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Abstract
This thesis presents the results of an exploratory study into the morpho-syntactic aware-

ness of character-level neural language models. The aim is to identify the source of per-

formance and limitations of these models, such that future research can make theory-

informed efforts toward advancement. We analyze an English character-to-character

language model in isolation and as embedded into systems for morphological and syn-

tactic analysis. Findings point to an ability of the model to identify units of higher

order, such as morphemes and words, when an explicit cue is available. We further

run linguistic experiments on the model and observe that its ability to learn morpho-

syntactic regularities is conditioned on its access to the relevant units. These findings

imply a limitation in the applicability of character-level models to their main target

group, morphologically-rich languages.
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Chapter 1

Introduction

Type the following Spanish sentence in Google Translate: Queiro pizza vegetariana.

You will not be surprised to see that instead of the literal translation Want pizza vege-

tarian, Google offers the well-formed English sentence I want vegetarian pizza. How

does the translator know to change the order of words and insert a pronoun?

Google Translate uses a neural machine translation system, that inherently contains

a component called a language model. The aim of a language model is to capture the

formal and functional properties of a natural language. The language model of Google

Translate knows that in English, unlike in Spanish, adjectives precede nouns, so it

swaps pizza and vegetarian. It also knows that the subject of an English sentence

should always be explicit, so it needs to insert a pronoun in the target sentence. It

infers the pronoun from the form of the verb: quiero is the first person singular form

of querer so the correct pronoun here is I. The language model needs to not only know

what a word means, but what its grammatical properties are and how they interact with

other words in the sentence.

Fundamental approaches to language modeling started off processing input on the

word level (Mikolov et al., 2013). More recently, a shift has been in progress towards

processing on the subword level, to allow access to the aforementioned grammatical

properties of words. Luong et al. (2013), Botha and Blunsom (2014) and Qiu et al.

(2014) all find empirical gains from morpheme-level processing. Kim et al. (2015)

and Ling et al. (2015), find character-level processing beneficial as well. The source of

performance in such cases is speculatively attributed to several factors: more appropri-

ate handling of words that were not seen during training; shared statistics between rare

words and related more frequent words; and, importantly, linguistic awareness on the

subword level. Research into the benefits of subword-level processing has found that

1



Chapter 1. Introduction 2

the properties of languages do interact with the performance of subword models (Vania

and Lopez, 2017). Yet, the exact aspects of this interaction are still to be surveyed in

depth.

This work takes on an extensive exploratory study of a character-level language

model, as applied to English, with the aim to identify its source of performance and to

draw conclusions about theoretical limitations and venues for further improvements.

The findings of the study can be summarized in two main takeaways:

• The successful identification of a linguistic unit is a prerequisite for the learning

of its properties and the processes in which it participates.

• A character-level language model can learn to identify linguistic units of higher

order, such as morphemes and words, but only when an explicit cue is available

to delimit these units.

The main implication of these conclusions is that while a character-level language

model provides some access to the morphology of English, it should have limited abil-

ity to do so for morphologically-rich languages. This is ironic, since the theoretical

benefits of character-level processing are much greater for morphologically-rich lan-

guages.

The rest of this thesis proceeds as follows: in chapter 2 we outline the background

for the language model studied in this work, the linguistic notions it was probed for

and the methods that were used for that; in chapter 3 we explore the language model

in isolation; in chapters 4 and 5 we look into the properties of the language model as

embedded into other natural language processing (NLP) systems; in chapters 6 and 7

we discuss two linguistic experiments on the language model; finally, in chapter 8 we

draw conclusions based on the previous five chapters.



Chapter 2

Background

2.1 Morphology and Syntax

The term morphology refers to the language domain responsible for word formation.

The units which morphology uses to build words are called morphemes. The morpho-

logically complex word reaction, for example, consists of two morphemes, react and

ion. Morpheme react is a base morpheme – it carries the semantic content of the word.

Morpheme ion, on the other hand, is an affix – it serves a function, namely to convert

the verb react into a noun. Affixes that attach to the end of a word, like ion are called

suffixes, while those that attach to the beginning of a word are called prefixes. One

final remark on morphemes relevant to this study is the distinction between a free base,

like react which is a word in itself, and a bound base, like acquisit (as in acquisition),

which cannot occur independently of a suffix.

Affixes can be inflectional or derivational. Inflectional affixes generate the gram-

matical forms of a word, e.g. from bake they can produce bakes, baked, baking. These

forms differ in person, tense and aspect, but they all refer to the same notion. Deriva-

tional affixes, in contrast, produce new words referring to a related but different notion,

e.g. baker, bakery, like, dislike.

Inflectional affixes that mark a single grammatical category, e.g. person, or number,

or tense, etc., are called agglutinative. Fusional affixes, in contrast, mark multiple

grammatical categories. An example from English is the deverbal suffix s, as in likes,

which marks both the properties 3rd person and singular. These terms are also used

to refer to languages characterized predominantly by one type of affix or the other.

English is a fusional language.

English is also notoriously impoverished with respect to its inflectional morphol-

3



Chapter 2. Background 4

ogy, with a verbal paradigm consisting of only four slots (listed above for bake). Its

derivational morphology, on the other hand, is copious. Most of this work thus fo-

cuses on derivational affixes. Hereafter, the terms suffix and prefix will always refer to

derivational morphemes, unless stated otherwise.

The term syntax refers to the language domain that builds sentences from words.

One fundamental syntactic notion is that of the syntactic category of a word. Com-

mon English syntactic categories are verb, noun, adjective, adverb and proper noun.

The term syntactic category and its synonymous term part of speech are used inter-

changeably throughout.

Morphology and syntax often interact on the word level, as illustrated by two main

properties of English suffixes and prefixes.

Suffixes have selectional restrictions with respect to the syntactic category of the

base they would attach to. Suffixes al, ment and ance, for example, only attach to

verbs, e.g. betrayal, annoyance, containment, while hood, ous, ic only attach to nouns,

as in nationhood, spacious and metallic. The former are thus known as deverbal, and

the latter as denominal. Certain suffixes are members of more than one class, e.g.

ful attaches to both verbs and nouns, as in forgetful and peaceful, respectively. (All

examples are from Fabb (1988)).

The majority of English prefixes have a non-category changing effect on their

bases, i.e. they don’t change the syntactic category of the base they attach to. Consider

the examples write and rewrite, which are both verbs, and kind and unkind, which are

both adjectives. A small set of prefixes do have that property but they are infrequent

and are considered unproductive, i.e. they cannot be used to create new English words.

These properties of suffixes and prefixes can also be referred to as linguistic reg-
ularities since they exhibit a rule-like behavior, with a specified trigger for and result

of the rule.

2.2 Language Modeling

In its essence, language modeling is just the computation of joint probabilities over a

string of linguistic units with the aim to either recognize a valid string or generate one.

The joint probability of the words in I like pizza, for example, is computed as:

p(I like pizza) = p(I)× p(like|I)× p(pizza|like)

This probability indicates how likely it is for these words to occur in this order.
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Recent approaches to language modeling employ recurrent neural networks (El-

man, 1990). Recurrent neural networks (RNN) have several properties that make them

particularly suitable for the task: they can take input of variable length (e.g. a sen-

tence with five words and another with six words), and they allow, theoretically, for

patterns of infinite length to be learned. In practice, RNNs do have a limited memory,

however, due to the nature in which they learn from their errors. RNNs are thus often

augmented with LSTM units (Hochreiter and Schmidhuber, 1997), which process in-

put through a gated mechanism, maintaining a memory flow over longer, yet still not

infinite, sequences.

