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Abstract

Recent developments in computer architecture have yielded to a surge in the number of

parallel devices, such as general purpose GPUs and application specific accelerators,

making parallel programming more common than ever before.However, parallel pro-

gramming poses many challenges to the programmer, as implementing correct solution

requires expert knowledge of the target platform, in addition to advanced programming

skills.

A popular solution to this problem is the adoption of a pattern-based programming

model, wherein the code is written using high-level transformations. While automatic

parallelisation for some of these transformations is easily performed, this is not the

case for others. In particular, the automatic parallelisation of Reduction is commonly

supported only for a restricted class of well known associative operators: outside of

these cases, the programmer must either resort to handwritten ad-hoc implementations

or settle for using a sequential implementation.

This document proposes a method for the automatic parallelisation of Reductions

which, by taking advantage of properties of purely functional programs and the alge-

braic notion of a semiring, is capable of handling cases in which the reduction operator

is not necessarily associative, but instead satisfies a much weaker set of properties. It

then presents a series of additions to the Lift compiler implementing said methods,

and finally proceeds to evaluate the performance of optimised Lift programs, demon-

strating that the automatically parallelised code can outperform equivalent handwritten

implementations, without requiring any explicit intervention from the programmer.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Heterogeneous programming

In recent times, a shift in computer architecture has been recorded, with interest steadily

moving away from the improvement of faster single-CPU machines towards the devel-

opment of scalable, massively parallel processing units. From mass-produced devices

backed by technological giants such as General Purpose GPUs, many-cores processing

units such as Intel’s Xeon Phi and Google’s Tensor Processing Unit, to avant-guard ap-

plication specific accelerators such as the machine-learning oriented PuDianNao(Liu

et al., 2015), the market for heterogeneous platforms could not be more varied.

By comparison, programming languages and compilers have been lagging behind.

Generating parallel programs targeting a potentially heterogeneous system has still

very high barriers to entry: firstly, due to the inherent difficulties in writing parallel

code by hand, and secondly due to technological friction introduced by having to code

using different technologies in order to target the plethora of available system.

A commonly proposed and well established solution for reducing the difficulty of par-

allel programming is to encourage the programmer to think of their software in terms

of a sequence of well-behaved parallel patterns, the most common of which as Map and

Reduce (Cole, 1989). But using this approach in isolation is not sufficient for resolving

the question of automatic parallelisation: while deriving a parallel implementation for

Map is a trivial exercise, Reduction offer a much more challenging example, in which

1



2 Chapter 1. Introduction

the validity to derive a parallel implementation is subject to the satisfaction several,

non-trivial conditions.

1.1.2 Reductions

A reduction is defined as the pairwise combination of elements belonging to some col-

lection, resulting in a single element as a result. Such reductions make an appearance

in all sorts of programming languages in various forms, ranging from the multiply-

and-accumulate for loops of C to the higher-order “foldl/foldr” functions of Haskell.

Many algorithms include a reduction as a component: computing the total sum of a

series of numbers, finding the maximum or minimum value in an array, or arbitrary

aggregation of complex entries in a big data context - such as in the very famous aptly

named MapReduce framework(Dean and Ghemawat, 2008). All these algorithms are,

in their essence, reductions.

As previously stated, one of the most interesting properties of reductions is that a

parallel implementation is possible, in case the reduction operator needs to be an as-

sociative function. This observation has long been known, and strategies for efficient

parallel implementations are widely available. The conditions seem therefore perfect

for reductions to be the ideal application for automatic parallelisation techniques: they

are a simple abstraction, they have widespread adoption and have a relatively straight-

forward efficient implementation. One could easily expect compilers to be able to

mechanically handle most reductions, liberating the programmer from the burden of

handwriting parallel implementations.

1.1.3 Automatic parallelisation of reductions

The reality of the situation is however much more disappointing that one might pre-

suppose, as the problem of identifying and optimizing reductions is still far from being

solved. The chief issue to be overcome - and the reason why automatic parallelisation

of reductions is not common - lies in the process of identification and separation of the

reduction from the provided source code.

The problem can be conceptualised as follows. Most automatic parallelisers ultimately

works by identifying within a program a fragment of sequential code for which a

semantically-equivalent but parallel implementation is possible. In some sense, we
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can think of auto-parallelisation as divided into two steps: first, an “understanding”

step, in which the compiler captures the semantics of a particular fragment of code,

and then a “generating” step, in which parallel code is generated implementing the

identified semantic.

We propose that, according to this understanding, the difficulties in automatic par-

allelisation lie in the “understanding” step, and that there are two main phenomena at

the root of the problem.

• Source code might not include all the necessary information for the compiler to

identify potential for parallelism even if present. For example, a parallel reduc-

tion might not be identified as such because of the compiler’s inability to infer

that the operator is an associative function - a fact that it is not known to be

derivable directly from the source code.

• Source code might be overly specific, with implementation details obscuring

the algorithmic nature of the program. This is often the case of source writ-

ten in imperative programming languages, which describe programs as series of

state transformations and side-effecting commands. Deriving an understanding

for such source code is a very complicated task, as the same language features

can be used to express both algorithmic features (which express the fundamen-

tal functionality of a program, and must be present independently of whether

the implementation is sequential or parallel) and purely implementation features

(which are tied to the sequential nature of the handwritten version). The com-

piler must be able to filter away the former of the latter.

The issues highlighted above are one of the reasons why most automatic parallelisers

must limit themselves to some form of dependence analysis. However, this approach

can now be considered sufficiently explored: current state of the art dependence anal-

ysis is almost optimal(Murphy et al., 2015), and yet automatic parallelisation is not in

widespread use.

1.2 The proposed solution

The previous section has detailed the need for automatic parallelisation in an increas-

ingly heterogeneous world, while at the same time underlying the fundamental short-

comings that prevent widespread successful usage of the available techniques. In par-
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ticular, it has highlighted the issues of recovering domain-specific information from

the source code and of the “noisiness” of imperative source code to be the chief road-

blocks.

In this document, we present a different approach to automatic parallelisation by show-

ing how these challenges can be tackled more easily by adopting a functional program-

ming style.

In particular, we propose an algorithm capable of automatic identification and genera-

tion of parallel reductions from an high-level sequential description. The algorithm is

applicable in even in some of the cases where the operator is not directly associative,

by transforming the problem into an equivalent instance of a general form reduction,

using the associative matrix multiplication operator.

In more detail, we use the algebraic properties of semirings as theorized in abstract

algebra to enrich the compiler’s understanding of source code, allowing it to reason

about the associativity of operators. At the same time the adoption of a high-level func-

tional programming language allows to minimize the effect of implementation-specific

“noisy” code, which greatly simplifies the application of the previously proposed static

analysis.

1.3 Contributions

The work presented here includes the following original contributions

• An algorithm for the transformation of sequential reductions into a parallel equiv-

alent implementation in a functional setting, starting from the multiply-accumulate

transformation into matrix multiplications presented in(Sato and Iwasaki, 2011).

• An extension of the basic transformations, using properties of semiring alge-

bra to implement “asymmetrically typed” reductions through the use of higher-

dimensional matrices.

• An algorithm for the identification of reductions which can be parallelised us-

ing the method proposed above, based on pattern-matching syntactic constraints

over the source code, eliminating the need for more complex analyses presented

in (Sato and Iwasaki, 2011)
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• The sketch of a proof of correctness via rewrite rules for the proposed transfor-

mation.

• A concrete implementation of the transformation for the Lift compiler, resulting

in the generation of an efficient implementation targeting OpenCL-compliant

GPUs.

• The necessary compiler infrastructure integrating the transformation within the

wider context of the Lift programming language.

• The design of a future expression language for Lift, allowing for a more natural

and direct expression of Reduction operators.

• Several handwritten implementations of the efficient parallel matrix multiplica-

tion reduction, for both the CPU (OpenMP, pthreads) and the GPU(OpenCL), to

be used as a baseline and a comparison with the Lift optimised implementation.

1.4 Thesis outline

The rest of the thesis is divided into the following chapters

• Chapter 2 presents the required knowledge to understand the rest of the docu-

ment. It contains a quick tour of the technologies used by the project: GPUs,

OpenCL and Lift, and of the mathematical theories used through the document.

• Chapter 3 offers an overview of the field of parallel programming, with particular

interest to both automatic parallelisation and to emerging programming models

for heterogeneous architectures.

• Chapter 4 first explains the optimisation in a general functional programming

setting, explaining the simplest form possible. It then proceeds to detail possible

generalisations to the basic form, and concludes with a proof correctness.

• Chapter 5 focuses on the concrete implementation of the work of Chapter 4 into

the Lift compiler, discussing the required software engineering decisions and the

necessary extensions to the current compiler infrastructure required to support

the transformation.
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• Chapter 6 presents a series of handwritten implementations for the optimised

parallel matrix multiplication reduction, to be used both as comparison for the

Lift implementation and as an informative tool for the exploration of different

implementation strategies.

• Chapter 7 details the results of a series of experiments performed to evaluate the

quality of the compiler extensions provided, with the associated discussion and

analysis

• Chapter 8 concludes the document, summarising the work and the results shown.

It also includes a critical analysis of the project, and a section including possible

future work.

1.5 Summary

This chapter has motivated the need of automatic parallelisation in the ever more het-

erogeneous and parallel world of computing. It has highlighted the importance of the

reduction algorithmic skeleton, and detailed the limitations of current approaches to-

wards its transparent parallelisation. Finally, it has proposed a method for addressing

the shortcomings through the usage of an analysis based on properties of semiring

algebra, to be applied in a functional programming context.



Chapter 2

Background

2.1 General Purpose Graphics Processing Units

Graphical Processing Units are among the most widespread accelerators in use, being

found in a large proportion of personal computers and workstations, and spanning a

vast range of prices and performance characteristics.

There are many differences in the performance characteristics of CPUs and GPUs.

While the former are particularly good at executing single-instruction single-data (SISD)

programs, which have a limited amount of parallelism but potentially much irreg-

ularity, the latter shine at the execution of single-instruction, multiple data (SIMD)

programs, which expose a significant amount of parallelism but must be highly reg-

ular. Moreover, CPUs are fundamentally latency-oriented devices, while GPUs are

throughput-oriented.

In light of these differences, it’s easy to see how GPUs make for very good additions

to CPU-centric systems, with both devices compensating each other’s shortcomings.

This is particularly important in recent times, with Moore’s Law’s slowdown pushing

developers more and more towards the writing of parallel programs.

2.1.1 From GPUs to General Purpose GPUs

As the name suggests, Graphical Processing Units where originally introduced into

computer systems in order to speed up graphical computations. This is because many

computer graphics algorithms execute small, identical and independent computations

7



8 Chapter 2. Background

on each pixel being displayed. This made CPUs particularly inefficient for displaying

graphics, and specialized hardware implementing a selected pipeline of computation

was developed to lessen the burden. These devices were the first GPUs

The second step in this evolution was the progressive generalization and programma-

bility of the various steps within the GPU execution pipeline. This phase saw the

introduction of shaders, user customizable fragments of code, used to specify the de-

tails of the various pixel computations, without however having the ability to influence

the structure of the computation itself.

