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Abstract
In recent years neural language models have consistently out-performed n-gram
based statistical language models. Due to their large computational cost the
adaptation in production-scale ASR systems is slow. The main bottleneck is the
output softmax layer whose computational cost scales linearly with the vocab-
ulary size. This work summarized the large body of research in this field and
compared the recently proposed adaptive softmax method to sampling based ap-
proaches. An empirical analysis investigated various properties of the adaptive
softmax, importance sampling and noise contrastive estimation methods. Exper-
iments were conducted using Tensorflow on the Wikipedia Text8 corpus and a
large vocabulary financial domain text. The results show that all three methods
can substantially increase training throughput. Adaptive softmax and impor-
tance sampling both achieved low perplexity scores on par with full softmax and
no noticeable difference could be measured on an ASR re-scoring task. Noise
contrastive estimation proved to be sensitive to the chosen normalization con-
stant and in many experiments could not achieve optimal results. The sharing of
noise samples within a batch was described as a possible cause. Profiling showed
that projection matrices substantially reduce the amount of trainable parame-
ters and memory footprint in adaptive softmax. In other benchmarks switching
to the optimized NVIDIA cuDNN LSTM implementation achieved an additional
speedup.
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Chapter 1

Introduction

Language models are an important and integral part of speech recognition and
machine translation systems. In recent years neural language models consistently
outperformed the previous generation of statistical language models (Mikolov
et al., 2010; Sundermeyer et al., 2012; Jozefowicz et al., 2016). But the transition
from research into real-word applications is hindered by their large training cost.
State-of-the-art models are often trained on a large computing cluster over a
period of several weeks (Jozefowicz et al., 2016). The trend towards large datasets
with vocabulary sizes exceeding hundreds of thousand words (Chelba et al., 2013)
only aggravates the problem. The main bottleneck is the softmax calculation in
the output layer whose cost scales linearly with the vocabulary size (Bengio et al.,
2003a). Not surprising, a large amount of research effort has been devoted over
the last one and a half decades to the engineering of viable alternatives to the
full softmax.

The main objective of this project was to critically review recent research
related to training large vocabulary neural language models. Emphasis was put
on techniques that enable fast training on single graphics processing unit (GPU)
systems as access to large scale computing clusters is a resource often not readily
available to researchers in academia.

The contribution of this work is two-fold: First, an extensive literature review
summarizes the large body of research into alternative softmax methods. Second,
an empirical analysis contrasts the recently proposed adaptive softmax method
(Grave et al., 2016) with more established sampling based alternatives. Exper-
iments are conducted on two English language corpora with medium and large
vocabularies. All models use long short-term memory (LSTM) recurrent neural
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Chapter 1. Introduction 2

network (RNN) and are implemented in Tensorflow. Additionally, an alternative
LSTM implementation with GPU specific optimizations was benchmarked.

The rest of this report is structured as follows. Chapter 2 contains a brief
introduction to statistical and neural language models which is followed by a
comprehensive literature review of alternative methods designed to speed up com-
putation in the softmax output layer. Chapter 3 describes the implementations of
the investigated methods and highlights some important implementation details.
Chapter 4 introduces the datasets used and formalizes the training procedure.
Chapter 5 describes the conducted experiments and presents the results. Accom-
panying discussions critically analyze the results. Finally, Chapter 6 concludes
this work.



Chapter 2

Background and literature review

2.1 Language models

Sentences in natural languages have structure and adhere to grammatical rules.
Certain word combinations tend to occur together more frequently. A language
model captures such regularities within a language. It can assign a probability to
a sequence of characters or words. Language models are often used as a building
block within natural language processing (NLP). Applications include automatic
speech recognition (ASR) and machine translation (MT) where language models
rank and select the most natural sounding phrases. Furthermore, language models
help to resolve various kinds of ambiguity pervasive in natural languages. In
information retrieval (IR) language models are used to estimate the probability
of query sentences. In natural language generation (NLG) possible continuations
are chosen according to the probabilities assigned by the language model.

2.1.1 Statistical language models

A statistical language model is a valid probability distribution over all possible
sentences. The probabilities of the language model are usually estimated from
a training corpus. Limited data and an infinite number of sentences make it
impossible to directly estimate sentence probabilities. Instead, a sentence S is
represented as a finite word sequence w1,w2,w3, ...,w|S|. Then, the probability of
a sentence S can be decomposed into conditional word probabilities by application

3
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of the chain rule

P (S) = P (w1,w2, ...,w|S|)

= P (w1)P (w2|w1)P (w3|w1,w2)P (w|S||w1,w2, ...,w|S|−1)

=
|S|∏
t=1

P (wt|wt−1
1 ).

(2.1)

This decomposition enables estimation of conditional word probabilities with
short context sequences. Conditional probabilities with longer contexts still suffer
from the curse of dimensionality where the amount of required data grows expo-
nentially with the context length. A common solution is to incorrectly assume
that the probability of a word is only dependent on its immediate context and not
words at the start of the sentence. Such short sequences of n words are referred
to as n-grams. Under this assumption Equation 2.1 simplifies to

P (S) ≈
|S|∏
t=1

P (wt|wt−1
t−n+1). (2.2)

A straightforward method to estimate the conditional probabilities is maximum
likelihood estimation (MLE). Here, the probabilities are obtained with frequency
tables that store word counts for different n-gram contexts.

P (wt|wt−1
t−n+1) = count(wt

t−n+1)∑
w′∈V

count(wt−1
t−n+1,w

′)
= count(wt

t−n+1)
count(wt−1

t−n+1)
. (2.3)

Due to a finite training corpus and the curse of dimensionality a majority of
possible n-gram contexts wt−1

t−n+1 will not occur in the training data when n > 2.
MLE will assign zero probabilities to sentences including such contexts. This
outcome is not desirable as it prevents meaningful comparison of sentences. A
common solution is to explicitly enforce non-zero probabilities. A variety of
smoothing methods have been invented which redistribute some probability mass
to events that were not observed in the training data. The most simple smoothing
method is add-α where a small constant α is added to each word count.

P (wt|wt−1
t−n+1) = count(wt

t−n+1)+α∑
w′∈V

count(wt−1
t−n+1,w

′)+α
= count(wt

t−n+1)+α

count(wt−1
t−n+1)+α|V|

. (2.4)

When α = 1 the method is also know as add-1 smoothing. Add-α smoothing is
rarely used in practice because even a small α redistributes a large probability
mass α|V| that noticeably distorts the distribution. A more common smoothing
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method is the interpolation of language models with various n-gram sizes (Jelinek,
1980).

P (wt|wt−1
t−n+1) =

n∑
i=1

λiPn(wt|wt−1
t−i+1) (2.5)

The mixture weights λi specify the importance of each language model and must
sum to 1. Some variations allow the mixture weights to be set independently
for each word wt. Other methods are based on back-off (Katz, 1987) where
higher n-gram language models are used as long as there is sufficient data for a
given context. Otherwise, the system backs off to a lower n-gram. To ensure valid
probability distributions back-off systems require more complex normalization. A
comprehensive survey of different smoothing methods was conducted by Chen and
Goodman (1996). An interpolated version of Kneser-Ney’s absolute discounting
(Kneser and Ney, 1995) was identified as the overall best method.

2.1.2 Neural language models

In statistical language models words are represented by discrete symbols and
probabilities have to be estimated for each word independently. In practice,
words are highly interconnected (Kilgarriff, 2000) and multiple words can express
a similar meaning. The discrete nature of word symbols does not allow to easily
leverage such information. Generalization from common to less frequent words
with similar meaning is not possible. This adds to the sparse data issue of long
n-gram models. In addition, the amount of memory required by large n-gram
models can be prohibitively expensive.

Bengio et al. (2003a) proposed to use neural networks to learn the output
word probabilities. Usually, discrete word symbols need to be converted into 1-
hot |V| dimensional boolean vectors before they are fed into a neural network.
An alternative continuous representation are word embeddings which represent
words as continuous vectors ψ(w) ∈ Rd. Word embeddings can be interpreted as
a projection of word symbols onto the subspace Rd. Related words tend to have
similar embedding vectors. Mikolov et al. (2013a,b) demonstrated that semantic
meaning can be attributed to certain directions in the embedding space.

The proposed neural probabilistic language model (NPLM) architecture by
Bengio et al. (2003a) consists of a single layer feed-forward neural network that
maps a series of input word embeddings to a vector of output scores in R|V|. The
input is formed by concatenating the embedding vector ψ(w) for each word in
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an n-gram context H. The hidden layer has a non-linear activation function and
computes an embedding φ(H) for the predicted word. The output layer compares
φ(H) to each word embedding ψ(w) over the entire vocabulary. The similarity
is measured by the dot product φ(H)T ·ψ(w). Larger scores indicate a greater
likelihood of the output word.

In practice, the word embeddings are stored as a matrix Ψ and the output
scores sθ are obtained by

sθ(w1,H)
sθ(w2,H)

...
sθ(w|V|,H)


sθ(H)

=



ψ(w1)T
1 ψ(w1)T

2 . . . ψ(w1)T
d

... ... ... ...

... ... ... ...
ψ(w|V|)T

1 ψ(w|V|)T
2 . . . ψ(w|V|)T

d


Ψ



φ(H)1

φ(H)2
...

φ(H)d


φ(H)

where θ denotes the parameters of the model. Often separate embedding matrices
are used in the input and output layers.

The output scores can be transformed into valid probabilities using the soft-
max function. The probability distribution over the next word wt is given by

Pθ(wt|H) = esθ(wt,H)∑
w′∈V

esθ(w′,H) . (2.6)

The term in the denominator is a normalizing constant that ensures Pθ is valid
probability density function where ∑

w∈V Pθ(w|H) = 1.

2.1.3 RNN language models

Feed-forward neural networks are stateless models that can approximate arbi-
trary functions given enough parameters (Bishop, 1995). RNNs are a state-full
extension where connections are allowed to point back in time and form delay
loops. The recurrent connections enable the network to access activations at pre-
vious time steps thus maintaining an internal state over time. The output ht at
time step t of an RNN network can be computed as

ht = g([WhhWhx][hT
t−1x

T
t ]T + bh) = g(Whhht−1 +Whxxt + bh) (2.7)

where xt represents the current input vector, ht−1 is network’s output at the pre-
vious time step and Whx, Whh are weight matrices for the forward and recurrent
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connection, respectively (Elman, 1990). g(.) is a point-wise non-linear function,
i.e. tanh(.)

Arbitrarily long input sequences can be processed in a serial fashion by pre-
senting one token at a time. This property removes the limitation of finite context
lengths in n-gram models and NPLMs. In theory, RNN-based language models
are capable of learning long-range dependencies and therefore seem to be in a
better position for approximating the probability P (wt|wt−1

1 ) in Equation 2.1.
Mikolov et al. (2010, 2011) reported the first successful application of RNNs to
the task of language modelling.

For a long time a major obstacle to successful applications of RNNs was the
lack of adequate training procedures. Rumelhart et al. (1985) and Werbos (1988)
noticed that a RNN can be treated like a standard feed-forward neural network if
the recurrent connections are unrolled over time. Then, the unrolled feed-forward
network can be trained with standard gradient back-propagation methods. This
technique is referred to as back-propagation through time (BPTT). In practice,
truncated BPTT is used to restrict the amount of computation required. In
truncated BPTT the number of steps a gradient signal is propagated back through
time is artificially limited (Zipser, 1990).

Even with BPTT, RNNs were often not capable of learning dependencies that
span more than a few time steps. Bengio et al. (1994) showed that during BPTT
the gradient signal is repeatedly multiplied with the same weight matrix Whh.
After a few time steps this can result in vanishing or exploding gradients. Dif-
ferent solutions were proposed for both conditions. Exploding gradients can be
prevented by constraining or clipping the gradient signal (Pascanu et al., 2012;
Bengio et al., 2013). To combat vanishing gradients Hochreiter and Schmidhu-
ber (1997) proposed a more elaborate design by introducing an additional cell
state that can flow unmodified through many time steps. Modifications to this
cell state are performed exclusively through special gates that allow only some
parts of the input through. This RNN design is referred to as long short-term
memory (LSTM). Over the last two decades a plethora of modifications and alter-
native designs was introduced. Greff et al. (2016) chronologically listed the major
contributions that led to the current LSTM cell implementation. Noticeable in-
novations include the forget gate (Gers et al., 1999) and peephole connections
(Gers and Schmidhuber, 2000). A more radical change was introduced with the
gated recurrent unit (GRU) (Cho et al., 2014). GRUs remove the additional cell
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state and employ only gates to tackle the vanishing gradient problem leading to
a simplified design.