2.2.1 Our Model

The language model (LM) explored in this thesis is a ‘wordless’ character-to-character

RNN with LSTM units. On every timestep, t, it receives a character, ct , and predicts

the following character, ct+1. Input is not split into words and spaces are treated just

like any other character. Characters are fed as one-hot vectors and their embeddings1

are trained along with the language model. This architecture closely follows the one

informally proposed in Karpathy (2015).

Karpathy trains a language model on the Tiny Shakespeare corpus and experiments

with text generation. Consider the following passage generated by Karpathy’s model:

Second Senator:

They are away this miseries, produced upon my soul,

Breaking and strongly should be buried, when I perish

The earth and thoughts of many states.

The sampled text closely resembles the training data on a lexical and structural

level, showing that the model has learned much of the formal properties of English.

To my knowledge no scholarly publications employ such a language model in isola-

tion. Yet, ‘wordless’ character-to-character machine translation systems, which inher-

ently contain a language model, have been shown to outperform other subword-level

approaches, which themselves are better than word-level appraoches (Lee et al., 2016).

The reason we chose to work with this particular architecture is that a ‘wordless’

LM allows for experiments on a subword, i.e. morphological level: we can feed a

partial word and ask the model to complete it. As the focus of this project is to study

1Embeddings are fixed-dimensional continuous representations of discrete entities.
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the morpho-syntactic awareness of character-level neural embeddings, this particular

architecture seemed most suitable.

2.2.2 Other Models

A range of word and subword architectures is explored in a comparative study by Va-

nia and Lopez (2017). One distinguishing characteristic of these architectures as com-

pared to the ‘wordless’ character-level RNN is that they process words on a subword

level, obtain embeddings for words and then process sentences on a word level. The

models studied in Vania and Lopez (2017) further differ from one another in terms of

the subword units (character, character trigram, morpheme, binary pair encoding) and

type of combination function (addition, recurrent neural network, convolutional neural

network).

The study finds that subword-level models are generally better than word-level

models. The character-trigram biLSTM architecture emerges as optimal on seven out

of ten languages considered. The performance of different models, however, appears

to correlate with the morphological typology of languages. Fusional languages, for

example, categorically behave best under character trigram bi-LSTMs, but that is not

the case for agglutinative languages. This is evidence that subword-level word embed-

dings indeed interact with morphology. The nature of this interaction is a focal point

of interest from both a theoretical and a practical perspective.

One important finding of Vania and Lopez (2017) is that providing explicit morpho-

logical information during training boosts the performance of even the best morphologically-

unaware architectures. This shows that some level of morphological regularity remains

outside the scope of the models when trained on raw data alone.

2.3 Morphological Segmentation

Morphological segmentation aims to identify the boundaries in morphologically com-

plex words, i.e. words consisting of multiple morphemes. A morpheme boundary

could separate a base from an inflectional morpheme, e.g. like+s, a base from a deriva-

tional morpheme, e.g. consider+able, or two bases, e.g. air+plane

Morphological segmentation is a sequence-labeling task, where words are pro-

cessed one character at a time and every between-character position is assigned a

binary label. The word l1i2k3e4s, for example, which has four between-character po-
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sitions and a boundary in position 4, would be labeled 〈0001〉. RNN approaches are

particularly suitable for sequence-labeling tasks (Sutskever et al., 2014) and recent

work on supervised morphological segmentation with RNNs shows promising results

(Wang et al., 2016).

2.4 Part-of-Speech Tagging

Part-of-speech (POS) tagging is a sequence labeling task used to determine the syn-

tactic category of words in context. The sequence I like pizza, for example, would be

labeled 〈PRONOUN VERB NOUN〉. Certain words can be unambiguously tagged in

isolation: desk, for example would always be a noun. Others, however, can take on

different parts of speech in different contexts: love is a verb in the context I love pizza,

but it is a noun in the context my love for pizza. In such cases, it is useful to have access

to the context as well. Common approached to POS tagging thus employ an RNN, in

order to condition a tag prediction not just on the current word, but also on previous

words and/or previous tags.

While POS tagging can be performed on the word level, recent studies in the field

demonstrate that processing input on a subword-level boosts the performance of such

systems (dos Santos and Zadrozny, 2014).

2.5 Mathematical Notation

In mathematical equations throughout the thesis, lowercase bold letter represent col-

umn vectors, uppercase bold letter represent matrices. LST M(·) applies both the

weights of the RNN and the gates of the LSTM. so f tmax(·) performs the softmax

operation:

so f tmax(x) =
exp(x)

∑x′∈X exp(x′)



Chapter 3

Inside the Language Model

This chapter defines the character-to-character language model (hereafter, C2C) more

formally, outlines the training methods, and explores the trained model. The explo-

ration takes on a qualitative study of samples of output from C2C, of character and

word embeddings, and of individual units from the hidden layer of the network.

3.1 Methods

The structure of C2C is visualized in Figure 3.1.

3.1.1 Model Formulation

At each timestep t, character ct is projected into high-dimensional space by a character

lookup table E ∈ R|V |×d where |V | is the vocabulary of characters encountered in the

training data and d is the dimension of the character embeddings.

xct = ET vi

vi ∈R|V | is a one-hot vector with ith element set to 1 and all other elements set to zero,

where i corresponds to the position of character ct in the vocabulary, V .

Figure 3.1: C2C Model Architecture.

8
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The hidden state of the neural network is obtained as:

ht = LST M(xct ;ht−1)

The hidden state is followed by a linear transformation and a softmax function over

all elements of V , which results in a probability distribution.

p(ct+1 = c|c) = so f tmax(Woht +bo)i ∀c ∈V

where i is the index of c in V .

The embedding matrix, E, and all weights and bias terms, including the LSTM

ones, are learned during training.

3.1.2 Training Data

The model was trained on a continuous stream of the first 7M tokens from the English

Wikipedia corpus. These were all articles on topics starting with the letter A.

3.1.3 Hyperparameters

Hyperparameters were tuned with a search over the grid in Table 5.1. The values in

bold emerged as optimal, with a mean log loss on the devset of 1.59.

Parameter Values

Layers 1 2 3 4

Units 64 128 256
Learning rate 0.0003 0.003 0.03 0.3

Minibatches 16 50 64

Backprop 15 30 50

Dropout 0.2 0.5

Table 3.1: Hyperparameters values explored during optimization. The values in bold

emerged as optimal.

3.2 C2C’s Version of English

Text generated with C2C closely resembles English on the word level and, to some

degree, on the level of syntax.
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3.2.1 Words

When sampled, C2C generates real English words most of the time, but about 1 in

every 20 tokens is a nonce word1. Table 3.2 lists some nonce words generated by the

model. Regular morphological patterns can be observed within some of these words.

Nonce Words

sinding, fatities, complessed

breaked, indicatement

applie, therapie

knwotator, mindt, ouctromor

Table 3.2: Nonce words generated with C2C through sampling.

The nonce words sinding, fatities and complessed all seem like well-formed inflected

variants of English-looking words. The forms breaked and indicatement show produc-

tive morphological patterns of inflection and derivation being applied to bases of the

correct syntactic class, namely verbs. It just happens to be that break is an irregular

verb and indicate forms a noun with suffix ion rather than ment. These are lexical rules

that block the more general structural rules C2C has applied.

C2C not only composes morphologically complex words but also attempts to re-

verse the process, as can be seen with the forms therapie and applie. Here the inflec-

tional suffix s has been dropped, but the orthographic change associated with it has not

been successfully reversed.