While shaders were originally intended solely to perform graphical computations, their

introduction spurred the birth of “compute shaders”, that is non-graphics related algo-

rithms implemented within the shader language to take advantage of GPUs massively

parallel architecture. This eventually led to the creation of even more general program-

ming languages and tools for GPUs, and as of today one can use frameworks such as

OpenCL and NVidia’s CUDA to program a GPU in C.

This alternative use has pushed the development of GPUs into a new area, with more

and more architectures aiming to improve the performance of general purpose parallel

computations, particularly in domain of high contemporary interest, such as Machine

Learning. In light of this shift in focus, the term Graphical Processing Unit is more and

more commonly replaced by the new “General Purpose Graphical Processing Units”,

to highlight the widened scope and programmability of the platform.

2.1.2 GPGPU architecture

Having covered the history and the context behind GPGPUs, it is time to turn towards

a more concrete definition of their characteristics from the point of view of a program-

mer wishing to employ them successfully.

As previously stated, GPUs are a throughput oriented architecture, meaning that the

performance metric to be maximized is total amount of operation over a set time. GPUs

have much higher throughput than CPUs, and this is achieved by adopting a massively

parallel architecture. Let’s now look at the details of a common GPU architecture, as

found in many of NVidia’s Graphics Processing Units.
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Figure 2.1: Overall structure of a GPU. From:(Glaskowsky, 2009)

Figure 2.2: Internal structure of a Streaming Multiprocessor. From:(Glaskowsky, 2009)

At the top level, the GPU is composed of a few tens of small processors, usually

called Streaming Multiprocessor(SM)(Glaskowsky, 2009). Each SM has many fea-



10 Chapter 2. Background

tures of a traditional CPU processor: an L1 data cache, an instruction cache, and a

(very large) register file. Unlike a CPU processor however, an SM will be itself com-

posed of many smaller processors, themselves known as Compute Cores (CC). Each

CC fundamentally contains structures such as Floating Point computation units and

Integer computation units.

A SM does not organize the computation of its CC directly. Instead, these are group

together in structures known as Warps. CC’s within a warp share a single program

counter, and therefore will all execute the same instruction at the same time. The SM

will then schedule the computation in terms of Warps.

As far as memory is concerned, GPUs tend to include on-chip blocks of fast RAM,

partitioned among the different SM. This is meant to be used as fast local memory, and

it’s uses is preferred whenever possible over the distant system main memory - which

is instead mostly used for input and output.

2.1.3 GPGPU programming model

The architecture presented above has several important consequences in the program-

ming model. These are some of the considerations paramount to a good understanding

of the functioning of GPUs:

• When thinking of parallel algorithms, it is usually convenient to think of all

threads as existing in one unified space. This is not the case when programming

GPUs: the process of scheduling logical threads onto Compute Cores implies

that a division across Streaming Multiprocessors will be needed, and threads

only shared a unified local address space within a single SM. Therefore, parallel

programs optimized for a GPU might prefer structure their thread hierarchy in

two steps: a “group”, to be mapped onto the SM granularity, and then a “thread”,

to be mapped to a single CC. (This will become apparent when examining the

“workgroup” and “workitem” concepts in OpenCL)

• The fact that threads grouped together execute in lockstep has potentially impor-

tant performance implications. This means that divergent code (eg. the bodies

of the two branches of after an if statement) is comparatively expensive to exe-

cute, as the two arms need to be executed serially, at each branch “stalling” those

threads which have not taken the particular branch. This implies that instead of
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if statements, one should try to prefer if-expressions, and try to remove as much

code as possible from divergent branches.

• The memory access patterns of the program are to be taken into account when

partitioning the threads across the various Streaming Multiprocessors groups.

In particular, a program with many accesses to off-chip memory might bene-

fit from having more, smaller groups - meaning that the GPU’s will be able to

consistently swap out Warps that are blocked performed memory accesses with

other that are ready to execu. On the other hand, a program with fewer off-

chip accesses might benefit more from fewer, larger groups, avoiding the per-

formance penalties associated with context-switching between warps and, more

importantly, potentially achieving better CC utilization.

2.2 OpenCL

2.2.1 Overview

Open Computing Language, often shortened as OpenCL, is a framework for the de-

velopment of heterogeneous programs, supporting a variety of different platforms, in-

cluding CPUs, GPUs and DSPs.

From the user’s point of view, OpenCL consists of two main components: a guest

device programming language and a host device library to organize and launch com-

putations. The guest device language be considered a dialect of C, lacking the standard

ANSI C library (notably without support for dynamic memory allocation), but enriched

by language features key for heterogeneous programming, such as the ability to spec-

ify what kind of memory a given variable will be stored in, or function returning the id

for a given thread.

The host library is a low-level C library used to identify a target device, compile a

program for it and coordinate data transfers between host and guest.

2.2.2 Guest device programming

The guest programming language assumes a SIMD (single-program, multiple data)

execution model, in which the same program is executed in parallel by all the threads,

with the only possible source of divergence being the thread’s coordinates (global_id
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and local_id). This paradigm of execution is very conducive for writing programs tar-

geting GPUs, which are capable of running a very large number of threads, while only

having program control flow capabilities.

One of the fundamental ideas behind the SIMD execution model of OpenCL is the divi-

sion of threads in groups, known as “workgroups”. Threads (also known as workitems)

within a workgroup are able to synchronize their execution. This is the only form of

synchronization supported as of OpenCL 1.2. AS such, no synchronization is possible

across workgroups.

Another central feature of the OpenCL framework is the ability to control in which

kind of memory a variable is stored. This is very important in an heterogeneous pro-

gramming context, due to the fact that, unlike CPUs, alternative devices might have

a very non-uniform memory hierarchy, with different kinds of memory types, both in

terms of size and speed.

Since OpenCL is an abstraction over a large class of different device types, all the dif-

ferent kind of memory architectures can be expressed using only four different memory

tags, with the following capabilities:

• Global - This tag is used for memory that is visible to all the threads in the

system, independently from the workgroup they belong to. As this memory is

allocated from the host memory pool, it tends to be both the most abundant and

the slowest. It also has the function of communicating data between the host

and guest, such as passing inputs and receiving the results of a guest program

execution.

• Local - This tag is used for memory that is visible to all threads in a workgroup,

but not across workgroups (that is to say, each workgroup is allocated one exclu-

sive copy). It is much faster than Global memory, although much more scarce.

• Private - This tag is used for memory that is visible to a single thread, and as

such is commonly used for local variables. This type of memory tends to have

comparable speed with Local memory - although the exact performance charac-

teristic depends on platform-specific implementation details (the standard only

dictates the variable’s visibility).

• Constant - This tag can be only used for read-only variables, and has the same
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visibility as Global memory. While the performance characteristics depend on

the architecture of the guest device, on GPUs it tends to be a small but very fast.

Writing to a constant memory address causes a compile-time error.

2.2.3 Host device programming

As previously stated, the OpenCL model structures an heterogeneous program accord-

ing to a host-guest architecture. In this model, the host selects which device to run a

given “kernel” (the name of a guest program) and then orchestrates input data trans-

fers using platform library calls. Moreover, the host must also specify the number of

workgroups/workitems (collectively known as worksizes) of the program, and also de-

termine the size and types of buffers to be allocated for the kernel’s execution.Only

then the guest computation can start.

Although the OpenCL framework aims at providing a platform independent abstrac-

tion through its programming model, the specifics of the targeted platform often need

to be taken into account if one wishes to implement highly efficient programs. One

of the most complex decisions that need to be made is to determine the worksizes for

a given program and dataset. Initially, common sense might be a useful guide, often

informed by considerations like “a GPU prefers a large number of threads than a CPU”

and “if the program needs to perform many accesses to global memory, then it should

have many workgroups to mask the latency. However, this approach is unlikely to re-

sult in the individuation of the best possible parameter configuration.

There are several options to tackle this problem, such as the automated exploration

(such as in Lift) or the use of autotuners. No such tool will be used in the work pre-

sented here, with manual exploration deemed sufficient, since the OpenCL parts of the

project are there merely to serve as a litmus test for the usability of the proposed opti-

misation on GPUs, and the relative overall behaviour when compared with a CPU im-

plementation. This also means that whatever performance numbers will be derived are

very likely representing a conservative estimate of the maximum performance avail-

able to a real-world use case, where one would possibly enhance the methods proposed

here by a more rigorous inference of worksizes.
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2.3 Semirings, Matrices and Linear Functions

The optimisation presented in this project relies on algebraic properties of various

mathematical structures, such as Semirings and Matrices. This section presents all the

necessary concepts to understand the implementation mechanisms and its correctness.

2.3.1 Intuition behind Semirings

In mathematics, it is sometimes useful to abstract related entities and operations to

derive general results. One such type of abstractions is algebraic structures: grouping

of sets and operations over said sets that possess some particular properties. In some

sense, these are the “generic programming” of mathematics.

One of these algebraic structures is of particular interest for this project: the semiring.

Intuitively, a semiring is the abstraction of entities that behave similarly to numbers

(this is valid for all but the Naturals without zero), when operated onto via addition

and multiplication, with the relaxed condition that multiplication needs not be associa-

tive.

Examples of semirings include the numbers with + and * (as stated before) and the

numbers with max and + (in this interesting example, + plays the roles of * in the

previous semiring). Note that semirings are not restricted to numbers: sets make a

semiring with union and intersection, and booleans with ∧ and ∨.

The reason behind our interest in semirings lies in the fact that, if a property is proved

considering an arbitrary semiring (and relying on none of its specific characteristics),

then that property is valid for all the others Semirings as well. So since the algorithm

for mechanic parallelisation presented in this document is defined solely in terms of a

semiring, it will be automatically valid for all possible instances, even those that have

yet to be found.

2.3.2 Formal definition

Formally speaking, a semiring in an algebraic data structure comprised of the following

elements:

• S, a set
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• ⊕, A commutative and associative binary operator over S

• ⊗, An associative binary operator over S, which distributes over ⊕

• 0, an item in S which is a left and right identity for⊕, and is an annihilator for⊗

• 1, an item in S which is a left and right identity for ⊗

2.3.3 Semirings and Matrices

The key property of semirings leveraged in the optimisation here proposed is that, if

we can show that a set and some operations abide by the semiring laws, then it is pos-

sible to construct Matrices whose entries are elements of the set and for whom Matrix

multiplication behaves in the commonly expected way.

To see why this is the case, let us first consider the conventionally accepted definition

of a Matrix: a rectangular array of numbers. Then, we define Matrix multiplication of

two matrices, one of size x-by-n and one of size n-by-y as:

A×B =
N

∑
n=1

Ain ∗Bn j

for all i and j.

Matrix multiplication has several important properties: for example, the presence of a

known left and right identity, or the fact that matrix multiplication of square matrices

is associative. These very properties le at the heart of the optimisation presented here,

and we can use the definition of semiring above to allow the usage of Matrices and

their multiplication outside the domain of the real numbers with + and *.