RNNs language models were applied to ASR (Graves et al., 2013) and are
an integral part of neural MT models (Sutskever et al., 2014). Another popular
application of RNNs language models can be found in the field of NLG (Sutskever
et al., 2011; Graves, 2013; Karpathy, 2016). Sundermeyer et al. (2012) measured
the advantage of LSTMs compared to standard RNNs on language modeling
tasks. They report that using a LSTM layer improved the perplexity by 8%.
Additionally, interpolating the LSTM-based language model with a large n-gram
model yields an additional improvement (Sundermeyer et al., 2012; Jozefowicz
et al., 2016).

2.2 Alternative softmax methods

Bengio et al. (2003a) identified the softmax computation (Equation 2.6) in the
output layer as the main bottleneck in neural language models. The computation
of Pθ(w|H) for a single word needs to evaluate scores over the entire vocabulary.
The same issue is also present in the gradient calculation. Thus, the compu-
tation cost during inference and training scales with the size of the vocabulary.
With vocabulary sizes approaching the order of a million words in recent cor-
pora (Parker et al., 2011; Chelba et al., 2013), computing the full softmax during
training becomes prohibitively expensive.

This problem has attracted substantial research efforts over the last one and
a half decades which resulted in a sizable number of publications. The follow-
ing literature review presents a systematic review of this work. Many of the
established methods can be classified into one of two main categories. Factoriza-
tion techniques divide the vocabulary into smaller groups which can be evaluated
independently. Sampling based techniques estimate the loss gradient or word
probability using a small randomly chosen subset of the entire vocabulary. In
related work, Ruder (2016) compiled an informal review of various alternative
methods. The literature review presented here extends this work and provides
a more detailed approach. An attempt is made to systematically cover the pub-
lished research in this field.

The literature review is structured as follows. First, shortlists are introduced
which are the simplest solution for reducing the amount of computation. Next,
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class-based and hierarchical factorization techniques are discussed including the
recent differentiated and adaptive softmax variations. The section on sampling
methods covers importance sampling and noise contrastive estimation in great
detail. Finally, current research into other alternative methods is presented.

2.2.1 Shortlist

In the initial work on NPLM (Bengio et al., 2003a) the vocabulary was reduced
to a manageable size by replacing all words that occurred less than 4 times in
the training corpus with a special out-of-vocabulary (OOV) token. Subsequent
work (Schwenk, 2004; Schwenk and Gauvain, 2004, 2005) investigated the utility
of NPLMs in ASR decoding and lattice rescoring. To reduce the computational
cost of training and predictions at evaluation time the NPLM output layer was
reduced to a small shortlist VS containing only the most frequent words. Due
to the Zipfian nature of natural language (Zipf, 1949), a shortlist of 2000 words
is sufficient to cover ≈ 89% of a 65k vocabulary (Schwenk and Gauvain, 2004).
Similar coverage was achieved with a 12k shortlist when the vocabulary size was
increased to 200k (Schwenk, 2007). Subsequently, the reduced NPLM output
was combined with a standard backoff n-gram model. NPLM output predicted
the probabilities of the shortlisted words and the n-gram language model was
consulted for the rest of the vocabulary. Because the NPLM output does not cover
the entire vocabulary, its output probability cannot be used directly. Instead, the
probability of a word w given the n-gram context H is computed as follows

P (w|H) =


PNN (w|H)PVS

(H) if w ∈ VS

PNGRAM (w|H) otherwise
(2.8)

where PNN and PNGRAM are the probabilities computed by the NPLM and n-
gram model, respectively and

PVS
(H) =

∑
w∈VS

PNGRAM (w|H). (2.9)

In the above Equations the NPLM probabilities are scaled by the n-gram prob-
ability mass of the shortlisted words PVS

(H). This approach was criticized by
Park et al. (2010) who argues that it creates a bias towards shortlisted words and
fails to utilize the portions of training data that contains out-of-shortlist (OOS)
words. To alleviate the problem, Park et al. (2010) proposed to add an explicit
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OOS node to the NPLM output layer. Then, the merged word probabilities are
computed by

P (w|H) =


PNN (w|H) if w ∈ VS

PNGRAM (w|H)∑
w′ /∈VS

PNGRAM (w′|H)PNN (wOOS |H) otherwise. (2.10)

To avoid costly queries to the NPLM at decoding time Equation 2.8 can be
used to prepare a modified n-gram model within a preprocessing stage (Schwenk,
2004). Then, the new n-gram model is used during decoding without any over-
head.

2.2.2 Factorization

The idea of factorization of word probabilities was first explored by Brown et al.
(1992) in the context of statistical language models. The motivation was to
exploit similarities between words to improve predictions for rare words. When
each word wi is mapped to a unique class cwi , the conditional word probability
can be decomposed into

P (wi|H) = P (wi|cwi)P (cwi|H) (2.11)

where P (cwi|H) is the conditional probability of class cwi given the current his-
tory H and P (w|cwi) is the unigram probability of that word within its class.
This factorization is only valid when the classes are mutually exclusive which
implies P (wi|cj) = 0 for all wi /∈ cj . Morin and Bengio (2005) showed that any
valid clustering scheme c(wi) will yield sound probabilities but might effect the
performance and generalization properties of the language model.

P (wi|H) =
∑

i

P (wi, ci|H)

=
∑

i

P (wi|ci,H)P (ci|H)

= P (wi|c(wi),H)P (c(wi)|H)

(2.12)

Brown et al. (1992) investigated several statistical techniques based on mutual
information for grouping words into syntactic or semantic classes. No improve-
ment in perplexity could be achieved but using word classes reduced the storage
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requirements of n-gram models. Kneser and Ney (1993) used maximum likeli-
hood to find good class assignments which minimized the overall perplexity of
the language model.

2.2.2.1 Class-based softmax

Goodman (2001) applied the mechanics of class-based factorization to log-linear
language models with the intent of reducing the computation in the softmax
output layer. But instead of using the unigram probability P (wi|cwi) of words
in a given cluster, Goodman (2001) trained two separate log-linear models where
each model was conditioned on the current context H. Each model computed
P (cwi|H) and P (wi|cwi ,H) , respectively. The final output was computed as

P (wi|H) = P (wi|cwi ,H)P (cwi|H). (2.13)

Goodman (2001) observed that the maximum speed up achieved by this tech-
nique is O( |V|√

|V|
) = O(

√
|V|) when the vocabulary is divided evenly into

√
|V|

classes. Mikolov et al. (2011) applied a similar idea to training of RNN language
models. Instead of training two separate networks the same RNN output was
used to compute both conditional probabilities P (wi|cwi ,H) and P (cwi|H). This
was achieved by having multiple softmax output layers on top of the RNN layer,
one for computing class probabilities P (cwi|H) and the rest for computing the
conditional word probabilities P (wi|cwi ,H). During training the gradients of the
individual output layers are combined before being back-propagated through the
RNN.

Mikolov et al. (2011) described a simple but efficient scheme for assigning
words to clusters. In frequency binning the vocabulary is first sorted by fre-
quency and then words are added to a class until its probability mass exceeds

1
|C| where |C| is the number of classes. Due to Zipf’s law (Zipf, 1949) the first
class might only contain a single word (e.g. the) whereas classes representing
rare words will contain thousands of members. The total number of classes can
be empirically determined by cross validation using a held-out dataset. A variant
of this technique uses the square root of the frequencies (Zweig and Makarychev,
2013).

In speed regularized likelihood classing Zweig and Makarychev (2013) pro-
posed to add a regularization term to the maximum likelihood technique used in
class-based statistical language models (Kneser and Ney, 1993). The aim of the
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regularization term is to penalize class assignments which increase the computa-
tional cost.

2.2.2.2 Hierarchical softmax

The maximum theoretical speed up of O(
√

V) achieved by class-based factor-
ization can be improved by further decomposition. Morin and Bengio (2005)
developed this idea to its extreme and proposed a binary tree decomposition of
the softmax layer. Intermediate tree nodes can be interpreted as a taxonomy of
binary concepts that categorize words contained in the leaves. The probability
of a word wi is then equivalent to the probabilities along a path through the tree
from the root node to the corresponding leave node. This can also be thought
of as a sequence of D = dlog2 |V|e binary decisions where each decision has the
probability P (cd|cd−1,H). Hence, the path from the root to each word can be
stored as a D dimensional bit vector. The output probability is the product of
all probabilities along a path.

Pθ(wi|H) = Pθ(c1(wi)|H)
D∏

d=2
Pθ(cd(wi)|cd−1(wi),H)

=
D∏

d=1
σ(sθ(cd(wi),H)

(2.14)

Each binary decision is computed using the logistic function σ(x) = 1
1+e−x . The

theoretical speed up obtained with this decomposition is O( |V|
log2 |V|) and grows

exponentially with the vocabulary size.
A major part of any hierarchical method is the clustering of words. Morin

and Bengio (2005) used the IS-A taxonomy in WordNet (Kilgarriff, 2000) as the
initial tree structure. The binary tree constraint was ensured by splitting up
tree nodes with more than two children. This was done by K-means clustering
based on a TF/IDF similarity metric. Empirical experiments showed that the
proposed hierarchical decomposition achieved a ∼ 200 fold speed up but could not
match the perplexity of the full softmax, especially on small vocabulary datasets.
Further, the exact choice of the clustering algorithm has a large impact on the
achieved perplexity of the model (Morin and Bengio, 2005; Mnih and Hinton,
2009; Zweig and Makarychev, 2013).

Mnih and Hinton (2009) devised an alternative word clustering algorithm
that is purely data-driven without any dependencies to external linguistic re-
sources. The main idea is to recursively split a list of words into two classes. In
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the following clustering algorithm words are represented by continuous feature
vectors that are first computed during a bootstrapping phase. After training a
model using a random binary tree, word representations are computed by av-
eraging the output of the neural network layer φ(H) over all possible n-gram
contexts H = w1

t−n+1 that can precede a word. The clustering is then per-
formed using a Gaussian mixture model with 2 mixtures that is trained with
the expectation-maximization (EM) algorithm (Dempster et al., 1977). Words
are recursively subdivided into one of two classes based on the mixture coeffi-
cients. Due to the fixed size of word representations Rd the run time of the
clustering algorithm is O(|V|). Mnih and Hinton (2009) experimented with 3 dif-
ferent strategies for constructing the binary tree. A perfectly balanced tree can
be obtained by ranking words according to their mixture weights and inserting
the split point in the middle. This approach will assign words to a cluster regard-
less of the respective Gaussian component weight. An alternative approach is to
assign words to clusters where the mixture weight is > 0.5 which will produce
unbalanced trees. Mnih and Hinton (2009) also tried assigning a word to both
clusters if there is no clear preference towards one of the classes. As expected the
highest speed up was achieved with perfectly balanced trees but empirical results
showed that lower perplexity could be achieved with clustering schemes that put
more emphasis on the mixture weights.

The speed up can be further maximized by taking word frequencies into ac-
count. Mikolov et al. (2013a) used a binary Huffman tree that assigns shorter
codes (and thus shorter paths) to more frequent words. Mikolov et al. (2013a)
compared hierarchical softmax against other sampling based methods on an word
analogy benchmark and found that hierarchical softmax gave a similar speed up
but could not match the accuracy of the sampled methods.

Le et al. (2011a,b) proposed a more general hierarchical decomposition of
the output layer which removes the binary tree constraint of previous hierarchi-
cal softmax methods (Morin and Bengio, 2005; Mnih and Hinton, 2009). The
structured output layer (SOUL) can be seen as an extension of class-based fac-
torization (Goodman, 2001; Mikolov et al., 2011) with additional layers. New
layers are introduced by splitting up each class into subclasses which can be bro-
ken down further into sub-subclasses and so on up to an arbitrary depth D. If
the depth is constrained to 2, the architecture is equivalent to class-based fac-
torization. Splitting each class recursively into two subclasses yields hierarchical
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softmax. Analogous to hierarchical softmax, nodes within intermediate layers
represent word classes and nodes in the bottom layer individual words. Unlike in
hierarchical softmax with binary trees, the probability of nodes within a cluster
is computed using the softmax function. Again, the probability of a word can
be computed as the product of all class probabilities along the path through the
tree.

P (wi|H) = P (c1(wi)|H)(
D−1∏
d=2

P (cd(wi)|cd−1(wi),H))P (wi|cD−1(wi),H) (2.15)

A further innovation in SOUL is the direct inclusion of a small set of frequent
words within the root layer. This is similar to the notion of shortlists (Schwenk,
2004) and avoids the loss in precision due to accumulating errors along the path.

Le et al. (2011a,b) introduced an alternative clustering algorithm that is based
on word embeddings. The first step is to train the language model using only
the vocabulary in the shortlist. Next, the input word embeddings are extracted
and reduced in dimensionality using principle component analysis (PCA). The
hierarchy of word clusters is computed using a recursive application of K-means
clustering. SOUL with 3 layers has been applied to MT (Le et al., 2012) and
ASR (Le et al., 2013).