Not all nonce words generated by C2C can be explained in terms of morphological

productivity, however: knwotator, mindt, and ouctromor don’t resemble any real mor-

phemes and don’t follow English phonotactics. These forms may be highly improbable

accidents of the sampling process.

3.2.2 Sentences

Consider the sentence in 5.2 generated with C2C through sampling. The sentence

could not be considered fluent or grammatical: there is no clear dependencies between

verbs, subjects, and objects, it contains the nonce word eviven, and the novel and

unlikely compound weaken-little. Yet, some short-distance syntactic regularities can

1As measured by checking for every generated word whether it appeared in the training data or in
the pyenchant UK or US English dictionaries.
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be observed. Articles precede adjectives and nouns but not verbs, prepositions precede

nouns, and particle to precedes a verb. On an even larger scale, the clause the novel

regarded the modern Laboratory has a weaken-little director is grammatical in terms

of the order between parts of speech2. The sentence appears unnatural due to its odd

semantics, but consider the following alternative choice of words for the same syntactic

structure: The man thought the modern laboratory has a weaken-little director. This

sentence sounds only marginally anomalous. The predominantly well-formed output

of C2C suggests that it is appropriate to further study the linguistic regularities learned

by the model.

The novel regarded the modern Laboratory has a weaken-little director

and many of them in 2012 to defeat in 1973 - or eviven of Artitagements.

Table 3.3: A sentence generated with C2C through sampling.

3.3 Character embeddings

During training C2C learned high-dimensional continuous representations (embed-

dings) for the characters in its vocabulary. The character embeddings learned by the

model reflect certain linguistically-motivated groupings.

3.3.1 Method

The embeddings were analyzed visually through a dimensionality reduction to a two-

dimensional space with the t-SNE tool (Maaten and Hinton, 2008). They were also

analyzed numerically using cosine similarity. The cosine similarity scores reported be-

low refer to pairwise similarity, when two characters are compared, and micro-average

pairwise similarity for more than two characters.

See Figure 3.2 and Table 3.4 for results. Notice that the similarity across all charac-

ters is 0.01, so any other numbers should be interpreted with reference to this baseline.

2That is, assuming that novel is a noun in this context and weaken-little is an adjective, by analogy
with its second base.
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Figure 3.2: Character embeddings in two dimensions. Dimensionality reduction was

performed with tSNE (perplexity = 25). Color codes: black – lowercase letters, green

– uppercase letters, purple – punctuation, red – digits



Chapter 3. Inside the Language Model 13

Subset Cosine Similarity
All characters 0.01
Digits 0.7
Punctuation 0.38
Space-Punctuation -0.02
Space-A 0.13
Vowels -0.01
Lower - Uppercase 0.17

Table 3.4: Cosine Similarity Between Groups of Characters.

3.3.2 Non-Alphabetic Characters

Non-alphanumeric characters are all mapped on one side of the plot, clearly separated

from letters, and further clustered into smaller subsets. The ten digits are mapped

closely in space, and score a cosine similarity of 0.7. The average pairwise cosine

similarity across punctuation marks is 0.38.

The embedding of the space character is mapped close to punctuation marks, as

we may expect. Yet, the cosine similarity between a space character and punctuation

characters is extremely low: -0.02. The character that a space is most similar to is

the letter A (cossim = 0.13). This observation seems surprising, but there is an expla-

nation behind it. Assuming that one defining property of characters from a statistical

point of view, is what comes after them, a space character and uppercase alphabetic

characters share the property that they are both most often followed by a lowercase al-

phabetic character, rather than a space, a digit or punctuation. Due to the nature of the

data (Wikipedia entries starting with A), the most frequent uppercase letter seen dur-

ing training was A, so it makes sense that the space character would be matched most

closely with this particular uppercase character. Had the language model been trained

on the entire Wiki dump, this pattern would have likely repeated with whichever up-

percase character had been most frequent across it.

3.3.3 Alphabetic characters

For 28 out of 52 letters their closest character in space was their case counterpart, e.g.

the character that is most similar to f is F and vice-versa. The average pairwise cosine

similarity across all pairs of lower- and uppercase versions of the same letter is 0.17.

Notice that the t-SNE plot doesn’t capture this pattern, which points to the limitations

of a visual analysis alone.
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A cluster we could expect to see emerging among embeddings is that of the vowel

characters. Vowels behave similarly to each other and differently from consonants

across a range of interconsonantal contexts, e.g. a vowel character can occur in the

context p r, but a consonant couldn’t: purpose, parsnip, pork, pirate, person. Al-

though C2C mostly abides by such phonotactic restrictions even in the nonce words it

generates, its character embeddings show no particularly high similarity among lower-

case vowel character. The average pairwise cosine similarity among lowercase letters

for vowels is -0.01, which is in fact lower than the average pairwise cosine similarity

across all lowercase characters (0.01). Four out of five lowercase vowel characters,

are mapped somewhat closely in 2D space (a, i, e ,u), indicating that C2C may have

recognized their similar properties along some dimension.

The most ‘similar’ pair of lowercase letters is k and d, which show a cosine simi-

larity of 0.13. From a linguistic point of view there is very little in common between

the phonemes corresponding to these letters.

Overall, character embeddings show some expected patterns, based on the distri-

butional properties of characters. Some of these patterns are grounded in linguistics,

others are coincidental.

3.4 Word embeddings

Word embeddings are often analyzed in language models that operate on the word

level, as a way to measure the semantic awareness of the model. While word em-

beddings are not intrinsic to C2C, they can stll be obtained and analyzed for semantic

similarity.

3.4.1 Method

A common practice in evaluating the performance of word embeddings is to measure

the cosine similarity between pairs of semantically related words and to compare it

to the similarity between pairs of unrelated words. Four sets of semantically related

words were used for evaluation here: sports terms, US states, personal names, and

months. A fifth set containing one word from each of the other four sets was used as a

reference point for semantic unrelatedness. Only words that occur at least ten times in

the training data were included.

C2C was trained on a continuous stream of raw text. The concept of a word is
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thus not hard-coded in the model, but space characters should make it possible for

C2C to implicitly learn to identify units, delimited by a space or punctuation mark on

each side. We can thus feed a stream of words into C2C and consider its hidden state

after each word-final character as that word’s embedding. This method of embedding

extraction results in highly contextual embeddings. The word of interest itself is the

most recent and thus dominant stimulus, but its preceding context is also taken into

consideration. The embedding of to, for example, would be different in each of the

phrases I like to, he told me to and it is difficult to. More general embeddings can be

obtained by taking the element-wise average over the embeddings of all occurrences

of a word in some corpus. The corpus of choice for the embeddings discussed below

was the Wikipedia data C2C was trained on.

Preliminary experiments showed that formal resemblance dominates over any po-

tential semantic similarity. The words under and October, for example, which are se-

mantically unrelated but end in the same substring, scored a cosine similarity of 0.535.

The highest score obtained by month names that don’t bear such formal resemblance

was 0.35 between September and July. Pairs of words with extensive formal overlap

were thus removed from the semantic sets to abstract away from formal resemblance

and evaluate the semantic similarity encoded in the embeddings.

3.4.2 Results

Results are shown in Figure 3.3.

The average pairwise cosine similarity across the ‘random’ pairs is 0.203, while the

average across semantically related pairs is 0.278. The month subset is most compactly

mapped in the space learned by C2C, likely due to the formulaic contexts in which

month names occur: usually preceded by a preposition and in proximity to numbers

(in January 1987, on July 4th 1999). The people subset obtained the lowest score out

of the four non-random sets, scoring marginally higher than the random subset.

