the generator learns a relationship

between the class input and its output. It learns this

relationship to better fool the discriminator, since the

discriminator has now learnt from real images what the

relationship should be. For example, the discriminator

might "know" that a perfect image of a dog is actually

a fake since the generator was supposed to generate a

cat. After this relationship has been successfully learnt

it is possible to control the class of the images that the

generator will output.

This is more than just a neat utility, these class con-

ditioned GANs often outperform unsupervised GANs,

as witnessed in Table 5.1.

1.0.4 Finding Good Representations

GANs typically have far fewer parameters than required to perfectly capture the data

they are being trained on. For instance, they cannot memorise a whole training set of

high-dimensional images without orders of magnitude more parameters than they are

given. Instead, they are forced to capture the most pertinent characteristics of the data

in generalisable representations. The data is then reconstructed by combining these
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representations stochastically. This can be viewed as a form of lossy compression. For

instance, a typical GAN trained on Imagenet might compress 200GB of pixels down

to 100MB of weights.1 The quality of these hidden representations and how efficiently

they’re used to generalise the data, determines the quality of the generated images.

Finding powerful representations, i.e. Representation Learning, is a central chal-

lenge of machine learning, not just for GANs. For deep neural networks, represen-

tations are captured in a hierarchical structure, deeper layers learn increasingly more

abstract features.2 Features that are too specific to the training data are not as useful,

the model is effectively just memorising. If this happens we say the model has overfit.

A classifier that has overfit will have poor performance on a test set, a generator that

has overfit will generate samples that look nearly identical to samples in the training

set. Capturing diverse and complex features motivates the design of deep and wide

networks with lots of parameters. However, this runs the risk of overfitting as the net-

works are free to use their large capacity to simply memorise from training examples.

Many techniques for avoiding overfitting and for improving the generalisation power

of learned representations have been discovered. `2 regularisation, otherwise known

as weight decay[13], penalises large weights in the objective function. This encour-

ages the network to learn representations with smaller weights that are assumed to be

simpler and less specific. Dropout[14] randomly switches off a proportion of the acti-

vations with each pass during training, then at testing, uses them all. This forces the

network to effectively learn an ensemble of sub-networks and stops weights from co-

operating in memorisation of the training set. Dropconnect[15] generalises Dropout by

switching off weights instead of activations. Data augmentation is a method of exploit-

ing invariances in the dataset to artificially increase its size. For example, images that

are horizontally mirrored should be classified the same for most tasks, so the dataset

can be artificially doubled by flipping each image. This has a regularizing effect as the

model learns more general features that can cope with variances in the data. This has

recently been shown to be effective if the augmentation is applied on feature space, as

opposed to the inputs[16].

1Compression performance is an appealing way of quantifying intelligence. A good compressor
needs to spot and capture regularities well, it needs to be "smart". Some believe that finding a com-
pressor that can efficiently compress a snapshot of Wikipedia is our most promising route to artificial
general intelligence, http://prize.hutter1.net/ (accessed, 13th August 2017).

2The terms f eature and representation will be used interchangeably.

http://prize.hutter1.net/
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1.0.5 Multitask Learning

Another way to extract better hidden representations and avoid overfitting is through

multitask learning (MTL). Most machine learning tasks are narrowly focused and

trained on in isolation with a single task, we will call this single task learning (STL).

MTL models on the other hand, train on multiple tasks in parallel. The general idea

being that if there is some relatedness between the tasks then there could be a transfer

of training signals that would benefit some or all of the tasks. For STL, if the labelling

does not describe the important aspects of the data well enough, if the labels are too

simple or broad, the training signals will not guide the learning to a good region in pa-

rameter space, i.e. the model will not learn good features. MTL can help fix that. Rich

Caruana[4] describes MTL as: "[improving] generalization by leveraging the domain-

specific information contained in the training signals of related tasks".

There are many different forms of MTL, the most common approach in neural

networks is hard-sharing, first proposed by Caruana[4]. This is where a set number of

layers are shared across multiple tasks, as seen in Figure 1.2a. It has been shown that

the risk of overfitting in the shared layers is an order of N smaller than overfitting in

the task-specific layers, where N is the number of tasks[17].

(a) Hard-sharing. The first three layers are

shared, the final two layers are task-specific.

(b) Soft-sharing. Parameters in the first

three layers are kept close by minimising the

distance between them.

Figure 1.2: Different forms of parameter sharing across two tasks.

Another approach is soft-sharing, as depicted in Figure 1.2b. Here, the distance be-

tween the parameters of the tasks are regularised by way of penalisation terms in their

respective loss functions. In hard-sharing the distance between parameters across tasks

is kept at zero whereas soft-sharing admits other distances. In this light, soft-sharing

can be seen as a generalisation of hard-sharing. Different regularisation schemes have
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Figure 1.3: Example of class hierarchy

been proposed such as regularising the `2 norm[18] or trace norm[19], it is not clear to

us when any one method should be preferred.

1.0.6 Multitask Learning in this Thesis

A central aim of this project is to implement multitask learning on GAN architectures

and test whether performance gains can be made. We hypothesise that the same ben-

efits as seen in MTL classification models will apply for GANs also, thus we explore

MTL applied to classification before applying MTL to GANs.

Soft-sharing via regularisation of the `2 norm has been selected as the particular

variety of MTL to be focused on, where possible. Soft-sharing has potential benefits

over hard-sharing since it allows the network more flexibility in setting its weights,

sometimes it may not be preferable to copy the other networks weights exactly. Hard-

sharing does have the advantage that there are far fewer parameters in the overall model

(half as many in the shared layers), this can reduce training time significantly. The

classification experiments were not prohibitively slow however, so this extra training

time was not a major concern. `2 norm regularisation was selected over trace norm

regularisation since it is simpler to implement and interpret.

As for choosing which auxiliary tasks to employ, we decided to use an auxiliary

task that classifies a coarser set of labels than the main task. This has proved effective

in other work[20] and has the advantage that no extra data is required, it can be applied

to any dataset with labels that can be divided into a super-class/sub-class hierarchy,

like in Figure 1.3.

1.0.7 Which Dataset to Work with?

Since GANs have been most successfully applied to image generation, it makes sense

to pick vision tasks for this project. Teterwak et al.[20] showed that two-task MTL

classification using hard-sharing can be successfully applied to a variety of image
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datasets: ImageNet[21], Caltech-256[22] and CIFAR-100[23]. In each case the main

task was standard classification and the auxiliary task, was also classification, but over

a superset of the original classes, i.e. a coarser set of labels. Based on their success,

these three datasets are good candidates.

Caltech-256 suffers from class imbalance, with a minimum of 81 images/class, and

is not popular in GAN-literature so we decided against using it. CIFAR-100 was cho-

sen over Imagenet for a variety of reasons. Firstly, the images are small. GANs have a

recognised problem when tasked with generating images of high resolution, where lo-

cally the images look good but globally the images are incoherent. This is why images

of ten-legged, six-eyed dogs are not uncommon in the literature, e.g. [24]. Smaller

images are also easier to compute with. Imagenet has higher, mixed resolutions and

would require down sampling.

CIFAR-100 is also easier to work with than Imagenet. There is perfect class bal-

ance and all images have the same resolution. There is also a natural choice of auxiliary

task labels, the set of 20 coarse labels the dataset comes with, along with the 100 finer

labels.

A challenge of using this dataset is the lack of benchmarks in the GAN-literature.

There are plenty for CIFAR-10, which is far easier to train GANs on given there are

10x as many examples for each class (another challenging aspect of CIFAR-100). This

means we didn’t know which models were going to work. GANs are very sensitive

to their architecture, their hyperparameters and the task they’re given. A GAN do-

ing well on CIFAR-10 does not make any guarantees for CIFAR-100. For example,

we found the Auxiliary Classifier GAN[5]s (AC-GANs) performance to suffer sig-

nificantly when re-tasked from CIFAR-10 to CIFAR-100. Note, we couldn’t simply

side-step these challenges by working with CIFAR-10 since there is no sensible way

of forming fine labels (for the main task) and coarse labels (for the auxiliary task). This

would mean we couldn’t implement the form of MTL used in [20].

Since there are no benchmarks or results for CIFAR-100, it is an open question as

to what the state-of-the-art is and whether a GAN can be successfully class conditioned

on this dataset.

1.0.8 The CIFAR-100 Dataset

The CIFAR dataset[23] contains 120,000 small images of resolution [32x32]. Each

pixel is represented by a 3-digit RGB value, thus, each image is represented by a
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[3x32x32] array of size 3× 32× 32 = 3072 numbers. 60,000 of the images (referred

to as CIFAR-10) are each labelled with one of 10 different classes, with 6000 images

per class. The other 60,000 images (referred to as CIFAR-100) are each labelled with

one of 100 different classes, this time with 600 images per class. The 100 classes are

grouped into 20 super-classes, as shown in Figure 1.4. For this project, for classifica-

tion experiments, CIFAR-10 and CIFAR-100 are each split into a training set of 40,000

images, a validation set of 10,000 images and a test set of 10,000 images. For GAN

experiments, CIFAR-10 and CIFAR-100 are each split into a training set of 50,000

images and a test set of 10,000 images, as is standard in the literature. Although we

primarily focussed on CIFAR-100, CIFAR-10 was occasionally used. As it turned out,

the test set wasn’t used for either case. Only validation accuracies were reported for

classification experiments and the GAN experiments had no need for the test set. We

didn’t report test accuracies for the classification experiments since we weren’t striving

for anything close to state-of-the-art results, only for proof of concepts.

Figure 1.4: The hierarchy structure of the CIFAR-100 classes. Image courtesy of

https://www.cs.toronto.edu/~kriz/cifar.html (accessed, 11th May 2017).

Considering MTL classification on the CIFAR dataset, with CIFAR-100 as the

main task, there are two pairings of tasks that present themselves as clear candidates

for 2-task MTL:

1. CIFAR-100 could be used exclusively, as done in Teterwaket al.[20], with the

main task being 100-way classification and the auxiliary task being 20-way clas-

sification of the supersets.

https://www.cs.toronto.edu/~kriz/cifar.html
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2. CIFAR-100 with 100-way classification could be used as the main task and

CIFAR-10 for the auxiliary task.

The 1st case is preferred over the 2nd, regardless of which performs better, since

it does not require an additional dataset. The 2nd case will be considered briefly for

classification but not at all for GANs (although this is an interesting avenue). There are

many different ways to aggregate the 100 classes of CIFAR-100 into supersets, the 20

supersets given to us with the data are pretty arbitrary. Thus there are many different

tasks we could conceive of for the auxiliary task. Investigating the effects of different

types of supersets is out of the scope of this project but is touched upon by Teterwak

et al.[20].

It is worth mentioning that the CIFAR-100 dataset is challenging. The 100 classes

include objects as diverse as bicycles, kangaroos, forests and televisions. The images

show a wide variability in shape, colour and scene dynamics that are not displayed in

some datasets such as the LSUN bedroom set[25], the CUB-200 dataset of birds[26],

the LFW dataset of faces[27] or CIFAR-10. Part of the issue lies in the fact that 32x32

images are severely limited in the amount of information they can carry, e.g. birds can

be indistinguishable from planes at that resolution. CIFAR-10 doesn’t suffer because

of this since its 10 classes are all fairly distinct. The state-of-the-art in classifica-

tion on CIFAR-100 is achieved by a model with 34.4M parameters, trained for 1600

epochs and has an error of 15.85%[28]. Compare this with the state-of-the-art error for

CIFAR-10, 2.75%, achieved by a smaller version of the same model.

1.0.9 Contributions

This thesis makes the following main contributions:

1. We explore soft-sharing MTL for classification on CIFAR-100 with coarse label

classification as an auxiliary task. We take a look at various hyperparameters:

the soft-sharing hyperparameter λ, the number of shared layers b and the size of

the dataset. We compare this auxiliary task with one that classifies CIFAR-10

and with a STL baseline. We find significant improvements over the baseline for

both auxiliary tasks, in keeping with the results of [20] for hard-sharing. We also

find hard-sharing to marginally outperform soft-sharing. To our knowledge this

is the first time this kind of soft-sharing MTL has been investigated on CIFAR

or any other vision dataset.
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2. We show several GAN architectures that can successfully class condition on

CIFAR-100, allowing control of the generator’s outputs. We provide evidence

that class conditioning upon an architecture called Wasserstein GAN with Gradi-

ent Penalisation[3] (WGAN-GP) as opposed to the original GAN[1] gives large

performance gains, in terms of training stability and image quality but not in

terms of convergence speed where it is found to be a lot slower. To our knowl-

edge this the first time successful class conditioning of CIFAR-100, without

mode collapse, has been reported.

3. We find that adding a second auxiliary task to the discriminator of an Auxil-

iary Classifier Wasserstein GAN (AC-WGAN) can significantly improve image

quality. The first auxiliary task classifies 100 fine labels, as in the original archi-

tecture, and the second auxiliary task classifies 20 coarse labels. This gives ≈5

Fréchet inception distance (FID) improvement over normal AC-WGAN and ≈2

over Wasserstein GAN (WGAN) without class conditioning. We apply this MTL

technique to a strong ResNet WGAN architecture that [3] trained to achieve very

close to state-of-the-art on CIFAR-10 and find similar performance gains, set-

ting a tentative state-of-the-art result for CIFAR-100. The resulting samples are

recognisable and show diversity across all 100 classes with little sign of mode

collapse.

1.0.10 Related Work

MTL hard-sharing was first formalised by Rich Caruana[4] (1997) and is now used

extensively in a variety of forms throughout the deep learning field. Successful appli-

cations of MTL can be seen in speech recognition[29], vision[30], natural language

processing[31] and drug discovery[32]. Most germane to our work is that of Odena

et al. with AC-GAN[5] (to be discussed shortly) and that of Teterwak et al.[20] with

their work on MTL hard-sharing with CIFAR-100, in which, they show the benefits

of an auxiliary task that classifies coarser labels than the main task. They also explore

the effect of various hyperparameters on hard-sharing. We do a similar analysis with

MTL soft-sharing in Chapter 2. Soft-sharing is becoming a more common method

of MTL, seeing success in applications such as dependency parsing[18] and facial

recognition[19]. To our knowledge there isn’t any pre-existing work on using soft-

sharing with an auxiliary task that classifies coarse labels. In an overview of MTL in

deep learning[33], Ruder advocates a paradigm shift in MTL away from hard-sharing,
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which has dominated for two decades, towards more sophisticated methods such as

soft-sharing. It should be mentioned that methods of MTL exist, which are much more

sophisticated than our implementation of `2 soft-sharing, such as sluice networks[34]

or cross stitch networks[35].