2.2.2.3 Differentiated softmax

Traditionally, the same dimension d is used for all output embedding vectors
ψ(w) ∈ Rd. The output scores in the softmax output layer are computed by a
large matrix-vector multiplication W ×h where W is the word embedding matrix
and h the output of the neural network layer φ(H). As previously mentioned
the cost of this operation is O(d×V ). Chen et al. (2015a) argued that because
rare words have by definition fewer training examples the number of parameters
assigned to those words should be reduced. This can avoid issues with over-fitting
the data and lower the memory and computational cost. Chen et al. (2015a)
designed a novel variation of the output layer called differentiated softmax. The
output of the neural network layer h=φ(H) ∈ Rd is partitioned into several blocks
hi of various dimensions di such that ∑

i di = d. Frequent words are assigned to
wider blocks whereas rare words are put into narrow blocks. Word scores over
the whole vocabulary are computed efficiently by concatenating the results of the
smaller matrix-vector multiplicationsWi ×hi. The total cost of these operations is
O(∑

i di ×Vi) which can be noticeably smaller than O(d×V ). It should be noted
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Figure 2.1: Illustration of adaptive softmax including the shortlist |Vh| and tail clusters
containing less frequent words (Grave et al., 2016).

that the speed up obtained by differentiated softmax applies not only during
training but also at test and evaluation time.

Chen et al. (2015a) carried out an empirical comparison of different softmax
methods and reported that differentiated softmax achieved the lowest perplexity
on the Gigaword corpus (Parker et al., 2011) and the second lowest perplexity on
the one billion word benchmark (Chelba et al., 2013). A closer inspection revealed
that high frequency words were predicted with the highest accuracy compared
to other methods whereas perplexity of words in the smallest partition was the
worst.

Grave et al. (2016) suggested a modification that instead of partitioning the
neural network output φ(H) uses projection matrices to reduce the number of
the parameters. In this approach hi is computed by projecting the full neural
network output by a matrix WPi

. Grave et al. (2016) argues that this approach
allows to use the full neural network layer capacity in the score computation of
each block.

2.2.2.4 Adaptive softmax

Grave et al. (2016) proposed a different variant of class-based factorization that
was optimized for execution on a GPU. The overall structure is based on class-
based factorization (Mikolov et al., 2011) but includes a shortlist of the most
frequent words directly in the root cluster (see Figure 2.1). Thus, it is equivalent
to SOUL with just 2 layers.

In more detail, adaptive softmax divides the vocabulary V into a head cluster
Vh and T tail clusters Vt. The probability of a word within Vh can be computed
directly using the softmax of the head cluster logits sh. For words assigned to one
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of the tail clusters the probability is broken down as the product of two factors:
the probability of the tail cluster itself P (ct|H) and the probability of the word
wi within the respective tail cluster P (wi|ct,H). To be able to compute P (ct|H)
the head cluster contains additional T logits, one for each tail cluster Vt. The
following equation summarizes the process of computing the word probability
P (w|H) from the cluster logits sh, s1, ..., sT .

P (w|H) =


P (w|H), if w ∈ Vh

P (w|ct,H)P (ct|H), if w ∈ Vt

=



esh,θ(w,H)

∑
w′∈Vh

esh,θ(w′,H) +
T∑

t=1
esh,θ(ct,H)

esh,θ(ct,H)

∑
w′∈Vh

esh,θ(w′,H) +
T∑

t=1
esh,θ(ct,H)

est,θ(w,H)

∑
w′∈Vt

est,θ(w′,H)

(2.16)

Grave et al. (2016) observed that the cost of matrix-matrix multiplication on
a GPU does not scale linearly for small matrices. They showed that for matrices
with sizes |B| ×h and h× k the cost g grows linearly with k but is a constant
overhead o if k is below a certain inflection point k0.

g(k) = o+max(0,λ(k−k0)) (2.17)

The constants λ, o and k0 can be determined experimentally for a specific GPU.
Thin weight matrices Rd×Vk where |Vk| < k0 often occur in frequency binning
schemes for clusters containing the highest ranked words. This suggests that
frequency binning is not an efficient partitioning scheme when training on GPUs
(Grave et al., 2016).

The probability of a random word w belonging to the tail cluster Vt is pt =∑
w∈Vt

Pu(w) where Pu is the unigram probability. The average cost C of adaptive
softmax over a training dataset can be calculated as

C = g(|Vh|+T )+
T∑

t=1
ptg(|Vt|). (2.18)

Assuming all cluster sizes are greater than k0, the above cost can be simplified
using a linear version of g(k) = o+λk to

C = 2o+λ(|Vh|+T +
T∑

t=1
pt|Vt|). (2.19)
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Assuming two tail clusters Vi and Vj have fixed sizes and |Vi|> |Vj |, the cost C
depends only on

pi|Vi|+pj |Vj | = pi|Vi|+(pi+j −pi)|Vj | = pi(|Vi|− |Vj |)+pi+j |Vj | (2.20)

where pi+j = pi + pj . The only variable quantity in the equation above is the
probability of the larger tail cluster pi when taking the fixed size constraint into
account. The cost can be minimized by reducing pi which is equivalent to as-
signing the least frequent words to Vi. Grave et al. (2016) suggests that the
optimal cluster sizes can be determined using a dynamic programming approach
or estimated empirically.

A batched version of adaptive softmax can be implemented by creating dis-
tinct subsets ⋃T

t=1 Bt = B − Bh for each tail cluster. The expected size of Bt is
EPu [|Bt|] = pt|B|. This can also be seen as an example of conditional computa-
tion. The full batch B is always used in the logit computation of the head cluster
where for words belonging to a tail cluster w ∈ Vt the embedding ψ(ct) of the
respective cluster is used.

2.2.3 Sampling

Based on prior work on contrastive divergence (Hinton, 2002), Bengio et al.
(2003b) showed that the gradient of the NPLM negative log-likelihood can be
approximated using sampling methods. The gradient can be decomposed into
two terms as follows:

∇θNLL(θ) = ∇θ[− logPθ(wt|H)]

= ∇θ[− log esθ(wt,H)∑
v∈V

esθ(v,H) ]

= ∇θ[−sθ(wt,H)+ log
∑
v∈V

esθ(v,H)]

= −∇θ(sθ(wt,H))+ 1∑
v∈V

esθ(v,H)
∑
v∈V

esθ(v,H)∇θ(sθ(v,H))

= −∇θ(sθ(wt,H))+
∑
v∈V

Pθ(v|H)∇θ(sθ(v,H))

= −∇θ(sθ(wt,H))+Ev∼Pθ
[∇θ(sθ(v,H))].

(2.21)

The first term moves the network output φ(H) and the target word embed-
ding ψ(wt) closer together and is hence referred to as positive reinforcement. The
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second term is a negative reinforcement which pushes away all other word em-
beddings. It can also be interpreted as the expected gradient ∇θ(sθ(v,H)) over
the whole vocabulary. During training the full expectation needs to be evaluated
for each target word and has a cost proportional to O(V). The following sections
describe various techniques that try to approximate the negative reinforcement
term.

2.2.3.1 Importance sampling

Bengio et al. (2003b) argued that it is not required to calculate the exact ex-
pectation of the negative reinforcement term in Equation 2.21 as training with
stochastic gradient descent (SGD) is already an approximation of the full gradient
over the training set D. Subsequently, Bengio et al. (2003b) investigated several
Monte-Carlo based sampling methods to estimate the expectation Ev∼Pθ

[∇θ(sθ(v,H))].
Simply using the classic Monte-Carlo approximation

Ev∼Pθ
[∇θ(sθ(v,H))] ≈ 1

|S|
∑
v∈S

∇θ(sθ(v,H)) (2.22)

where S is a set of samples drawn from Pθ is not feasible as sampling from Pθ still
requires the computation of the expensive partition function Z(H) = ∑

v∈V
esθ(v,H).

A Monte-Carlo Markov Chain (MCMC) based approach was reported to give poor
results. Instead, Bengio et al. (2003b) proposed the application of importance
sampling.

Importance sampling is a statistical method that provides an unbiased es-
timator for the expectation Ev∼Pθ

by sampling from a more tractable proposal
distribution Q. In the domain of language modeling alternative cheap proposal
distributions including the uniform and unigram distributions. More formally,
the expectation in Equation 2.21 can be rewritten introducing Q as follows

Ev∼Pθ
[∇θ(sθ(v,H))] =

∑
v∈V

Pθ(v|H)∇θ(sθ(v,H))

=
∑
v∈V

Q(v|H)Pθ(v|H)
Q(v|H) ∇θ(sθ(v,H))

= Ev∼Q[ω(v,H)∇θ(sθ(v,H))]

≈ 1
|S|

∑
v∈S

ω(v,H)∇θ(sθ(v,H))

(2.23)

where ω(v,H) = Pθ(v|H)
Q(v|H) is a correction factor referred to as the importance weight.

The Monte-Carlo approximation in Equation 2.23 still references the empirical
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distribution Pθ and therefore cannot be used directly. As Pθ is defined as the
softmax over the individual word scores, it can be written as Pθ(w|H) = Pθ(w|H)

Z(H)
where Z(H) is the partition function ensuring the distribution is properly nor-
malized. In this case the importance sampling trick can be applied a second time
to approximate Z(H).

Z(H) =
∑
v∈V

P 0
θ (v,H)

=
∑
v∈V

Q(v|H)P
0
θ (v,h)
Q(v|H)

=
∑
v∈V

Q(v|H)ω0(v,H)

≈ 1
|S|

∑
v∈S

ω0(v,H)

(2.24)

Substituting ω(v,H) = P 0
θ (v|H)

Q(v|H)Z(H) = ω0(v,H)
Z(H) into Equation 2.23 yields

Ev∼Pθ
[∇θ(sθ(v,H))] ≈ 1

|S|
∑
v∈S

ω(v,H)∇θ(sθ(v,H))

= 1
|S|

∑
v∈S

ω0(v,H)
1

|S|
∑

v′∈S
ω0(v′,H)

∇θ(sθ(v,H))

= 1∑
v′∈S

ω0(v′,H)
∑
v∈S

ω0(v,H)∇θ(sθ(v,H))

(2.25)

where ω0(v,H) = P 0
θ (v|H)

Q(v|H) . This alternative form is known as self-normalized im-
portance sampling and can be applied when only the unnormalized distribution
P 0

θ (v|H) = esθ(w,H) ∝ Pθ(v|H) is available. Self-normalized importance sampling
is a biased estimator but it can be shown that it’s bias decreases towards 0 in the
limit of an infinite number of samples (Bengio et al., 2003b).

Self-normalized importance sampling is equivalent to an objective function
using a weighted softmax where the normalization term is computed only over
words in S.

NLLIS(θ|D) = −
∑

w,H∈D
log

esθ(w,H)

Q(w|H)∑
v∈S

esθ(v,H)

Q(v|H)

(2.26)

This can be shown by taking the gradient of the negative log-likelihood in Equa-
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tion 2.26.

∇θNLLIS(θ|D) =
∑

w,H∈D
∇θ[− log

esθ(w,H)

Q(w|H)∑
v∈S

esθ(v,H)

Q(v|H)

]

=
∑

w,H∈D
∇θ[−sθ(w,H)+ logQ(w|H)+ log

∑
v∈S

esθ(v,H)

Q(v|H) ]

=
∑

w,H∈D
−∇θ(sθ(w,H))+ 1∑

v′∈S
esθ(v′,H)

Q(v′|H)

∑
v∈S

esθ(v,H)

Q(v|H)∇θ(sθ(v,H)).

(2.27)

Jean et al. (2014) pointed out that when the proposal distribution Q is uniform,
the gradient in Equation 2.27 simplifies to

∇θNLLIS(θ|D) =
∑

w,H∈D
−∇θ(sθ(w,H))+ 1∑

v∈S
esθ(v,H)

∑
v∈S

esθ(v,H)∇θ(sθ(v,H)).

(2.28)

A more common implementation is to always include the target word in the
denominator of the softmax. As shown by Ji et al. (2015) this is equivalent to
using the following negative log-likelihood function

NLLIS(θ|D) = −
∑

w,H∈D
log

esθ(w,H)

Q(w|H)∑
v∈{w}∪S

esθ(v,H)

Q(v|H)

. (2.29)

Such implementations are featured in Tensorflow (Abadi et al., 2016) and Black-
Out (Ji et al., 2015). They are equivalent to the above importance sampling
objective when the sample S always includes the target word w.