There is no evidence for strong semantic awareness in C2C, but weak patterns of

grouping between semantic sets can be seen, especially when the members of a set

occur in well-defined syntactic structures.
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Figure 3.3: Semantic similarity within sets of unrelated (Random) and related (Months,

People, States, Sports) words. Similarity within related sets is higher than within the

unrelated one, but margins are sometimes very low: compare Random (0.203) and

People (0.234).

3.5 Hidden Units

The hidden units of C2C were analyzed by feeding the Wiki data into the system and

tracking unit activations on each timestep, i.e. after every character. For each unit, the

five inputs which triggered highest activation were recorded. About 40 units exhibited

patterns of activation that could be interpreted as meaningful based on just the top five

triggers and their contexts. We selected three of the more interesting units to briefly

discuss here. Table 3.5 shows a list of the top five triggers for each of these units,

together with up to 15 characters that preceded them, to put them in context.

3.5.1 Unit 133

Unit 133 appears to predict the occurrence of suffix -ion. Figure 3.4 shows the unit’s

behavior in two contexts followed by suffix ion or its variants tion and ation. In both

cases activation was highest just before the suffix, i.e. at the end of the base, and

dropped to zero for the duration of the suffix.
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Unit Context Trigger

1 r ( 1936-1939 )
School in 1921 .

ril 13 , 1813 .
tified in 1901 .
( 1993-1998 )

13 ’s prediction s
ural relativis m

’t contribution s
,s were contrac t
hat connection s

133 hered in infor m
d to the concentr a

cultural recre a
was accommod a
d Reyes introd u

Table 3.5: Top 5 Contexts for Three Units in the Network of C2C. The last character

in each string marks the peak in activation.
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Evolution of Unit 133

A. Input: instruction

c o n c e n t r a t i o n
1.00

0.75
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0.25

0.00

0.25

0.50

0.75

1.00
Evolution of Unit 133

B. Input: concentration

Figure 3.4: Activation of Unit 133. This unit appears to foresee the occurrence of

suffix ion.
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A n a r c h i s m ( 1 9 3 9 1 9 7 7 ) ' ' . C o n t
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00
Evolution of Unit 1

Figure 3.5: Activation of Unit 1. This unit appears to detect sequences of digits and

punctuation marks.

3.5.2 Unit 1

Unit 1 fires at a punctuation mark following a digit sequence. The fact that various

digit and punctuation sequences trigger the unit, supports the observation made earlier,

that C2C indeed recognizes digits and punctuation marks as clusters. Figure 3.5 shows

the activation of unit 1 over a sequence that is among the top triggers for this unit.

3.5.3 Unit 13

Unit 13 is possibly the most interesting one, as it appears to recognize complete words

even before a space character has been fed to the system. Figure 3.6 shows the ac-

tivation pattern of unit 13 over a partial sentence from the training data. The dotted

lines, which mark the end of tokens, often coincide with the peaks in activation. Even

the last dot in the ellipsis causes a high activation in unit 13. The behavior of the unit

could be explained either as a signal for the end of a familiar, repeated pattern, or as

a predictor of a following space. The fact that we don’t see a peak in activation at

the right bracket symbol (which should be a cue for a following space) suggests that

the former explanation is more plausible. Support for this idea comes from the low

correlation coefficient between the activation of unit 13 and the probability the model

assigns to a following space: only 0.08. The unit seems to be aware that words can
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Figure 3.6: Activation of Unit 13. This unit appears to detect complete words.

often be followed by a suffix rather than a space, such as it in its and according in

accordingly.

3.6 Conclusion

The analysis of the character embeddings, word embeddings and hidden units of C2C

indicates that the model has learned surface linguistic regularities, i.e. regularities that

can directly be observed in that data, such as the distributional properties of characters,

and formulaic similarities in the distribution and shape of semantically related words.

The analysis further hints that C2C is capturing more structural dependencies, being

able to segment out and decompose individual words.



Chapter 4

Morphological Segmentation is Hard

In this experiment we embed C2C into a system for morphological segmentation to

test the extent to which morphological complexity is captured by the language model.

The system achieved a rather low F1 score: 53.3. The analysis of correct and incorrect

segmentations showed that only certain types of morphemes could be segmented out

correctly.

4.1 Method

The architecture of the morphological segmentation system used here can be described

as an encoder-decoder: on every timestep a character is encoded with C2C and decoded

into a label. The decoder, similarly to the encoder is a RNN with LSTM units (see

Figure 4.1). Notice that 4.1 visualizes the testing setup, where a label is not predicted

after the last character in a word, since no morpheme boundary could occur there.

During training, however, labels for word-final character were included for optimal

learning, e.g. to allow the trained model to correctly segment the form attempts as

attempt+s, based on the training instance attempt with label sequence 0000001.

4.1.1 Model Formulation

At each timestep t, character ct is projected into high-dimensional space:

xct = ET vi E ∈ R|Vchar|×dchar

The hidden state of the encoder is obtained as before:

henc
t = LST Menc(xct ;henc

t−1)

20
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Figure 4.1: C2M Model Architecture. The encoder (in green) is C2C, the decoder (in

blue) is trained for the task.

The hidden state of the decoder is then obtained as:

hdec
t = LST Mdec(henc

t ;hdec
t−1)

and followed by a linear transformation and a softmax function over all elements in

Vlab, which results in a probability distribution over labels.

p(lt = l|c, lword) = so f tmax(Wdec
o hdec

t +bdec
o )i ∀ l ∈Vlab

where lword refers to all previous labels for the current word and i refers to the index of

l in Vlab.

The embedding matrix, E and LST Menc weights are taken from C2C. Decoder

weights and bias terms are learned during training.

4.1.2 Training Data

The model (hereafter referred to as C2M) was trained on a combined set of gold stan-

dard (GS) segmentations from Morpho Challenge 2010 and Hutmegs 1.0 (free data).

The training data consisted of 2275 word forms. While this is a fairly limited training

set, it should be sufficient to reflect frequent morphological operations.

For the purposes of meaningful C2C embedding, which is highly contextual, a past

context is necessary. Yet, GS segmentations are available for words in isolation only.

The Wikipedia dump, being one of the largest corpora of raw English text, was used

to extract contexts for every word, taking the 15 tokens that preceded the word on up

to 15 of its appearances in the dump. The occurrence of a word in each of its contexts

was then treated as a separate training instance. Unfortunately, about 20% of the words

in the GS dataset never appear in the Wiki dump – these words had to be processed in
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isolation, i.e. without a preceding context. This method resulted in a dataset of size

8989 on the word level, and 44937 on the character level. Training, development and

test set were obtained with a random 80-10-10 split.

4.1.3 Hyperparameters

The hyperparameters of C2M were tuned with a search over the grid in Table 5.1 with

the values in bold emerging as optimal. The performance of C2M on a test set of 228

words with 3.5 contexts each on average (6683 word-internal morpheme boundaries)

was evaluated in terms of precision and recall of morpheme boundaries.

Parameter Values

Layers 1 2 3
Units 64 128 256
Learning rate 0.001 0.01 0.1
Dropout 0.2 0.5 0.65

Table 4.1: Hyperparameters values explored during optimization. The values in bold

emerged as optimal.