The GAN model was initially proposed by Goodfellow et al. in 2014[1]. This,

and the flurry of architectures that quickly followed, was a breakthrough in deep gen-

erative models, achieving many state-of-the-art results in image generation. However,

the original GAN architecture was extremely sensitive to its hyperparameters, making

them notoriously difficult to train. Two years on (2016), Salimans et al.[36] showed

a variety of techniques, e.g. feature matching, which could improve training stability

and yielded strong results on CIFAR-10. This year (2017), perhaps the most signifi-

cant step forward has been made since the seminal GAN paper with the conception of

Wasserstein GAN (WGAN) by Arjovsky et al.[2].

WGAN minimises the Wasserstein distance, otherwise known as the Earth Mover’s

distance, between the generators distribution and the target distribution. This is in con-

trast with the original GAN, which minimises the Jenson-Shannon divergence. [2]

shows that switching to this new distance provides much smoother gradients in the

discriminator and has a dramatic improvement on training stability, although, the pos-

sible architectures to pick from are still limited. Quickly following the WGAN paper,

Gulrajani et al.[3] showed how a small change to the WGAN architecture, a penalisa-

tion of the norm of the discriminator gradients instead of clipping them as done before,

further improves training stability and now permits a wide array of architectures to

choose from (providing they don’t use batch norm in the discriminator). For example,

with this architecture, WGAN-GP, it is possible to use very deep networks, Gulrajani

et al. successfully used a 101-layer ResNet[37] in both the generator and discrimina-

tor. Along with increased stability, the WGAN-GP architecture boasts state-of-the-art

results for CIFAR-10. Most of our models in this work are built upon WGAN-GP but

use shallower and thinner networks than those used to achieve state-of-the-art.

Another relevant variant is Conditional GAN[38] (cGAN). In cGAN, the generator

and discriminator are class conditioned by simply using the class vectors as additional

inputs to the first layer of the generator and the last layer of the discriminator. If

successful, the discriminator learns what each class should look like by training on the

real images, this then guides the generator to generate images that are of the same class

as its class vector inputs. cGAN and slight variants of, have proven to work well on a

variety of applications. For example, [39] generates images conditioned on text, [40]
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generates faces based on binary vectors of attributes like "sunglasses" or "moustache"

and [41] generates stylised images conditioned on a style-map.

Auxiliary Classifier GAN[5] (AC-GAN) similarly achieves class conditioning but

without using the class vector as an additional input to the discriminator. Instead, the

discriminator has an auxiliary output that classifies the images, and so, AC-GAN in-

corporates a form of MTL. The softmax cross entropy of the loss of this output is then

minimised by both the discriminator and generator, resulting in a class conditioned

model with controllable output images. [5] boasted state-of-the-art (at the time) incep-

tion scores for CIFAR-10 with this architecture. This form of conditioning has become

a standard way of class conditioning with GANs, it is how [3] achieve their state-of-

the-art results with supervised WGAN-GP for instance.3 To the best of our knowledge,

there are no forms of AC-GAN that use a second auxiliary classifier like in our most

successful model.

There are other GAN architectures that utilise some form of MTL. Before AC-

GAN, Odena[42] and Salimans et al.[36] both (independently) adapted the original

GAN discriminator to reconstruct class labels, creating Semi-Supervised GAN (SGAN).

This can be seen as a type of MTL in the discriminator, with hard-parameter sharing

in all layers but the last, where the main task is classifying the probability of a sample

being fake and the auxiliary task is classifying the sample as one of N classes. The gen-

erators of these models were kept the same as the original GAN. For both cases SGAN

was shown to increase image quality and data efficiency. Note, AC-GAN differs from

these architectures in its generator, where it conditions upon class in the same way as

cGAN.

InfoGAN[43] follows a similar architecture, except the auxiliary task in the dis-

criminator instead reconstructs the latent variables from which the samples are gen-

erated and the variational information between the generator and the auxiliary task

is regularised. This allows control of latent variables such as the rotation angle of a

MNIST digit. A graphical display of these differences in architecture can be seen in

Figure 1.5.

3At least that is what is claimed in the paper, the source code shows that they also use a conditional
form of batch normalisation that the original AC-GAN did not use. This is discussed further in the
Results and Discussion Chapter
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Figure 1.5: Comparison of some different class conditional GAN architectures. For:

generator G, discriminator D, random noise z, class vector y and latent variables L. All

models can control the class of their outputs, learning a conditional distribution for each

class.
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1.0.11 Overview of Thesis

The next chapter of this thesis, Multitask Learning with Classification, explores soft-

sharing MTL for classification of CIFAR-100. Although classification is not our pri-

mary focus in this work, this section leads to some insights in hyperparameter selection

and serves to show the feasibility of extending MTL to generative models. We also

provide evidence that hard-sharing is preferable to soft-sharing for CIFAR-100.

In the third chapter, Generative Adversarial Network Theory, we move on to GANs,

looking at their theoretical justifications and evaluation techniques. We give theoreti-

cal motivation for our choice in Wasserstein GAN (WGAN) as our base architecture,

in particular WGAN with gradient penalisation (WGAN-GP). We also motivate our

choice of primary evaluation, FID. Thereafter, we outline several methods of class

conditioning, most of which involve forms of MTL.

The fourth chapter, GAN Implementation Details, puts forward and motivates the

specific architectures that were experimented with. This includes 9 WGAN and 4 nor-

mal GAN architectures, all of which fall into one of four categories: baseline without

class conditioning, e.g. WGAN-GP or normal GAN; simple conditioning by concate-

nation of the class vector, e.g. Conditional WGAN (cWGAN); conditioning by an aux-

iliary classifier in the discriminator, e.g. Auxiliary Classifier WGAN (AC-WGAN);

conditioning by a separate classifier network, e.g. Separate Classifier WGAN (SC-

WGAN). All architectures in the AC-WGAN and SC-WGAN categories rely on MTL,

the others are STL models. We include these varieties without MTL as points of com-

parison.

The fifth chapter, Results and Discussion, reviews the results of our experiments.

We look at each category in turn, finding many of the WGAN architectures to success-

fully condition on class without mode collapse. This is in stark contrast to the normal

GAN architectures, which all suffer from severe mode collapse. This supports our the-

oretical justifications we laid out in the fourth chapter. We find the most promising

results in the AC-WGAN category, where our proposal of an additional auxiliary task

in the discriminator is found to boost performance significantly.

As a final experiment we extend Gulrajani et al.’s state-of-the-art ResNet WGAN

architecture[3] with the same MTL technique and find significant improvements in

FID but not in inception score. From qualitative analysis it is clear that samples from

our proposed model display much more diversity. We hypothesise that the reason for

the discrepancy in evaluation scores is that inception score does not pick up on image
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diversity as well as FID does.

The last chapter, Conclusion, summarises and critiques the thesis and looks forward

to possible continuations of this work.



Chapter 2

Multitask Learning with Classification

Knowledge is power. Knowledge

shared is power multiplied.

Robert Noyce

Multitask learning (MTL) has several known mechanisms by which it works. These

seem to have been first identified by Caruana[4].

• Implicit Data Amplification: MTL can effectively increase the size of the

dataset. This can occur in a direct manner, if the tasks are being trained on

different datasets. Or it can be indirect, if the tasks are being trained on the

same dataset. In this case, data amplification occurs since the tasks have their

own data-dependent noise associated with them. Extra tasks mean the model can

learn representations that have less data-dependent noise. The effect is similar

to adding more data.

• Eavesdropping: For some tasks, certain representations are easier to learn than

they are for other tasks. This can depend on the quality of the labels, whether

they can transmit good training signals through the model. In MTL, tasks can

"eavesdrop" on other tasks to learn representations that they are struggling on.

• Representation Bias: Hidden representations that benefit one task can often

benefit another. MTL biases the training to learn those representations that ben-

efit multiple tasks. This increases the generalisation power of the model in facing

new tasks.

18
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• Attention Focusing: If data is scarce or noisy, it can be difficult for a model

to discern between irrelevant and relevant representations. Training with extra

tasks provides extra evidence as to which representations are actually useful.

Before applying MTL to a GAN architecture and running lots of very time-consuming

experiments to explore their hyperparameter space, it is efficient to explore MTL ap-

plied to classification of CIFAR-100. This also serves to test the suitability of CIFAR

as a dataset to perform MTL on.

2.0.1 MTL Classifier Implementation Details

All models were implemented in TensorFlow 1.0.0[44]. We emphasise that the goal of

these models was to explore MTL, not achieve state-of-the-art accuracies. However,

they were given enough capacity to perform reasonably well (≈ 50% on CIFAR-100)

to make the results meaningful. Since we were not concerned with state-of-the-art we

did not run test set evaluations or perform sophisticated statistical tests. We instead

drew our conclusions solely on validation set learning curves for accuracy and error.

All models used a four layer convolutional neural network with dimensions of [64,

128, 128, 128] and single strided filters of 5x5 throughout. A standard softmax cross-

entropy layer was used at the end. 2x2 max pooling was applied after the first, second

and fourth layers. No fully connected layers were used as it was decided that the small

performance gains they potentially offered were not worth the large compromise in

training time.1 Also, fully connected layers do not appear in a lot of GAN architectures

and it is desirable to mirror those design choices as much as possible.

Weight decay was applied at a rate of 5e-5. Dropout[14] was applied with keep-

probability 0.5 for all layers. Batch normalisation[46] was applied after each layer, this

was found to be very important in getting the models to converge within a reasonable

time. No data augmentation was implemented.

Training ran for 200 epochs. For simplicities sake, stochastic gradient descent

(SGD) was used. The learning rate started at 0.01 then was annealed to 0.001 and

0.0001 at epochs 66 and 133 respectively. The batch size was 256.

Each task for MTL had exactly the same architecture except in the final softmax

layer, which depended on the number of classes being classified. Soft-sharing of a set

number of layers, see Figure 1.2b, was implemented via a simple `2 norm regularisa-

1Papers like [45] have demonstrated that they may not be necessary.
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tion term, which was added to the loss functions of both tasks:

λ
∥∥Wmain,b−Waux,b

∥∥
2 (2.1)

Where Wmain,b are the weights of the main network in the first b layers and Waux,b are

the weights of the auxiliary network in the first b layers. λ and b are both hyperparame-

ters that will be investigated. For all MTL models, the main task was 100-way classifi-

cation of CIFAR-100 and the auxiliary task was 20-way classification on CIFAR-100s

coarse labels, unless stated otherwise.

The training regime had the tasks train on batches in random ordering till each

dataset had been passed through exactly once. At this point the data was shuffled, reset

and a new epoch commenced. This meant that each epoch took twice as long to run as

an epoch for an equivalent STL model.

To check the implementation of a model is sound, it is desirable to replicate a

known result. Unfortunately, state-of-the-art on CIFAR is achieved by models with

far more parameters than we can afford to have. One "good" baseline model was

ran anyway, to check that the accuracies were in the right ballpark. This took a lot

longer to train so couldn’t be used for other experiments. This model was the same as

the previous baseline, except widened to have dimensions [64, 128, 256, 512], data-

augmentation (random cropping to 24x24 and horizontal flipping, applied to 25% of

the data in each epoch) was performed and linear response normalisation was applied

after the first two layers (using TensorFlow default parameters). This model got a

maximum of 61.2% on the validation set but did not appear to have converged after

600,000 iterations, see Figure 2.1. Very little time was spent on the hyperparameter

search since the objective here was not to achieve state-of-the-art. Another advantage

the other models had is that they were all trained on 50,000 images from CIFAR-100

whereas this model was trained on 40,000, in keeping with our other experiments, as

described in Section 1.0.8. For reference, the state-of-the-art as of 2016 can be seen in

Table 2.1.

2.0.2 Comparing Auxiliary Tasks

We now compare the two auxiliary tasks proposed in Section 1.0.8. The first is 20-

way classification of CIFAR-100, the second is 10-way classification of CIFAR-10.

The networks followed the implementation details laid out in Section 2.0.1, with b = 3

shared layers using a soft-sharing value of λ = 0.1.
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Model Accuracy

Wide ResNet[47] 0.795

Let’s keep it simple[48] 0.749

ResNet-110L[49] 0.748

Fractional Max-Pooling(12M)[50] 0.736

Scalable Bayesian Optimization Using Deep Neural Networks[51] 0.726

All you need is a good init[52] 0.723

ResNet-1202L[49] 0.721

Batch-normalized Max-out Network In Network(k=5)[53] 0.711

Highway[54] 0.678

Deeply Supervised Network[55] 0.654

FitNet[56] 0.650

Our Classifier 0.612

Table 2.1: Test set accuracies for state-of-the-art classification on CIFAR-100 as of

2016, according to [48].

Figure 2.1: A "good" baseline model (STL) was trained as a sanity check to see if its

performance is in the same ballpark as state-of-the-art models. Although the model

doesn’t seem to have fully converged after 600k iterations, it scores a maximum val-

idation accuracy of 61.2%, which isn’t too far from state-of-the-art in 2016, see Table

2.1. Considering it hasn’t converged, is trained on a smaller dataset (40,000 images not

50,000) and has had little hyperparameter optimisation, this indicates that the model is

likely sound.
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From the results shown in Figure 2.2, it is clear that MTL improves generalisation

power. It is not a surprise that using the additional dataset, CIFAR-10, in the auxiliary

task is better than using the same dataset only with coarser labelling. The extra images

of CIFAR-10 offer more useful training information to the main task, i.e. better training

signals are passed via the shared layers, from which, better representations are learned.

Figure 2.2: Here we compare the performance of two MTL auxiliary tasks, proposed in

Section 1.0.8, against a STL baseline. AUX=20 corresponds to using a 20-way CIFAR-

100 classification auxiliary task while AUX=10 corresponds to using 10-way CIFAR-10

classification as its auxiliary task. Accuracy scores are of the main task (100-way clas-

sification on CIFAR-100) measured on the validation set. Both forms of MTL improve

performance with AUX=10 doing slightly better.

2.0.3 Comparing MTL Hyperparameters

We now turn to the effect of two hyperparameters: the value of b, i.e. the the number

of layers to share information across, and the value of the soft-sharing hyperparameter

λ. We also investigate the effect of reducing the dataset size. Unless otherwise stated,

100% of the data was used along with hyperparameter values of b = 3 and λ = 0.1.

2.0.4 Number of Shared Layers b

From Figure 2.3 we see that the number of shared layers b is significant. The validation

accuracies show that b = 2 and b = 3 do equally well but the validation errors clearly

show that b = 3 does better. This discrepancy comes from the fact that the accuracy
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Figure 2.3: Validation set performance for different values of b, the number of shared

layers. The cross-entropy errors show significant overfitting even as the validation accu-

racy gets better. This can occur as long as the predicted scores of the model don’t cross

the threshold where the predicted class changes. From a combination of accuracy and

error performance, b = 3 was found to be best.

and softmax cross-entropy error are measuring quite different things. The accuracy

metric is derived from a hard threshold of the softmax outputs of the final layer, it only

considers which class scored highest. The softmax cross-entropy takes into consid-

eration the outputs for all the classes, not just the one that happened to score highest

and become the final prediction. The fact that they are measuring different quantities

explains why it is possible for the error to get worse while the accuracy improves.