Bengio et al. (2003b) postulated that the number of samples needs to be
increased as training progresses. A suggested explanation is that during training
the learned distribution Pθ diverges more and more from the chosen proposal
distribution Q. One way to measure the required number of samples is to use the
effective sample size (ESS) (Kong, 1992)

ESS =
( ∑
v∈S

ω0(v,H))2

∑
v∈S

ω0(v,H)2 . (2.30)

Bengio et al. (2003b) suggested that the sample size should be adjusted dynam-
ically by monitoring the current ESS during training. Subsequent work (Bengio
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and Senécal, 2008) described a modification called adaptive importance sampling
which additionally uses a dynamic proposal distribution that closely tracks Pθ.
This adaptive distribution is a back-off n-gram model that is constantly updated
during training with the currently computed Pθ(w|H) probabilities.

Unfortunately, using a context dependent proposal distribution is not practical
for modern GPU mini-batch implementations. This would require computing a
different set of samples for each training example in the mini-batch which does not
take advantage of dense matrix-matrix multiplications. A popular workaround
is to use a context independent proposal distribution and share the same set of
samples across the mini-batch (Jozefowicz et al., 2016; Zoph et al., 2016).

Another issue that can occur in GPU implementations is the lack of GPU
memory to hold the entire output embedding matrix of size O(d× V). Jean
et al. (2014) described an alternative method that can alleviate such problems
by partitioning the training corpus into multiple chunks, each with a smaller
vocabulary Vn < V . During training the samples are chosen only from the smaller
vocabulary Vn of the active chunk. This is equivalent to modifying the proposal
distribution Q according to the currently active chunk.

Qn(w) =


1

|Vn|
if w ∈ Vn

0
(2.31)

One simple mechanism for splitting the training corpus is to continue appending
words or sentences to a chunk until the vocabulary Vn exceeds a set threshold.
This strategy was later referred to as target sampling (Chen et al., 2015a).

Importance sampling training was successfully applied in various domains.
Jean et al. (2014) used importance sampling to train neural MT models. Joze-
fowicz et al. (2016) reported state-of-the-art perplexity on the one billion word
benchmark (Chelba et al., 2013) using importance sampling.

2.2.3.2 Noise contrastive estimation

A simple idea is to make the partition function Z(H) an explicit parameter of
the model that is learned during training. More precisely, Pθ(w|H) can be re-
expressed as

Pθ(w|H) = P 0
θ (w|C)
Z(C) = P 0

θ (w|C)ezH (2.32)
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where zH = − logZ(H). Instead of computing zH as a function of the context H
it is directly estimated by the training procedure. But Gutmann and Hyvärinen
(2010, 2012) noticed that the standard MLE approach cannot be used directly as
the optimizer can maximize any likelihood by setting the parameter zH as large
as possible.

argmax
θ,z

NLL(θ,z|D) = −
∑

(w,H)∈D
logPθ(w|H)

= −
∑

(w,H)∈D
logP 0

θ (w|H)+ zH

(2.33)

The reason is that this is a constrained optimization problem where only certain
values z∗

H successfully normalize P 0
θ (w|H). Gutmann and Hyvärinen (2010, 2012)

proposed a novel statistical method called noise contrastive estimation (NCE)
that transforms the problem above into an unconstrained optimization problem.
The main idea is to indirectly estimate P 0

θ (w|H) by comparing it to a known
noise distribution Pn(w|H). This is achieved by sampling a set of words S from
Pn(w|H) and training a logistic classifier to distinguish between the target word
wt and the noise samples v∼Pn(H). If for every target word there are k additional
noise samples then the probability of a data point belonging to the original data
set D can be calculated using Bayes theorem.

P (Y = true|w,H) = P (Y = true)P (w|Y = true,H)
P (w|H)

=
1

k+1Pθ(w|H)
k

k+1Pn(w|H)+ 1
k+1Pθ(w|H)

= Pθ(w|H)
kPn(w|H)+Pθ(w|H)

(2.34)

where P (w|Y = true,H) = Pθ(w|H), P (w|Y = false,H) = Pn(w|H) and P (Y =
true) = 1

k+1 . Analogous, the probability of the data point being part of the noise
sample S is

P (Y = false|w,H) = 1−P (Y = true|w,H)

= kPn(w|H)
kPn(w|H)+Pθ(w|H) .

(2.35)
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Equation 2.34 can also be expressed in terms of the sigmoid function σ(x) = 1
1+e−x

and the ratio of the probabilities Pθ(w|H)
kPn(w|H) .

P (Y = true|w,H) = σ(log Pθ(w|H)
logkPn(w|H))

= σ(logPθ(w|H)− logkPn(w|H))

= σ(sθ(w,H)+ zC − logkPn(w|H))

(2.36)

Thus, NCE can be interpreted as a logistic classifier which learns the log proba-
bility ratio to distinguish between the true target words and the noise samples.
The model can be trained using standard MLE in a supervised fashion.

NLLNCE(θ|D) = −
∑

(w,H)∈D
[logP (Y = true|w,H)+

∑
v∈S

logP (Y = false|v,H)]

= −
∑

(w,H)∈D
[logσ(logPθ(w|H)− logkPn(w|H))+

∑
v∈S

log(1−σ(Pθ(v|H)− logkPn(v|C)))]

= −
∑

(w,H)∈D
[logσ(sθ(w,H)+ zH − logkPn(w|H))+

∑
v∈S

logσ(−sθ(v,H)− zH +logkPn(v|H))]

(2.37)

Gutmann and Hyvärinen (2010, 2012) proved several theorems about the NCE
classifier. Given an unlimited amount of data the NCE objective function has a
single global optimum when Pθ equals the true data distribution. Further, in the
limit of infinite noise samples the model is guaranteed to converge towards this
solution. The proposal distribution Q should ideally be close to P but must be
at least non-zero when P is non-zero.

The original NCE algorithm (Gutmann and Hyvärinen, 2010, 2012) was for-
mulated in terms of continuous probability density estimation. Mnih and Teh
(2012) adapted and applied NCE to speed up training of NPLMs. Initially, a
hash table was used to store the additional zH parameters. But Mnih and Teh
(2012) noticed that setting zH = 1 for all contexts H did not effect the perfor-
mance and avoids storing up to Vn−1 extra parameters when H is an n-gram. It
should be noted that in the case of RNN language models the context H is the
sequence of all words from the start of the sentence and maintaining a separate
zH for each context is not feasible.
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Mnih and Teh (2012) stated that the theoretical speed up achieved by NCE
training is CostNN +|V|

CostNN +|S| where CostNN represents the cost of the neural network
layers. Subsequent work applied NCE to accelerate the training of word em-
beddings (Mnih and Kavukcuoglu, 2013), ASR rescoring (Chen et al., 2015b;
Williams et al., 2015; Chen et al., 2016; He et al., 2016) and MT models (Vaswani
et al., 2013; Baltescu and Blunsom, 2014; Zoph et al., 2016). Zoph et al. (2016)
proposed to share the noise samples S between all examples in a mini-batch to en-
able fast GPU implementations leveraging dense matrix-matrix multiplications.
Baltescu and Blunsom (2014) combined NCE with a class-based factorization
method to train a neural MT with a 100k output vocabulary.

Most work used a context independent unigram distribution as the noise dis-
tribution. (Mikolov et al., 2013a) suggested that redistributing probability mass
to rare words improves the performance. A simple trick is to distort the uni-
gram distribution by exponentiating each word count count(w)α where α < 1.
Recently, Labeau and Allauzen (2017) studied the effect of bigram, unigram
and uniform noise distributions including distortion. They tracked and plot-
ted each individual part of the NCE loss including the log normalization term
zH and the estimated probabilities P (Y = true|w,H) and P (Y = false|w,H) for
data and noise words,respectively. The results showed that the mean probability
P (Y = true|w,H) for actual target words was close to 0 when training with a uni-
gram distribution. Switching to a bigram distribution raised the mean noticeably
and caused the log normalization term zH to converge to 0.

experimental analysis of the effect of

2.2.3.3 Negative sampling

Mnih and Kavukcuoglu (2013) successfully applied NCE to speed up training of
word embedding models. Mikolov et al. (2013a) noticed that when the task is
learning word embeddings and not output probabilities in a language model an
exact approximation of the softmax output is not necessary. Thus, Mikolov et al.
(2013a) proposed an simplified version of NCE called negative sampling. As in
NCE a logistic regression model is trained that classifies samples into real data
points and noise samples. But unlike NCE the classifier computes this probability
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directly and not through the log probability ratio.

NLLNS(θ|D) = −
∑

(w,H)∈D
[logP (Y = true|w,H)+

∑
v∈S

log(1−P (Y = false|v,H))]

= −
∑

(w,H)∈D
[logσ(sθ(w,H))+

∑
v∈S

logσ(−sθ(v,H))]

(2.38)

Dyer (2014) showed that negative sampling is equivalent to NCE in the case of a
uniform distribution with |V| noise samples.

P (Y = true|w,H) = σ(sθ(w,H))

= σ(log e
sθ(w,H)

1 )

= σ(log e
sθ(w,H)

|V| 1
V

)

= σ(log Pθ(w|H)
|V|Pu(w|H))

(2.39)

Dyer (2014) concluded that apart from this special case negative sampling is
not an appropriate method for training of neural language models. Recently,
Melamud and Goldberger (2017) analyzed negative sampling from an information
theoretical viewpoint and showed that skip-gram models trained using negative
sampling optimize a measure based on the Jensen-Shannon divergence between
the network output and word embeddings.

2.2.3.4 Blackout

Ji et al. (2015) proposed to combine both importance sampling and NCE into a
single discriminative objective function. The BlackOut loss is specified as

NLLBlackOut(θ|D) = −
∑

(wt,H)∈D
[ logP (Y = wt|H,S)+

∑
ws∈S

log(1−P (Y = ws|H,S))]
(2.40)

where P (Y = wt|H,S) represents the probability that word wt is the correct
target word and not an element of the noise set S. In BlackOut this probability
is computed as a multinomial classification problem where the target word and
noise samples form the possible classes. Thus, P (Y = wt|H,S) can be computed
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as a weighted softmax over the logits {wi ∈ wt ∪S |sθ(wi,H)}.

P (Y = wt|H,S) = P (Y = 1|wt,H,S) =
esθ(wt,H)

Q(wt)
esθ(wt,H)

Q(wt) + ∑
ws∈S

esθ(ws,H)

Q(ws)

(2.41)

Thus, the first part logP (Y =wt|H,S) in the BlackOut loss is simply the impor-
tance sampling loss in Equation 2.29. The second part mirrors the NCE objective
but using a multinomial instead of a binary classifier. Ji et al. (2015) showed that
there is an explicit link between the proposal distribution Q and the noise distri-
bution Pn. The above probability P (Y = wt|H,S) can be derived from the NCE
probability P (Y = 1|H) (Equation 2.34) by setting Pn to

Pn(wt|H) = 1
|S|

∑
ws∈S

Q(wt)
Pθ(ws|H)
Q(ws)

(2.42)

when the noise samples S were already sampled using Q.
Similarly, Jozefowicz et al. (2016) stated explicitly that importance sampling

and NCE are almost identical methods with the only difference being the classifi-
cation algorithm. Importance sampling can be expressed as multinomial classifi-
cation P (Y =wt|H) = softmax(sθ(wt,H)− logQ(wt)) whereas NCE uses binary
classification P (Y = true|H) = σ(sθ(wt,H)− logQ(wt)).

2.2.3.5 TAPAS

A novel important sampling variation proposed by Yu et al. (2017) sorts the
sampled set S and uses only a small subset of highly relevant samples. The sort
criteria is simply the magnitude of the output scores sθ(w,H). The idea is that
large scores also result in large probabilities. Yu et al. (2017) reported that this
modification improved accuracy of rank loss objectives but decreased performance
when measured using a full softmax loss.

2.2.3.6 Self-normalization

If the output layer could be trained to directly produce normalized scores then no
expensive softmax normalization would be required during evaluation. In such a
case, the output scores or logits already represent the probability Pθ(w|H) and
can be used directly in subsequent operations yielding a speed up of |V| compared
to the full softmax normalization.
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Baltescu and Blunsom (2014) pointed out that even though NCE avoids com-
puting the normalization factor during training, full normalization of the softmax
is still required at test time. Training with NCE estimates the softmax logits
sθ(w,H) relative to the noise distribution Pn and there is no guarantee that for
all contexts H

zH =
∑
w∈V

logP 0
θ (w|H) =

∑
w∈V

sθ(w,H)). (2.43)

In contrast, Chen et al. (2015b) empirically adjusted zH to be close to the log
of the mean partition function Z(H). During testing the probability Pθ(w|H) =
esθ(w,H)ezH was computed only from the target word logit.