We can intuitively see why this is the case: the associative property of Matrix mul-

tiplication depends entirely on the associativity of its constituent operations: and that

holds for ⊕ and ⊗ as well. Moreover, these operators must also have similar iden-

tity/annihilator behaviour with respect to their traditional counterparts, which means

that Matrices over Semirings will also have a left/right identity.

It is good to mention for completeness that not all the properties of conventional ma-

trices can be inherited using this abstraction: for example, matrix division is not a

supported operation within this framework. Since these properties are not needed,

however, this is of no real consequence.
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2.4 Lift language and compiler

2.4.1 Language Overview

While the optimisation proposed in this document is language independent and should

be applicable for functional languages in general, the specific implementation detailed

here targets Lift, functional programming language focused on the expression of data-

parallel computations.

The Lift programming language is particularly friendly to complex program analy-

ses and transformation, in part due to the lack of side effects, which simplifies greatly

the process of verifying whether a transformation is valid, and in part due to its ten-

dency to structure the program as a composition of a small set of control primitives,

such as Maps and Reduce. This in turns allows the compiler to work at a more coarse

grained level and concentrate macroscopic structures within programs, without having

to deal with the finer grain details of how these structures are implemented in practice.

2.4.2 High-level and low-level Lift

The primitives of the Lift language can be divided into roughly two groups: the high-

level primitives and the low-level primitives. The first group is concerned solely with

the algorithm description of a problem: this group include entries such as “Map” or

“Transpose”. The second group instead contains platform and implementation specific

primitives, such as “MapSeq” (the sequential map) and “MapGlb” (a parallel map us-

ing OpenCL global threads). Ideally, a programmer would write his software using

the high-level set of primitives (resulting in a completely portable, implementation ag-

nostic description of the computation). Then, when the code is generated for a given

platform, the compiler first transforms the high-level set of rules into a suitable low-

level expression, which would then specify the particulars of code generation.

The work proposed in this document mostly deals with the low-level kind of Lift

primitives, as its goal is to transform a high-level Reduction into a particular paral-

lel implementation for GPUs. What now follows is a quick overview of the primitives

mentioned in the later chapters.
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2.4.3 Notable primitives

What follows is a list of the Lift primitives used in the implementation

• MapSeq( f ) - A sequential mapping function, given an array of inputs and a

function f , generates and equally sized array of outputs, wherein each element

en corresponds to f (in). In OpenCL, it is implemented as a simple for loop.

• MapWrg( f ) - Algorithmically identical to the above, with a parallel implemen-

tation, where input elements are assigned across OpenCL workgroups.

• MapLcl( f ) - Algorithmically identical to the above, with a parallel implemen-

tation, where input elements are allocated across OpenCL workitems (threads).

Only valid when nested within a MapWrg

• ReduceSeq( f , x) - A sequential reduction. Equivalent to a for loop combining

input elements from an array into an accumulator, and then returning the accu-

mulator as a result. It uses x as an initial accumulator.

• Split(N) - Splits an array into an array-of-arrays, with each element having length

N

• Join() - Flattens an array of arrays.

• toLocal( f ) - Applies f to its input, ensuring that the result is stored in a local

memory buffer. Used solely for its performance implications.

• toGlobal( f ) - Applies f to its input, ensuring that the result is stored in the GPU’s

global memory. The final result of any Lift program targeting OpenCL must be

stored in global memory.

2.4.4 User Functions

So far we have only mentioned Lift’s abilities concerning control primitives such as

Map and Reduce, without mentioning how operations over scalar values are expressed.

This is because Lift does not have a true expression language to speak of. Instead, Lift

relies on programmer supplied “User Functions” for specifying such operations. These

User Functions are written as snippets of C code, whose body is directly injected into

the generated code at compile time, and are opaque to Lift. This fact will be analysed

more in depth in Chapter 4, as the optimisation will have to generate some of these

User Functions dynamically.
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2.5 Summary

This Chapter has presented an overview of the required material for the full compre-

hension of the coming chapter. In particular, it has detailed the key technologies used

(GPUs, OpenCL, the Lift programming language), as well as the theoretical knowledge

pertaining to semirings that lay the foundation of the proposed optimisation algorithm.
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Related work

3.1 Overview

This chapter presents an overview of the state of the art in the field. It also aims to

underline where shortcomings have been identified in these techniques, motivating the

rest of the work presented in the document.

3.2 Automatic Parallelization

Automatic Parallelization refers to a host of techniques aimed at mechanically trans-

forming a sequential program into an equivalent parallel implementation. Such tech-

niques have been existing for many years, and usually employ some sort of static

analysis to identify segments of the program which are independent, and hence par-

allelizable. The majority of these techniques have assumed an imperative context,

tailoring their analysis around the properties of languages like C, or directly at lower

level frameworks, such as LLVM.

3.2.1 Automatic Parallelization at the machine level: ICC

Possibly the simplest approach to parallelization, from a compiler’s point of view, is

to leverage low-level highly parallel features of the target hardware, offloading the

problem of deriving an efficient implementation to the underlying metal, and therefore

focusing exclusively on the identification of small subsets of programs that can take

advantage of such instructions.

This is the approach used in the Intel’s ICC compiler, which can be used to generate

19



20 Chapter 3. Related work

highly optimised C++ and Fortran programs when targeting an Intel’s architecture(Bik

et al., 2002), by aggressively using techniques such as vectorisation, which is sup-

ported by most modern Intel CPUs via the utilisation of the SSE instructions and reg-

isters(Lomont, 2011). Following this approach, the ICC compiler focuses merely on

recognising individual loops that can be converted into a SIMD form and then gener-

ates the appropriate vectorised implementation.

While ICC can perform more complex optimisations, such as automatically generat-

ing programs that take advantage of Intel’s Hyperthreading technology when used in

conjunction with OpenMP(Tian et al., 2002), all these techniques are mostly based

about the leveraging of in-house knowledge about the implementing hardware, and are

relatively straightforward and limited in scope from a program-to-program transfor-

mation point of view. Truly, one could even consider them “smart code generation

technologies” rather than true “automatic parallelisation”.

3.2.2 Automatic Parallelization via abstract representations

Another possible approach to automatic parallelisation is to derive some abstract repre-

sentation of the program’s source code, and then perform analyses and transformations

on it. The intuition here is that through the selection of a proper abstract from one can

move from the relatively “noisy” domain of source code to a cleaner environment,

more amenable to automatic parallelisation efforts.

A very well known example of this approach is Polly, an automatic parallelisation in-

frastructure for LLVM, which relies on the transformation into a representation known

as the “polyhedral model”(Grosser et al., 2012). Intuitively, the ideas behind the poly-

hedral model is a program representation focused on the expressions of loops in terms

of their control and dependencies characteristics, which are modeled as “polytypes”,

n-dimensional geometrical objects, which each polytype representing a set of nested

loops. Then, a large number of program transformations capable of extracting paral-

lelism are reduced to a geometrical problems of partitioning the polytypes.

Another example of such an approach can be see in the work of Sato and Iwasaki,

which utilize the algebraic properties of semirings to derive a matrix-multiplication

form from C for loops implementing reductions.(Sato and Iwasaki, 2011). This is a

perfect example of the power of utilizing abstract forms: once the original algorithm
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is expressed in terms of a chain of matrix multiplications, parallelisation follows natu-

rally due to the associative properties of the matrix multiplication operator (in fact, that

work is fundamental inspiration behind the optimisations presented in this document).

3.2.3 Limitations

The main criticism of the methods discussed above is that the derivation of the abstract

form, while greatly simplifying the process of parallelisation, might itself be an equally

hard problem, greatly limiting the applicability of these techniques. By analyzing the

works above, it is possible to see that a large effort is necessary in order to identify and

separate the parts of the program which can benefit from the transformation. While this

is fundamentally an unavoidable problem, much of the difficulty might be an artefact

of the programming language optimised, rather than intrinsically associated with the

abstract form selected. For example, Sato and Iwasaki’s paper cover in depth method-

ologies to “untangle” idiomatically-written C for-loops, separating the parallelisable

parts from the inherently sequential ones.

We can therefore conclude that while much research has gone in the field of auto-

matic parallelisation, a central difficulty preventing widespread adoption is the fact

that traditional imperative programs operate at a granularity that is too low for such

techniques to be utilized to their fullest.

3.3 Conventional approaches to parallel programming

As underlined in the previous section, automatic parallelisation techniques suffer from

structural applicability problems when applied to commonly used programming lan-

guages. A host of strategies have been developed to mitigate this issues. While each

approach differs widely in implementation and scope, all these techniques are based on

constraining the source program, as to superimpose a structure over the noisy nature

of unconstrained source code. This is achieved either by providing extension to the

source language (such as in the case of OpenMP and OpenCL) or by employing re-

quiring the user to make calls to a particular library API to access the parallel features

(such as pthreads and Thread Building Blocks). In this section, we will compare and

contrast these common approaches to parallel programming.
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3.3.1 Extension-based approaches

Extension-based approaches rely on the programmer writing in a slightly different di-

alect of the language when it comes to coding in parallel programs. This allows to

repurpose otherwise sequential languages to express parallelism, while at the same

time conserving much of the basic style, and therefore this methods tend to be very

accessible.

3.3.1.1 OpenMP

Consider for example OpenMP, a framework for writing parallel programs in For-

tran/C/C++. The OpenMP standard is based on the idea of decorating for-loops (the

main parallelisable construct in these programming languages) with pragmas, that is

with well-formatted preprocessor directives(Dagum and Menon, 1998). At compila-

tion time, a compiler that supports the OpenMP standard will recognize the decorated

loops and generate the necessary parallel implementation, using the information spec-

ified by the programmer in the pragma.

The pragma based approach has several benefits: firstly, it grants the OpenMP stan-

dard a significant amount of freedom in the definitions of what exactly each pragma

should contain. Secondly, it maintains source compatibility, as compiler which does

not support OpenMP can simply ignore the directives.

There are however also significant downsides to using OpenMP: the quality of the

generated code is not always very high, and substantial complexities still arise when

interacting with the source programming language, which can yield to inexplicably

non-performant programs. To see an example of such complications, just consider in-

dexing arrays within the body of a loop using C - this deceivingly easy operation might

involve resolving aliases, or perhaps the index computation might be input-dependent

in some way. In short, a framework such as OpenMP can be handy when applied

to straightforward parallel loops but quickly becomes lacklustre when more complex

code is encountered.

3.3.1.2 OpenCL & CUDA

Another potential avenue for extending a sequentially-oriented language like C is to

derive a non-source compatible dialect and provide an ad-hoc compiler for it. This

approach is particularly powerful in cases where implementing a different compiler is
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necessary anyhow, such as when targeting a significantly different architecture from

CPUs. As such, this is the approach adopted by the OpenCL standard(Khronos Group,

2016), which employs and implicitly SIMD dialect of C to express programs poten-

tially targeting a whole host of different platforms. The OpenCL dialect of C closely

resembles the C99 standard but has a few crucial differences, such as replacing the C

standard library with a very constrained alternative - which for example lacks dynamic

memory allocation.

In a framework like OpenCL, the entire burden of parallelisation is shifted onto the

programmer. On the other hand, as the code is written in an environment which is

implicitly parallel, this at least relieves the chore of having to decorate code explicitly.