However, the fact that the error quickly gets worse is a sign of overfitting and/or too

high a learning rate, we found reducing the learning rate did help but at too much of

a compromise to training time. Since we already had employed quite a few methods

of regularisation (e.g. dropout and weight decay) and were testing out another method

(soft-sharing MTL) we didn’t feel the need to add further forms of regularisation.

2.0.5 Soft-sharing Hyperparameter λ

Also significant, the effects of the value of λ can be seen in Figure 2.4. λ = 0.1 was

found to achieve the highest validation accuracy. The effect λ has on the distance

between the respective model’s weights is shown in Figure 2.5, where, as expected,

higher λs correspond to closer weights. As the learning rate anneals, the approximative

lower bound of how close the weights can be is also annealed, as witnessed by the sharp

steps for the higher λs. For example, as the learning rate goes from 0.01 to 0.001 (a

third of the way through training), this allows the λ = 1 models to refine their weights
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Figure 2.4: Validation set performance for a range of λ values. λ is a MTL-

hyperparameter that controls the amount of soft-sharing that occurs, see Equation 2.1.

There is ≈ 2% range in accuracy for the values tested. λ = 0.1 clearly does best.

to be an order of magnitude closer together. It follows that, since we can never have

a learning rate of 0, we can never have weights that are identical with soft-sharing.

This is a potential drawback of soft-sharing and shows that soft-sharing is not a true

generalisation of hard-sharing.

2.0.6 Size of Dataset

It is interesting to see if MTL is a benefit for reduced datasets. This informs us as to

how data efficient MTL is in comparison to the baseline. To test this, the training data

was randomly sampled to reduce it down to 75%, 50% and 25% of its original size.

No effort was made to maintain an equal balance of classes, as is the case in the full

dataset. The results can be viewed in Table 2.2.

We see that MTL improves upon the baseline for each dataset size, conferring

similar increases in accuracy at each size (except 0.75 where STL and MTL both score

46%). This further bolsters the evidence that MTL is working.

2.0.7 Soft-Sharing Versus Hard-Sharing

As a final experiment for this chapter, we compared hard-sharing and soft-sharing. The

results can be seen in Figure 2.6. The soft-sharing model used the best hyperparameters

found, namely, b = 3 and λ = 0.1. The hard-sharing model bifurcated after the third
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Figure 2.5: The l2 norm of the difference between the parameters in the shared lay-

ers. That is,
∥∥Wmain,b−Waux,b

∥∥. This term is added to the losses of both tasks, as

described in Section 2.0.1. It is clearly seen that increasing λ decreases the differ-

ence in weights and that the learning rate controls a lower bound of this difference, as

evidenced by the sharp drops as the learning rate is annealed.

Figure 2.6: Validation set performance of hard-sharing against soft-sharing. The soft-

sharing model uses b = 3 and λ = 0.1, the hard-sharing model shares across its first

three layers. All other aspects of training are the same. While both forms of MTL do

significantly better than the baseline, hard-sharing appears to do marginally better.
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layer. All other hyperparameters and aspects of training were kept equal. From the

validation performance, it appears that hard-sharing might be marginally better in this

case. This was unexpected, since the higher values for λ were found to be detrimental

to performance and as λ is increased you might expect the soft-sharing models to

converge to the hard-sharing models. Although, as previously shown, soft-sharing

does not quite generalise hard-sharing since it does not permit weights to be identical.

It would be interesting to investigate this result further, for example, comparing the

two forms of MTL for different values of b, λ and dataset size, to see if the outcome

changes.

2.0.8 MTL Classification Conclusion

% STL MTL

100 0.47 0.51

75 0.46 0.46

50 0.41 0.44

25 0.35 0.36

Table 2.2: Maximum validation

accuracies achieved for vary-

ing dataset sizes. MTL scores

are from the main task where

AUX=20 was the auxiliary task.

Although comparing maximums

is not a robust form of evalu-

ation, soft-sharing MTL clearly

increases generalisation perfor-

mance.

We have seen that soft-sharing MTL works well in

reducing overfitting on CIFAR-100, with ≈ 4% im-

provement over the baseline for AUX=20 (as seen

in Table 2.2). However, the models used so far have

been quite weak, and have overfitted significantly,

as evidenced in the gap between the training and

validation curves of our "good" baseline in Figure

2.1. It is unlikely that the benefits of MTL would

be so significant alongside other forms of regulari-

sation that also reduce this gap.

Getting MTL working on classification bodes

well for our hopes of incorporating it into a GAN.

Ideally, the classification models would have mir-

rored the discriminators architecture as much as

possible, e.g. in dimensions. This would make de-

cisions of how to apply MTL to the discriminator

more straightforward. Sadly, given the size of dis-

criminator that we used, this would have been too

much of a compromise in terms of computation time.

It would have also been preferable to do a wider search of the hyperparameter

space, by a random search, which is more effective than a grid search[57]. A better set

of MTL hyperparameters, i.e. b and λ values, in classification would help in guiding

the selection of hyperparameters for MTL with GANs. Again, it was decided this



Chapter 2. Multitask Learning with Classification 27

would take too long to implement and run.

Drawing conclusions from a single run of a model is dangerous since the random

initialisation of its weights can sometimes play a significant part in what area of the

error surface the training converges to. It is thus common practice to run the same ex-

periment multiple times with different random seeds and report the median. However,

most of the outcomes of this chapter were quite clear cut and its unlikely a different

initialisation would have effected this. We decided that reporting the results of varying

dataset sizes to be more worthwhile for showing that MTL was indeed working.



Chapter 3

Generative Adversarial Network

Theory

What I cannot create I do not

understand.

Richard Feynman

We now turn to the theoretical foundations of GANs, justifying the architectural de-

cisions we have made. To be specific, we will explore the standard GAN, the Wasser-

stein GAN (WGAN), the conditional GAN (cGAN) and the Auxiliary Classifier GAN

(AC-GAN). Motivation will be given as to why WGAN with gradient penalisation

(WGAN-GP) was chosen as our base architecture.

We consider extending cGAN and AC-GAN to a Wasserstein model, yielding cW-

GAN and AC-WGAN. We also propose a new version of AC-WGAN where the dis-

criminator is given a second auxiliary task (bringing it to a total of three tasks). Fur-

thermore, we propose a new category of class conditional GAN, SC-WGAN and pro-

pose some variations therein. Two methods of evaluating GAN performance are also

discussed, the inception score (IS) and the Fréchet inception distance (FID).

3.0.1 Before GANs: Maximum Likelihood Estimation

Previously, the most common way of creating a generative model was by maximum

likelihood estimation (MLE). For a generative model pθ with parameters θ (usually a

deep neural network with weights), the MLE objective is,

max
θ

1
N

N

∑
i=1

log(pθ(x(i);θ)) (3.1)

28
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Where x(i) are samples from the dataset. Maximising this is equivalent to minimising

the Kullback-Leibler divergence, denoted DKL, between the model’s distribution pθ

and the target distribution of the data pdata.

As [2] points out, minimising the KL-divergence is only well defined if the model

manifold (the space that the generated samples form) and the support of the true data

distribution (subspace within the full data space where the data actually lies) have a

non-negligible intersection. Otherwise the KL-divergence contains a division by zero

and returns infinity, which is impossible to minimise. To get MLE to work, the typical

solution is to add Gaussian noise to increase the models manifold, ensuring that there

is an intersection between the distributions. It turns out that the amount of noise for

this remedy to work is unavoidably large, enough to cause noticeable blurriness in

generated images. This motivates an alternative approach.

A different tactic is to have a function G(z) that transforms random noise z into

samples, which look like that of the original data. This doesn’t give us a direct approx-

imation of the distribution pdata like with MLE but it does let us sample for free. To

generate a sample we just plug a z into G, no Monte Carlo methods necessary. This is

the approach GANs take. The difficult part is in how G(z) is made to approximate the

real data, this is where the adversary D plays its part.

3.0.2 The Original GAN

We will now look at a more formal definition of the original GAN architecture intro-

duced by Goodfellow et al.[1].

We define the generator G as a transformation from a random variable z to the data

space that we are training on. Here we are training on CIFAR images with 32x32

RGB values, giving us 32x32x3=3072 dimensions. Before passing through the model

these pixels were scaled to lie in the range [-0.5, 0.5]. For the experiments ran here,

z was drawn from a 128 dimensional multivariate normal distribution with zero mean

and identity covariance. This is in keeping with most GAN papers we have read. We

define discriminator D as a transformation from the data space to a number in the range

[0, 1], the probability that an image is real. For instance, the discriminator outputs 0 for

images it has 100% confidence are fake and 1 for images that it has 100% confidence

are real.

The architecture is usually viewed from a game-theoretic perspective in which the

training is viewed as a non-cooperative two-player game, the discriminator D versus
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the generator G. More specifically, it is a mini-max game, whereby the discriminator

is maximising a value function while the generator is minimising it. A solution to

this objective is called a Nash Equilibrium. In practice, solving analytically for a

Nash Equilibrium is intractable so the value function is trained on by approximative,

gradient-descent procedures.1 The original value function proposed was,

min
D

max
G

V (D,G) = Ex∼pdata

[
logD(x)

]
+Ez∼pz

[
log
(

1−D(G(z))
)]

(3.2)

Where pdata is the probability distribution of the data and pz is the probability distri-

bution of the random variable z. Looking at the behaviour of D and G in turn, we see

that for D to minimise V it will try and assign values of 0 for real images, x ∼ pdata,

since this will minimise logD(x). Conversely, D will try and assign 1 to the outputs of

G for z ∼ pz since that will minimise log
(

1−D(G(z))
)

. To maximise V , G will try

and output values that D will assign to 0 since this maximises log
(

1−D(G(z))
)

.

Initial attempts to train this value function found that the gradients of log
(

1−D(G(z))
)

would often vanish as the discriminator saturates. To get around this, it was discovered

that it is better to maximise logD(G(z)) since the gradients are stronger[1]. The final

training algorithm is outlined in Algorithm 1.

Goodfellow et al. went on to prove that G’s output distribution pG will converge to

pdata via minimisation of the Jenson-Shannon divergence, denoted DJS, between the

two distributions[1]. This is in contrast to MLE which directly minimises the DKL, as

described in Section 3.0.1. However, this proof for G only holds given enough time

and with a model of sufficient capacity. Thus, typical of deep learning papers, this

proof doesn’t give any guarantees for "real-world" neural networks.

The biggest drawback of the original GAN architecture is its instability in training

and high sensitivity to hyperparameters. They are too sensitive to either the generator

or discriminator dominating. This often leads to a mode collapse where the generator

gets stuck producing the same image (from the same mode of pG) for many values of

z. When this happens, the gradients of the discriminator aren’t strong enough for the

generator to recover. An intuitive approach to tackling this is to monitor the statistics

of the loss functions of G and D then annealing the training of either that starts to win,

or, train the loser repeatedly until it catches up. However, these approaches have shown

1Heusel et al. have proved that if the generator and discriminator are permitted to have different
learning rates, along with some other weak conditions, then GANs and WGANs are guaranteed to
converge to a Nash equilibrium using either SGD or Adam. They call this the two time-scale update
rule (TTUR).
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Algorithm 1 Training algorithm used for GAN.

Require: α, the learning rate. β1, β2, Adam parameters. m, batch size. w0, initial

discriminator parameters. θ0, initial generator parameters.

1: procedure TRAIN GAN

2: for k = 0, ..., 200,000 do
3: for i = 0, ..., m do
4: Sample noise: z∼ pz

5: Sample real images: x∼ pdata

6: L(i)
D ← logDw(x)+ log

(
1−Dw(Gθ(z))

)
7: Sample noise: z∼ pz

8: L(i)
G ← log

(
1−Dw(Gθ(z))

)
9: LD← 1

m ∑
m
i=1 L(i)

D

10: LG← 1
m ∑

m
i=1 L(i)

G

11: w← Adam
(

∇wLD,α,β1,β2

)
12: θ← Adam

(
∇θLG,α,β1,β2

)
no sign of overcoming mode collapse. An example mode collapse is given by Figure

5.9.

3.0.3 Evaluating GAN Quality

Evaluating the performance of GANs is challenging. The loss functions of G and D for

standard GANs do not relate to image quality, only to how well they are doing against

their adversary. Furthermore, it is intractable to calculate precisely any useful kind

of distance between the generators distribution and the real distribution that is being

modelled. This would be the ideal evaluation. Instead, approximate approaches are

taken.

Human evaluation is an intuitive option. However, getting a low-variance estimate

of performance requires a large amount of samples which is expensive in terms of time

and money. Additionally, as discovered by Salimans et al.[36], human evaluation is

very sensitive to how the task is posed.

A cheaper and easier alternative, also discovered by Salimans et al., is to use an

inception score (IS). This relies on the inception model[58] to calculate the conditional

class distribution p(y|x) where y is the class and x is a generated image.2 If meaningful
2We downloaded a pretrained inception model from http://download.tensorflow.org/

http://download.tensorflow.org/models/ image/imagenet/inception-2015-12-05.tgz
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features are represented in the samples then the entropy of this distribution should be

low, i.e. there should be little uncertainty in which classes are represented. Conversely,

if the generated samples display a good amount of diversity then the marginal
∫

p(y|x=
G(z))dz should have a high entropy. The inception score reflects these two entropy

conditions by taking the KL-divergence of the two distributions,

exp
(
Ex

[
DKL

(
p(y|x)||p(y)

)])
(3.3)

Thus, a higher IS should correspond to higher quality images. It is exponentiated to

make the differences between scores more apparent. This inception score has become

the benchmark form of evaluation in GAN papers. For some reference of state-of-the-

art inception scores see Table 5.1.

A related scoring method, only recently proposed (June 2017), is the Fréchet incep-

tion distance (FID). It takes into account the statistics of the real data[59] and compares

them directly with the generated samples. This has been shown to pick up disturbances

in sample quality better than the original inception score, see Figure 3.1. It works by

passing both the generated samples xG and the real data xdata through the first three lay-

ers of the inception model to retrieve an encoding of each in feature space. This yields

two encodings f (xG) and f (xdata) that are assumed to be normally distributed, this

is the weakest assumption since Gaussians have maximal entropy. If the generator’s

distribution is optimal, i.e. pG = pdata, then these two Gaussians should be equal. By

calculating the mean and covariance of the two encodings f (xG) and f (xdata) we can

estimate these Gaussians. The FID is then defined to be the Fréchet distance between

these two Gaussians, defined as,

FID(xG,xdata) =‖mG−mdata‖2
2 +Tr(CG +Cdata−2(CGCdata)

1
2 ) (3.4)

Where mG, mdata are the means and CG, Cdata the covariances of the two Gaussians.