It should be noted that there is a relationship between the normalization
constant zH and the amount of noise samples k. In more detail, Equation 2.34
can be re-expressed as

P (Y = true|w,H) = P 0
θ (w|H)ezH

kPn(w|H)+P 0
θ (w|H)ezH

= P 0
θ (w|H)

k
ezH Pn(w|H)+P 0

θ (w|H)

(2.44)

Devlin et al. (2014) proposed a different way of enforcing this behavior by
adding an additional regularization term to the cross entropy loss function. It
forces the neural network to produce logits such that the normalization term
Z(H) is close to 1 and therefore can be ignored.

NLL(θ|D) = −
∑

(w,H)∈D
log P

0
θ (w|H)
Z(H) +α(logZ(H)−0)2

= −
∑

(w,H)∈D
log P

0
θ (w|H)
Z(H) +α log2Z(H)

(2.45)

One advantage of this scheme is that the trade off between accuracy and self-
normalization can be controlled by the hyper-parameter α. But during training
the expensive normalization factor Z(H) still needs to be computed for every
data point. Andreas and Klein (2015); Andreas et al. (2015) conducted a formal
analysis of self-normalized models and the self-normalization properties of NCE.
They concluded that models will exhibit self-normalization as long as a certain
number of training examples are explicitly regularized. This finding motivated a
modified loss function

NLL(θ|D) = −
∑

(w,H)∈D
sθ(w,H)−α

|D|
|S|

∑
(w,H)∈S

log2Z(H) (2.46)



Chapter 2. Background and literature review 28

where S is a small subset of all training examples D. Chen et al. (2015a) named
this approach infrequent normalization and also experimented with a variation
where the normalization penalty term is not squared.

NLL(θ|D) = −
∑

(w,H)∈D
sθ(w,H)−α

|D|
|S|

∑
(w,H)∈S

logZ(H) (2.47)

Chen et al. (2015a) noted that Equation 2.47 becomes an unbiased estimator of
the MLE likelihood when setting α= 1. Furthermore, they observed in empirical
tries that despite of the self-normalization penalty the variance of Z(H) was still
high and the logits needed to be clipped when interpreted as probabilities.

Self-normalization techniques remove the need to compute the normalization
constant and thus the logits over the entire vocabulary. This speed up can only be
attained when the target word is known, e.g. at test time. If the full probability
distribution is required the expensive W ×h matrix-vector multiplication is still
required to compute the score for each word.

2.2.4 Other methods

2.2.4.1 CNN softmax

The use of continuous word embeddings allows the neural language models to
capture similarities between related words. But a sufficient amount of data is
required to learn these embeddings. Additionally, handling of previously unseen
OOV words still poses a major problem. But sometimes the meaning of a word
can be guessed from its morphology, e.g. the prefix in- often negates the original
meaning.

Ling et al. (2015) presented a method that computes word embeddings based
on sequences of characters. This was achieved by introducing an additional bi-
directional LSTM layer that was presented one character at a time. Each char-
acter was first converted into a continuous character embedding vector. After
processing the whole string the last LSTM hidden state was used as the new
word embedding.

Kim et al. (2015) devised an alternative mechanism to compute word embed-
dings from character-level information based on convolutions. The new embed-
dings are constructed in multiple stages. First, the character embeddings for each
character in the word are concatenated together into a matrix Q ∈ Rd×l where d
is the size of a character embedding and l is the number of characters in word w.
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Next, a convolutional neural network (CNN) layer (LeCun et al., 1990) computes
various features fk on Q. Multiple convolution kernels of varying widths m are
applied to Q. The kernels K ∈ Rd×m always match the full size of the character
embeddings d and are only moved along the time dimension (which represents the
sequence of characters). For each kernel max-over-time pooling selects a single
value that represents the maximum score computed at any position. Thus, each
filter can be seen as a distinct feature detector. To take advantage of interactions
between the various convolutional filters an additional neural network layer is
added on top. Kim et al. (2015) discovered that highway networks (Srivastava
et al., 2015) resulted in good performance.

A side effect of using character-level embeddings is a substantial reduction of
model parameters due to the small number of characters compared to the word
vocabulary size V . Jozefowicz et al. (2016) explored the idea of character-level
embeddings further and applied it to the output embedding layer. In full softmax
word scores are computed by the dot product of the neural network output φ(H)
and the output word embedding ψ(w). In CNN softmax Jozefowicz et al. (2016)
replaced the direct lookup ψ(w) with a new function CNN(.) that computes word
embeddings from character sequences as described in Kim et al. (2015).

sθ(w,H) = φ(H)Tψ(w) = φ(H)T (CNN(chars(w))+ corr(w)) (2.48)

Based on empirical evidence an additional correction factor per word corr(w) is
necessary as Jozefowicz et al. (2016) reports that words with similar spellings
could not be sufficiently differentiated. The correction can be stored as a low-
dimensional vector and a projection matrix is applied to up-scale it to match the
Rd dimensional RNN output. At test time the resulting word embeddings can
be precomputed and cached to avoid any overhead compared to the full softmax.

At test time using CNN softmax still requires computing the logits over the
entire vocabulary. To speed up computation Jozefowicz et al. (2016) further
suggested to use character outputs as in character-level language models. After
training the word-level RNN language model the output layer is replaced with
a new LSTM layer that outputs characters conditioned on the word-level RNN
output φ(H). In practice, empirical tests could not match the accuracy of full
and CNN softmax.

Finally, it should also be noted that character-level language models allow
training on multiple corpora as the model is not dependent on the actual training
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vocabulary V anymore.

2.2.4.2 Maximum inner product search

Vijayanarasimhan et al. (2014) investigated the usage of locality sensitive hashing
(LSH) to find the most similar embedding vectors to the neural network output
φ(H). The goal is to efficiently find the few words with high probabilities without
computing scores for the entire vocabulary. As scores are computed using the
dot product, word embeddings close to the RNN output φ(H) yield the highest
scores and thus also highest probabilities. The proposed method is based on
winner-takes-all (WTA) hashing (Yagnik et al., 2011) which given a query vector
returns the k most similar items in sub-linear time. The method is used to speed
up queries at test time after the model has been trained. In a preprocessing
step a hash table is built using the WTA algorithm. During evalution inputs
are propagated through the network up until the softmax output layer. There,
the k most likely words are retrieved from the hash table using φ(H) as the key.
The output probabilities are computed using only the scores of the k most likely
words. Given a large vocabulary the majority of words will have a probabilities
close to zero.

Vijayanarasimhan et al. (2014) used a variant of the above method also for
training but frequent re-hashing between batches cancels any speed up obtained
through the WTA lookup (Chen et al., 2015a).

The idea of quickly finding the most similar vectors which maximize the dot
product is also known as maximum inner product search (MIPS) (Ram and
Gray, 2012). Various solutions have been proposed for solving MIPS including
tree search (Ram and Gray, 2012), hashing (Shrivastava and Li, 2014; Vijaya-
narasimhan et al., 2014) and k-means clustering (Auvolat et al., 2015).

2.2.4.3 Alternative loss functions

At the time of writing, standard softmax is by far the most prevalent method.
This can be attributed to its probabilistic interpretation and natural fit to MLE
which leads to the cross entropy loss. But standard softmax is costly to compute
due to its normalization term. Vincent et al. (2015); de Brébisson and Vincent
(2015); Oland et al. (2017) pointed out some possible alternatives.
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Ollivier (2015) analysed several softmax alternatives including spherical soft-
max.

f(xi) = x2
i∑

j x
2
j

(2.49)

Vincent et al. (2015) showed that for the family of spherical loss functions which
includes the squared error loss the exact output and gradient updates can be com-
puted independently from the vocabulary size. In more detail, gradient updates
for the log-spherical softmax loss can be computed in O(d2) instead of O(d×V).
In a subsequent work further analysis was carried out on the log-Taylor softmax
(de Brébisson and Vincent, 2015).

f(xi) =
1+xi + 1

2x
2
i∑

j 1+xj + 1
2x

2
j

(2.50)

This version was inspired by the Taylor approximation of ex around the origin.
Empirical tests showed that these alternative loss functions yield good results
on classification tasks in computer vision but fail to be competitive on language
modeling benchmarks.

More recently, Oland et al. (2017) claims that the standard softmax is not a
natural choice for gradient descent optimization as the saturation leads to vanish-
ing or exploding gradients. They reason that the main benefit of softmax stems
from the exponentiation of the logits and not from normalization. In applications
when only the relative ranking of the output classes is important (e.g. one-hot
image classification) Oland et al. (2017) suggested to use an unnormalized cubic
polynomial activation together with a squared loss function.

f(xi) = αx3
i +β (2.51)

The argument is based on an analysis of second order derivatives of the log-
softmax loss objective where the normalization term causes the error surface to
become more non-convex. This can hinder the convergence of SGD training.
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Tensorflow implementation

All experiments in this project were implemented using Tensorflow (Abadi et al.,
2016) version 1.2. Tensorflow is a popular toolkit for implementing deep learning
networks and features reverse-mode automatic differentiation. It is maintained
as an open source project by Google. At the beginning of this project the source
code was manually compiled using specific configuration options suitable for the
available hardware.

The code used to construct the LSTM neural language models was partly
based on the Tensorflow RNN tutorial1. It was initially used as the underlying
framework but later extended to support a more efficient mechanism for feeding
corpus data, additional hyper-parameters and various kinds of output layers.
Further, facilities for scoring and generating example sentences were added.

The following sections describe relevant details of the alternative softmax and
LSTM layer implementations used in this work.

3.1 Full softmax

The classic full softmax output layer is implemented in two steps. First, log-
its are computed in a single dense matrix-matrix multiplication. A specialized
Tensorflow function computes the softmax and cross entropy loss.
softmax_w = tf.get_variable("softmax_w", [output_size, vocab_size ], dtype=tf.float32)

softmax_b = tf.get_variable ("softmax_b", [vocab_size ], dtype=tf.float32)

logits = tf.nn.bias_add(tf.matmul(output, softmax_w), softmax_b)

loss = tf.nn.sparse_softmax_cross_entropy_with_logits( logits =logits , labels=tf.reshape(

targets , [-1]) )

1https://www.tensorflow.org/tutorials/recurrent
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3.2 Importance sampling

Tensorflow includes a built-in function tf.nn.sampled_softmax_loss but the
official documentation does not describe the actual method used. Instead, only a
reference to Jean et al. (2014) is provided. This motivated the next section which
performs a thorough analysis of the implementation. A full understanding of the
actual loss is critical for an informed comparison of different softmax methods.
The inspection revealed that tf.nn.sampled_softmax_loss implements a variant
of importance sampling loss where the target word is always part of the sample
set S.

The main part of the program logic resides within a shared internal function
_compute_sampled_logits that is also called in tf.nn.nce_loss. In more detail,
_compute_sampled_logits receives a batch B of LSTM network outputs Φ
along with corresponding target words T = (wt1 ...wt|B|) where Φ is a

Φ =


φ(H1)T

...
φ(H|B|)T

 ∈ R|B|×d

matrix. Additionally, a set of samples S is drawn from a proposal distribution Q
and shared between all examples in the batch B. In a first step the embedding
vectors ψ are retrieved for the batch targets T and the set of sampled words S.
The result are two embedding matrices

ΨT =


ψ(wt1)T

...
ψ(wt|B|)T

 ∈ R|B|×d,ΨS =


ψ(ws1)T

...
ψ(ws|S|)T

 ∈ R|S|×d

Next, a single logit is computed for each training example using the corresponding
target word embedding. An efficient vectorized implementation is achieved by the
element-wise multiplication Φ � ΨT and subsequent row-wise summation. The
resulting column vector is

scoresT =


sθ(wt1 ,H1)

...
sθ(wt|B| ,H|B|)

 =


∑d

i=1φ(H1)i ·ψ(wt1)i
...∑d

i=1φ(H|B|)i ·ψ(wt|B|)i

 ∈ R|B|

As samples are shared across the batch, a separate logit for each combination
of training example and sampled word needs to be computed. This operation is
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name proposal distribution
tf.nn.uniform_candidate_sampler Q(rank) = 1

|V|

tf.nn.log_uniform_candidate_sampler Q(rank) = log(rank+2)−log(rank+1)
log(|V|+1)

tf.nn.fixed_unigram_candidate_sampler unigram distribution provided as a list of
counts

tf.nn.learned_unigram_candidate_sampler unigram distribution learned over time from
target values

Table 3.1: Candidate sampler functions in Tensorflow

simply the matrix-matrix multiplication ΦΨS
T

scoresS =


sθ(ws1 ,H1) sθ(ws2 ,H1) . . . sθ(ws|B| ,H1)

... ... ... ...
sθ(ws1 ,H|B|) sθ(ws2 ,H|B|) . . . sθ(ws|B| ,H|B|)

 ∈ R|B|×|S|

where each row corresponds to the logits over the sampled words S for a given
training example. Before concatenating the target and sample logits into a sin-
gle matrix, − logQ(.) is added to each logit. The resulting matrix R|B|×(1+|S|)

returned by _compute_sampled_logits can be interpreted as
log e

sθ(wt1 ,H1)

Q(wt1) log esθ(ws1 ,H1)

Q(ws1) . . . log esθ(wsk ,H1)

Q(wsk )
... ... ... ...

log e
sθ(wt|B| ,H|B|)

Q(wt|B|)
log e

sθ(ws1 ,H|B|)

Q(ws1) . . . log e
sθ(wsk ,H|B|)

Q(wsk )

 (3.1)

Finally, the importance sampling objective is obtained by taking the negative
logarithm of the softmax function applied to each row. The exponent in the
softmax cancels out the logarithm and leads to the following loss function

NLL(θ|B) = −
|B|∑
i=1

log(
e

sθ(wti
,Hi)

Q(wti)∑
s∈wti∪S

esθ(ws,Hi)

Q(ws)

). (3.2)

The above loss function is equivalent to Equation 2.29. Hence,
tf.nn.sampled_softmax_loss is an implementation of importance sampling
where the target word is always included in the sampled set S.