On the other hand, the OpenCL approach of writing the parallel parts of the program

in their own incompatible dialect forces the programmer to split the source bases in

parallel and non-parallel sections. Moreover, OpenCL requires the program to provide

a significant amount of code interfacing the two.

From a usability standpoint, NVidia’s CUDA offers and even more advanced model,

wherein the program can be presented to the compiler as a single mixed-language

source(Nvidia, 2010). It is the compiler’s job to derive the two separate host-sequential

guest-parallel programs, and removes the burden of generating the glue code to coor-

dinate among the two.

3.3.2 Library-based approahces

An alternative to modifying the source programming language is to offer libraries to

structure the parallel computation explicitly. This is the approach taken by Intel’s

Thread Building Blocks (TBB) library, which provides the programmer with a set of

parallel algorithms, parametrised by user provided custom code(Reinders, 2007). The

idea is that explicit parallelism only appears within each algorithm implementation,

which is provided with the library. Therefore, all the user has to do is to derive an ex-

pression of their program in terms of such parallel API calls, by providing the suitable

element-wise operations.

Taking this approach to the extreme, for some very common applications it is possible

to simplify the life of the user even further, by providing full parallel implementation
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of some particular algorithms with widespread usage. A salient example of this ap-

proach is CuBLAS(Nvidia, 2008): this famous linear algebra library exposes an API

of fundamental functions, each of which has an high-performance GPU implementa-

tion provided by the NVidia engineers. Users of CuBLAS therefore do not need to

concern themselves with notions of parallelism, as all the details are entirely encapsu-

lated by the API.

This library based approaches are not without downsides, the most notable of all is that

there applicability is limited to those platforms and systems for which such libraries

are provided. Moreover, the libraries are black-boxes to the compilers, which limits

the ability to optimize code further. This means that inter-pattern optimizations (from

the simplest “map fusion” to more complex transformations such as the one presented

in this document) are not easily supported.

3.4 Novel approaches to parallel programming

In recent times, new approaches to parallel programming have begun appearing. Many

of these techniques take inspiration from the concepts previously presented - such as

attempting to impose an algorithm structure over arbitrary source code - but at the same

time try to completely alleviate the problems that arise out of writing the program in

a traditional, sequentially oriented programming language, preferring a higher level,

more declarative approach.

3.4.1 Application-specific DSLs

The Halide language for example is a DSL designed for the expression of efficient

image processing pipelines(Ragan-Kelley et al., 2013). When using Halide, the pro-

grammer is expected first to specify an initial value function, from which the beginning

of the computation can be derived, and a recursive reduction function, expressing the

value of each point in terms of its neighbourhood. Both these functions are pure, in

the sense that the Halide framework does not support arbitrary side-effecting state-

ments. Once these functions are given to the framework, to together with some iter-

ation bounds defining how long the computation must run, the framework takes over,

executing the computation in a highly efficient manner: the user has provided an algo-

rithmic description, but the framework is free to arrange the execution details as it sees
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fit.

The Halide is a particularly relevant example of the work presented here, due to its

interesting handling of Reduction operations: Halide also tries to automatically paral-

lelise Reductions whenever possible, which means that it needs to device a system for

determining whether an operator is associative. The approach to derive such inference

however is radically different from the one proposed in this document: in Halide, an

operator is classified as associative if it can be built up from some combination of as-

sociative operators, using a specified set of rules present in a database(Suriana et al.,

2017). Using this technique, they are able to prove the associativity or complex opera-

tors, even spanning multiple dimensions.

This approach however has several shortcomings: firstly, while it can identify com-

plex associative operators, it can not identify those operators for which a transfor-

mation into an associative operator is possible. This reduces the applicability of the

algorithm greatly. Secondly, it requires a database to be pre-computed, and a compile

time search, meaning that the solution might not scale arbitrarily as the data set and

exploration space grows. Finally, this approach does not offer a sound, determinis-

tic approach - being search based, it is not possible to provide a programming model

that guarantees parallelisation - or, in case of parallelisation being impossible, that can

communicate to the programmer the reason for this impossibility.

Other examples of the employment of DSLs to simplify parallel applications can be

seen in the efforts of the Delite project(Chafi et al., 2011), which provides a frame-

work for DSLs authors, in order to simplify the necessary work to embed a custom

language within the Scala compiler. The authors of Delite suggest that at the current

stage there is no practical solution to the difficulties of writing parallel software in

an heterogeneous context, and therefore a good compromise is to facilitate DSL cre-

ation. And example of DSL currently implemented with Delite is OptiML, a DSL for

machine learning(Sujeeth et al., 2011).

3.4.2 General purpose data parallel languages

The methods presented above attempted to simplify parallel heterogeneous program-

ming by hiding the parallel implementation details within application-specific abstrac-
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tions. Such approaches however rely on the existence of experts within each domain,

capable both of choosing the right abstraction and possessing the skills required for the

production of the DSLs. However, much research has taken place in recent times in the

attempt of deriving a general purpose solution to the problem of parallel heterogeneous

programming.

Such general approach is taken by Futhark, a project attempting to derive a platform-

independent parallel programming language by relying on a functional programming

paradigm(Henriksen et al., 2014). The intuition is that a parallel program can be seen

as the composition of a number of primitive higher order functions, each performing

pure transformations on their inputs. A Futhark program therefore can be seen as a

totally platform independent construct, purely defining a series of algorithmic trans-

formations.

Many of these primitive transformations however are known to have parallel imple-

mentations, and therefore the compiler can generate a parallel program for a target

platform (CPU or GPU), resulting in an overall parallel program, without the user hav-

ing to deal with explicit notions of parallelism per se.

Another project that operates in this scope is the Lift project. Lift is a functional pro-

gramming language for expressing data-parallel computations(Steuwer et al., 2015),

and as such shares many fundamental ideas with Futhark. In addition to the pattern-

based approach of Futhark however, Lift provides a system of automated rewrite rules,

which allow to derive many possible implementations from a single Lift program,

and allow therefore to generate high-performance code for a host of various archi-

tectures(Remmelg et al., 2016). Lift is particularly relevant to the work presented in

this document, as all the contributions presented here are ultimately included in the

Lift compiler.

3.5 Summary

This Chapter offered a tour of the related research pertaining to automatic parallelisa-

tion and heterogeneous programming. It started by listing the traditional approaches

and their shortcomings, and has then moved towards the more current actively research

methods, contextualising the work proposed here within the broader area.
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Parallelising Reduction with Semiring

Algebra

In this section, we show how the theoretical notions from abstract algebra can be used

to create a framework for the parallelisation of programs. It starts by introducing the

necessary concepts and the intuition behind a sequential-to-parallel transformation,

heavily based on the work on automatic parallelisation of C programs as seen in (Sato

and Iwasaki, 2011). The rest of the chapter is dedicated to adaptation of the method-

ology within a functional context, and presents a variety of potential extensions and

generalization over the basic approach, a set of constraint for the verification of the

applicability of the method based on syntactic rules, and a series of step-by-step trans-

formations from the original form into the matrix based parallel version via rewriting

rules.

4.1 Effects of associativity on the reductions

Before covering in depth the implementation of this project, let us analyse the opti-

misation in an abstract context. The general idea is as follows: consider a reduction

having for operator a non-associative binary function. Such a reduction may not be

executed in a tree-parallel fashion since the elements must be combined for the result

to be correct. This fact can be seen if we consider reduction operations in terms of sim-

ple arithmetic formulas. Consider, for example, the subtraction of integers, a known

non-associative operation.

3−1−1−1

27
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The expression above can be seen as a reduction: the input is the sequence 3,1,1,1,

and the reduction operator is subtraction. We can see that the result is determined by

the order of execution of these steps (or, in mathematical notation, on the ordering of

parenthesis). If execute the steps sequentially and in a tree-parallel order, we have:

(((3−1)−1)−1) 6= (3−1)− (1−1)

Contrast this with the addition operator, which is associative and therefore can be exe-

cuted in a tree-parallel way:

(((3+1)+1)+1) = (3+1)+(1+1)

We have therefore derived a general rule: for a reduction to be tree-parallel, its opera-

tor needs to be associative.

At first, this conclusion seems to paint a bleak view with regards to the utility of par-

allel reductions. There are a significant number of algorithms which can be expressed

as a reduction of non-associative operators, and following the logic presented so far, it

seems that these algorithms are always condemned to be executed sequentially.

There is luckily a way out of this impasse: under certain circumstances, it is possi-

ble to derive a new reduction, operating on a transformed version of the original data,

and using an equivalent, but this time associative, operator. The optimisation presented

in this document does precisely the above: automatically deriving a parallel reduction

in terms of matrix multiplication, from a non-associative reduction whose binary op-

erator is constructed out of semiring functions. Before exploring the transformation

more in depth, let’s consider a concrete example.

4.2 Example: Polynomial Evaluation via Horner Scheme

The name Horner Scheme refers to a method for evaluating a polynomial at a given

point. This algorithm has a straightforward implementation in terms of a non-associative

reduction.

The algorithm accepts as input an ordered sequences of numbers, with the Nth entry
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representing the coefficient of the monomial of the Nth factor in the polynomial. The

evaluation of the polynomial at a point k is then computed by reducing left-to-right

over this input sequence with the following operator:

�= λ(x,y).→ (k ∗ x+ y)

Now, � is not an associative operator, and therefore the direct implementation of the

reduction will be sequential, as the result of any given application of � depends on all

the previous ones. This dependency, however, is not arbitrary, but instead, has some

notable properties.

First, notice that the reason for this dependency is the k ∗ x term of the expression,

which can only be computed if x, the "prefix" of the reduction up to the current step,

has alread been calculated. We can see this clearly by expanding a few steps of the

reduction:

k ∗ (k ∗ (k ∗ (x0)+ x1)+ x2)+ x3

Unlike arbitrary operations, however, we know that multiplication distributes over ad-

dition. This allows us to transform this interleaving of products and sums into a sum-

of-products form

k3 ∗ x0 + k2 ∗ x1 + k ∗ x2 + x3

The expression in this form is now almost in a tree-parallel form: our “outermost”

operations is just a reduction over a sum, which we know is tree parallel. However,

what to do about the ka terms?

An elegant solution to this question is to express the above chain of operations as a

series of matrix multiplications. By taking a closer look at the expression, we can see

that the above expression is equivalent to computing the following:(
k x0

0 1

)
×

(
k x1

0 1

)
×

(
k x2

0 1

)
×

(
k x3

0 1

)
=

(
k3 y

0 1

)

and afterwards projecting out y from the result.

The expression above can be directly expressed as a reduction, with × as its operator.
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Note that since we are multiplying square matrices, × is associative, and therefore the

derived reduction is, in fact, tree parallel.

We have therefore achieved what we set out to do: transformed a non-associative re-

duction over one some data (in this case � over integers) into an equivalent parallel

reduction over another type of data (× over matrices), providing a pair of transforma-

tion to go from the original domain to the transformed one (the construction of matrices

form (x→

(
k x

0 1

)
) and one to return back to the original domain (

(
k x

0 1

)
→ x).