For GANs in this project, both FID and IS are calculated for all models. Although we

expect that FID benchmarks will become the standard, it is useful to compare inception

scores against previous results.

Another reason for trusting FID over IS, is how dataset dependent IS is. Let x1 be

samples from one dataset Data1 and let x2 be samples from another, Data2. An ideal

models/image/imagenet/inception-2015-12-05.tgz (accessed, 3rd May 2017) and used Ope-
nAI’s code for calculating the inception score, https://github.com/openai/improved-gan/tree/
master/inception_score (accessed, 3rd May 2017). Since that inception model is trained on 64x64
images, the generated samples were upsampled from 32x32 by bilinear interpolation before evaluating.

http://download.tensorflow.org/models/ image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/ image/imagenet/inception-2015-12-05.tgz
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http://download.tensorflow.org/models/ image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/ image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/ image/imagenet/inception-2015-12-05.tgz
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http://download.tensorflow.org/models/ image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/ image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/ image/imagenet/inception-2015-12-05.tgz
http://download.tensorflow.org/models/ image/imagenet/inception-2015-12-05.tgz
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Figure 3.1: FID is the Fréchet inception distance, IND is equal to m− inception score

where m is the inception score’s upper bound. Both values should rise as the picture

gets more disturbed but the inception score fails badly on the last step while the FID

detects the disturbance well. The disturbance here was caused by a Gaussian blur.

Heusel et al.[59] go on to present similar results for 5 other types of disturbance. Image

courtesy of [59].

evaluation metric E : x,Data→ R would have,

E(x1,Data1) = E(x2,Data2) (3.5)

In other words, samples from one dataset should score the same as samples from an-

other when compared to their respective datasets. In this way, the ideal metric would

be agnostic of the dataset.

We experimented with this, finding that for 50,000 samples, CIFAR-10 scored

11.23 and CIFAR-100 scored 14.69 on IS. Contrast that to 5.85 and 5.29 on FID us-

ing 5000 samples. We see that inception scores can only be compared relative to a

benchmark for a specific dataset whereas FID appear to be comparable across datasets.

It would be interesting to test this out with other datasets, including some non-vision

ones.

3.0.4 Wasserstein GAN

As mentioned, the standard GAN brings the distribution of the generator towards

that of the real data by minimising the JS-divergence and MLE minimises the KL-

divergence. The type of distance that is being minimised is important, it dictates how

smooth the gradients are, and thus, which sequences will converge. The Wasserstein

GAN[2] (WGAN) uses the Wasserstein distance, otherwise know as the Earth Mover’s
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distance.3 Intuitively, the Wasserstein distance between two distributions is the least

amount of work (mass × distance) required to shift one distribution into another. This

is shown in Figure 3.3. Arjovsky et al. go on to show a simple example in which

one distribution will not converge to another under any of the tested metrics (which

included KL-divergence and JS-divergence) but does under the Wasserstein distance.

Although the example was contrived, it gives some theoretical motivation for why it

may be a better choice.

Figure 3.3: The Wasserstein distance measures the least amount of work (mass ×
distance) to shift one distribution into another. Here we see a simple discrete case

where the least amount of work required to move f into g is to shift 1/4 of mass 1 unit

along. Therefore, W ( f ,g) = 1/4×1 = 1/4.

The formal definition of the Wasserstein distance between pG and pdata is,

W(pG, pdata) = inf
γ∈Π(pG,pdata)

Ex,y∼γ||x− y|| (3.6)

Where Π(pG, pdata) is the set of all joint distributions with marginals
∫

γdx = pG and∫
γdy = pdata. The inf symbol stands for the in f imum and is a mathematical form of a

minimum (and can be thought of as such).

However, computing the Wasserstein distance here is intractable. Intuitively this

makes sense, the Wasserstein metric is the least amount of work required to transform

between the distributions, finding this means searching through the infinite possible

transformations that take pG to pdata. Fortunately, an equivalence from analysis can

help, a special case of Kantorovich-Rubinstein duality (a proof of which can can be

found in appendix B),

W(pG, pdata) = sup
‖D‖L≤1

(
Ex∼pG [D(x)]−Ex∼pdata [D(x)]

)
(3.7)

3Care must be taken with the acronyms in this project as to whether we are dealing with a GAN or a
WGAN.
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Where in our case, x corresponds to images and D(x) is the output of the discriminator.

The sup symbol is the supremum and can for all practical purposes be thought of as the

maximum. ‖D‖L ≤ 1 is a restraint on D, requiring it to be 1-Lipschitz or equivalently,

that the magnitude of D’s gradient may never exceed 1.

3.0.5 Enforcing the Lipschitz Constraint by Clipping Weights

Figure 3.2: The WGAN archi-

tecture proposed by Arjovsky

et al.[2].

Finding this supremum over all 1-Lipschitz functions

is still intractable but now it is much easier to approx-

imate. We can ensure a neural network is K-Lipschitz,

i.e. ‖D‖L ≤ K, for some unknown constant K, if we

clip its weights to the range [−c,c] for some known

constant c. This doesn’t tell us what K is but just that

it exists. Clipping the weights like this doesn’t quite

solve our Lipschitz issue since we want the supremum

over 1-Lipschitz functions not K-Lipschitz functions.

However, since dividing a K-Lipschitz function by

K gives a 1-Lipschitz function, and since equation 3.7

is linear, if we find the supremum over K-Lipschitz

functions then we have found KW(pG, pdata). This

scalar factor of K is unimportant in terms of optimisa-

tion, it just means the gradients are scaled by K. This

can be accounted for by adjusting the learning rate, so

K gets absorbed into hyperparameter tuning. Thus, it

is enough to clip the weights of the discriminator by some c and converge it to an

approximation of the supremum of D to give us a good approximation of the Wasser-

stein metric.4 From this discussion, we can see an immediate issue with clipping the

weights like this, it introduces a complex dependency between c and the optimisation

hyperparameters.

We found that a useful way to think of the discriminators training objective is to

imagine what would happen if the Lipschitz constraint was removed. This would allow

the discriminator network to have an unbounded gradient. The training objective would

encourage the discriminator to assign higher and higher values to the fake images and 0

4You may notice that the discriminator is no longer really discriminating, it outputs arbitrarily high
outputs for the Wasserstein estimate, not probabilities between 0 and 1 like in the original GAN. Hence
for WGANs, it is often referred to as a critic instead.
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to the real images. The supremum of equation 3.7 would be unbounded and the training

would never converge. By placing the constraint that the gradient of the function must

be bounded by some K, the supremum of equation 3.7 is bounded and the training

converges towards that bound. This training can not overfit, it’ll just keep getting

closer and closer to the true Wasserstein distance.

3.0.6 Deriving the Training Steps

To train G we wish to take the gradient of this Wasserstein metric with respect to the

parameters of G, call them θ. This is equivalent to,

∇θW(pG, pdata) = ∇θ

(
Ex∼pG[D(x)]−Ex∼pdata[D(x)]

)
=−Ex∼pG[∇θD(x)] (3.8)

This is just the gradient of equation 3.7. The second term disappears since it has no

dependency on θ. Now, for x∼ pG we have x = G(z) for some z∼ pz, giving us,

Ex∼pG [D(x)] = Ez∼pz [D(G(z))] (3.9)

Where pz is the distribution of the random variable z (e.g. for experiments in this

project pz is a 128 dimensional Gaussian). Thus, equation 3.8 becomes,

∇θW(pG, pdata) =−Ez∼pz[∇θ(D(G(z)))] (3.10)

This gives us our desired gradients for training. The training process can be broken

down into two steps:

• Approximate W(pG, pdata) = −Ez∼pz

[
∇θ(D(G(z)))

]
by training D to conver-

gence

• Update the generator’s parameters θ by gradient descent with −∇θW(pG, pdata).

WGAN offers increased training stability, [2] argues that this is due to the Wasser-

stein metric offering a higher level of continuity with respect to the generators param-

eters. However, optimisation is still not straightforward as the weight clipping value

c interacts unpredictably with the cost function of the discriminator[3]. This often

leads to vanishing or exploding gradients, especially in deep networks. These issues

can sometimes be mitigated by batchnorm but not always[3]. Regardless, it is clearly

preferable to have an architecture that is stable enough to work without batchnorm.
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3.0.7 Enforcing the Lipschitz Constraint by Gradient Penalisation

Gulrajani et al.[3] proposed a new method of enforcing the K-Lipschitz condition

called gradient penalisation (GP), yielding a slightly modified WGAN-GP architec-

ture. Instead of clipping the weights to restrain D’s gradient, a new term in the loss of

the discriminator is introduced that directly penalises the norm of D’s gradient. This

term is softly enforced with a hyperparameter η.5 The objective becomes,

LD = sup
‖D‖L≤1

(
Ex∼pG [D(x)]−Ex∼pdata [ f (x)]

)
+ηEx̂∼px̂

[∥∥∇x̂D(x̂
∥∥

2−1)2
]

(3.11)

Where the new variable x̂ is soon to be defined. The −1 in this new term encourages

the gradient towards a norm of 1, which [3] showed to be the optimal gradient for the

discriminator. Now, ideally the gradient norm would be restrained over D’s entire loss

surface, however this would require sampling x̂ ∼ px̂ over an intractably large area.

Instead, [3] found it sufficient to only sample x̂ from straight lines between samples

from pG and samples from pdata. Intuitively this makes sense since it is only that part

of the discriminators surface that is relevant if the model is successfully training and

minimising the Wasserstein distance.

So D’s objective is no longer just minimising the Wasserstein distance, as in equa-

tion 3.7, but is also keeping the gradient of D close to 1 with respect to samples on a

straight line between points from pG and pdata.

By removing the requirement of weight clipping, the complex interaction between

c and D’s loss is removed. Instead, the gradient is smoothly regularised, resulting

in robust stability across a wide variety of architectures, including deep networks of

101-layers[3]. The training algorithm for WGAN-GP is given in Algorithm 2.

One nice feature of WGAN is that the discriminator’s loss corresponds fairly well

to image quality, as shown in [2]. This is because the discriminator’s loss is an approx-

imation of the Wasserstein distance between generated samples and real samples. This

applies for WGAN-GP as well. However, such an evaluation is limited in its potential

since you cannot readily compare the discriminator loss of one WGAN model to an-

other (and certainly not to a different type of GAN). The discriminator loss is relative

to that particular WGAN architecture and cannot be used as a comparison against other

discriminator losses. It could be possible to consistently use a powerful, pre-trained

WGAN discriminator for evaluation, similar to the inception score. We know of no

efforts in this direction.
5The original paper actually calls the parameter λ but we’ve already used this notation for our soft-

sharing hyperparameter.
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Algorithm 2 Training algorithm used for WGAN-GP.

Require: α, learning rate. β1, β2, Adam parameters. m, batch size. nD, number of

iterations to train discriminator for one generator iteration. η, penalisation rate of

discriminators gradient. w0, initial discriminator parameters. θ0, initial generator

parameters.

1: procedure TRAIN WGAN

2: for k = 0, ..., 200,000 do
3: for t = 0, ..., nD do
4: for i = 0, ..., m do
5: Sample noise: z∼ pz

6: Sample real image: x∼ pdata

7: Generate image: x̃← Gθ(z)
8: Sample number: ε∼U [0,1]

9: Calculate interpolate image: x̂← εx+(1− ε)x̃
10: Calculate gradient penalisation term: GP← (||∇x̃Dw(x̂)||2−1)2

11: L(i)
D ← Dw(x̃)+Dw(x)+ηGP

12: LD← 1
m ∑

m
i=1 L(i)

D

13: w← Adam
(

∇wLD,w,α,β1,β2

)
14: Sample m noise samples: {z(i)}m

i=1 ∼ pz

15: LG← 1
m ∑

m
i=1 log

(
1−Dw(Gθ(z(i)))

)
16: θ← Adam

(
∇θLG,θ,α,β1,β2

)
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3.0.8 Class Conditioning GANs

So far we have only looked at GANs which deal with unlabelled data in a purely

unsupervised setting. It is possible however, to modify the architecture slightly and

make use of the rich information captured in the labels, as mentioned in Section 1.0.3.

Indeed, this is crucial to how we implement MTL to some of our proposed GANs, it

allows the networks to differentiate between the two CIFAR-100 tasks. After all, the

two tasks in question (discussed in Section 1.0.8) differ only in their labelling. So if

we want any hope of incorporating this form of MTL into a GAN, we must use class

conditioning.

3.0.9 Conditional GAN

The simplest way to class condition a GAN, introduced by [38], is to incorporate the

class information in the first layer of the generator (before the convolutions) and the

last layer of the discriminator (after the convolutions). This is done by concatenation

of the real data’s labels with a layer of the network’s (sometimes actually with multiple

layers, as done in [39]). Figure 1.5 shows a very high level comparison of the original

conditional GAN[38] (cGAN) against other varieties of class conditioned GAN.

The hope is that the generator will learn modes over its input space that align well

with the class information, giving us control over where the modes are formed. This

enables us to control what type of samples are generated by G, we just have to feed in

the corresponding class vector concatenated with random noise.

This is more than just convenient, it can significantly increase the quality of the

samples being produced. The difference in performance can be witnessed in Table 5.1,

where the difference between state-of-the-art unsupervised and supervised GANs is

clear. Part of the reasoning for this boost in performance may be the fact that class

conditioning forces the GAN to learn modes over all of the classes. Without class

conditioning it is common for GANs to skip certain classes when generating samples,

for example [60] showed an example of a GAN trained on MNIST generating 37 1s

and only one 2 out of 100 samples.

3.0.10 Conditional WGAN

Does this form of conditioning work identically with WGAN and WGAN-GP as it

does for cGAN? Nothing was found in the surrounding literature that addresses this.
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Since the generator does not fundamentally change in a WGAN (same architecture and

loss function), we can assume that it will learn the conditional distributions over the

classes in the same way. The discriminator plays a very different role however. In the

original GAN, the discriminator is truly discriminating. In a WGAN the discriminator

is estimating the Wasserstein distance between generated samples and real samples,

this estimate is then used to obtain gradients to train G. The outputs of D are no

longer probabilities between 0 and 1 but are relatively unconstrained (there is only the

Lipschitz constraint).

Figure 3.4: A Wasserstein

extension of the Conditional

GAN architecture proposed

by Mirza et al.[38].

The new class information changes the gradient

formulation (equation 3.10) to incorporate a joint dis-

tribution prior pz,c. Also, D(x,c) and G(x,c) now have

extended domains. Equation 3.10 then becomes,

∇θW(pG, pdata) =−Ez,c∼pz,c

[
∇θD(G(z,c),c)

]
(3.12)

The question becomes, does this additional class

information help D estimate the Wasserstein distance

better, giving better gradients for G? Or does it provide

no benefit? In which case, D(x) ≈ D(x,c). We could

see no reason why this wouldn’t work in the same way

as it does in cGAN. We have omitted the training algo-

rithm since it is so similar to that of WGAN-GP, Algo-

rithm 2.