4.2 Performance

Table 4.2 reports the results obtained with C2M and compares them to the results of

Ruokolainen et al. (2013), who trained a bidirectional CRF model on the Morpho Chal-

lenge data alone, i.e. on a subset of the training data used here. C2M is clearly inferior

to the CRF approach, but this is unsurprising given that the CRF makes predictions

conditioned on past and future context, while C2M only has access to the past context.

The F1 score of 53.3 suggests that C2C is capable of encoding some information about

morpheme boundaries despite this limitation. A breakdown of morphemic boundaries

by type provides insights into the source of performance and limitations of C2M.

4.2.1 Potential Word Edges as Cues for Morpheme Boundaries

The results labeled C2M - WE and C2M - ¬WE in Table 4.2 refer to two types of mor-

pheme boundaries: boundaries that could also be a word edge (WE), e.g. drink+ing,

agree+ment, and boundaries that could not be a word edge (¬ WE), .e.g. dis+like,
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Model Precision Recall F1

CRF-Ruokolainen et al. (2013) 89.8 83.5 86.5
C2M 52.8 53.9 53.3
C2M - WE 76.6 62.6 68.9
C2M - ¬WE 23.1 34.2 27.6
C2M - EOW 98.5 84.4 90.90
C2M - ¬PREF 53.6 59.2 56.3

Table 4.2: C2M Performance. The main result is above the line. Below the line, WE

stand for word edge, EOW for end of word, and PREF for prefix.

intens+ify. It becomes apparent that a large portion of the correct segmentations pro-

duced by C2M can be attributed to an ability to recognize word edges. Earlier findings

relating to unit 13 of C2C (chapter 3.5.3) support this line of argument: we know that

C2C has the means to recognize word edges. The fact that morpheme boundaries often

resemble word edges allows for extensive transfer of knowledge.

The sample segmentations in A and C of Table 4.3 can be straightforwardly ex-

plained in terms of transfer knowledge on word edges: act, action and ant are all

words C2C has encountered during training. Notice that ant has not been observed by

C2M, but its status as a word is encoded by C2C.

4.2.2 Actual Word Edges

An interesting result emerges when C2M’s performance is tested on word-final charac-

ters, which by default should all be labeled as a morpheme boundary (C2M - EOW in

Table 4.2). Recall that the rest of the results exclude these predictions, since morpho-

logical segmentation concerns word-internal morpheme boundaries. C2M performs

extremely well at identifying actual word endings. The margin between C2M - WE

results and C2M - EOW results is substantial, even though both look at units of the

same type, namely words. The higher accuracy in the EOW setting shows that C2C

prefers to ends word where they actually end, rather than at earlier points that would

have also allowed it. The reasoning may relate to a syntactic restriction.

Consider example E in Table 4.3. This instance of the word intensely occurred in

the context of the Himalayan regions of. In this context, C2C is reluctant to predict

a word edge after in (and by extension C2M fails to predict a morpheme boundary),

even though in is a very frequent word on its own. C2C may be aware that preposition
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Input True Segmentation Predicted Segmentation Correct

A. actions act+ion+s act+ion+s X
B. acquisition acquisit+ion acquisit+ion X
C. antenna antenna ant+enna
D. included in+clud+ed in+clude+d X
E. intensely in+tense+ly intense+ly
F. misundestanding mis+under+stand+ing misunder+stand+ing
G. woodwork wood+work wood+work X

Table 4.3: Sample C2M Predictions. Predictions are visualized symbolically for clar-

ity, e.g. the label sequence 00010 for likes would be visualized as like+s

in would not fit syntactically in the context, i.e. that the sequence regions of in is

ungrammatical. It thus waits to see a longer sequence that would better fit the context,

such as intense or intensely.

Example D shows that C2M is indeed capable of segmenting prefix in in other con-

texts. The word included is preceded by the context the English term propaganda.This

context allows a following preposition: the English term propaganda in, so C2C pre-

dicted that the word may end after just in, which allowed C2M to correctly predict a

boundary after the prefix.

4.2.3 Bound Bases

Morpheme acquisit (as in acquisition, example B), was not observed by C2M during

training and it is a bound morpheme that could not have been observed on its own

by C2C. Yet, it was segmented out correctly on five out of fifteen occasions. We

generated endings with C2C conditioned on acquisit in its different contexts and found

that C2C always predicted the expected ending ion. It appears that C2M managed to

generalize from free bases that take ion, such as correct, react, predict to the bound

base acquisition. Recall that C2C has a unit that specializes in recognizing bases that

take suffix ion (section 3.5.1). This explains the model’s ability to share knowledge

between different bases that all take that suffix.

4.3 Conclusion

The main takeaway from the performance of C2M is that C2C is remarkably better

at capturing word edges than morpheme boundaries, likely due to the explicit cues



Chapter 4. Morphological Segmentation is Hard 25

provided by the space character and punctuation. The fact that morpheme boundaries

often resemble word edges in English allows C2C to indirectly capture some morpho-

logical boundaries such as those following a free base or a suffix. This finding explains

C2C’s ability to compose novel morphologically complex forms, such as sinding and

fatities, and to decompose familiar ones. Yet, it also makes it theoretically impossible

for C2C to segment out most prefixes, since they don’t occur as independent words.

C2C seemingly has the potential to generalize knowledge about boundaries from

free bases to bound bases when they occur in the same context. Yet, this generalization

involves the highly frequent suffix ion and no similar generalizations were observed

for other suffixes. This suggests that generalizations of this type require large amounts

of data.



Chapter 5

Part-of-Speech Tagging is Easy

This chapter explores two POS tagging models based on C2C. They were designed to

be used as an exploratory tool for the linguistic awareness encoded by C2C and as an

auxiliary tool in the morphological experiments described in subsequent sections. The

taggers achieved an accuracy score of 87.06% and 90.75%. It is worth exploring the

source of such high performance in spite of certain structural limitations.

5.1 Method

Two model architectures were explored: an RNN encoder-decoder with LSTM units

that predicts tags on the character level (hereafter C2T) and a feed-forward neural

network that predicts tags on the word level (W2T). In both models, input is encoded

with C2C. The architecture of the models is visualized in 5.1 and 5.2.

Figure 5.1: C2T Model Architecture. The encoder (in green) is C2C, the decoder (in

pink) is trained for the task.

26
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Figure 5.2: W2T Model Architecture. The encoder (in green) is C2C, the decoder (in

pink) is trained for the task.

5.1.1 Model Formulation

Encoding is the same for both models. At each timestep t, character ct is projected into

high-dimensional space:

xct = ET vi E ∈ R|Vchar|×dchar

The hidden state of the encoder is obtained as:

henc
t = LST Menc(xct ;henc

t−1)

5.1.1.1 Character-level Decoding

The hidden state of the character-level decoder is computed on every timestep, as:

hdec
t = LST Mdec(henc

t ;hdec
t−1)

and followed by a linear transformation and a softmax function over all elements Vtag

which results in a probability distribution over tags.

p(tt = t|c, t) = so f tmax(Wdec
o hdec

t +bdec
o )i ∀ t ∈Vtag

where i is the index of t in Vtag.

5.1.1.2 Word-level Decoding

Word-level decoding happens only at timesteps where a word ends, t ′:

p(tt ′ = t|c) = so f tamx(tanh(Wdec
o henc

t +bdec
o ))i t ∈Vtag
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The embedding matrix, E and LST Menc weights are taken from C2C. Decoder weights

and bias terms are learned during training.

Similarly to C2M, encodings in both C2T and W2T were obtained for tokens in

context, which means that POS tags were conditioned not only on the current token,

but also on past tokens. This creates potential for the disambiguation of homonyms and

zero-derivation forms of differing syntactic categories, like drinkNOUN and drinkV ERB.