4.3 Generalizing over the data types with semirings

While the previous section covered a particular example, similar arguments to the one

made above are valid for many other operators as well - although the exact specifics

will vary from case to case. To reason more easily about the problem, and to allow the

compiler to optimise whenever possible, it is necessary to derive a general framework

to express and identify reductions that can benefit from this transformation.

As we have previously seen, the distributive property of * over + allowed us to “flatten”

the expression, which in turn was fundamental for the expression of the operation in

terms of a sum-of-products. Secondly, we used the fact that the only operators appear-

ing in � where + and * to express each term as a matrix. Thirdly, we needed to know

that 0 and 1 are the neutral elements for + and * respectively. Moreover, finally, we

relied on + being an associative operator - this might not have been clear from looking

at the matrix form, but can be seen in the sum-of-products step.

It is not needed to introduce a new formalism to express all the conditions just men-

tioned: as what we have derived is the definition of the semiring, an algebraic abstrac-

tion over particular types of data and operations. (see background for a more in-depth

explanation). Therefore, while the example seen so far was in terms of numerical op-

erations, the same exact transformation can work on arbitrary types of data, as long

as they respect the necessary properties. Examples of such other data types are the

semiring of ({T,F},∧,∨,F,T ),or the semiring of (regexp,‖,&,ε,ε) and many others.
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4.4 Generalizing over the reduction form with higher-

dimensional matrices

So far, we have only considered reductions of the type:

reduce : ((α,α)→ α)→ [α]→ α

That is to say, reductions which use a binary operator and use it to combine pairwise

elements of some collection.

There is, however, another, more general definition of reduction, with the following

type

reduce : α→ ((α,β)→ α)→ [β]→ α

This operation, which is also known by the name of left fold, can be seen under two

different interpretations: either as a reduction with a starting value, or has a different

interpretation: given a starting state of type α and a collection of type [β], compute a

final state of the chain of state-transition specified by the given function. Notice how

the latter does not expect α and β to be the same type - as one would expect the state

of an algorithm to have a different type from its input.

It is possible, in some cases, to adapt the previously presented optimisation to work

with left folds. The starting value extra parameter is not a difficult issue to tackle - all

we need to do is to add one more operation to the reduction of matrix multiplications.

The real difficulty lies with the fact of working with two different data types.

In general, we the transformation cannot support a reduction which has an arbitrarily

typed state: the transformed version can still only operate over scalars belonging to the

original semiring. It is in fact however possible to abstract over arity, by using higher-

dimensional matrices.

For example, consider the Maximum Segment Size problem, which involves com-

puting the maximum sum for any contiguous slice of a given input array of numbers.
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This problem can be implemented in terms of a reduction with the following operator:

MssOp = λ((m,x),y).→ (max(m,x+ y),x+ y)

and then projecting out the first component of the resulting tuple.

This reduction operator has asymmetrical arity in its parameters: the accumulator and

the result of each step are a tuple, while the input is a simple value.

Deriving a matrix-reduction form for the MssOp operator is possible. First, notice that

the scalar types and operators in the expression all belong to the (Z +{∞},max,+,∞,0)

semiring. Now, for each input element yi, we can define the following reduction step

matrix for MssOp 
0 yi −∞

−∞ yi −∞

−∞ −∞ 0


To check that in fact, this matrix is correct, we can compute the application of a single

step, by multiplying the matrix with a column vector, representing the accumulator of

the reduction.
0 yi −∞

−∞ yi −∞

−∞ −∞ 0

×


m

x

0

=


max(m+0,max(x+ yi,−∞+0)),

max(m−∞,max(x+ yi,−∞+0))

0



=


max(m,x+ yi),

x+ yi

0


As we can see, the above multiplication implements the desired behaviour of the

MssOp and is, therefore, a valid implementation.

4.5 Constraints

We have previously stated that a necessary condition for the applicability of this trans-

formation is that the initial reduction needs to operate over elements that belong to a

semiring, and that it also must rely solely on the use of that semiring’s operations. This

is a necessary, but not sufficient condition.

The other, more stringent requirement, is that the reduction operator must be a lin-

ear function of the first parameter. This necessity arises from the fact that, during the
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transformation from the original scalar domain into the matrix domain, we are in fact

encoding partial applications of the operator with the parameter fixed, and as covered

in the background section, for a function to be representable as a matrix, it needs to be

linear.

Traditionally, verification of the linearity of a function is proved using mathematical

tools such as equational reasoning. However, because this transformation is applied

within the context of a compiler optimisation, such methods are inappropriate. Instead,

it is more useful to describe syntactic rules matching over an expression’s structure.

The approach adopted here is to define a single, general template for all formulas

that satisfy the constraints. Here are the formulas for the 2-by-2 and 3-by-3 matrix

representation case:

λ(x,y)→ a⊗ x⊕b⊗ y⊕ c

λ((x1,x2),y)→ (a1⊗ x1⊕b1⊗ x2⊕ c1⊗ y⊕d1),(a2⊗ x1⊕b2⊗ x2⊕ c2⊗ y⊕d2)

With this scheme, constraint satisfaction is simply a matter of flattening expression

by distributing all the ⊗ in the formula and then checking that every term is strictly

included in the template.

4.6 Transformation steps

One of the strengths of the Lift programming language is the ability to express complex

optimisations as chains of individually small rewrite rules. In this vein, this section

will now present a step-by-step derivation of the parallel reduction in terms of such

rewrite rules. For compactness and clarity, this section will continue using the maths-

like notation employed so far, as opposed to utilising Lift, deferring the Lift-specific

details to a later section. Furthermore, only the 2-by-2 case will be covered: similar

arguments can be derived for any other arity.

The starting point for the transformation is any sequential reduction abiding by the

constraints previously laid out.

reduce(λ(x,y)→ a⊗ x⊕b⊗ y⊕ c, i0)[i1, ..., iN ]

As a first step, let’s factor together with the operations in the reduction, so that we

obtain a clear structure.

reduce(λ(x,y)→ (a⊗ x)⊕ (b⊗ y⊕ c), i0)[i1, ..., iN ]
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Now, the term b⊗y⊕c can be considered a function onto itself. Let’s therefore define

t = λ(y)→ (b⊗ y⊕ c).

reduce(λ(x,y)→ (a⊗ x)⊕ t(y), i0)[i1, ..., iN ]

Since t is the first function applied to the y argument in the reduction operator, which

corresponds to the input data, we can separate it as follows

reduce(λ(x,y)→ (a⊗ x)⊕ y, i0)◦map(t)[i1, ..., iN ]

Let’s now begin to move towards operating over matrices. By the arguments presented

in previous sections, we see how ((a⊗ x)⊕ y) can be expressed as a single matrix-

vector multiplication and a projection, by considering the expression(
a y

0 1

)
×

(
x

1

)
=

(
a⊗ x⊕ y

1

)

and then taking out the top element. We can therefore have

get0 ◦ reduce(λ(x,y)→ y× x,( i0
1 ))◦map(λy→ (a y

0 1))◦map(t)[i1, ..., iN ]

We can then fuse together the two maps, and by re-expanding t, we obtain

get0 ◦ reduce(λ(x,y)→ y× x,( i0
1 ))◦map(λy→ (a (b⊗y⊕c

0 1 ))[i1, ..., iN ]

The expression now has the desired form: a parallel map followed by a tree-parallel

reduce.

4.7 Summary

This chapter has presented the optimisation algorithm in a language agnostic functional

context. It has started by detailing the basic intuition as found in the literature, and has

then provided original contributions, such as the generalisation of the algorithm for

asymmetrically-typed reductions, a set of syntactic constraints to determine when the

optimisation can be applied, and a sketch of correctness via rewrite rules.
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Lift implementation

5.1 Implementation of a parallel reduction

Just like in the hard-coded examples presented above, there are many possible imple-

mentations for the parallel Matrix Multiplication reduction in low-level Lift. For sim-

plicity and ease of comparison with the handwritten versions, we will only consider

the implementation for the 2-by-2 case.

5.2 Generated code

Here is the code as generated after the optimisation pass:

1 fun(

2 ArrayType(TupleType(T,T),N),

3 data => {

4 Join() o MapWrg(

5 MapLcl(toGlobal(id) o Get(1)) o ReduceSeq(

6 fun(TupleType(T,T), ArrayType(TupleType(T,T)),

7 (accum , data) =>

8 toLocal(matMul).apply(accum ,

9 fun(x => x.at(0)) o

10 ReduceSeq(matMulTuple , nautralPair)) o

11 o MapSeq(transform))

12 o Split(2) o

13 toLocal(MapSeq(id)) $ data

14 )

15 ),

16 neutralPair

17 ) o Split(64)

18 ) o Split(2048) $ data

35
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19 }

20 )

It might be helpful to refactor the code above in it’s main, coarser grained steps. Con-

ceptually, the program above is equivalent to the following pseudo-Lift:

1 fun(

2 data => {

3 Join() o MapWrg(

4 MapLcl(matrixToT) o

5 outerReduceMatrices(

6 innerReduceMatrices o

7 buildMatrices o

8 copyToLocalMemory ,

9 neutralPair) o Split(64)

10 )

11 ) o Split(2048) $ data

12 }

13 )

Listing 5.1: Simplified pseudo-Lift

As we can see, the optimised code, therefore, executes, for each workitem, the fol-

lowing steps (since the code is written in point-free style, the order of execution is

bottom-to-top, right-to-left)

• copyToLocalMemory: copy the data from its split to local memory, to avoid

storing intermediate results in slow, global memory.

• buildMatrices: maps a function deriving, for each input element, the equivalent

matrix for one step of the reduction.

• innerReduceMatrices: a sequential reduction implementing matrix multiplica-

tion. We start with the identity matrix as a neutral element of the reduction.

• outerReduceMatrices: same as innerReduceMatrices, used to combine the re-

sults of each split. Equivalent to the “chunk computation” of the OpenCL ver-

sion

• matrixToT: converts the results back from the matrix representation to the origi-

nal datatype by projecting out the appropriate entries
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5.3 Optimisation-language interface

In the previous section, the Lift optimised code contained several functions which are

not existing Lift primitives. These are

• matrixToT: The function converting matrices into the resulting element

• matMulTuple: The semiring-specific matrix multiplication

• neutralPair: The semiring-specific identity matrix

• transform: A function transforming an input item into the corresponding itera-

tion step matrix.

All these functions are specific to a particular semiring and therefore will be algorithm

specific. Even more importantly, the transform function, tasked with generating the

appropriate Matrices for each given iteration, and therefore depend also on the details

of the reduction operation.

To have a truly automatic transformation - as opposed to just a conveniently expressed

parallel pattern, it is necessary for the compiler to infer these four entities automati-

cally. This can be done by augmenting the Lift language with the necessary capabilities

to represent semirings and expressions.

5.3.1 The semiring representation

The first extension needed is to enrich the compiler with a concept of what a semiring

is. To have that, first, the concept of an abstract operator needs to be modelled.