3.0.11 Auxiliary Classifier WGAN

The AC-GAN paper[5] does not propose a novel way

of class conditioning but rather the combination of two

pre-existing methods, namely, cGAN conditioning in

the generator and SGAN[42][36] conditioning in the

discriminator. We didn’t have concerns that this architecture would fail for the Wasser-

stein case since [3] achieved a very strong IS on CIFAR-10 by doing something very

similar. We now outline how the architecture works.

The discriminator trains to classify images (both real and generated) as well as

estimate the Wasserstein distance between real and fake images like it usually would.

To do this, the discriminator has two outputs, bifurcating in the final layer. The total
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discriminator loss is the same as the original only with an additional classifier loss term.

The classifier loss is a standard softmax cross-entropy loss that is calculated from both

a batch of real and a batch of fake images. Since it is being calculated on two batches, it

gets halved before combining with the discriminator loss. Likewise, the generator loss

has the same classifier loss added on. Otherwise, the generator is conditioned upon in

the same way as cWGAN. To clarify, the losses of the discriminator and generator are,

LD← LD +(LCR +LCF)/2

LG← LG +(LCR +LCF)/2

Where LCR is the loss of the discriminator in classifying real images and LCF is the

loss of the discriminator in classifying fake images. All other aspects of the model are

the same as the baseline. An outline of the full training regime is given by Algorithm

3.

Figure 3.5: A Wasserstein ex-

tension of the Auxiliary Clas-

sifier GAN architecture pro-

posed by Odena et al.[38].

The class conditioning occurs because the gener-

ator is encouraged to generate images that reduce the

classifier loss, so it generates images that are easy to

discern and hence match with its class vector input y.

One issue with AC-WGAN is how to add the

classifier loss to the generator and discriminator loss.

Should the contributions be scaled differently? This

might make sense since the discriminator is being

trained 5 times for every one generator iteration, so

the training may be more balanced if the classifier loss

contribution to the discriminator is scaled by 0.2.

3.0.12 MTL-based Extension to AC-WGAN

In light of our investigations into MTL, one interesting

extension to AC-WGAN, is to add a third task to the

discriminator, a second auxiliary task, which classifies

the coarse labels of CIFAR-100. This provides extra

hard-sharing between related tasks, so has the poten-

tial to confer MTL-benefits such as data amplification

and eaves-dropping. Data amplification may be par-

ticularly useful in this case since there is a scarcity of
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Algorithm 3 Training algorithm used for AC-WGAN.

Require: α, learning rate. β1, β2, Adam parameters. m, batch size. nD, number of

iterations to train discriminator for one generator iteration. η, penalisation rate

of discriminators gradient. nc, number of classes. ω, controls the contribution

of the classifiers loss. w0, initial discriminator parameters. θ0, initial generator

parameters. φ0, initial classifier parameters.

1: procedure TRAIN AC-WGAN

2: for k = 0, ..., 200,000 do
3: for t = 0, ..., nD do
4: for i = 0, ..., m do
5: Sample noise: z∼ pz

6: Sample real image with class: x,c∼ pdata

7: Generate image: x̃← Gθ(z,c)
8: Sample number: ε∼U [0,1]

9: Calculate interpolate image: x̂← εx+(1− ε)x̃
10: Calculate gradient penalisation term: GP← (||∇x̃Dw(x̂)||2−1)2

11: L(i)
D ← Dw(x̃)+Dw(x)+ηGP

12: Classifier loss on real image: L(i)
CR← CrossEntropy(Cφ(x),c)

13: Classifier loss on fake image: L(i)
CF ← CrossEntropy(Cφ(x̃),c)

14: LCR← 1
m ∑

m
i=1 L(i)

CR

15: LCF ← 1
m ∑

m
i=1 L(i)

CF

16: LC←
(

LCR +LCF

)
/2

17: LD← 1
m ∑

m
i=1 L(i)

D +ωLC

18: w← Adam
(

∇wLD,w,α,β1,β2

)
19: for i = 0, ..., m do
20: Sample noise: z∼ pz

21: Sample real image with class: x,c∼ pdata

22: Generate image: x̃← Gθ(z,c)
23: Classifier loss on real image: L(i)

CR← CrossEntropy(Cφ(x),c)
24: Classifier loss on fake image: L(i)

CF ← CrossEntropy(Cφ(x̃),c)

25: LCR← 1
m ∑

m
i=1 L(i)

CR

26: LCF ← 1
m ∑

m
i=1 L(i)

CF

27: LC←
(

LCR +LCF

)
/2

28: Sample m noise samples: {z(i)}m
i=1 ∼ pz

29: Sample m classes: {c(i)}m
i=1 ∼ pdata

30: LG← 1
m ∑

m
i=1 log

(
1−Dw(Gθ(z(i),c(i)))

)
31: LG← LG +ωLC

32: θ← Adam
(

∇θLG,θ,α,β1,β2

)
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data for each class in CIFAR-100. These benefits could

lead to better hidden representations in the discriminator, which would confer better

Wasserstein gradients to the generator and allow it to generate higher quality images.

To update AC-WGAN as such, the losses become,

LD← LD +(LCRM +LCFM +LCRA +LCFA)/4

LG← LG +(LCRM +LCFM +LCRA +LCFA)/4

Where LCRM and LCFM are the classifier losses for the main task and LCRA and LCFA

are the classifier losses for the auxiliary task.

3.0.13 Separate Classifier WGAN

Figure 3.6: Our proposed

Separate Classifier WGAN

(SC-WGAN) architecture.

Another form of class conditioning, which we couldn’t

find evidence for in the literature, is the same as AC-

WGAN, only, instead of an auxiliary classifier in the

discriminator there is a separate classifier network.

This classifier trains to discriminate the classes of real

images and fake and is trained with respect to its own

parameters as well as those of the generators. We

call this model the Separate Classifier WGAN (SC-

WGAN). In the same way as AC-WGAN, class con-

ditioning occurs as the generator is encouraged to gen-

erate images that minimise the classifiers loss. In this

architecture, the discriminator is no longer being class

conditioned on (although this would be an interesting

variant that we didn’t test) but the generator is. The

concern of how often to train the classifier losses for

the generator and discriminator remains.

That there isn’t any attention to SC-GANs in the

literature might suggest they are outperformed by AC-GAN architectures. With an ad-

ditional classifier network (or two), they are also slower to train. Still, we felt that they

are an interesting form of class conditioning, especially for a Wasserstein discrimina-

tor.

For a normal AC-GAN, the discriminator is doing as the name suggests, discrim-

inating, so adding an auxiliary task (or two) that is also discriminating seems like a
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natural extension. However in the WGAN, the discriminator is no longer really dis-

criminating, it’s performing a regression of the Wasserstein distance. To extend it to

also discriminate classes is a bigger leap than it is for AC-GAN. This can be either a

good thing or a bad thing. For MTL we require tasks to be related but not too similar

for optimal performance. How far from this "goldilocks zone" our auxiliary classifier

task(s) lie with respect to estimating the Wasserstein distance is hard to gauge. If the

task(s) are not related enough, SC-WGAN may prove to be a better option since the

discriminator is no longer performing MTL. Hence, we hypothesised that this form of

class conditioning may be especially good for the Wasserstein discriminator in partic-

ular.

The losses for SC-WGAN are,

LC← (LCR +LCF)/2.

LD← LD

LG← LG

The classifier loss LC gets minimised with respect to the classifier’s parameters φ and

the generator’s parameters θ but not the discriminator’s. The algorithm is given in

Algorithm 4.

3.0.14 Incorporating MTL into SC-WGAN

A variant of SC-WGAN that we tested was with soft-sharing MTL between the clas-

sifier and discriminator. Since the two networks are performing related but different

tasks and learning similar but different features, they are good candidates for benefit-

ing from MTL. As Chapter 2 explores, soft-sharing in this way is a sensible choice of

applying MTL.

Another way of incorporating MTL into SC-WGAN is to have two separate clas-

sifiers, one classifying fine labels and one classifying coarse labels. This is a similar

architecture to the extension of AC-WGAN mentioned earlier, with two auxiliary clas-

sifier tasks. A drawback of this form of SC-WGAN is that with 4 different neural

networks, it is quite cumbersome to train.

3.0.15 Other Ideas for Incorporating MTL into a WGAN

There are many other conceivable variants of SC-WGAN (and AC-WGAN) that in-

volve forms of MTL. The ones proposed are slightly arbitrary. One could also envision
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Algorithm 4 Training algorithm used for SC-WGAN.

Require: α, learning rate. β1, β2, Adam parameters. m, batch size. nD, number of

iterations to train discriminator for one generator iteration. η, penalisation rate

of discriminators gradient. s, classifier train frequency. nc, number of classes.

w0, initial discriminator parameters. θ0, initial generator parameters. φ0, initial

classifier parameters.

1: procedure TRAIN SC-WGAN

2: for k = 0, ..., 200,000 do
3: for t = 0, ..., nD do
4: for i = 0, ..., m do
5: Sample noise: z∼ pz

6: Sample real image with class: x,c∼ pdata

7: Generate image: x̃← Gθ(z,c)
8: Sample number: ε∼U [0,1]

9: Calculate interpolate image: x̂← εx+(1− ε)x̃
10: Calculate gradient penalisation term: GP← (||∇x̃Dw(x̂)||2−1)2

11: L(i)
D ← Dw(x̃)+Dw(x)+ηGP

12: LD← 1
m ∑

m
i=1 L(i)

D

13: w← Adam
(

∇wLD,w,α,β1,β2

)
14: Sample m noise samples: {z(i)}m

i=1 ∼ pz

15: Sample m classes: {c(i)}m
i=1 ∼ pdata

16: LG← 1
m ∑

m
i=1 log

(
1−Dw(Gθ(z(i),c(i)))

)
17: θ← Adam

(
∇θLG,θ,α,β1,β2

)
18: if k mod s == 0 then
19: for i = 0, ..., m do
20: Sample noise: z∼ pz

21: Sample real image with class: x,c∼ pdata

22: Generate image: x̃← Gθ(z,c)
23: Classifier loss on real image: L(i)

CR← CrossEntropy(Cφ(x),c)
24: Classifier loss on fake image: L(i)

CF ← CrossEntropy(Cφ(x̃),c)

25: LCR← 1
m ∑

m
i=1 L(i)

CR

26: LCF ← 1
m ∑

m
i=1 L(i)

CF

27: LC←
(

LCR +LCF

)
/2

28: φ← Adam
(

∇φLC,φ,α,β1,β2

)
29: θ← Adam

(
∇θLC,θ,α,β1,β2

)
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MTL being employed in the generator by having two independent class conditioned

GANs, one conditioned on coarse labels and one conditioned on fine labels. Then a

MTL scheme like hard-sharing or soft-sharing could be set up between their respective

generators and/or discriminators. However, training multiple GANs in parallel wasn’t

realistic within our time frame.



Chapter 4

GAN Implementation Details

Here we outline the technical details of the experiments that were run. The motivation

for why we ran these experiments is established in the previous chapter.

All models shared the same hyperparameters wherever possible, these are dis-

played in Table 4.2. Weights were initialised according to a uniform distribution

U [−k,k] where k =
√

6√
fanin+fanout

as recommended by Glorot et al.[61]. Where fanin and

fanout are the number of connections coming in and out of the neuron being initialised.

It would have been interesting to investigate the effects of different initialisations to

the stability and performance of WGANs, especially in the discriminator where batch-

norm wasn’t used. We say this because batchnorm is supposed to reduce sensitivity to

the initialisation scheme used.

Here we outline the 9 different WGAN architectures that were tested, one baseline

WGAN and 8 with some form of conditioning. Of these 8, 6 included some form of

MTL. Table 4.1 summaries the different forms of MTL and class conditioning used.

All WGANs build upon the WGAN-GP architecture[3], for brevity the "-GP" is omit-

ted from model names. All models follow the default hyperparameters mentioned in

Tables 4.2 and 4.3 unless stated otherwise. The code was implemented in TensorFlow

1.0.0[44] and ran on a NVIDIA 1070 GPU.

4.0.1 Wasserstein GAN Implementation

The code for this baseline model is forked from one of the WGAN authors github

repo.1 It follows training Algorithm 2. As a sanity test, we ran this model on CIFAR-

10 and found that it faithfully reproduced the expected inception score of ≈ 6[3].

1Martin Arjovsky’s, https://github.com/martinarjovsky/WassersteinGAN (accessed 28th
May, 2017).
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Method MTL
Classifier

Type
Conditioning

Location
Other

WGAN

cWGAN.a G&D

cWGAN.b G&D
Extra layer for

class vector

AC-WGAN.a X 1 auxiliary G&D

AC-WGAN.b X 2 auxiliary G&D

AC-WGAN.c X 2 auxiliary G&D
Bifurcation occurs

a layer earlier

SC-WGAN.a X 1 separate G&C

SC-WGAN.b X 1 separate G&C
Soft-sharing

between C and D

SC-WGAN.c X 2 separate G&C

Table 4.1: Overview of different WGAN models implemented, showing the differences

in how they were class conditioned. For generator G, discriminator D and classifier C.

Data Optimiser Learning Rate β2 β2 Iterations Batch Size

CIFAR-100 (50,000) Adam 1e-4 0.5 0.9 2e5 64

Soft-sharing λ D-Iterations GP η z-Dim Conv-Filters LeakyReLU-α Strides

0.1 5 10 128 5 × 5 0.2 2 × 2

Table 4.2: Default hyperparameters that were used across all GAN experiments. β1

and β2 are hyperparameters for Adam, D-iterations denotes the number of times the

discriminator optimiser is trained relative to one iteration of the generator, soft-sharing λ

is the hyperparameter that controls the rate of soft-sharing, GP η is the parameter that

controls the gradient-norm penalisation of D and z-dim is the dimension of the noise

variable that is passed to the generator.



Chapter 4. GAN Implementation Details 49

Activations 1st Layer BN 2nd Layer BN 3rd Layer BN 4th Layer BN Final Activation

G ReLU FC 4096 X DeConv 256 X DeConv 128 X DeConv 64 Tanh

D LeakyReLU Conv 64 Conv 128 Conv 256 FC 4096 None

C LeakyReLU Conv 64 Conv 128 X Conv 256 X FC 4096 Softmax

Table 4.3: Network dimensions of all GANs unless specified, for generator G, discrimi-

nator D and classifier C. Not all models use classifiers. BN stands for batch normalisa-

tion, or batchnorm. Note, DeConv layers aren’t technically deconvolutional layers, they

are upsample convolutional layers (convolutional layers that increase the image size).