Tensorflow provides several functions for drawing samples from different pro-
posal distributions Q. Table 3.1 lists the available options. Each function returns
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a tuple of 3 tensors including the sampled words and the expected counts of the
target and sampled words. An important point to note is the effect of the unique

parameter. This parameter controls the sampling process and switches between
sampling with and without replacement. But it also has an effect on the returned
expected counts. Enabling sampling without replacement changes the expected
count from |S| ·Q(.) to 1 − (1 −Q(.))tries where tries is the amount of draws
that were necessary to obtain |S| unique values. Only the first definition yields
the original importance sampling loss as |S| is a constant that cancels itself out
when plugged into Equation 3.2. In the case of sampling without replacement
(the default value) the returned expected counts do not form a proper probability
distribution.

tf.nn.sampled_softmax_loss is only called during the training phase in con-
junction with one of the candidate sampler functions. Below is the code that
computes the training loss where sampled_values contains the return value of a
candidate sampler function.

softmax_w = tf.get_variable("softmax_w", [vocab_size, output_size ], dtype=data_type())

softmax_b = tf.get_variable ("softmax_b", [vocab_size ], dtype=data_type())

loss = tf.nn.sampled_softmax_loss(

softmax_w, softmax_b,

targets , output,

sample_count, vocab_size,

sampled_values=sampled_values,

partition _strategy="div")

During evaluation the exact loss must be computed using the full softmax.

3.3 Noise contrastive estimation

Tensorflow provides a built-in implementation of the NCE loss tf.nn.nce_loss

which shares some of the code with tf.nn.sampled_softmax_loss in
an internal function _compute_sampled_logits. The return value of
_compute_sampled_logits was described earlier in Equation 3.1. The
NCE loss is obtained by applying the standard logistic regression loss imple-
mented in tf.nn.sigmoid_cross_entropy_with_logits where the target words
wt1 ,wt2 , ...,wt|B| and the set of sampled words S constitute positive and negative
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examples, respectively.

NLL(θ|B) = −
|B|∑
i=1

[logσ(esθ(wti ,Hi) − logQ(wti)+∑
s∈S

log(1−σ(esθ(ws,Hi) − logQ(ws))]
(3.3)

Comparing the above loss and the actual NCE loss derived in Equation 2.37
reveals that logk ·Q(.) has been replaced with logQ(.) where k was the number of
noise samples. As Tensorflow substitutes Q with the return value of the candidate
sampler functions, the proper NCE loss is only obtained when setting unique to
false. In this case the returned expected count is |S| ·Q(.) which matches k ·Q(.).
As pointed out in Equation 2.44, the log of the normalization constant zH can be
fixed to different values. The built-in Tensorflow implementation tf.nn.nce_loss

assumes that zH has been fixed to 0. To be able to run experiments with other
constants, the original Tensorflow source code was cloned and an additional ar-
gument for the normalization constant was added.

The following code was used during training to calculated the NCE loss where
nce_loss is the modified version of the original tf.nn.nce_loss implementation
which takes an additional parameter specifying the normalization constant.

softmax_w = tf.get_variable("softmax_w", [vocab_size, output_size ], dtype=data_type())

softmax_b = tf.get_variable ("softmax_b", [vocab_size ], dtype=data_type())

loss = nce_loss(

softmax_w, softmax_b,

targets , output,

Z, sample_count, vocab_size,

sampled_values=sampled_values,

partition _strategy="div")

The exact loss at evaluation time is calculated using the full softmax analogous
to the importance sampling code.
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3.4 Adaptive softmax

The authors of the adaptive softmax method (Grave et al., 2016) provided an
open-source implementation2 in Lua using the Torch toolkit. At the time of
writing a second open-source implementation written for Tensorflow was also
available3. This implementation was used as the starting point and updated to
run with Tensorflow 1.2. Additional modifications include support to skip the
tail cluster projection matrices and input tensors with a dynamic batch size.

The original implementation returned the loss for each cluster separately as a
list of tensors. This makes the interface incompatible with other softmax loss im-
plementations including tf.nn.sparse_softmax_cross_entropy_with_logits,
tf.nn.sampled_softmax_loss or tf.nn.nce_loss. The loss tensors cannot be
easily combined due to the different cluster allocation of each batch exam-
ple. The original code expanded each tensor to the full batch size using
tf.sparse_tensor_to_dense. Unfortunately, this stops gradient propagation in
Tensorflow 1.2. A possible workaround is to use tf.scatter_nd instead4.

Additionally, a novel method for computing logits over the entire vocabulary
was derived. The original implementation computes logits only for the cluster
containing the target word but the full probability distribution over the entire
vocabulary is required in evaluation and generation tasks. It can also help with
integration of the adaptive softmax implementation into frameworks that use
other softmax methods.

The full set of logits over the vocabulary V can be computed from the logits
of each cluster sh, s1, ..., sT by plugging in the adaptive softmax output word
probability into the inverse softmax function. Given that the softmax function
has one free parameter (the last logit can be always computed from the previous
|V| − 1 values), the inverse of the softmax function can be derived by setting an
arbitrary logit to zero, e.g.

softmax−1(wi) = log P (wi)
P (w1) (3.4)

Logits for words in the head cluster Ch are computed by plugging the definition
2https://github.com/facebookresearch/adaptive-softmax
3https://github.com/TencentAILab/tf-adaptive-softmax-lstm-lm
4suggested by Daniel Renshaw

https://github.com/facebookresearch/adaptive-softmax
https://github.com/TencentAILab/tf-adaptive-softmax-lstm-lm
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from Equation 2.16 into the inverse softmax

sh(wi,H) = log P (wi|H)
P (w1|H)

= log

esh(wi,H)∑
w′∈Vh

esh(w′,H)+
|C|∑

j=1
e

sh(cj ,H)

esh(w1,H)∑
w′∈Vh

esh(w′,H)+
|C|∑

j=1
e

sh(cj ,H)

= log esh(wi,h)

esh(w1,H)

= sh(wi,H)− sh(w1,H)

(3.5)

where sh and s1, . . . , sT represent the word logits in the head and tail clusters,
respectively and c1, . . . , ck the tail cluster logits in the head. Similarly, logits for
words in tail clusters Ct can be computed with

st(wi,H) = log P (wi|ct,H)P (ct,H)
P (w1|H)

= log

esh(ct,H)∑
w′∈Vh

esh(w′,H)+
|C|∑

j=1
e

sh(cj ,H)

est(wi,H)∑
w′∈Vk

est(w′,H)

esh(w1,H)∑
w′∈Vh

esh(w′,H)+
|C|∑

j=1
e

sh(cj ,H)

= log e
sh(ck,H)
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(3.6)

The logits over the entire vocabulary V are obtained by concatenating the
logits computed by Equations 3.5 and 3.6. This procedure was implemented as
an extension to adaptive_softmax_loss as follows:

full _ logits _ = [tf . slice (head_logits , [0,0], [-1, cutoff [0]]) -

tf . slice (head_logits , [0,0], [-1,1]) ]

for i in range(cluster_num):

if project_ factor is None:

tail _ logits = math_ops.matmul(inputs, tail_w[i][0])

else :

tail _ logits = math_ops.matmul(math_ops.matmul(inputs, tail_w[i][0]), tail_w[i ][1])

full _ logits _ .append(

tf .nn.log_softmax(tail_ logits ) +
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tf . slice (head_logits , [0, cutoff[0]+i ], [-1,1]) -

tf . slice (head_logits , [0,0], [-1,1])

)

full _ logits = tf.concat( full _ logits _ , axis=1)

3.5 cuDNN LSTM

Tensorflow offers several built-in types of RNN cells including
tf.contrib.rnn.BasicLSTMCell and tf.contrib.rnn.LSTMCell. These can
be combined with other Tensorflow ops to form the RNN layer. Appleyard
et al. (2016) commented that many advanced optimizations cannot be easily
incorporated into general purpose toolkits where the operation graph is specified
by the user and not known beforehand. In Appleyard et al. (2016) various
optimization strategies are described that were employed in the native NVIDIA
CUDA R© LSTM implementation shipped as part of the NVIDIA’s cuDNN
library5. These include pre-transposing weight matrices, fusing simple point-wise
operations to minimize CUDA R© kernel launch overheads and using CUDA R©

streams to increase the number of parallel operations. Within the first LSTM
layer all matrix multiplications involving the input signal can be run in parallel
as often the full input sequence is known beforehand (e.g. during training).
In multi-layer LSTM networks additional parallelism can be introduced by
reordering the computation of LSTM cells. Once the output of an LSTM cell is
available, the computation for the next time step within the same layer as well as
the same time step in the layer above can start simultaneously. Appleyard et al.
(2016) compared this scheduling strategy to a diagonal wave sweeping through
the network. In benchmarks a total speed up of 11.1× was achieved compared
to a basic unoptimized implementation. This implementation can be accessed
in Tensorflow since version 1.2 using the tf.contrib.cudnn_rnn.CudnnLSTM

wrapper. It represents a full multi-layer LSTM network as a single Tensorflow
op. Experiments described in section 5.4 contrasted the optimized cuDNN based
implementation with the built-in Tensorflow LSTM cell.

5https://developer.nvidia.com/cudnn

https://developer.nvidia.com/cudnn
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Datasets and training framework

This chapter describes in full detail the datasets, experimental setup and proce-
dures used to carry out the experiments.

4.1 Datasets

All experiments were conducted on two English language datasets, Wikipedia
Text8 and a large-scale financial domain corpus. The following sections provide
a detailed description of each dataset.

4.1.1 Wikipedia Text8 corpus

The Text8 dataset is a small to medium sized English language corpus. Due to its
moderate size it is a popular choice for testing and benchmarking new methods.
The corpus consists of text extracted from a 2006 snapshot of Wikipedia. The
original Wikipedia dump is part of a standard text compression benchmark (Hut-
ter, 2006) and includes 1GB of extensible markup language (XML) data. Text8 is
a clean text version that contains the first 100 million characters after all markup
and punctuation has been removed. It contains no sentence segmentation infor-
mation and is a popular character language model benchmark. Mikolov et al.
(2014) used the corpus for training word-based language models after replacing
all words occurring less than 10 times by a special OOV token. An artificial
sentence boundary was added every 1,000 words. The last 1 million characters
were treated as a held-out validation set.

40
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split tokens sentences batches vocabulary
train 16,835,605 16,836 6,582 44,370
valid 169,603 170 66 14,576

Table 4.1: Main statistics of the Text8 corpus.

split tokens sentences batches vocabulary
train 1,059,498,116 48,005,141 432,618 459,454
valid 61,382,199 2,848,939 25090 136,680
test 61,699,037 2,862,852 25219 136,989

Table 4.2: Main statistics of the FDT corpus.

split tokens sentences batches vocabulary
train 105,874,312 4,800,514 43,232 200,606
valid 6,140,877 284,893 2,510 57,755
test 6,182,099 286,285 2,526 57,727

Table 4.3: Main statistics for the first 10% slice of the FDT corpus

min. word occurrence vocabulary OOV tokens OOV percentage
≥ 1 459,454 0 0%
≥ 9 155,024 697,397 0.066%

Table 4.4: FDT corpus vocabulary after replacing rare word with OOV tokens.

In this project the original preprocessing script1 was applied to recreate the
dataset. Table 4.1 summarizes the key statistics.

4.1.2 Large-scale financial domain text corpus

The large-scale financial domain text (FDT) corpus is a closed-sourced, pro-
prietary dataset provided under licenses by an industry sponsor. It contains
conversational English speech that was created from transcribed meetings. It
is approximately 60 times larger than Text8 and has a maximum vocabulary of
∼ 500,000 words. A large portion of the vocabulary is comprised of proper nouns
and includes many specialized terms from the financial domain. In a preprocess-
ing step words occurring less than 9 times within the training split were replaced
by a special OOV token (see Table 4.4).