5.1.2 Training Data

Both systems were trained on the English UD corpus with a 80-10-10 train-dev-test

split with UD POS tags. Training data for character-level prediction was created by

pairing each character of a word with the POS tag of that word, e.g. ’likeV ERB’ was

labeled as as 〈 VERB VERB VERB VERB 〉. UD doesn’t specify a POS tag for the

space character, so the generic X tag was used for it. Since W2T was trained on the

word level, the space character was not presented to W2T at any point during training.

5.1.3 Hyperparameters

Hyperparameters were optimized with a search over the grid in Table 5.1 with values

in bold and italics emerging as optimal for C2T and W2T, respectively. Notice that

W2T was trained without minibatches and dropout.

Parameter Values

Layers 1 2 3
Units 64 128 256
Minibatches 16 50 64
Learning rate 0.005 0.001 0.02 0.1
Backprop 15 30 50
Dropout 0.2 0.5

Table 5.1: Hyperparameters values explored during optimization. The values in bold

and italics emerged as optimal for C2T and W2T, respectively.

5.2 Results

C2T obtained an accuracy score of 78.85% on the character level and 87.06% on the

word level, where word-level accuracy was measured by comparing the tag predicted
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for the last character of a word to the gold standard tag. The per-character score is

naturally lower by a large margin, as predictions early on in the word are based on

very little information about the identity of the word. W2T outperformed C2T, scoring

90.75%. Notice that the per-word scores for both C2T and W2T fall short of the state-

of-the-art in POS tagging due a structural limitation: both taggers assign tags based

on just past and present information. State-of-the-art taggers have access to future

information as well, through bidirectional encoding of the input. The high accuracy of

C2T in spite of this limitation suggests that the majority of the information concerning

the POS tag of a word is contained within that word and its past context, and that C2C

is particularly good at encoding this information.

5.2.1 Main Source of Error: Function Words

The confusion matrix in Figure 5.3 provides some insights into the performance of

C2T on the test set. Overall, C2T does well at tagging content words, with adjectives

and proper nouns posing a slightly higher challenge than verbs, adverbs and nouns,

often being mislabeled as nouns. Figure 5.4 shows C2T’s performance on words that

occurred three times or less in the training data. The NOUN and PNOUN columns

in this plot are densest, suggesting that when C2T has little previous knowledge about

a word, it defaults to a nominal tag. This is not surprising, however, considering the

fact that words at the tail of the Zipfian distribution are almost exclusively nouns and

proper names (Fung (1995)). In the UD data the taggers were trained on, 71% of the

words that occurred three or less times were nouns and proper nouns. The other 29%

were mostly verbs and adjectives.

The confusion matrices for W2T closely resemble those for C2T, so they are not

included in the report.

5.3 Evolution of Tag Predictions over Time

Figure 5.5 illustrates the evolution of POS tag predictions over the string and I have

already overheard youngsters (extract from the UD data) as processed by C2T and

W2T. Even though W2T is trained on the word level, it is interesting to observe how its

predictions progress on the character level, especially when handling morphologically

complex words.

The first thing to notice is that C2T predictions are a lot less scattered than W2T
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Figure 5.3: C2T Predictions. Confusion matrix of C2T predictions over test set.

Figure 5.4: C2T Predictions for Rare Words. Confusion matrix of C2T predictions

over items in the test set that occurred less than 4 times in the training set.
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Figure 5.5: C2T (left) and W2T (right) Evolution of POS Tag Predictions. Red rectan-

gles point to the correct tags of words.
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predictions. This could be expected, given that C2T was trained to process and predict

from partial words and W2T was trained on the word level only. Early into the word

already, for example, C2T identifies the word, recognizes it as an adverb and maintains

this hypothesis throughout. W2T, on the other hand, swings between ADJ and NOUN

for most of the word and only recognizes it and switches to the correct POS tag upon

seeing the very last character. With respect to the morphologically complex word

youngsters we see both models making reasonable predictions, predicting PRON for

you-, ADJ for the next two characters and NOUN for youngster- and youngsters. The

only point at which W2T falls behind C2T is at the intermediate state between young-

and youngster-.

5.3.1 C2T Keeps Two Hypotheses

An interesting feature of the evolution of C2T are the two competing hypotheses for

the syntactically ambiguous word have, which could be either a verb or an auxiliary,

as in this case. C2T appears to have learned this property of have and to process the

word accordingly.

The weight allocated to the ADV tag during the processing of overheard and

youngsters could also be interpreted as a competing hypothesis. A wider context win-

dow showed that C2T often holds multiple hypotheses for content words, with the

ADV tag being a common second hypothesis. This tendency might relate to the fact

that adverbs are often derived from adjectives through -ly suffixation, e.g. excited+ly,

confusing+ly, but adjectives are also often derived from other categories, like verbs

excite+ed, confuse+ing. This introduces uncertainty when processing such morpho-

logically complex words on the character level.

5.3.2 W2T Learns About Spaces

Figure 5.5 shows that W2T handles spaces in an intuitive way, even though it did

not see this character during training. W2T predicts X for a space character on one

occasion and PUNCT on three other occasions. From the perspective of W2T what

comes after a word is either another word or a punctuation mark. In this sense, the

fact that C2T assigned a PUNCT tag to some spaces means that on these occasions it

recognized that the previous word had ended and that what it had seen since then (i.e.

the space character) didn’t constitute a word in itself, therefore it must be a punctuation

mark. This observation provides further support for the idea that C2C sees words as
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units with an identifiable end.

It isn’t immediately obvious, based on any differences between the two models

discussed above, why C2T should obtain lower accuracy than W2T on the word-level.

Yet, the difference of 3.69% is a sizable one. In the rest of this work, W2T is thus

used for classification purposes, which are all on the word level, and C2T is used for

illustrative purposes in analyzing subword-level phenomena.

5.4 Conclusion

The performance of the two POS taggers based on C2C encodings demonstrated a

high level of syntactic awareness in the model on a word-to-word level. This finding

is in line with earlier observations from text generated by C2C (Chapter 3.2; example

reiterated in Table 5.2.

The novel regarded the modern Laboratory has a weaken-little director
and many of them in 2012 to defeat in 1973 - or eviven of Artitagements.

Table 5.2: A sentence generated with C2C through sampling.

The model learns co-occurrences not just between words but between syntactic

categories. This allows it to generate phrases that may be odd in meaning, like the

one above, but mostly abide by the combinatorial properties of syntax within some

temporal window.



Chapter 6

Suffixes Have Selectional Restrictions

C2C may be able to learn the selectional restrictions of derivational suffixes with re-

spect to syntax. The experiment described below tests this hypothesis. The outcome of

the experiment indicates that this morphological regularity is indeed captured by C2C.

6.1 Method

The main method used here was to measure and compare the probability of suffixes

with different selectional restrictions across subsets of nominal, verbal and adjectival

bases, as processed by C2C. In order to abstract away from familiar base-suffix com-

binations, seen during training, nonce bases were used.

6.1.1 Probability

The probability of a suffix in the context of a particular base was computed as the joint

probability of its characters. Consider the following example of suffix ion attaching to

base edit

p(ion|reun) = p(i|edit)× p(o|editi)× p(n|editio)

Since C2C is a wordless language model, p(·|base) is approximated from p(·|c) where

c is the entire past.

The probability of a suffix in the context of a particular syntactic category was

computed as the micro-average over all bases belonging to that category.