4.0.2 Conditional WGAN Implementation

cWGAN.a is a WGAN with simple conditioning in the generator and discriminator, as

done in [38]. Class vector y is concatenated with the noise vector z before passing to

the generator (before the upsample convolutional layers). Similarly, y is concatenated

with the discriminator’s penultimate layer before the output layer (after the convolu-

tional layers). All other hyperparameters are default.

cWGAN.b is exactly the same as cWGAN.a except in the discriminator, where the

y vector is passed through a fully connected layer with 256 units before concatenating.

This to test whether the model benefits from more interaction between the conditional

information in y and the dense codes within the network. Both models otherwise

follow the WGAN training Algorithm 2.

4.0.3 Auxiliary Classifier WGAN Implementation

AC-WGAN.a is an extension of AC-GAN[5] to the Wasserstein architecture. This is

not a novel extension, [3] use an AC-WGAN with a ResNet[37] architecture in both

the generator and the discriminator to achieve (very close to) state-of-the-art results

on CIFAR-10. AC-WGAN in [3] uses two different hyperparameters for the classifier

loss contribution. They used rates of 1 and 0.1 for the generator and discriminator

respectively. We decided to keep this choice as simple as possible, leading us to choose

1 for both. This is a clear avenue of future investigation. An outline of the full training

regime of AC-WGAN is given by Algorithm 3

AC-WGAN.b is the same but with two auxiliary classifier outputs in the discrim-

inator, one for 100-way classification as in AC-WGAN.a and one for 20-way classifi-

cation. The losses are combined in a linear fashion, as outlined in Section 3.0.12. All

other details remain consistent with AC-WGAN.a.
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AC-WGAN.c is the same as AC-WGAN.b only the bifurcation point isn’t in the

final layer like for the other two architectures, but in the second last last layer. This

means each task has a dedicated convolutional layer. This allows the final convolu-

tional layers more capacity to focus on their respective tasks but could reduce MTL

benefits since less parameters are shared. It also hurts computation time since it is

effectively adding two extra 256-dimensional convolutional layers.

4.0.4 Separate Classifier WGAN Implementation

SC-WGAN.a is similar to AC-WGAN but classification of the images is carried out

through a separate network, as opposed to being an auxiliary task of the discriminator.

The discriminator is the same as in the baseline WGAN and the generator is condi-

tioned upon in the same way as cWGAN. The classifier is trained every sth iteration,

where s is a hyperparameter to be tuned. In this project we used s = 2 and did not

investigate further. The classifier is trained to classify fake and real images using a

standard cross-entropy loss. Also every sth iteration, the generator’s parameters are

trained with respect to the classifier’s loss on fake images. In other words, the gener-

ator updates its parameters so that the images it generates are more discernible to the

classifier. An outline of the training regime is given by Algorithm 4.

SC-WGAN.b is the same as SC-WGAN.a only with soft-sharing between the first

two layers of the discriminator and classifier with λ = 0.1.

SC-WGAN.c is the same as SC-WGAN.a only with two separate classifiers. One

classifier is the same as in SC-WGAN.a, the other classifies the images with the coarser

20-way labelling of CIFAR-100. The training is alternated with equal probability be-

tween the two classifiers.

4.0.5 Normal GAN Implementation

To help understand the effect of the Wasserstein loss, a variety of normal GANs were

tested as a comparison. To switch from a WGAN to a normal GAN (in line with the

advice given by [62]), the following steps were taken:

1. LG← CrossEntropy
(

D(G(z)),1
)

2. LD← CrossEntropy
(

D(G(z)),0
)
+ CrossEntropy

(
D(x),1

)
3. D-Iterations← 1
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4. Discriminator given a final layer sigmoid activation

5. Batchnorm added to each layer of the discriminator

For image x ∼ pdata and noise z ∼ pz. All hyperparameters were otherwise kept the

same.

The following models were tested (also shown are the corresponding WGANs they

were converted from):

1. GAN (WGAN)

2. cGAN.a (cWGAN.a)

3. AC-GAN.a (AC-WGAN.a)

4. SC-GAN.a (SC-WGAN.a)

Note, these experiments cannot really hope to show conclusively that for class

conditioning on CIFAR-100, WGANs are better (or worse) than GANs. This is since

there has been no attempt to tune hyperparameters. Models should really be compared

best against best. Or, models can be compared in terms of stability, after being tested

with a wide variety of hyperparameters. Both of these types of comparison require lots

of hyperparameter tuning and therefore lots of experiments. The experiments here can

only provide limited evidence towards the stability and performance of the different

architectures. This is a point of complexity of GAN-research in general. Models that

offer state-of-the-art results can be harder to train (e.g. AC-GAN), models that offer

increased stability can perform worse (e.g. the original WGAN). Both varieties are

often interesting and important in their own right.

Since there appears to be nothing in the GAN-literature on CIFAR-100 it is inter-

esting to see how the strong performers on CIFAR-10 do when re-tasked to CIFAR-

100. Ideally all of the top, state-of-the-art GANs would be reproduced then tested on

CIFAR-100. This is clearly out of the scope of this project, however, we decided we

had time to try it for one model. AC-GAN[5] was the natural choice since it would

allow comparison with our AC-WGANs. Note, the AC-GAN from [5] has quite a

different architecture from our AC-GAN.a. The original AC-GAN sees the following

main changes (a complete list can be found in Appendix A of [5]):

1. A thinner Generator

2. Three extra convolutional layers in discriminator



Chapter 4. GAN Implementation Details 52

3. Three convolutional layers with stride 1x1 in discriminator

4. No final FC layer in discriminator

5. Kernel of 3x3 for all convolutional layers in discriminator

6. Dropout in discriminator with keep probability of 0.5

7. Activation noise at all layers (adding Gaussian noise to the outputs of activations

as recommended in [36])

We call our reproduction, AC-GAN.b.

Unfortunately, the authors did not include the full list of hyperparameters. They

specified three possible learning rates for the generator, three possible learning rates

for the discriminator and three possible activation noise standard deviations. They then

stated that they achieved their (then) state-of-the-art results by doing a grid search over

the 27 possible combinations of these hyperparameters. Without the exact hyperpa-

rameters or source code, this makes the model hard to reproduce. Without running

lots of experiments, if an attempted reproduction comes out with a negative result it

is hard to ascertain whether this is due to some slight deviation in our code or a slight

difference in hyperparameters. This issue is especially pertinent when dealing with

original, non-Wasserstein GANs since they are notoriously sensitive to hyperparame-

ters and suffer badly from mode collapses (where lots of points in z-space all generate

the same image).

4.0.6 Calculating FID and IS

Both the FID and IS both require loading the Inception graph at runtime. The FID also

requires loading and calculating statistics of the true data at runtime. Because both

forms of evaluation take fairly long (≈ 3 mins), during training, the IS and FID were

calculated every 2000 iterations. Both were calculated using 5000 generated samples.

This is the recommended amount for FID according to [59] but [36] recommend 50,000

for IS. We decided that this would have taken too much compute time given as it is our

secondary form of evaluation. It is also the same sample size as [3] use in their source

code.
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Results and Discussion

Here we discuss the results of the models outlined in Chapter 3 and 4. We also provide

evidence that the networks are not memorising training examples but are learning gen-

eralisable features of the data. To understand the impact that class conditioning has on

image quality we compare the models to a baseline WGAN without class condition-

ing. We look at each category of GAN in turn and then do a comparison of the best

from each category. The categories are cWGAN, AC-WGAN and SC-WGAN. The

FID was found to be far less noisy and more consistent than the IS. This is evidenced

by the faint grey lines in the graphs that indicate the true, unsmoothed data.1 For this

reason and others pointed out in Section 3.0.3, we draw our conclusions from the FID

and use the IS for supporting evidence.

For conciseness, we have omitted a complete set of generated images from this

section and direct the reader to appendix A. A high level overview of the WGAN ar-

chitectures, along with samples of the first 10 classes can be found there. It is from

samples like these that we checked to see if the models had successfully class condi-

tioned. This method of checking might not seem a robust form of evaluation since the

classes are difficult to identify in nearly all cases. However, as the difference between

Figures 5.1 and 5 demonstrates, successful class conditioning turned out to be easy

to identify. We do concede the possibility that some classes might have been partly

conditioned, or conditioned poorly, and we failed to notice. We do not add images of

the GAN samples as they were generally very poor and not interesting.

Unfortunately we didn’t have time to train all of our models to convergence. The

two we chose to train for an extra 2e5 iterations were: the WGAN baseline and the
1Smoothing was performed by a simple convolution. The moving window size was 10 for FID and

20 for IS.
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Figure 5.1: Samples generated from AC-WGAN.a where class conditioning succeeded.

Each row clearly contains a separate class, even if those classes are hard to identify.

second strongest of our class conditioned models, AC-WGAN.b. The reason we didn’t

choose AC-WGAN.c, our strongest, was because it took substantially longer to train

and performed only marginally better than AC-WGAN.b.

5.0.1 cWGAN Results

Both varieties of cWGAN failed to successfully class condition and the quality of

images was slightly worse than the baseline according to FID and IS. This method has

proved successful for simpler tasks like MNIST[38] but it evidently does not scale well

to a task like CIFAR-100. There are many other variants of cWGAN that we could have
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Figure 5.2: Samples generated from cWGAN.a where class conditioning failed. Each

row should be of the same class but here there doesn’t appear to be any such grouping.

For instance, the top row should be images of apples.
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Figure 5.3: FID and IS results for cWGAN.a and cWGAN.b against a WGAN baseline.

There was no qualitative evidence of successful class conditioning, as witnessed in

Appendix A. The FID results indicate a slight detriment in performance of both cWGAN

models.

tried with more time. For example it might have worked if we’d concatenated every

layer with class information.

5.0.2 Auxiliary Classifier WGAN Results

Figure 5.4: FID and IS results for AC-WGAN.a, AC-WGAN.b and AC-WGAN.c against

a WGAN baseline. All AC-WGAN models were successful in conditioning on class, as

witnessed in Appendix A. Both FID and IS indicate that our proposed MTL variants,

AC-WGAN.b and AC-WGAN.c, generate better images.

All varieties of AC-WGAN succeeded in class conditioning. AC-WGAN.a, the

most simple Wasserstein version of AC-GAN[5], was outperformed by the baseline

by a margin of ≈3 FID and ≈0.1 IS. This is in contrast to [3]’s CIFAR-10 results,
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which showed a WGAN-GP with AC-GAN conditioning outperform their WGAN-GP

baseline significantly (by ≈0.6). A few important differences might explain this.

Firstly, CIFAR-10 is much easier to train and condition on, there are 10x the images

per class and there are a tenth as many classes to condition on and learn distributions

over. Odena et al.[5] highlight that this is much more difficult. To get round the issue

for a 1000-class Imagenet dataset, instead of training one network on 1000 classes, they

trained 100 on 10, reporting that a reduction in classes/model was crucial in escaping

mode collapse.

Another difference our AC-WGANs had with [3] is that both their discrimina-

tor and generator were relatively large ResNets[37] whereas we had relatively simple

convolutional networks. Thirdly, the type of batch normalisation they used was a con-

ditional variant of batchnorm called conditional instance normalisation, described in

Appendix C.2

AC-WGAN.b and AC-WGAN.c on the other hand, outperformed AC-WGAN.a

and WGAN, as evidenced by both IS and FID. Clearly the addition of the extra aux-

iliary task helped, presumably for the same reasons MTL worked on classification

in Chapter 2. From the IS, it appears that AC-WGAN.c did marginally better than

AC-WGAN.b, although the FID does not support this so we are not drawing that con-

clusion.

5.0.3 Separate Classifier WGAN Results

Two varieties of SC-WGAN succeeded in class conditioning, SC-WGAN.a and SC-

WGAN.b. However, we couldn’t get SC-WGAN.c to work, with training breaking

down around the 1e5 mark, as seen in Figure 5.6. Although the other two models

did converge, they were outperformed by the baseline, see Figure 5.5. The poorer

performance here could be down to poor hyperparameter choice, especially in how

we balanced the classifiers training, where we had little intuition to guide us. It also

might be partly because the generator for SC-WGAN.a and SC-WGAN.b is receiving

gradient updates from an extra network than AC-WGAN (an extra two networks for

SC-WGAN.c). These extra networks will increase the level of total noise in the gra-

dient updates, which could lead the generator to a poor area of parameter space. This

is what motivated the design of SC-WGAN.b, to keep the classifier and discriminator

parameters close to one another which would perhaps reduce the noise of the gradi-

2This switch in normalisation scheme is not outlined in their paper but is included in their released
code https://github.com/igul222/improved_wgan_training (accessed 5th August 2017).

https://github.com/igul222/improved_wgan_training
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Figure 5.5: FID and IS results for SC-WGAN.a and SC-WGAN.b against a WGAN base-

line. Both SC-WGAN models were successful in conditioning on class, as witnessed in

Appendix A, although the baseline achieved a better FID.

ents. We were surprised to see that this actually harmed performance. We were also

surprised by the terrible performance of SC-WGAN.c and don’t rule out the possibil-

ity that this was an issue with implementation. It would be interesting to investigate

further with different hyperparameters.

Figure 5.6: FID and IS results for the failed SC-WGAN.c model, graphed separately so

not to skew the scale on the axis. The image quality of the samples is very poor, see

appendix A.

5.0.4 Normal GAN Results

To test the effect that the Wasserstein loss and gradient penalisation had on perfor-

mance, we tested out a few of the same architectures but with the original GAN

loss[63] instead. This required a few small changes to the models, as outlined in Chap-
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ter 4.0.5. We found that these architectures were highly unstable, with all of them

quickly suffering from mode collapse. This was also true for the direct reproduction

of the AC-GAN model from [5], which we denote AC-GAN.b. The other models

were denoted: AC-GAN.a, a non-Wasserstein version of AC-WGAN.a; GAN, a non-

Wasserstein version of WGAN; cGAN, a non-Wasserstein version of cWGAN.a and

SC-GAN, a non-Wasserstein version of SC-WGAN.a.

Their poor performance is not too surprising since GANs are notoriously unstable,

which is why WGAN and WGAN-GP were such breakthroughs. They do however

train much faster as Figure 5.7 demonstrates. In Figure 5.9, it is interesting that the

conditional models still retained their ability to condition on class despite mode col-

lapse, the mode collapses seemed to only happen within a class. This means that the

models still generate some diversity (100 different images at least) even if every class

has mode collapsed. If the quality of those 100 images are good, then this could poten-

tially be a way for conditional GANs to cheat the IS and FID evaluations. It depends on

how well those scoring methods capture diversity. This phenomenon could be a benefit

of class conditioning in general. If class conditioning can contain a mode collapse to

a single class then for our case, with CIFAR-100, this means a mode collapse cannot

"spread" to over 1/100th of the generated samples.