The dataset was divided into separate training, validation and test sets ac-
1https://github.com/facebookarchive/SCRNNs/blob/master/data/makedata-text8.sh

https://github.com/facebookarchive/SCRNNs/blob/master/data/makedata-text8.sh
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cording to standard practice. Table 4.2 summarizes the main statistics for each
split. In addition, a smaller version of the corpus was created using the first 10%
of the training, validation and test files (see Table 4.3).

4.2 Preprocessing

A preprocessing stage transformed all text content into an low overhead format
suitable for fast loading into the Tensorflow implementation. A first pass scanned
the text data and counted each word occurrence. A unique ID was assigned
to each word where more frequent words received lower IDs. A second pass
translated words into a sequences of IDs where infrequent words below a set
threshold were replace with the OOV token. Each new line in the original text
was interpreted as a sentence boundary.

Finally, the ID sequences were partitioned into batches and stored in a Ten-
sorflow specific file format2. Each batch contains the next 20 time steps of 128
sentence streams. Each sentence was randomly assigned to one of the 128 streams
where sentences were separated by the end-of-sentence (EOS) token. No addi-
tional padding was inserted. To simplify program logic, the target outputs of the
last time step were also included in a batch.

4.3 Training framework

The preprocessing and training procedure follows closely the setup described in
Jozefowicz et al. (2016). All experiments were exclusively conducted with a batch
size of 128 streams each 20 tokens long. The shuffling was performed only once
per dataset and the resulting batches were stored permanently. Hence, the batch
sequence stayed constant for each experiment and training epoch. The LSTM
hidden state was set to zero at the start of each epoch. After each batch the
final LSTM hidden state was transfered to the consecutive batch. Such an ar-
rangement does not allow for learning long dependencies across multiple sentences
(Jozefowicz et al., 2016).

The models were implemented using Tensorflow as described in Chapter 3.
Training was performed using the built-in Tensorflow mechanism of unrolling
the RNN for a predefined number of steps. This is similar to truncated BPTT

2as TFRecords
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Hyper-parameter Text8 FDT
RNN 1x512 LSTM 1x2048 LSTM
Cell type BasicLSTMCell BasicLSTMCell

Forget bias 0 0
Embed. size 512 512
Optimizer Adagrad SDG
Learning rate 0.2 2
Learning rate decay 50% N/A
Uniform init. range 0.1 0.05
Gradient clipping 0.25 1.0
Dropout 25% 0%

Table 4.5: Hyper-parameters used for training models on the Text8 and FDT corpora.

(Zipser, 1990) but it should be noted that the Tensorflow implementation does not
propagate the gradients between batch boundaries (Jozefowicz et al., 2016). Thus,
the gradient of the first target word in a batch only flows to the first input and not
the inputs in the previous batch. In all experiments the LSTM layer was unrolled
for 20 time steps. Different optimizers were used for each corpus. Adagrad (Duchi
et al., 2011) was used for training on the small Text8 corpus whereas plain SGD
without momentum was used for the FDT corpus. In both cases gradient clipping
was applied. The learning rate was reduced every time the validation perplexity
did not decrease between training epochs on Text8. Regularization was added
using dropout (Srivastava et al., 2014) before, between and after each LSTM
layer (Zaremba et al., 2014). Weight matrices were initialized using a uniform
distribution. A preliminary exploration phase explored various hyper-parameter
settings. Table 4.5 specifies the chosen values used in the subsequent experiments.

At the end of each epoch the perplexity was measured on a separate held-out
validation dataset. The models were evaluated once on the test set after training
for a predefined number of epochs. In the case of Text8 no test set was available.
On the large FDT corpus full epochs were subdivided into smaller units where
10 and 100 pseudo epochs are equivalent to a full epoch of training on the 10%
slice and the full FDT corpus, respectively.

All models were trained using a single GPU. The majority of experiments
was performed on an NVIDIA GeForce GTX 1080 GPU with 8GB of memory.
Long running experiments on the full FDT corpus were put on an NVIDIA Tesla
K80 GPU with 12GB of memory.



Chapter 5

Experiments and discussion

The following sections list the main experiments that were carried out during
this project. Each section first describes the research objective and experimental
method in more detail and is followed by a presentation of the results and further
discussion.

5.1 Adaptive softmax

One of the main objectives of this work is to reproduce the results in Grave
et al. (2016) and investigate if adaptive softmax is a viable and possibly better
alternative to sampling methods. The ideal method must achieve a considerable
speed up while having similar accuracy to full softmax. The following experi-
ments aim to establish the effect of various properties of the adaptive softmax
method including the number of clusters, shortlist and cluster sizes, projection
matrices and the influence of vocabulary size. Two key performance indicators
measured the above criteria: training throughput in words per second (WPS)
and generalization error estimated by validation and test set perplexity.

5.1.1 Training speed benchmarks

Grave et al. (2016) defined the theoretical cost of adaptive softmax with different
cluster sizes. The following experiments were designed to measure the actual
training speed observed with a complete Tensorflow implementation.
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Figure 5.1: Adaptive softmax training speed in relation to shortlist size and number
of tail clusters. The cluster dimensions have been tuned only for training speed and
not model accuracy. Experiments were repeated with different vocabulary sizes.

5.1.1.1 Method

An extensive grid search covered most combinations of shortlist and tail cluster
sizes up to 5 tail clusters. Additional experiments investigated the effect of pro-
jection matrices on the throughput. Models were trained with the standard setup
on Text8 and variations of FDT with different vocabulary sizes. The achieved
training speed was measured by the elapsed wall time required to train each model
for a single epoch. In the case of FDT a single pseudo epoch was used.

5.1.1.2 Results and discussion

The left plot in Figure 5.1 shows the training speed of adaptive softmax with
a single tail cluster as a function of the shortlist size. The training speed peaks
with shortlist sizes around 2500 and 6000 words for the small and large vocabulary
corpora, respectively. This corresponds to only a tiny fraction of the respective
vocabularies (∼ 5% and ∼ 3%). The overall trend matches the results reported
by Grave et al. (2016). Similar plots with multiple tail clusters were omitted for
brevity as they showed similar outcomes preferring non-linearly increasing tail
cluster sizes. The right plot in Figure 5.1 summarizes the maximum training
throughput in WPS that could be achieved as a function of the number of tail
clusters. The switch from the full to adaptive softmax yields a substantial speed
up whereas the effect of adding additional tail clusters is not as pronounced,



Chapter 5. Experiments and discussion 46

0 10000 20000 30000 40000
shortlist vocab size

0

10000

20000

30000

40000

co
st

Theoretical cost for adaptive softmax with 1 tail cluster

1/x0.5

1/x0.75

1/x1.0

1/x1.5

FDT
Text8
Uniform

Figure 5.2: Theoretical cost of adaptive softmax with a single tail cluster for different
distributions. The crosses mark the optimal shortlist size.

especially for small vocabulary corpora.
The plots in Figure 5.1 indicate that the speed up of adaptive softmax is af-

fected by the vocabulary size. The achieved speed up decreases steadily for FDT
versions with larger vocabularies. But comparing the throughput on Text8 and
the similarly sized FDT (43656) version suggests that not only the vocabulary
size but also the nature of the corpus has an influence on training speed. Further
investigation discovered that the performance of adaptive softmax is dependent
on the unigram word distribution in the corpus. Corpora with unigram distri-
butions skewed towards the most frequent words achieved higher speed ups as
the probability mass of words included in the shortlist is increased. Figure 5.2
plots the theoretical cost (Grave et al., 2016) of adaptive softmax as a function of
the shortlist size using various unigram probability distributions. Crosses mark
the optimal shortlist size. Zipf’s distribution P (rank) ∝ 1

rankn with different n
was chosen as it allows to easily vary its skewness. The effect of higher n allows
to reduce the shortlist size thus reducing the amount of computation. In the
extreme case of a uniform distribution the optimal shortlist size contains exactly
half of the vocabulary. As the top ranked words become more and more frequent
the optimal shortlist size is decreasing. Figure 5.7 also includes the Text8 and
FDT corpora. The vocabulary in the FDT corpus is domain specific and includes
many proper nouns that occur only a few times. This results in a large flat tail
and is a better match for adaptive softmax than Text8. Hence, adaptive softmax
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Figure 5.3: Adaptive softmax training speed in relation to the projection factor.

appears well suited for speeding up training of large vocabulary corpora including
many infrequent words.

Finally, Figure 5.3 shows the effect of tail cluster projection matrices on the
training speed. A reduction of parameters in the tail cluster weight matrices
results in larger speed ups but shrinking the dimensionality by a factor of more
than 4 (dt = d

4) has no beneficial effect on the throughput. This empirical result
is in line with the observation that narrow matrix multiplications are not efficient
on GPUs (Grave et al., 2016) .

5.1.2 Generalization error

The motivation behind many alternative softmax implementations is the reduc-
tion of required computation compared to the full softmax. But any speed up
must be carefully weighted against possible loss of accuracy. The following ex-
periments investigate the convergence characteristic of adaptive softmax on the
Text8 and large-scale FDT corpora.

5.1.2.1 Method

To measure the impact of hyper-parameters like cluster sizes and tail projection
factors on the generalization error the models were now trained for 30 and 2
epochs on the Text8 and FDT corpora, respectively. At this point no substantial
improvement in validation perplexity was measurable. As some of the Text8
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Figure 5.4: Comparison of adaptive softmax with different shortlist sizes on Text8.

results in the literature were reported after 5 epochs of training (Grave et al.,
2016; Shen et al., 2017), the initial experiments were also stopped after 5 epochs.
But additional experimentation revealed that more than 30 epochs are required
to reach convergence on Text8. Furthermore, the results after 5 epochs are not
necessarily representative of the ranking between methods after convergence.

Training until full convergence requires substantial resources and an exhaus-
tive grid search was not feasible. In particular, only few experiments on the
large-scale FDT corpus were possible within the available time frame. The stan-
dard training setup outlined in section 4.3 was used. The WPS training speed
was calculated by averaging the training times of each epoch.

5.1.2.2 Results and discussion

Figure 5.4 summarizes the training speed and perplexity of adaptive softmax with
2 tail clusters on the Text8 corpus. Training speed shows a similar pattern as the
previous benchmarks. The highest throughput was achieved with a 1000 word
shortlist (∼ 2.2%). The optimal split point between the two tail clusters depends
on the actual shortlist size but in general the first tail cluster containing more
frequent words should have a smaller size. Unfortunately, Figure 5.4 shows that
the optimal cluster size with regard to training speed does not yield the optimal
perplexity. Here, a shortlist of 4000 words (∼ 9%) obtains substantially lower
perplexity while still having a high throughput. Large shortlists also yield good
generalization performance but loose a lot of the speed advantage. The accuracy
of the model jumps between various cutoff points which might be caused by vari-
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Figure 5.5: Comparison of adaptive softmax with different projection factors on Text8.

ance from random initialization. Another explanation is that the method itself
is somewhat sensitive to the exact assignment as it is the case for hierarchical
softmax (Morin and Bengio, 2005; Mnih and Hinton, 2009). Thus, the optimal
split point needs to be determined experimentally on a case by case basis. Never-
theless, assigning approximately half of the vocabulary to the last cluster seems
to work well independent of the shortlist size.

Figure 5.5 shows the impact of applying projection matrices to reduce the
dimension dt of the tail cluster weight matrices. For comparison, multiple models
with different dropout rates were trained as the reduction in the number of pa-
rameters results in a higher model bias. Surprisingly, only the introduction of the
projection matrices (projection factor ≥ 1) has a negative impact on validation
perplexity. Halving the number of parameters in the tail clusters through pro-
jections does not have a clear effect on accuracy but results in a 10% speed up.
The only exception were the models with 50% dropout. This suggests that the
model might contain too many parameters. These findings also agree with Chen
et al. (2015a). Making less accurate predictions for rare words has a marginal
effect on the overall perplexity as the probability mass of words assigned to the
tail clusters is small.

Table 5.1 lists the results obtained after training on the large-scale FDT corpus
for full 2 epochs. As previously seen on the smaller Text8 corpus, training speed
is increased with the number of tail clusters. But unfortunately accuracy also
decreases with the number of tail clusters. There is a substantial gap in perplexity
between the models with 3 and 4 tail clusters. Models with fewer tail clusters do
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Cluster cutoff points Train WPS1 Valid PPL Test PPL
5000, 155026 6389 36.23 36.029

4000, 40000, 155026 7496 36.257 36.081
2000, 25000, 50000, 155026 8341 36.507 36.346

601, 5000, 15000, 50000, 155026 9158 37.582 37.412

Table 5.1: Effect of the number of tail clusters on the validation and test accuracy on
the large-scale FDT corpus. Perplexity values reported after training for 2 full epochs.

not show further perplexity gains but have a larger computational cost.