34
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Base Suffixes

Noun crystale, algoritum, cosmony, landlough
Verb underspire, restruct, actrace
Adjective nucleent, transplet, orthouble

Table 6.1: Sample Nonce Bases

Base Suffixes

Noun ous, an, ic, ate, ary, hood, less, ish
Verb ance, ment, ant, ory, ive, ion, able, ably
Adjective ness, ity, en

Table 6.2: Syntactically Unambiguous Derivational Suffixes

6.1.2 Nonce Bases

Nonce bases were obtained by sampling from C2C and for every complete word (se-

quence delimited by a space or punctuation on both sides), checking whether it be-

longed in an English dictionary. Several restrictions were imposed on potential candi-

dates: their probability had to be at most one standard deviation below the mean for

real words (to ensure they weren’t highly unlikely accidents of the sampling proce-

dure), the probability of a following space character had to be at most one standard

deviation below the mean for real words (to avoid prematurely finished words, such

as measu and experimen), and the confidence of their POS tags had to be at most one

standard deviation below the mean confidence with which tags of real words were as-

signed. In addition, nonce words had to be composed entirely of lowercase characters

and couldn’t end in a suffix (as certain suffixes included in the experiment only attach

to base stems).

Some examples of nonce words from the final selection are shown in Table 6.1. An

embedding was recorded for every nonce word that met these conditions by taking the

hidden state of the language model at the end of the word.

6.1.3 Suffixes

The suffixes included in this experiment (listed in Table 6.2) were taken from Fabb

(1988), one of the most extensive studies of the selectional restrictions of English

derivational suffixes. Fabb discussed 43 suffixes, many of which attach to a base of

two out of three available syntactic categories, e.g. ize attaches to both nouns, as in
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Figure 6.1: Suffix Probability Following Nominal, Verbal and Adjectival Bases. Suf-

fixes are grouped according to their selectional restrictions, with dashed lines delim-

iting the three groups. Naive suffix frequency counts are reported at the bottom of

the plot. Eleven out of nineteen suffixes obtained highest probability following the

syntactic category that matched their selectional restrictions.

symbolize, and adjectives, as in specialize. The analysis of such syntactically ambigu-

ous suffixes is complex since the frequency at which they attach to each base type

should be taken into consideration, but such statistics are not readily available and re-

quire morphological parsing. For the purposes of the present study ambiguous suffixes

were thus excluded and only the remaining nineteen suffixes were used.

6.2 Results

Figure 6.1 shows the results from the experiment. Eleven out of nineteen suffixes

exhibit the expected behavior: suffixes ment, ive, able, ably, an, ic, ary, hood, less,

ness and ity are more probable in the context of their corresponding syntactic base

than in other contexts. Suffix ment, for instance, is more than twice as probable in the

context of a verbal base than in the context of a nominal or an adjectival base. The fact
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that almost 70% of suffixes ‘select’ their correct bases, points to a linguistic awareness

within C2C with respect to the selectional restrictions of suffixes. Had there been no

such awareness, the ratio of success should have been close to 33%.

Despite the overall success of C2C in this respect, some suffixes show a definitive

preference for the wrong base.

A further analysis of some of these cases shows that they don’t necessarily counter

the evidence for syntactic awareness within C2C. The discussion below is a speculation

based on a qualitative analysis. An exhaustive quantitative analysis of the issue is

outside the focus of this project, as it concerns linguistics beyond natural language

processing.

6.2.1 Suffix ion

Denominal suffix ion should be most probable following a noun, but it shows a much

stronger preference for nominal bases. Notice that ion is a noun-forming suffix: com-

municateV ERB – communicationNOUN , regressV ERB – regressionNOUN . It appears that

from the perspective of C2C the syntactic category of such morphologically complex

forms extends to their bases, e.g. C2C perceives the populat substring in population

as nominal. This observation can be explained once again with reference to the high

frequency of suffix ion.

Suffix ion occurred in 18945 words in the dataset. The frequency of its various

bases in isolation, e.g. of populate, regress, etc., was estimated to be only 97551. This

shows that bases that can take suffix ion were seen more often with it than without it.

As a consequence, C2C is biased to expect a noun when seeing one of these bases and

may thus perceive the base itself as a nominal one.

The tag prediction evolution over population and renewable in Figures 6.2 and 6.3,

show that this is indeed the case, by comparing a base suffixed with ion to a base suf-

fixed with able (whose selectional restrictions, we know, were learned correctly). For

both words C2T starts of predicting NOUN. For renew it switches to VERB, which is

the correct tag for this base, and only upon seeing the suffix, progresses to the conclu-

sive ADJ tag for renewable. For population, in contrast the prediction remains constant

at NOUN, which is indeed the category of the word, as determined by the suffix.

1This count was obtained by striping the suffix off words and looking for an occurrence of the
remaining material in isolation, followed by e and followed by s/ es, e.g. for population we counted the
occurrences of populat, populate, populates and populated.
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Figure 6.2: C2T Evolution: population. The red square points to the syntactic category

of the base.

Figure 6.3: C2T Evolution: renewable. The red square points to the syntactic category

of the base.
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6.3 Conclusion

The experiment demonstrated that C2C is capable of capturing the selectional restric-

tions of derivational suffixes with respect to the syntactic category of bases, when there

are no strong interfering factors. This outcome is in line with the findings of earlier

chapters: a language model that is capable of encoding information concerning the

syntactic and morphological structure of its input (here, suffixed words), is also capa-

ble of learning morpho-syntactic dependencies in the input.



Chapter 7

Prefixes Don’t Change the POS of
Bases

The non-category-changing property of Enlglish prefixes could potentially be captured

by a character-level language model, either as a lexical rule relating to specific prefixes

that have been observed often enough during training, or as a more general rule relating

to any material prepended to a word. The following experiment tests this hypothesis.

The results provide no support for the hypothesis.

7.1 Method

The hypothesis was tested by creating novel combinations of prefixes and bases and

comparing the POS tags assigned to them with the POS of the bases alone.

7.1.1 Prefixes

The prefixes included in this experiment (listed in Table 7.1) were taken from Lehrer

(1995)’s discussion of prefixation in English.

7.1.2 Bases and Their Modification

300 verbal, 300 adjectival and 300 nominal bases were selected from the UD English

data, with the following criteria: candidate word shouldn’t end in a suffix (as suffixes

are a strong cue for POS tags and may dominate syntactic information encoded in the

rest of the word); the tag assigned to a candidate word by W2T should match the gold

label tag provided in the corpus.
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Base Prefixes

Noun micro, macro, vice, arch, mini, maxi, counter, pre, sub, super,
hyper, hypo, ultra, post, ante, pseudo, ex, multi, meta

Verb re, mis, out, over, under, up, down, counter, pre, un, in
Adjective anti, pro, extra, in, un, pre, sub, super, hyper, hypo, ultra, post,

ante, pseudo, ex, multi, meta

Table 7.1: Derivational Prefixes

Category Matching Tags

All 62.3
Noun 78.6
Verb 67.9
Adjective 40.4

Table 7.2: Rate of Matching Tags Across the Entire Experimental Set and Within

Syntactic Categories.

Embeddings for the prefixed variants of a base were obtained by replacing the base

with its modified versions in the original UD context, e.g. this was his last, this was

his unlast, this was his extralast, etc., and recording the hidden state of C2C after

processing the prefixed form. Words that existed in the training data (e.g. outlast)

were excluded in order to focus on C2C’s ability to generalize beyond forms seen

during training. Based on these embeddings, modified forms were tagged for POS

with W2T.