After the poor performance of AC-GAN.b, we had concerns for our implementa-

tion, leading us to check the model on CIFAR-10 to see if the results agreed with [5].

Again, we found quite severe mode collapse, but this time the quality of images was

high and some classes did not have any signs of mode collapse. The model topped out

at an IS of 5.4, compared to [5]s score of 8.25. Note, the IS is an exponential so small

changes in image quality can lead to large changes in score. If our implementation did

not suffer from mode collapse it would have scored much higher, possibly in the region

of 8.25. [5] does not provide a full list of hyperparameters that they used to achieve

their top score, they only provide the 27 possible options that they grid searched over.

It is possible that one of those 27 hyperparameter configurations would have matched

our AC-GAN.b and scored 5.4. We admit it is also possible that we missed a crucial

element in the implementation. There also weren’t any generated CIFAR-10 samples

provided so we weren’t able to qualitatively compare the models. All of this doubt

would of course be alleviated if they had provided code to reproduce the experiments,

a practice that we hope will become the norm for machine learning papers.

Although we didn’t spend any time tuning hyperparameters for these models, and

although we had some concerns for our AC-GAN.b implementation, there is clear
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evidence here for the superior stability of the WGAN-GP architecture on CIFAR-100.

This is in line with [3]’s findings, where they give multiple architectures that perform

well for WGAN-GP and not at all for the normal GAN.

Figure 5.8: FID and IS results for normal GAN experiments. The image quality of the

samples was found to be very poor with severe mode collapse in all cases.

5.0.5 Comparison of Best Models

A comparison of the best models of each category is given in Figure 5.11 where AC-

WGAN.b is shown to come out on top (again we chose to use AC-WGAN.b and not

AC-WGAN.c because it trained quicker and only did marginally worse). Since the

curves have clearly not converged over 2e5 iterations we extended the training of two

models, we ran the baseline WGAN and AC-WGAN.b for an extra 2e5 iterations, see

Figure 5.10. Over this extended training time the models converge in a predictable

fashion and we see no change in outcome, AC-WGAN.b gives an improvement of ≈1

for FID and ≈0.2 for IS.

It would have also been interesting to further compare AC-WGAN.b against AC-

WGAN.a, since AC-WGAN.a follows a standard form of class conditioning and it

makes sense to compare one class conditioned model versus another, rather than against

a WGAN without class conditioning. However, given that AC-WGAN.b outperformed

AC-WGAN.a by a significant margin over 2e5 iterations (as evidenced by Figure 5.4),

we decided that it was highly unlikely that the outcome was going to change over

another 2e5 iterations so the experiment was omitted for sake of time.

5.0.6 Evidence that the Models are not Memorising
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Figure 5.9: Samples from a mode-collapsed AC-GAN.b (different from AC-WGAN.b) at

iteration 70,000, trained on CIFAR-100. Each row corresponds to a different class. De-

spite mode collapse, the class conditioning still prevails, with separate mode collapses

occurring within separate classes.
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Figure 5.10: FID and IS results up to 4e5 iterations for AC-WGAN.b and the WGAN

baseline. The outcome has not changed from the first 2e5 iterations.

Figure 5.11: FID and IS results for AC-WGAN.a, cWGAN.b and AC-WGAN.c against

a WGAN baseline. All AC-WGAN models were successful in conditioning on class, as

witnessed in Appendix A. Both FID and IS indicate that our proposed MTL variants, AC-

WGAN.b and AC-WGAN.c, generate slightly better images than the baseline WGAN

and significantly better images than the standard AC-WGAN.a.
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Figure 5.12: Discriminator and Generator costs for cWGAN.b, AC-WGAN.b and SC-

WGAN.b against a WGAN baseline. The discriminator costs indicate that the AC-

WGAN.b model generates images that are closest to the real data (in terms of Wasser-

stein distance). The generator cost is hard to interpret but it appears all models are

converging towards 0 apart from cWGAN.b.

Unsupervised Method Inception Score

ALI[64](in [65]) 5.34

BEGAN[66] 5.62

WGAN(ours) 6.00
DCGAN[62] (in [67]) 6.16

Improved GAN (-L+HA)[36] 6.86

EGAN-Ent-VI[68] 7.07

DFM[65] 7.72

WGAN-GP ResNet[3] 7.86

Real Data[36] 11.24

Supervised Method Inception Score

AC-WGAN.a(ours) 5.90
SteinGAN 6.35

DCGAN(with labels, in [67]) 6.58

Improved GAN 8.09

AC-GAN[5] 8.25

SGAN-no-joint[67] 8.37

WGAN-GP ResNet 8.42

SGAN[67] 8.59

Real Data[36] 11.24

Table 5.1: Inception scores for state-of-the-art unsupervised and supervised GANs on

CIFAR-10. These are not comparable to results in this project since we are working with

CIFAR-100, a different dataset, of which there are no benchmarks available. Although

we do include our two sanity-test experiments, which were conducted on CIFAR-10.

FID here would be preferable but, as of writing, there are no benchmarks for that either.

This collection of results is courtesy of Gulrajani et al. (2017)[3].
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Method FID IS MTL
Successful

Conditioning
Classifier

Type
Conditioning

Location
GAN
FID

GAN
IS

AC-WGAN.c 42.55 5.80 X X 2 auxiliary G & D

AC-WGAN.b 42.68 5.93 X X 2 auxiliary G & D

WGAN 43.69 5.98 53.70 5.51

cWGAN.b 43.80 5.76 G & D

cWGAN.a 44.83 5.90 G & D 57.34 5.12

SC-WGAN.a 45.42 5.82 X X 1 separate G & C 80.21 4.73

AC-WGAN.a 45.98 5.87 X X 1 auxiliary G & D 127.17 3.66

SC-WGAN.b 52.17 5.55 X 1 separate G & C

SC-WGAN.c 89.28 4.08 X 2 separate G & C

Table 5.2: Comparison of our different WGAN models on CIFAR-100, ordered by FID,

for generator G, discriminator D and classifier C. Note, these scores are maximum

scores and do not capture the variance of the results, the graphs are more enlightening

in this regard. The final columns include comparative GAN results where available.

Figure 5.7: Wall-clock compari-

son of different GANs training on

CIFAR-10. DCGAN[62] is simi-

lar to our normal GAN architec-

ture. WGAN (weight-clipping) and

WGAN-GP converge significantly

slower. DCGAN also achieves a

higher IS. Image courtesy of [3].

To prove the generator isn’t memorising training

samples, many papers show nearest neighbours

of generated samples with respect to the training

data. Nearest here is defined by a simple `2 norm

of the difference in pixel intensities. Figure 5.13

displays an example of a nearest neighbour.

We performed the nearest neighbourhood

search after converting the images to grey-scale

so the network couldn’t cheat by simply chang-

ing the colour. However there are issues with

this approach. Namely, the network could cheat

by memorising training examples and then out-

putting them only with parts of the image trans-

lated. This would fool the nearest neighbour

search since even though it’d be the same data,

the pixels wouldn’t match.
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Figure 5.13: The evolution of the generators output for a fixed noise value z between

iterations 200 and 200,000 for the baseline WGAN-GP alongside the nearest neigh-

bour (far right) of the final output. Although the nearest neighbour shares many close

similarities, there are clear differences in the bike, e.g. the colour of the tyres.

5.0.7 Interpolating in Latent Space

A better method of proving that the generator has learnt something useful is to in-

terpolate between two points in latent space, i.e. z-space. An overfit model that has

memorised different training examples will yield discrete transitions in observed im-

ages as z is interpolated between two points.

We applied a very simple method of linear interpolation, across a single z-dimension.

The results of some cherry picked z-interpolations can be seen in Figures 5.14 to 5.18.

The Figures shown are generated from AC-WGAN.b but similar results were obtained

from all successful models. For each Figure, the class variable was kept constant as

was all but one dimension of the noise variable z. This one z-dimension was shifted in

0.5 increments from -2.5 to 2.5 to obtain 10 different images.

Many of the dimensions didn’t seem to represent semantically meaningful features

while some of them definitely did (hence the cherry-picking) but none of the tests

showed any sign of discrete transitions. For example the z-dimension that was shifted

in Figure 5.14 captures a colour change, the z-dimension that was shifted in Figures

5.15 and 5.16 (the same dimension gave both results) appears to capture a resizing

or scaling of the object. This proves that the network is disentangling semantically

meaningful features from the data. The same z-dimension can control qualitatively

similar features across multiple classes, as the examples of the rescaled apple 5.15

and bottle 5.16 show. The network isn’t simply memorising training examples, each

point on the interpolated line between two distinct points in the latent space yields

different "realistic" images. The fact that the effects of the different dimensions of

z are usually not interpretable and in general don’t obey a nice 1-1 mapping with

recognisable features is to be expected as the transformation from z space to image

space is highly non-linear.
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It is worth qualifying, the interpretations we have made here are qualitative and up

to debate, there is definitely a danger of reading too much into cherry picked samples.

Figure 5.14: Interpolating a single dimension in z space, between orange apples and

red apples. This dimension appears to control an aspect of colouring.

Figure 5.15: Interpolating a single dimension in z space, between small apples and

large apples. This dimension (the same one as Figure 5.16) appears to control scaling.

In examples with backgrounds and foregrounds, it appeared to only scale foreground

objects, evidence that the models are disentangling scene dynamics.

Figure 5.16: Interpolating a single dimension in z space, between small bottles and

large bottles. This dimension (the same one as 5.15) appears to control scaling, along

with lighting of the background.

5.0.8 Criticism of Results

To gather statistically meaningful results it is preferable to re-run experiments and

report the median. Since we chose to experiment with a broad range of architectures

rather than focus on one, we didn’t have time to perform a robust analysis of the results.

This is why our results are lacking error bars on FID or IS. We felt that since we

weren’t attempting to achieve state-of-the-art results, the precision of our evaluations

could be compromised slightly. We however acknowledge that this is a drawback of

our methodology.

Another drawback is the fact that we didn’t train all of the models to convergence.

It is dangerous to extrapolate learning curves into future epochs. For instance, some-

times regularisation doesn’t reveal its benefits until late into the training, so there is a
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Figure 5.17: Interpolating a single dimension in z space, between a normal sky and

a sunset. The network isn’t simply plastering some yellow on to the scene, there is a

source and direction to the the light. The silhouette of the landscape in the foreground

gets noticeably sharper and there is some reflection in the clouds.

Figure 5.18: Interpolating a single dimension in z space, between two different houses.

The house slowly rotates, gets bigger and grows a porch.

possibility that some of the models that had MTL aspects to them might have even-

tually outperformed the baseline, e.g. AC-WGAN.a. However it is still worthwhile

to investigate the performance of models within a fixed number of iterations and 2e5

iterations is a reasonable length of training time.

Another undesirable aspect of our methodology is the fact that we report maximum

scores in our tables. A preferable method of evaluation would be to take the models at

these maximum scores and generate another set of samples on which the FID and IS

are reported on, as done in [5] for example. This is analogous to evaluating on a test

set in supervised learning. Again, we didn’t feel compelled to do this since we weren’t

striving for state-of-the-art. The learning curves in the graphs are more enlightening

and where we draw our conclusions from.

5.0.9 ResNet WGAN Results

As a final experiment we tested the cutting edge ResNet architecture used by Gulrajani

et al.[3] that achieved very close to state-of-the-art on CIFAR-10. The full specification

of the model is given in Appendix D. Class conditioning was incorporated in the same

way as AC-GAN, with the addition of conditional instance normalisation[69] (CIN) in

place of vanilla batchnorm. The theory of CIN is briefly discussed in Appendix C.

We ran two experiments:

1. One experiment trained the exact same architecture as [3] on CIFAR-100 instead

of CIFAR-10. This served as our state-of-the-art benchmark. Since there are no
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published GAN results for CIFAR-100, this is about the best we could do. We

denoted this architecture ResNet.a.

2. One experiment, the same as 1. only with our "MTL trick" included. Namely, we

added an extra auxiliary classifier task to the discriminator that classified coarse

labels. We denoted this architecture ResNet.b.

The FID and IS results can be seen in Figure 5.19. Samples from the first 10 classes

from the fully trained models can be seen in Figures 5.20 and 5.21.

Clear from both the FID and IS results, the training of ResNet.b takes a significantly

longer time to converge. However, the FID results quite clearly suggest that ResNet.b

converges to a better area of parameter space. This is not shown on the IS graph,

where the two architectures score the same. Qualitatively, it appears that ResNet.a

suffers from mode collapses within many classes, e.g. the bears in the fourth column

of Figure 5.20. This occurs noticeably less in the samples viewed from ResNet.b, e.g.

the bears in Figure 5.21 show much more diversity. Although this qualitative evaluation

is not robust, we use it to hypothesise that the MTL in ResNet.b helps reduce mode

collapse and increase diversity. As [59] show, the FID captures image diversity better

than the IS, which could explain the discrepancy of the evaluations. [59] also show a

range of distortions that the FID picks up on but the IS does not, so it is also possible

that ResNet.b produces less distorted images.

Figure 5.19: The MTL trick applied to a state-of-the-art ResNet WGAN architecture

on CIFAR-100. ResNet.a is a strong model introduced by [3], ResNet.b is the same

model but with a second auxiliary task in the discriminator that classifies coarse labels.

Interestingly, the FID shows a significant improvement whereas the IS does not. We

hypothesise that this is due to a lack of sensitivity to image diversity in the IS metric.
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Figure 5.20: Generated images of the first 10 classes of ResNet.a. There is evidence

of "mild" mode collapse in many of the classes, e.g. the aquarium fish in the second

column are all similar as are the bears in the fourth column.
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Figure 5.21: Generated images from ResNet.b. There appears to be significantly less

mode collapse when compared to ResNet.a, e.g. the fish in the second column display

much more variety, as do the bears in the fourth column.
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Conclusion

In the first part of this work we explored the effects of MTL on classification of

CIFAR-100 images. We saw that for two different auxiliary tasks, one classifying with

coarse labels and one classifying a different dataset, CIFAR-10, MTL gave consider-

able benefits over the baseline. For the coarse label auxiliary task, this was shown to

be true for 100%, 75%, 50% and 25% of the data. Hard-sharing performed slightly

better than soft-sharing, where soft-sharing was found to work best with hyperpa-

rameters of λ = 0.1 and b = 3. These findings are in keeping with the results of

Teterwak et al., where they experimented with hard-sharing MTL architectures on

image classification[20]. We don’t know of any comparative work on this form of

soft-sharing.