1 abstract class SemiringOp(neutralElem:Value) {

2 def cString(param1:String ,param2:String)

3 }

The above definition might seem unusual, but it fits well within the current Lift im-

plementation, wherein custom user functions are expressed as fragments of C code. In

the above, the cString method of an operator is expected to generate the appropriate C

implementation, given expression param1 and param2.

Armed with this structure, it is now possible to define the representation for a semiring

1 case class Semiring(plusLike:SemiringOp , timesLike:SemiringOp)

Listing 5.2: "The semiring data structure
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With the above definition, it is now possible to derive a general implementation for

both neutralPair and matMulTuple.

1 def neturalPair(semRng:Semiring) =

2 (semRng.multLike.neutralElem , semRng.plusLike.neutralElem)

3

4 def matMulTuple(semRng:Semiring) = {

5 val entry1 = semRng.timesLike.cString("a._0","b._0)

6 val entry2 =

7 semRng.timesLike.cString("a._0",semRng.plusLike.cString("b._1

↪→", "a._1"))

8 UserFun(/*Type parameters omitted*/s

9 "{Tuple t = {$entry1 , entry2}; return t;}"

10 )

Here are a few example usages of this approach. First one must define the available

operators and their C implementation.

1 val add = SemiringOp(0) {

2 def cString(p1:String ,p2:String) = s"$p1 + $p2"

3 }

4 val mult = SemiringOp(1) {

5 def cString(p1:String ,p2:String) = s"$p1 * $p2"

6 }

7 val max = SemiringOp(1) {

8 def cString(p1:String ,p2:String) = s"$p1 > $p2 ? $p1:$p2"

9 }

Then, it is possible to define specific instances for each algorithm. For example, to

compute the Horner Polynomial evaluation, the following Semiring is to be used:

1 val floatNaturalSemRng = Semiring(plusLike = add, timesLike =

↪→mult)

While to implement the Maximum Segment Size problem, it is possible to use:

1 val floatMaxSumSemRng = Semiring(plusLike = max, timesLike =

↪→plus)

One limitation of the following approach is that all these definitions live at the compiler

level, rather than at the language level. As of the time of writing this document, there

are no specific plans for implementing a language level system for defining semiring

instances. In future however it might be possible to support such user definitions, per-

haps using a typeclass system similar to those found in other functional programming

languages such as Haskell.
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5.3.2 The LinearExpression representation

Supplying a definition of semiring is not sufficient. As noted the “transform” function,

tasked with the transformation of the input from its original domain into its Matrix

representation, depends on the specifics of the operator supplied to the reduction: a

simple way to see this, is that each Matrix must represent a partially-applied version

of the operator.

As noted in section “2.4.2 Linear Functions”, we know from algebra that the func-

tions that can be represented as Matrices coincide with the class of linear functions.

Therefore, it is sensible to enrich the compiler with a notion of a Linear Expression,

that is an expression whose body is a linear function. This representation is derived by

reifying the expression as an ordered series of coefficients, representing the entries of

the equivalent Matrix implementing that function.

5.3.3 Transform function generation

Assuming an instance of such representation is available, then it is straightforward to

derive the C code implementing the “transform” function. For example, let’s consider

the operator seen before in the Horner Scheme example

�= λ(x,y).→ (k ∗ x+ y)

First, let all the coefficients be explicit:

�= λ(x,y).→ (k ∗ x+1∗ y)

We can now simply express the above as a sequence of indices. Since the bottom row

is always [0,1], there is no need to keep track of it

[k,1]

Finally, from the above, the following C code is generated (remember that the 2-by-2

matrix generated is implemented as a simple pair, as the bottom row is always constant

and therefore implied at runtime).

1 Tuple2 transform(float input) {

2 Tuple t = {k, 1*input};

3 return t;

4 }
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At this point, the attentive reader might have a few questions:

• � is a function that takes two parameters, and assuming the last row of the

generated matrix must be [0,0,1], why is there only a single row for both the

variables x and y? Should it be represented as a 3-by-3 matrix?

• Why does the C code multiply the input by the coefficient of y, and not of x, or

both?

The two questions above are deeply related. The answers to both lie in the fact that

while � is indeed a function of parameters, each matrix generated represent a single

step of the reduction having y partially applied. After said partial application, � be-

comes a single-parameter function of the reduction state and is therefore implemented

as a 2-by-2 Matrix (by taking account the requirement of having the last row be [0,1]).

There is, however, a problem with the design as presented so far. What are the in-

dices for the following operator?

λ(x,y)→ a∗ x+b∗ y+ c

Clearly, [a,b] would not suffice, as there is also the constant term c to be accounted for.

However, [a,b,c] would require us to move into 3-by-3 matrix territory, and while this

would be a possible solution, it is inefficient.

A better solution to the problem above is to enhance our representation for a LinearEx-

pression by including a new field representing the constant term. Then, the transform

function generated can access this information. This allows to generate code of the

form:

1 Tuple2 transform(float input) {

2 Tuple t = {a, b*(input+c)};

3 return t;

4 }

5.3.4 Inferring LinearExpressions in Lift

We have mentioned above a simple methodology for the inference of linear expres-

sions given the formula of a given operator. However, at the time of the writing Lift

does not possess an expression level language, and expects all custom user behaviour



5.4. Summary 41

to be expressed as snippets of C code.

While is in theory possible to construct a LinearExpression from a block of C, in

practice this is a significantly involved task - especially if when arbitrary length blocks

of code are supported. On the other hand, forcing users to derive the correct values for

a LinearExpression manually is unnatural and potentially error prone.

A simple solution to the problem above is to supply a very compact expression lan-

guage, resembling the simply typed lambda calculus plus arithmetic operators. It

would then be easily possible to first, verify the constraints of applicability of the

expression as previously seen, and then, once the constraints are checked, to generate

the appropriate LinearExpression instance.

Since it would also be trivial to generate C code from the proposed expression lan-

guage, this would give Lift the option to adopt a transparent interface to parallel re-

ductions: whenever an expression satisfies the constraints, then the compiler would

proceed down the LinearExpression path, eventually generating a parallel reduction.

If on the other hand the constraints are not met, then the compiler can simply generate

the direct C implementation for the operator, and execute the reduction sequentially

with the already existing Lift primitives.

5.4 Summary

This chapter has presented the extensions to the Lift compiler used to implement the al-

gorithm as proposed in the previous chapter, covering first the parallel matrix multipli-

cation reduction generated by the optimisation, and then moved to detail the necessary

analyses and steps to identify and generate that optimised code form Lift’s sources.

Finally, it concludes with the design of an expression language to be added to Lift, to

make the optimisation completely transparent to the user.
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Handwritten implementations

This section documents the exploratory work used to both confirm the validity of the

method as proposed in (Sato and Iwasaki, 2011), and also to explore the implications

of applying the method to a GPU platform for the first time. This work resulted in

the writing of a series of optimised parallel implementation for the 2-by-2 parallel

matrix multiplication, which also served an informative purpose in the derivation of

the optimised Lift form.

6.1 Motivation

In a previous Chapter, we have presented the general principles for the optimisation:

a mathematically-sound approach for the transformation a class of reductions with

non-associative operators into reductions with associative operators. In theory, this

transformation of a program from not-parallel into parallel yields an arbitrarily large

benefit. In practice, however, there might be engineering issues that limit the usability

of the parallel implementation.

For example, the parallel versions of the algorithm perform a reduction over matrices,

whereas the original directly work on scalars. This has the obvious implication that

the optimised version uses much more memory than the naive version - and is, in fact,

possible for this increased memory consumption might lead to worse performance.

Moreover, while the optimisation is in theory data and operation agnostic, the com-

monly envisioned use cases include many algorithms that revolve around arithmetic

operations over numeric data-types. In practice, is possible that available sequential ar-

chitectures are capable of optimising such instances much better than the general case,

43
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optimisations that might be available in the parallel implementation: which would

yield, in practice, to a smaller performance gain (if any) than predicted.

Furthermore, previous work on this subject has considered the behaviour of the op-

timised code in a CPU setting only: however, the work presented here is mostly geared

towards implementation on GPU platforms. Before proceeding with a full implemen-

tation in Lift, a comparison between a CPU and a GPU implementation was needed,

to confirm that GPUs are indeed the right platform for this sort of computation.

Finally, handwriting the OpenCL implementation served a secondary, didactic pur-

pose for the author, which had no prior experience with OpenCL. This is of vital im-

portance because the Lift’s compiler primary target is indeed the OpenCL framework.

Handwriting a high-performance implementation, including the various GPU specific

optimisations that this entails, proved to be invaluable even for the successive phase of

the project.

For all these reasons, a variety of programs have been written, implementing paral-

lel reduction over 2-by-2 matrices (that is, manually implementing the code that the

actual optimiser might generate), trying out different strategies and optimisations over

a variety of platforms.

Note that, unlike the Lift implementation presented later, the following parallel ver-

sion will expect their input to already appear in the form of matrices. The implications

(or better, the lack thereof) of this choice will be tackled in depth in the Lift implemen-

tation section.

The rest of this section is concerned with the details of each of the implementations,

and general comments on their relative performance. A more in depth presentation of

the results can be found in the Evaluation chapter.

6.2 The baseline sequential implementation

The sequential baseline implementation is straightforward: a simple, multiply and add

accumulating for loop, implemented in C.

1 float acc = 0;
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2 for(int i = 0; i < N; i++) {

3 acc = acc*k + a[i];

4 }

An important observation to be made is that, for all its naivety, this snippet of code is

unusually hard to out-compete: such code is widespread, and there exist a plethora of

established compiler techniques that can optimise loops of this form. Moreover, the

algorithm incurs in no initial overhead - something that the parallel versions derived

next will instead have to tackle with.

This version is also somewhat advantaged due to the nature of operation used: it is

performing a simple, fast float multiplication and addition, raising even further the

amount of data needed for a parallel version to overtake the sequential.

Finally, one must always bear in mind that the sequential implementation is doing

significantly fewer operations, as it operates over scalars as opposed to matrices (al-

though the parallel versions have been optimized to not fully materialize the matrices,

and avoid doing computations for which the result is always constant).

6.3 OpenMP implementation

The first implementation attempt was to leverage OpenMP and its high-level interface.

As such, no special efforts were taken towards the production of a sophisticated im-

plementation but rather were limited to observe if the semi-automatic parallelisation

facilities of OpenMP were sufficient for the task.

The implementation consists of a single for loop, reducing over tuples representing

matrices. The for loop is tagged as parallel.

As expected, OpenMP is not able to generate competitively parallel code from the

description above. This is not to say that it is impossible to express an efficient par-

allel implementation using OpenMP. Doing so, however, would require a significant

amount of effort for the derivation of an implementation that would still have to en-

dure the overheads associated with OpenMP’s high-level nature.
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6.4 Pthreads implementation

Unlike OpenMP, the pthreads library takes a much lower level approach to parallel

programming - giving us the desired degree of control.

The pthread algorithm implements a simplified form of tree reduction: the input se-

quence of matrices is split in adjacent chunks, one per available thread. Then each

thread proceeds to reduce sequentially in isolation. After the threads have all finished

their reduction, the spawning thread will perform one more reduction of the remaining

data.