7.2 Results

Table 7.2 reports the percentage of matching syntactic category between base and pre-

fixed form across the entire experimental set and within individual syntactic categories.

While on average prefixation maintained the syntactic category of the base the majority

of the time, a breakdown by syntactic category shows that this is only true for nouns

and verbs, but not for adjectives. It is thus more reasonable to attribute the results to

a property of bases rather than of prefixes. In this sense, the outcomes of the experi-

ment point to a lack of awareness in C2C with respect to the non-category-changing

property of prefixes.

Table 7.3 provides an insight into the property of bases that may account for the
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Category Bare Prefixed -Matching Prefixed - Mismatching

Noun 0.89 0.817 0.614
Verb 0.904 0.859 0.673
Adjective 0.821 0.743 0.724

Table 7.3: Confidence of POS Tags. The table reports the probability W2T assigned to

bare bases and prefixed forms that match or don’t match the syntactic category of their

base.

observed results. Nominal and verbal bases were tagged more confidently than adjec-

tival bases (column 1). This suggests that the former provide a stronger cue for their

part of speech than the latter. In this sense, it is not surprising that prefixation to nouns

and verbs caused a category change at a lower rate: the base is a more recent cue to

begin with and when it is a strong one (as in the case of verbs and nouns), it suppresses

most of the syntactic signal coming from the prefix.

Columns 2 and 3 in Table 7.3 further support this analysis. Margins between

matching and mismatching tags for deverbal and denominal forms are magnitudes

higher than for deadjectival ones (0.23 and 0.186 v. 0.019). W2T foresaw its po-

tential mistakes more accurately when assigning a mismatching POS tag to a deverbal

or denominal forms, because it was better aware of the syntactic category of the bases

of these forms.

The tags assigned to denominal, deverbal and deadjectival bases are shown in Fig-

ure 7.1. Less than 1% of modified forms were assigned a tag outside of the five lexical

classes, NOUN, PROPN, ADJ, ADV, VERB, so only these classes are included in the

plot. Deadjectival and deverbal forms were often misidentified as nouns. Recall that

the POS taggers were found to mostly default to a nominal category for rare words (see

5.2.1). The frequent choice of the NOUN tag here indicates that some prefixed form

may be processed as rare words.

7.3 Conclusion

The outcome of this experiment indicates that the non-category changing property of

prefixation was not learned by C2C. This finding is in line with the conclusion made

earlier about prefixes not being segmented out as separate morphemes by C2C. It ap-

pears that the correct identification of a unit is a prerequisite for the learning of regu-

larities concerning that unit.
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Figure 7.1: Syntactic Category of Novel Prefixed Forms. When prefixed, nouns and

verbs mostly retain their status as such, while adjectives often switch to nouns.



Chapter 8

El Fin

This thesis presented an exploratory analysis of a ‘wordless’ character-to-character

language model, aiming to identify the morpho-syntactic regularities captured by the

model.

8.1 Summary of Results

A study of the internal structure of the language model showed that it learned surface

regularities concerning characters and words. Evidence for semantic awareness was

limited.

A specific unit was identified that demonstrated the model could recognize words

as separate units. More evidence in this respect was found in an experiment embedding

the language model into a system for morphological segmentation. The experiment

also showed that the model did not inherently identify morpheme boundaries, but it

could transfer knowledge on word edges to the task of morphological segmentation,

whenever conditions allowed it. Consequently, it encoded boundaries following a base

or a suffix better than those following a prefix.

An experiment embedding C2C into two different models for part-of-speech tag-

ging provided further evidence for awareness on the word level and showed that the

model was capable of encoding high levels of syntactic information.

Finally, two linguistic experiments tested the ability of the language model to learn

regularities about individual morphemes, namely suffixes and prefixes. The model

performed well on the experiment concerning the selectional restrictions of suffixes

and rather poorly on the experiment concerning the non-category changing property of

prefixes.

44



Chapter 8. El Fin 45

8.2 Conclusion

The first conclusion of this work is that morpheme boundaries are mainly learned by

analogy with syntactic boundaries. Findings relating to the extremely frequent suffix

ion illustrate that C2C was able to learn to identify purely morphological boundaries

through generalization. Yet, a prerequisite for this generalization is that a morpho-

syntactic boundary was also seen in the relevant position during training.

The second conclusion is that recognizing boundaries and by extension, the unit

that lie between them, is essential to learning the regularities that concern these units.

The nature of C2C is such that it could better identify suffixes than prefixes. The

selectional restrictions of most derivational suffixes included in the study could thus be

captured accurately, while generalizations about prefixes could not be learned.

8.3 Implications

These conclusions have strong implications with respect to the use of character-level

LMs for languages other than English. English is the perfect candidate for language

modeling, due to its fairly poor inflectional morphology. One consequence of this

property of English is that a large portion of its words consist of a single morpheme,

e.g. eat, drink, dance. Being trained on instances of these bare bases, C2C can learn

to identify the boundaries in their suffixed forms, e.g. eating, drinks, danced. In

Spanish, in contrast, every verb form is explicitly inflected and thus consists of at least

two morphemes, a base and an inflectional suffix. A verbal base could thus never be

followed by a space character in a training corpus. This means that C2C should not

be able to learn the segmentation of any verbal or deverbal word in Spanish. Without

access to the units of verbal morphology, the model would also be unable to learn any

regularities from this domain of linguistics. This shortcoming should hold not just for

C2C but for any character-level language model that processes input as a stream of

characters without segmentation on the subword level.

Notice that this finding is in line with the results of Vania and Lopez (2017) show-

ing an improvement in performance upon providing explicit morphological annotations

during training. The authors conclude that the gap in performance signifies a limitation

in the learning capabilities of a subword-level model with respect to morphology. The

findings of this study can be seen as an explanation for this limitation.

One aspect in which a different character-level architecture would likely outper-
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form C2C is the segmentation of prefixes. C2C cannot segment out prefixes due to the

unidirectional processing of input. A bidirectional encoding of input, segmented into

words in advance, such as the one used in Vania and Lopez (2017), should handle pre-

fixes more appropriately. Notice, that the segmentation abilities and limitations of C2C

highlight the importance of having the word-edge cue even in a model that explicitly

segments input into words. By that we mean, encoding the word drink as <BOW> d r

i n k <EOW> rather than as just d r i n k. Word-edge cues serve as place holders and

allow the model to learn that an affix can be replaced with a word-edge and the other

way around. This would allow the language model to learn to segment out prefixes and

suffixes, to generate novel forms with them, and to learn generalizations about them.

The issue remains, however, that this would likely only be possible for languages that,

like English, have a poor inflectional morphology.

8.4 Future Research

The above implications could be empirically studied by performing analysis similar to

the one presented here on a wider range of languages of richer morphology. If future

research finds that it is indeed the case that character-level language models gain little

access to the morphology of morphologically-rich languages, more elaborate means

of encoding morphological information will need to be programmed into language

models.

Subword-level models that operate on the level of morphemes could be seen as a

step in this direction. Yet, morphological segmentation itself is not advanced enough

to ensure that no additional noise is added to a system with model-predicted segmen-

tations. The accuracy of Morphessor, the most widely used tool for morphological

segmentation, ranges from an F1 score of .71 in an unsupervised English setting to

0.81 in a supervised setting Grönroos et al. (2014). This explains why morpheme-level

models don’t show a definitive edge over other approaches (Vania and Lopez, 2017).

In this sense, it appears that future efforts should focus on advances in the field of mor-

phological segmentation, as a mean of increasing the performance of morpheme-level

language models.
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