After laying some foundational GAN-theory in Chapter 3, we proposed a vari-

ety of different WGAN variants that involve class conditioning and MTL. Despite the

large number of classes in CIFAR-100, several architectures in the AC-WGAN and

SC-WGAN categories were found to allow control over the generator’s outputs. The

simpler cWGAN variant was found unsuccessful however. We also found that using

the WGAN-GP loss gave significant benefits over the normal GAN loss, with higher

image quality and little sign of mode collapse. We proved through nearest neighbour

searches and latent space interpolations that the WGANs were not memorising train-

ing examples but had learned useful representations that were used to produce novel

images.

Our most successful models, AC-WGAN.b & AC-WGAN.c, relied on two auxil-

iary classifier tasks, as opposed to the original AC-GAN’s single auxiliary classifier.

This extra auxiliary task classified coarse labels, as explored in Chapter 2. The benefits

of this additional multitask learning allowed these models to outperform the vanilla

71
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AC-WGAN.a as well as the WGAN baseline. This spurred us to apply this "MTL

trick" to a state-of-the-art architecture, Gulrajani et al.’s ResNet WGAN-GP, which

has the second best IS for CIFAR-10. We found that this gave significant improve-

ments for FID but gave the same IS. After qualitative assessment it was clear that our

model gave a more diverse range of samples within each class, doing a much better

job at avoiding mode collapse. We conclude from this that the IS does not capture

image diversity well. For this reason and others pointed out in Section 3.0.3, we hope

that researchers will switch to FID as a primary evaluation technique, bringing about

stronger comparisons between generative models.

6.0.1 Future Work

There are many natural continuations to the work presented here. These were not

pursued due to time or computational constraints.

A clear one is hyperparameter optimisation, something we did very little of. For

example, it would be interesting to try out different values for s, the classifier training

frequency. We feel that we did not give the SC-WGAN models much of a chance in

this regard. It would also be interesting to explore the effect of different granularities

of coarse labelling for the auxiliary tasks. In particular for AC-WGAN.b and AC-

WGAN.c, our most successful models. The 20 coarse labels given to us in CIFAR-100

are quite arbitrary. Related to this, an important experiment, that we didn’t run, would

be to set the auxiliary task(s) to exactly match the main task and compare this against

the auxiliary tasks that we used. This would tell us how important it is to have differing

granularities of labels across the tasks. Perhaps it is enough to take a simple ensemble

of identical tasks.

There are lots of other forms of MTL that could be incorporated into a GAN or

WGAN architecture. For example: we could have extended AC-WGAN to have three

auxiliary classifier tasks, each classifying a different hierarchy of classes; we could

have tried four tasks, all either soft-sharing or hard-sharing; we could have used the

trace norm for regularisation instead of the `2 norm, etc. Given the huge amount of

candidates, just blindly testing out different permutations of "MTL-GAN" is not the

ideal approach to exploring the model space. It would be preferable to have a better

understanding of how MTL fundamentally works and how it effects the hidden rep-

resentations that are captured. This, in conjunction with a better understanding on

the training dynamics of GANs would guide model-design in a much more directed
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fashion. We attempted to do this with our precursor investigation into MTL for the

discriminative case, but we only really scratched the surface.

From a more empirical perspective, it would have been interesting to push our

strongest model, ResNet.b, to train on the same 1000 class Imagenet problem that the

original AC-GAN failed to class condition on. The authors of the AC-GAN paper state

that: "Building a single unified model that could generate diverse samples from all

1000 classes would be an important step forward."[5]. Given that ResNet.b outper-

forms the original AC-GAN significantly, it could well achieve this.



Appendix A

Extended WGAN Results

Shown are random generations of the first ten classes from CIFAR-100, each row of

images is a different class. Classes were selected this way (as opposed to random) to

help show that the "easy" classes weren’t cherry picked. For the baseline model, with-

out any attempted class conditioning, the ordering of the images has no significance.

Also shown are the best FID and IS scores achieved of each architecture after 200,000

generator-iterations of training.

Figure A.1: WGAN (baseline) results.
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Figure A.2: cWGAN.a results.

Figure A.3: cWGAN.b results.
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Figure A.4: AC-WGAN.a results

Figure A.5: AC-WGAN.b results.
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Figure A.6: AC-WGAN.c results.

Figure A.7: SC-WGAN.a results.
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Figure A.8: SC-WGAN.b results.

Figure A.9: SC-WGAN.c results.



Appendix B

Kantorovich-Rubenstein Duality

The WGAN architecture minimises the Wasserstein distance of the generator’s output

distribution pG and the real distribution of the data pdata. The Wasserstein distance is

defined as,

W(pG, pdata) = inf
γ∈Π(pG,pdata)

Ex,y∼γ||x− y|| (B.1)

Where Π(pG, pdata) is the set of all joint distributions with marginals
∫

γdx = pG

and
∫

γdy = pdata. γ can be thought of as a transport plan that transforms one distribu-

tion into another1. Intuitively, the Wasserstein distance is the amount of work required

in the optimal transport plan. There are infinite possible transport plans, finding the

infimum in B.1 directly (using linear programming) suffers heavily from the curse of

dimensionality and is completely intractable for high dimensional data-spaces like im-

ages. Fortunately this equation has a dual form, an equivalence, which helps overcome

this tractability issue,

W(pG, pdata) = sup
‖ f‖L≤1

(Ex∼pG[ f (x)]−Ex∼pdata [ f (x)]) (B.2)

sup‖ f‖L≤1 is the supremum over all 1-Lipschitz functions, that is, over functions

with gradient less than or equal to 1 everywhere. This is a special case of a theorem in

mathematical analysis called Kantorovich-Rubenstein duality and in a way, lies at the

heart of the WGAN. This equivalence is simply stated in the original WGAN paper

1Kantorovich’s work on optimal transport, and specifically it’s implications to Economics, was heav-
ily scrutinised by the Soviet Union as they feared it’s capitalist leanings.[70]
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[2] but since it is so crucial, we will give a proof here, interpreted from Villani’s book,

Optimal Transport: Old and New[70].

To simplify the notation, let π = Π(pG, pdata). We then have,

W(pG, pdata) = inf
γ∈π

Ex,y∼γ||x− y|| (B.3)

Removing the constraint γ ∈ π we can restate this as,

= inf
γ
Ex,y∼γ||x− y||+

0 if γ ∈ π

∞ otherwise
(B.4)

The optimal γ hasn’t changed here since any γ /∈ π is punished by the ∞ term. Now

we can rephrase the conditional part (the part in the single sided brackets) with an

additional function f : R→ R,x 7→ k. B.4 becomes,

= inf
γ

{
Ex,y∼γ||x− y||+ sup

f

{(
Es∼pG f (s)−Ex∼γ f (x)

)
−
(
Et∼pdata f (t)−Ey∼γ f (y)

)}}
(B.5)

To see that the conditional part of B.4 is equivalent to the new terms in B.5, let

γ ∈ π. Then by the definition of π,

x,y∼ γ =⇒ x∼ pG and y∼ pdata

This implies that,

Es∼pG f (s) = Ex∼γ f (x)

and,

Et∼pdata f (t) = Ey∼γ f (y)

Thus the new terms in B.5 vanish. This holds for any γ∈ π. If γ /∈ π then the supremum

over f will trivially be ∞ since the terms don’t vanish and f can be any real function.

Thus, B.4 and B.5 are equivalent.

Since the first expectation term in B.5 does not rely on f we can move the sup to

the front, giving us,

= inf
γ

sup
f

{
Ex,y∼γ||x− y||+

(
Es∼pG f (s)−Ex∼γ f (x)

)
−
(
Et∼pdata f (t)−Ey∼γ f (y)

)}
(B.6)
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Finding the inf and sup here is a bilevel optimisation problem. Solving this requires

finding the optimal solution of the inner optimisation sup f for every value of the outer

optimisation infγ. Then from these solutions, taking the one that is optimal for the

outer optimisation. The next step is to use the minimax-principle (the proof of which

is omitted for brevity) that allows us to swap the order of the inf and sup without

changing the answer. This can only be done if the sup f optimisation is convex and the

infγ optimisation concave. The sup f optimisation is trivially convex since the function

being optimised is constrained to be either 0 or ∞. To see if the concavity condition is

met it is easiest to go ahead and swap the sup and inf around first, giving us,

= sup
f

inf
γ

{
Ex,y∼γ||x− y||+

(
Es∼pG f (s)−Ex∼γ f (x)

)
−
(
Et∼pdata f (t)−Ey∼γ f (y)

)}

= sup
f

{
Es∼pG f (s)−Et∼pdata f (t)+ inf

γ

{
Ex,y∼γ||x− y||+Ey∼γ f (y)−Ex∼γ f (x)

}}

= sup
f

{
Es∼pG f (s)−Et∼pdata f (t)+ inf

γ
Ex,y∼γ

[
||x− y||− ( f (x)− f (y))

]}
(B.7)

By the definition of concavity we can deduce that the inf optimisation is indeed con-

cave.

Now consider the case where f is 1-Lipschitz. By the definition, this means,

f (x)− f (y)≤ ||x− y||

||x− y||− ( f (x)− f (y))≥ 0

The infimum of the expectation infγEx,y∼γ is thus equal to 0. For the case where f is

not 1-Lipschitz we have,

f (x)− f (y)> ||x− y||

||x− y||− ( f (x)− f (y))< 0

The infimum is then free to be −∞. Thus, we require f to be 1-Lipschitz at which

point the inf term vanishes. We can absorb this condition into the sup term, giving us

our desired form,

= sup
|| f ||≤1

{
Es∼pG f (s)−Et∼pdata f (t)

}
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Conditional Instance Normalisation

Here we outline the differences between batch normalisation, instance normalisation

and conditional instance normalisation. We follow the treatment given by Huang et

al. in [71].

C.0.1 Batch Normalisation

Batch normalisation[46] (BN) is a method of normalising the output distribution of

individual feature channels of a layer. This has been found to ease training signifi-

cantly, often reducing sensitivity of hyperparameter selection and remedying vanish-

ing/exploding gradients of deep architectures. BN was originally designed for dis-

criminative networks although it has become a crucial element of certain generative

models, e.g. the original GAN architecture[62].

We now formalise BN in the case where the inputs are images. Let x be an input

batch of images, x ∈ RN×F×W×H . Where N is the size of the batch, F is the number

of feature channels, H is the height of the image and W is the width of the image. BN

normalises the mean and standard deviation of each feature channel,

BN(x) = γ

(x−µ(x)
σ(x)

)
+β (C.1)

Where γ,β ∈RF are trainable parameters that are learned by the network; µ(x),σ(x) ∈
RF are the mean and standard deviations of the feature channels, calculated across the
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current batch,

µ f (x) =
1

NHW

N

∑
n=1

H

∑
h=1

W

∑
w=1

xn f hw

σ f (x) =

√√√√ 1
NHW

N

∑
n=1

H

∑
h=1

W

∑
w=1

(xn f hw−µ f (x))2 + ε (C.2)

Where f ∈ {1, ...,F} and ε<< 1 is some small number to prevent floating point issues.

This normalisation scheme is applied only during training, during inference there is a

minor difference. The mean and variance vectors used are estimated during training

and not calculated over a test mini-batch. This is because inference should always be

calculated independently for each individual sample, using batch-statistics is "cheat-

ing".

C.0.2 Instance Normalisation

Surprisingly, Ulyanov et al.[72] found that a small simplification of BN can improve

performance. Instance normalisation (IN) applies the same affine transformation to x

as Equation C.1 but it treats a batch as having only a single element. µ and σ are then

calculated as,

µn f (x) =
1

HW

H

∑
h=1

W

∑
w=1

x f hw

σn f (x) =

√√√√ 1
HW

H

∑
h=1

W

∑
w=1

(x f chw−µ f (x))2 + ε (C.3)

Each mean and variance are calculated for a single instance of x. This means that

instance normalisation can be applied in exactly the same way during training and

inference.

C.0.3 Conditional Instance Normalisation

Dumoulin et al.[69] proposed an extension, conditional instance normalisation (CIN),

which uses a different set of learned parameters γc and µc for each class c,

CIN(x,c) = γ
(c)
(x−µc(x)

σc(x)

)
+β

(c) (C.4)

For the case of CIFAR-100, this requires 100x more normalisation parameters than IN.

As in IN, CIN is applied the same for testing and training. Remarkably, a network with
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CIN can generate images of different classes using the same convolutional parameters

but different CIN parameters[71].



Appendix D

ResNet WGAN

This is an outline of the architecture used in our final experiment with the ResNet

WGAN. The model is copied from the architecture used to achieve SOTA on CIFAR-

10 by Gulrajani et al.[3]. They did not include details of the architecture in their paper

but did release source code for it. The model relies on residual learning, introduced by

He et al.[49]. Residual learning allows layers to learn residual mappings with reference

to the inputs of the layer before, as depicted in Figure D.1. This is very effective at

easing the training of deep architectures.

Figure D.1: Residual learning,

where F(x) is the transformation

of a layers weights and activation

function.

The generator is class conditioned via CIN and

the discriminator via an auxiliary classifier which

classifies the images by fine labelling. Figure D.2

shows the architecture for the model used in [3],

for our proposed model there is a second auxiliary

classifier in the discriminator that classifies coarse

labels. The layer dimensions can be found in Table

D.1.

All convolutional layers used 3x3 filters with

biases. The weights were initiated as in our other

WGAN experiments, see Chapter 4. The Adam op-

timiser was used with β1 = 0, β2 = 0.9 and an initial

learning rate of 2e-4 that was decayed linearly to 0

over 100,000 training iterations. The discriminator

used a batch size of 64 and the generator, 128. The

discriminator was trained 5 times for every one it-

eration of the generator. The inception score was
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1st Layer 2nd Layer 3rd Layer 4th Layer 5th Layer 6th Layer 7th Layer 8th Layer

Generator FC 2048 DeConv 128 Conv 128 DeConv 128 Conv 128 DeConv 128 Conv 128 Conv 3

Discriminator Conv 128 Conv 128 Conv 128 Conv 128 Conv 128 Conv 128 Conv 128 Conv 128

Table D.1: Layer dimensions for the ResNet WGAN.

calculated every 1000 generator iterations and 50,000 samples were used in calculat-

ing the score. FID was calculated with 5000 samples as in our other experiments. The

random noise was drawn from a 128 dimensional multivariate Gaussian with 0 mean

and identity covariance. The auxiliary classifier’s loss was added to the normal dis-

criminator loss after scaling by 0.1. For our proposed variant, with two auxiliary tasks,

both auxiliary losses were scaled by 0.05 instead.



Appendix D. ResNet WGAN 87

Figure D.2: ResNet WGAN architecture for generator (left) and discriminator (right).

Where CIN is conditional instance normalisation, as described in Appendix C. The

residual mappings are sometimes required to be convolutional mappings that either up-

sample or downsample. Like AC-GAN the discriminator has an auxiliary classifier task.

For our proposed architecture there is a second auxiliary classifier task that classifies

coarse labels.
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