This two step reduction fits perfectly with the characteristics of a CPU regarding paral-

lelism, that is having threads with very high individual computational power, but very

limited in number. By chunking the original input by the number of threads, we ensure

maximum utilisation and balance. It is not necessary to implement a full tree reduc-

tion either, as the single-threaded second step will process merely “number of threads”

elements - that is, very very few.

The pthread implementation performed well, beating the sequential baseline as ex-

pected even with a relatively small number of input matrices (a few thousand ele-

ments). It was therefore selected as the best implementation on the CPU platform, as

far as comparison with GPU implementation is concerned.

6.5 OpenCL implementation

We now turn to the OpenCL implementation, which is the principal item of the prelim-

inary exploration. The goals for this implementation were twofold: first, to measure

the different impact of the optimisation on CPU vs GPU, therefore motivating the en-

tire enterprise, and secondly to act as a tool of comparison for the Lift implementation.

Initially, the implemented algorithm followed a simple two-level reduction scheme:

wherein the input data is divided into a series of contiguous chunks, each of which is a

signed to one OpenCL workgroup. Then, within each chunk, a second contiguous sub-

division takes place, with each sub-chunk being assigned to an individual thread. This

division involves no actual runtime work besides a few index and ranges computations.
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Then, each thread performs a sequential reduction and waits at a barrier for synchroni-

sation. Finally, when all the threads in a workgroup have synchronised, thread number

0 performs one final sequential reduction. In a highly simplified pseudo-OpenCL, we

have

1 matrix myAccumulator = identityMatrix;

2 for(int i = mySubchunkBegin; i < mySubchunkEnd; i++) {

3 myAccumulator = myAccumulator X input[myChunkAddress + i];

4 }

5 local_buffer[thread_id] = myAccumulator;

6 barrier();

7 if(thread_id == 0) {

8 myAccumulator = identityMatrix;

9 for(int = 0; i < num_threads; i++) {

10 myAccumulator = myAccumulator X local_buffer[thread_id];

11 }

12 output[workgroup_id] = myAccumulator;

13 }

There are several potential issues with this implementation strategy. Firstly, the result

of the reduction is not a single matrix representing the result, like in the previously

presented CPU implementations, but instead is an array of values, each representing

the final result for one OpenCL workgroup. This, however, is a common feature of

programs run on the GPU, as workgroup level synchronisation is not supported by

default. A better solution is to execute yet one more reduction sequentially on the CPU

host. This has virtually no impact on performance, as the amount of data to reduce is

quite small compared to the initial input - just one entry per workgroup.

6.5.1 Memory Coalesced Accessed

More serious issues arise when dealing with memory access patterns. When perform-

ing computations on a non-integrated GPU, accesses through Global memory have a

very significant latency compared with Local memory accesses. Therefore, GPU’s can

batch together multiple requests, increasing the maximum bandwidth. This is however

only advantageous if all the access is to memory locations belonging to different cache

lines.

The parallel matrix-multiplication kernel presented here is a memory bound kernel,

that is to say, that memory operations are the performance bottleneck, rather than the

calculations themselves. Therefore, speeding up memory accesses is essential. The
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algorithm is therefore extended to include a first step wherein each thread copies the

input from the slow Global memory into a local workgroup-shared buffer, to efficiently

manipulate the data. For maximum performance, the accesses are “coalesced” to-

gether, by making sure that each thread copies the element at a fixed step stride, longer

than the size of a cache line, thus ensuring that all the bandwidth available is used.

1 for(int i = 0; i < chunkSize/numThreads; i++) {

2 local_input[i*(thread_id % num_threads)] = input[i*(

↪→thread_id % num_threads)];

3 }

4 barrier()

5 /** Same as before, but reading from local_input instead of

↪→input**/

As a further optimisation, the kernel reuses the “local_input” buffer to store the result

of the each thread_level sequential reductions.

6.5.2 Buffer Usage Optimisation

While the implementation of memory coalescing via a local buffer yields great perfor-

mance boons, it also introduces a significant problem: local_buffer needs to be large

enough to fit the and entire workgroup-level chunk. In theory, this could simply be

achieved by increasing the number of workgroups. However, OpenCL devices are not

guaranteed to support an arbitrarily large number of workgroups (notice that is not di-

rectly related to the number of compute cores on the physical device, as the OpenCL

standard does not require workgroups to run in parallel, but merely concurrently).

A solution to the problem presented before is to restructure the algorithm by intro-

ducing one more level of iteration: each thread is no longer expected to process its

entire slice of input in one go, but instead in a number of iterations dependent on the

ratios of input size and buffer size. With this changes, it is now possible to decouple

the size of the local memory buffers from the number of workgroups running.

1 for(int step = 0; step < localBufferSize/(inputSize/chunkSize);

↪→step++) {

2 /*Same as before, but with the subChunk end computed based

↪→on the localBufferSize*/

3 }
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6.5.3 Multi-step Reduction

While all these adjustments are enough to make the OpenCL kernel much faster than

the PThread CPU equivalent, there is still plenty of room for performance improve-

ment. In particular, by timing the kernel at the current state, we would notice that a

significant part of the runtime is spent in performing the single-threaded workgroup

level reductions after each thread-level reduction step. Therefore, a new intermediate

parallel reduction step is introduced.

1 /*Memory coalesced copy and thread-level reductions */

2 if(thread_id < 32) {

3 myAccumulator = identityMatrix;

4 for(int i = 0; i < num_threads /32; i++) {

5 myAccumulator = myAccumulator X local_input[thread_id*(

↪→num_threads /32)+i];

6 }

7 local_input[thread_id] = myAccumulator;

8 }

9 /*Single-threaded workgroup reduction*/

Note very importantly that only 32 threads are used. There are two reasons behind

this choice: firstly, the total number of threads running the kernel is always a power

of two, and therefore 32 happens to be a good divisor, eliminating the need for input

padding and alignment problems. Secondly, this kernel is intended to be tested on

NVidia K20m GPU, which has a warp size of 32: which means that all the threads will

execute in lockstep, eliminating the need for a barrier.

6.6 Summary

This Chapter has presented a series of handwritten implementations for the parallel

matrix multiplication reduction, using different frameworks and platforms, to be used

as both as a preliminary exploration tool for the generation of optimized code, and as

a benchmark for its quality.





Chapter 7

Evaluation

In this chapter, we evaluate the performance of the optimised Lift code as presented in

Chapter 5 by comparing it when the handwritten implementations presented in Chap-

ter 6. Also, we explore the effects that various design decisions had on the algorithm

performance. Moreover, as the previous comparisons are performed on both Integrated

and Discrete graphics cards, we are also able to compare the performance of the algo-

rithm on this two different device types.

7.1 Methodology

7.1.1 Experimental Setup

All the experiments presented here were conducted on two machines. The first was

used to run all the experiments labelled with “CPU” and the “Integrated GPU”. The

machine has an Intel i5-6500 for CPU, and an Intel HD530 integrated GPU, and 16

GB of DDR4 ram - enough to make memory usage a non-issue for all the experiments.

The other machine was used to run all the experiments labelled as “NVidia GPU”.

The specific device used is a NVidia Tesla K20m. The machine also has an abundant

16 GB of RAM but used the older DDR3 technology.

All the figures presented refer to the average runtime, as each experiment has been

run several for thirty-one repetitions, to minimise the effects of noise and random vari-

ations. The first iterations for each experiment have been discarded, as some devices

- especially GPUs - are known to have a certain “warm up” time in which the perfor-
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mance is not the same as at full regimen.

7.1.2 Goals and Strategy

The central aim of this evaluation is to ascertain whether the optimisation added to

the Lift compiler can generate code that performs comparatively with a manually opti-

mised equivalent implementation. This is mainly achieved by direct comparison of the

runtimes of the best version for each technology-platform pair. Also, an untransformed

CPU baseline implementation is provided for reference.

In addition to the above, we present a comparison between unoptimised and optimised

Lift code, as to evaluate the performance gained by applying our technique within the

context of Lift. Finally, two more experiments, exploring various minor aspects of the

generated Lift implementation, and comparing their performance implications: the first

one measuring the performance effects of matrix materialisation within the algorithm,

and finally a quick comparison of the effects of varying the number of workgroups on

the performance of the application.

Moreover, since the Lift exclusive experiments have been run on both the Integrated

GPU and the NVidia GPU targets, they can be used as a tool to verify that the optimi-

sation performs similarly well on both platforms.

7.1.3 Choice of input

All the experiments implement the 2-by-2 instance of Horner Polynomial evaluation.

The input to the computation was produced by a handwritten generator algorithm. The

correctness of the output was checked for all the experiments by comparing the execu-

tion’s result with a sequential implementation running on the same exact data.

The results presented here operate on data ranging from 216 to 228 element matri-

ces, which each element being either a floating point number or a pair of floating point

numbers depending on the specific algorithm’s internal representation of the matrices.

The chosen sizes are large enough to allow for the effects of parallelism to be easily

measured, while at the same time still fitting comfortably within the bounds of the

available RAM on each system.
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7.2 Results

7.2.1 Comparison of unoptimized Lift implementation

The following figures present a comparison between the following Lift program and

its optimised counterpart.

1 MapWrg(MapSeq(toLocal(id)) o ReduceSeq(horner_step , 0)) o Split

↪→(2048) $ data

Where horner_step is the custom C function, defined for some value of K

1 #DEFINE K /*some value here*/

2 float horner_step(float x, float y) {

3 return K*x+y;

4 }

Figure 7.1: Median runtime comparison of unoptimized vs highest performing optimized

Lift version on the Integrated GPU. Lower is better
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Figure 7.2: Median runtime comparison of unoptimized vs highest performing optimized

Lift version on the NVidia GPU. Lower is better

As expected, the optimized version is consistently faster then the unoptimized baseline,

across all data sizes and implementing platforms.

7.2.2 Effects of the variation of number of OpenCL workgroups

Ultimately, the compiled Lift code needs to be executed via OpenCL, which means

that it is necessary to decide the local and global worksizes.

In general, this involves deciding both the number of workgroups and the number of

threads per workgroup that the kernel needs to be run with. In the case of the optimised

parallel matrix multiplication generated by the optimisation, however, the number of

threads per workgroup has been fixed in the source code to be 64. This was moti-

vated by memory usage considerations with regards to the allocation of static memory

buffers and loop unrolling, which are crucial for the derivation of a high-performance

implementation.

What remains to be decided therefore is the number of workgroups to be used. Since
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each batch of input data was a power of two, it was also decided to have a power of two

number of workgroups - to eliminate load-balancing problems from the investigation.

Figure 7.3: Effects of worksize variation on median runtime for Integrated GPU. All

versions are non-materialised. Higher is better
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Figure 7.4: Effects of worksize variation on median runtime for Integrated GPU. All

versions are non-materialised. Higher is better.

As we can see from the graphs above, the best performance is achieved with 26

workgroups. As such, this is the value employed for the Lift generated kernels in all

the experiments shown.

7.2.3 Effects of matrix materialisation

We now analyse the effects of matrix materialisation, that is the performance impact of

actually producing a concrete representation of the matrices. This is worth measuring

because it is possible to avoid materialising the matrices, at the cost of increasing the

complexity of the algorithm. In particular, the following versions have been explored:

• Full materialisation: the naive implementation, in which the matrices are rep-

resented verbatim in memory as an appropriate data structure (for example, in

the 2-by-2 case, this means representing a matrix as four floats). This has the

advantage of being the simplest method.

• Partial materialisation: Taking advantage of the fact that the bottom row of the
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matrices is always constant, we can save space and computation time by avoiding

to compute those entries. This, however, requires us to generate a custom matrix-

multiplication operation that is aware of this fact and can correctly compute the

values of the materialised entries, behaving as if a bottom row was present. In

the 2-by-2 case, this reduces significantly both the space consumption and the

number of operations performed by the algorithm.

• No materialisation: Exploiting the fact that each matrix is ultimately a function

of some scalar input, we can avoid materialising the matrices at all, and just

compute the entries lazily when they are required. Concerning partial materiali-

sation, this reduces the space requirements but leaves the number of operations

unaltered.

Figure 7.5: Effects of matrix materialisation on median runtime for the Integrated GPU.

All implementation use the best worksize configuration. Higher is better



58 Chapter 7. Evaluation

Figure 7.6: Effects of matrix materialisation on median runtime for the NVidia GPU. All

implementation use the best worksize configuration. Higher is better

As we can see from the graphs above, full materialisation is significantly outperformed

by the other two version. On the other hand, the difference between partial and no

materialisation is much more narrow, particularly on the NVidia GPU. This is probably

because on the Integrated GPU materialised matrices will be stored in main memory,

while non-materialised matrices can easily fit into registers. On the NVidia GPU,

this is not the case, as the number of matrices materialised per each compute unit is

sufficiently small to fit in the high-speed private memory.

7.2.4 Comparison across all implementations

We conclude the evaluation by comparing the speedup over a sequential C baseline

achieved by all the parallel matrix multiplication reduction implementations produced

through the presented work, to evaluate the quality of the generated Lift code in a more

general setting.
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Figure 7.7: Speedup across all parallel implementations compared to the sequential C

baseline. Higher is better

As we can see from the above, Lift implementations for both the Integrated and

NVidia GPUs consistently outperform the manually written OpenCL GPU implemen-

tation, which is, as expected, much faster than the pthread parallel implementation on

CPU.

However, it is not safe to conclude that the code generated by Lift is better than what

can be achieved by OpenCL. From the graph above, we can see that for the 218 en-

tries experiment, the handwritten OpenCL on the NVidia GPU only reaches half the

speedup of the Lift generated code for the integrated GPU. This suggests that the hand-

written OpenCL code is not optimal.

Instead, one can merely conclude that the optimisation at applied for Lift results in

kernels that can outperform handwritten average quality OpenCL kernels, while pro-

gramming in a significantly simpler and safer environment.
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7.2.5 Comparison between generated Lift and handwritten OpenCL

versions

In the previous section, we have compared the generated Lift code with the handwritten

OpenCL implementation and seen that the OpenCL kernel is outperformed by Lift, in

some cases even when running on a more powerful device. What follows is a list

of similarities and differences between the Lift and OpenCL implementations, which

might be useful to understand the reason for this performance gap better.

• Both the OpenCL and Lift versions execute a two-step reduction, wherein each

local thread is tasked to multiply together a contiguous slice of the input ma-

trices, with a successive workgroup level reduction combining the individual

results.

• Both the OpenCL and Lift versions represent matrices as fixed-size tuples, omit-

ting the bottom-row, which is always a constant series of 0s followed by a single

1. Similarly, the matrix multiplication operator is not a full implementation of

the generic operation, but instead is a specialised implementation of said tuples,

and takes into account the lack of the last row, adjusting the result accordingly.

• The Lift version does not perform the reduction over each thread in place - this is

because such optimisation cannot be performed in general, and the Lift compiler

is not able to determine in which case it can be applied.

• The OpenCL version did not use private and static local memory, the Lift version

does. This is enabled by the fact that the Lift compiler performs loop unrolling

and can, therefore, know statically exactly how much memory will be needed for

each reduction. The handwritten OpenCL version does not perform unrolling,

and therefore all memory sizes are only known at runtime.

• The OpenCL kernel carries out a reduction over matrices represented as a pair

of floats, expecting the host to generate the appropriate layout. The Lift version

expects a single linear array of values, which are then converted to matrices on

the fly. Originally, the Lift version did the same as the OpenCL - however, it has

been found out that the conversion can happen locally without any loss of per-

formance: this is because the longer computation time of the kernel is balanced

by the smaller memory consumption, which allows for more parallelism given

the fixed buffer sizes. (The motivating reason behind this change is that when
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coding the handwritten exploratory tests, the concern was to measure how much

faster a parallel matrix multiplication reduction is compared to the equivalent

sequential multiply-and-accumulate loop. On the other hand, in the Lift case,

the optimisation must operate within the context of a language - and therefore

the transformations must happen in place).

• The Lift version was significantly easier to write and test, even after having taken

into consideration the experience gained from manually implementing a similar

task in OpenCL. In particular, Lift’s type system and principled pattern-based

programming model eliminated the need for writing explicit array indexing cal-

culations, which have been perceived as being by far the most complex and error

prone part in writing an efficient OpenCL kernel.

7.3 Summary

This chapter has evaluated the performance of the optimisation added to the Lift com-

piler. This has been achieved through a series of comparisons within optimized and

unoptimized code. In addition, a variety of different optimisation versions have been

compared, validating the effect of the design decisions used for each one. Finally,

through a general comparison with handwritten parallel implementation on other de-

vices, we have verified that the optimised Lift code can outperform reasonable-quality

OpenCL code running on equivalent platforms.
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Conclusions

In this document, we have presented an algorithm for the derivation of a tree-parallel

implementation to sequential reductions with non-associative operators, with an asso-

ciated implementation for the Lift compiler. In addition to the transformation, we have

designed a series of addition to Lift to integrate the transformation with the rest of the

language better, and we have provided implementations for some of these additions.

Moreover, through a series of comparisons with unoptimised Lift code and equivalent

handwritten implementations for other platforms, we have established the usefulness

of the approach.

8.1 Contributions

The work presented here includes the following original contributions

• An algorithm for the transformation of sequential reductions into a parallel equiv-

alent implementation in a functional setting, starting from the multiply-accumulate

transformation into matrix multiplications presented in(Sato and Iwasaki, 2011).

• An extension of the basic transformation, using properties of semiring alge-

bra to implement “asymmetrically typed” reductions through the use of higher-

dimensional matrices.

• An algorithm for the identification of reductions which can be parallelised us-

ing the method proposed above, based on pattern-matching syntactic constraints

over the source code, eliminating the need for more complex analyses presented

in (Sato and Iwasaki, 2011)
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• The sketch of a proof of correctness via rewrite rules for the proposed transfor-

mation.

• A concrete implementation of the transformation for the Lift compiler, resulting

in the generation of an efficient implementation targeting OpenCL-compliant

GPUs.

• The necessary compiler infrastructure integrating the transformation within the

wider context of the Lift programming language.

• The design of a future expression language for Lift, allowing for a more natural

and direct expression of Reduction operators.

• Several handwritten implementations of the efficient parallel matrix multiplica-

tion reduction, for both the CPU (OpenMP, pthreads) and the GPU(OpenCL), to

be used as a baseline and a comparison with the Lift optimised implementation.

8.2 Critical Analysis

Although the principal objectives set out for the work have been achieved, in hindsight,

some of the work might have been done differently.

The principal shortcomings are those pertaining to the handwritten OpenCL imple-

mentation of the parallel reduction. Initially, it was thought as a didactic exercise to

familiarise the author with OpenCL and GPU programming (a necessary step for the

implementation of a Lift optimisation, since OpenCL, is the main target of the com-

piler). Ultimately, however, the very same handwritten implementation was used as

the main benchmark to beat. A better choice would have been trying to either find

some third-party implementation known to be highly performant or to supplement the

OpenCL handwritten implementation with some other alternative high-level parallel

programming framework’s.

Another problem, also pertaining to the handwritten OpenCL implementation, was

the fact that the worksize parameters for the execution have been inferred by manual

exploration. Here the usage of an autotuner might have been a better choice, as it is

possible that the shortcomings in the handwritten OpenCL version are not due to poor

code quality, but rather by the lack of proper worksize tuning.



8.3. Further work 65

Another possible critique can be found in the fact that the Lift implementation was

only tested for GPUs, but not for the CPU. Extending the evaluation to the CPU sec-

tion would allow for a better comparison across device types. This crucial for any work

done on the Lift project, which values “performance portability” as one of its central

principles.

A final critique can be levied for the fact that ultimately full integration within the

Lift language was not completed. While this can be mostly traced to Lift’s lack of an

expression language (and providing one would have meant providing very profound

changes to the current compiler), this also means that the work done here cannot be

truly called “automatic parallelisation”: the human must still explicitly instruct the

compiler to generate a parallel implementation, and has to provide both explicitly the

semiring instance and write the reduction operation in a slightly constrained style.

8.3 Further work

As the work presented in this document presents a novel approach to automatic paral-

lelisation in a functional programming context, there are plenty of avenues for devel-

opment.

Regarding the Lift implementation of the optimisation, the next future should see the

implementation of the expression language and constraint verification systems as pre-

viously presented in this document. This will allow the full automation of the optimi-

sation, which would then become truly transparent at a source code level.

Another welcome addition would be the implementation of a parallel scan primitive

to the Lift compiler. The principles of the transformation presented in this document

can almost verbatim be reused to parallelise scan, and the constraint checking part is

completely identical. This would extend the applicability of the transformation to an

even wider class of algorithms, such as the LU decomposition algorithm for linear al-

gebra.

In a more general context, a possible research opportunity lies in attempting to extend

the algorithm even further. In this document, we have simply covered one possible
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transformation (linear functions to matrix multiplication). However, it might be pos-

sible to derive further generalisations, perhaps allowing for nonlinear functions to be

expressed as some combination of matrix multiplication and other operations, trying

to keep the derived arrangement ultimately associative - and hence still parallel.

A fascinating new possibility is to take the framework and approach used in this al-

gorithm and re-purpose it to solve radically different problems. For example, it might

be possible to use the functional programming, syntactic constraint and rewrite rules

combination to address the issue of transparent heterogeneous programming.

While the details of this possible application go outside the scope of this further work

section, the intuition is as follows: instead of considering this algorithm a form of au-

tomatic parallelisation, interpret it as code generation for an abstract platform whose

programming model only support matrix multiplication. Constraint checking would

then be equivalent to ensuring that the platform supports the program, the abstract

transformation into matrix reduction form would be equivalent to a high-level repre-

sentation of the program, and finally the generation of the optimised OpenCL kernel

corresponds to target code generation.

In this light, therefore, the act of generating the parallel reduction from the algorithm

description becomes equivalent to code generation for this peculiar platform. A simi-

lar approach might be used to generate code for very constrained accelerators such as

DSPs and Vision Processing Unit, all in a transparent way.
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