5.2 Sampling methods

The objective of the following experiments is to establish competitive baselines
that will be used subsequently to compare and contrast adaptive softmax. The
two sampling methods being investigated are importance sampling and NCE.
Reasonable values for common hyper-parameters were established in prelimi-
nary experiments. The following experiments investigate the effect of hyper-
parameters specific to sampling methods on the two key performance indicators,
training speed and validation accuracy. These include, amongst others, the choice
of proposal distribution and sample set size. The experiments were limited to the
Text8 corpus as training the models until convergence on the large-scale FDT
corpus would require too many resources.

5.2.1 NCE normalization constant

Section 3.3 detailing the built-in Tensorflow NCE implementation highlighted the
inability to specify the normalization constant Z thus effectively hard-coding it
to 1. Results in the literature are not conclusive about the correct value to use
for Z (Mnih and Teh, 2012; Chen et al., 2015b). Thus, an important questions
is whether the original Tensorflow implementation is justified in hard-coding the
normalization constant to 1.

1Using NVIDIA Telsa K80 GPU
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Figure 5.6: Comparison of NCE with different values of the normalization constant
Z on Text8 with 25% dropout.

5.2.1.1 Method

This work extended the original NCE implementation with support for different
normalization constants Z. A grid search was conducted to find the optimal
value for Z with regard to validation set perplexity. Each model was trained for
30 epochs on the Text8 corpus using the standard training setup.

5.2.1.2 Results and discussion

Figure 5.6 shows the validation perplexity after training for 30 epochs as a func-
tion of different normalization constants Z. The plot shows that values less than
20000 are suboptimal, especially values around 1. These results are similar to
Chen et al. (2015b) where Z = e9 ≈ 8103 was reported as a good choice across
various corpora. The trend in Figure 5.6 indicates that larger normalization
constants result in lower perplexity apart from the outlier around Z = 50,000.
Further work is required to establish if this is due to initialization noise or if
there exists an underlaying cause. In subsequent experiments using the NCE
method the normalization constant Z was fixed to 40,000 if not stated otherwise.

5.2.2 Proposal and noise distributions

Previous research suggested that the choice of the proposal or noise distribu-
tion has an impact on convergence (Bengio and Senécal, 2008; Gutmann and
Hyvärinen, 2010; Labeau and Allauzen, 2017). Tensorflow offers built-in imple-
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Figure 5.7: Plots of different proposal distributions Q including the unigram Text8
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Figure 5.8: Comparison of the distortion and interpolation techniques to boost the
tail of the Text8 unigram distribution.

mentations for sampling from unigram, log uniform and uniform distributions
(see Figure 5.7 and Table 3.1). Further, a distortion to the unigram distribu-
tion Q(w) ∝ PUnigram(w)α can be applied (Mikolov et al., 2013a). The left-hand
plot in Figure 5.8 illustrates the effect of varying distortions applied to the Text8
unigram distribution. In all cases there is a further choice between sampling
with and without replacement. The following experiments attempt to answer the
question if there are specific choices that offer an advantage in conjunction with
importance sampling and NCE.
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Figure 5.9: Comparison of various distorted unigram noise distributions on Text8 with
25% dropout.

5.2.2.1 Method

The standard training setup was used to train models on the Text8 corpus for 30
epochs. Each experiment initialized a different candidate sampler object which
was then passed to the importance sampling and NCE loss functions. The in-
vestigation was constrained to the previously introduced context independent
proposal distributions. Context dependent proposal distributions could not be
used due to the constraints of the GPU based batch implementation. Sampling
with replacement and a sample set size of 1280 were used in all experiments.

5.2.2.2 Results and discussion

Figure 5.9 shows the validation set perplexity as a function of the proposal distri-
bution for importance sampling and NCE with various choices of the normaliza-
tion constant Z. An immediate conclusion is that the uniform distribution is a
poor choice for both importance sampling and NCE. Otherwise, the exact shape
of the unigram distribution has a smaller effect on the final perplexity. Good
performance is achieved as soon as the proposal distribution begins to resemble
Zipf’s law (Zipf, 1949). Only the NCE model with normalization constant Z = 1
showed a more pronounced sensitivity to the distortion α. A recent empirical
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Figure 5.10: Effect of interpolating unigram and uniform proposal distributions on
the Text8 corpus with 25% dropout.

study (Labeau and Allauzen, 2017) using the built-in Tensorflow NCE imple-
mentation reported that using distortion with low α improved the convergence
compared to the unmodified unigram distribution. Labeau and Allauzen (2017)
attribute this to boosted probabilities of rare words. In Figure 5.9 this effect can
only be weakly observed for Z = 1 (which was shown to be used implicitly in
tf.nn.nce_loss). The results here indicate that the unigram distortion becomes
less important with larger normalization constants Z. The suggested hypothesis
is that predictions for rare words tend to be inaccurate and noisy and increasing
Z in Equation 2.44 helps to smooth out potential spikes while allowing to use
the original unigram distribution which is closer to the underlying data. Future
work applying the metrics developed in Labeau and Allauzen (2017) to NCE im-
plementations supporting other normalization constants could provide additional
insights.

Inspired by the above results, this work proposes an alternative method for
boosting the tail of the unigram distributions. A simple linear interpolation of the
unigram and uniform distributions raises the probability of the lowest rank words
without substantially altering the rest of the distribution. The new probability
is obtained by

Q(w) = λPUnigram(w)+(1−λ)PUniform(w) (5.1)
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where λ is the interpolation weight. The right hand plot in Figure 5.8 contrasts
the effect of linear interpolation and unigram distortion on the Text8 corpus.

Figure 5.10 shows the results of preliminary tests using importance sampling
and different interpolation weights λ. A small perplexity gain can be achieved by a
minimal boost of the most rare words using λ= 0.95. A bigger gain was realized
by starting off training with a lower interpolation weight around λ ≈ 0.8 and
gradually increasing λ towards the unigram distribution with each training epoch.
Other research reported that switching to a bigram distribution did not yield
good results (Bengio et al., 2003b). In future work additional experiments should
measure the effect of interpolated distributions on large vocabulary corpora and
on the NCE method.

5.2.3 Sample set size

The sample set size is a crucial hyper-parameter of the importance sampling and
NCE methods. It controls the trade-off between the training and convergence
speed. The goal of the following experiments is to quantify this trade-off and
determine good baseline values.

5.2.3.1 Method

The standard training setup was used to train models on Text8 for 30 epochs.
Additionally, a few experiments using importance sampling were carried out on
the 10% slice of the FDT corpus and trained for half an epoch.

5.2.3.2 Results and discussion

Figures 5.11 and 5.12 summarize the results of training importance sampling and
NCE models with different sample set sizes. The left-hand side plots shows that
the training speed is monotonically decreasing with larger sample set sizes. The
right-hand side plots show the achieved validation set perplexity on the Text8 and
FDT corpora. For Text8 a sample size around 1000 is a good trade-off between
training speed and model accuracy. For the larger vocabulary FDT corpus the
sample size needs to be doubled to achieve better accuracy. In general, increasing
the sample size always decrease training speed but shows diminishing perplexity
gains for large sample sets.
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Figure 5.11: Comparison of importance sampling and NCE with different sample set
sizes on the Text8 corpus with 25% dropout.

The NCE plots in Figure 5.11 suggest that increasing the sample set size can
sometimes decrease the accuracy. This finding contradicts the theory which says
that the NCE gradient becomes the maximum likelihood gradient with unlimited
noise samples (Mnih and Teh, 2012). For NCE with normalization constant
Z = 40000 the optimal sample size is 1280 though this size was also used to
determine the optimal normalization constant Z.

A closer inspection of the validation perplexity over time uncovered that some
of the models did not fully converge after 30 epochs, especially for Z = 1. But
this does not fully explain the observed relationship between sample set size and
normalization constant for Z = 40000. Equation 2.44 hints that increasing the
number of noise samples can be seen as increasing the normalization constant
but in the context of the NCE loss (Equation 2.37) this is the correct behavior.
Nevertheless, it highlights a possible problem with using NCE in batch mode
training on GPUs where the same noise samples are shared across all examples.
In this case there are only |S| unique samples whereas the term P (Y = false|v,H)
is included |B| × |S| times in the NCE loss. In a simplified scenario where the
context H is assumed to be equal for all batch examples it leads to

NLL(θ|B) = −
|B|∑
i=1

logP (Y = true|wi,H)−|B|
∑
v∈S

P (Y = false|v,H). (5.2)

As NCE considers target and sampled words separately, words in the noise sample
v ∈ S receive a disproportionate amount of attention. On the other hand, the
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Figure 5.12: Comparison of importance sampling with different number of samples
on the 10% slice of the FDT corpus.

importance sampling objective in Equation 2.29 combines the target word and
noise samples which could make it less susceptible to sharing of samples. A related
argument was made in Jozefowicz et al. (2016) where importance sampling is
interpreted as a variant of NCE with multi-nominal classification. Further work
is required to substantiate this claim.

5.3 Comparison of alternative softmax methods

The following sections compare and contrast the adaptive softmax method to
other full softmax alternatives including importance sampling and NCE. The
main criteria are as before training speed and achieved validation set accuracy.
Additional considerations are the number of trainable parameters, total memory
usage and performance on the extrinsic task of n-best list re-scoring.

5.3.1 Trainable parameters, memory consumption and train-
ing speed

The memory available on modern GPU cards is limited and 8 to 12 GB is the
current norm for standard consumer hardware. Therefore, an important consid-
eration is the amount of memory required to train a model. If it exceeds the
capacity of the GPU card, a large penalty is paid for transferring data from and
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to host memory. In other cases the model will fail due to out of memory errors
and training needs to be split across multiple cards. The following experiments
measure the number of parameters, the amount of memory used and the training
speed with different vocabulary sizes.

5.3.1.1 Method

The profiling tool tfprof was used to analyze the number of trainable parame-
ters and memory usage in various parts of the model. tfprof is included in the
Tensorflow source code2 but has to be compiled manually. It acts on additional
profiling meta-data that has to be collected during a Tensor flow session. The
meta-data can be enabled using the following code:

run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)

run_metadata = tf.RunMetadata()

sess .run(tensors, feed_dict ,options=run_options, run_metadata=run_metadata)

The experiments were performed on variations of the 10% FDT slice with different
vocabulary sizes. The profiling was enabled for an arbitrary batch in the middle
of the first pseudo epoch and serialized to disc. Later, various statistics were
generated with tfprof.

5.3.1.2 Results and discussion

Figure 5.13 compares the number of trainable parameters and memory usage of
each method. Importance sampling (as well as NCE) uses the full sized Rd×|V|

output embedding matrix as only the gradient computation is approximated.
Thus, the sample set size has no influence on the number of parameters. In
comparison, the projection matrices before each tail cluster in adaptive softmax
achieve a huge reduction of trainable parameters. The right-hand side shows the
amount of memory required during computation of the output loss. Here, the
number of samples linearly increases the cost of the importance sampling loss.
The memory usage also increases with vocabulary size due to the growing output
embedding matrix. This is also true for adaptive softmax, but projections in the
tail clusters reduce the slope substantially.

Figure 5.14 shows a breakup of the memory usage in each layer of the RNN
language model as well as the overall total. The embedding layer grows linearly

2https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/profiler/
README.md

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/profiler/README.md
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/profiler/README.md
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Figure 5.13: Comparison of number of parameters and memory usage in output layer.
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Figure 5.14: Comparison of memory usage of various methods and vocabulary sizes.
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Figure 5.16: Comparison of alternative softmax methods on the Text8 corpus.

with the vocabulary size whereas the memory usage in the LSTM layer remains
constant. The SGD optimizer has the highest memory consumption in both cases.
Overall, switching from importance sampling to adaptive softmax in the output
layer can half the total memory consumption of the model for large vocabulary
sizes.

Figure 5.15 shows the relationship between training speed and vocabulary
size. Importance sampling computes just the logits for the target and sampled
words. Thus, the training speed is only effected by the sample set size. But larger
vocabularies might require a larger sample set size to achieve optimal perplexity
(see section 5.2.3.2). On the other hand, adaptive softmax has to compute the
logits in at least one cluster. The sum of the cluster sizes must always match
the vocabulary size and thus the average amount of logits computed by adaptive
softmax will grow with the vocabulary size. For models with large LSTM layers
this slow down is masked by the additional overhead. For a large vocabulary of
200,000 words adaptive softmax offers a similar speed up as importance sampling
with 2000 samples.

5.3.2 Convergence and perplexity

This experiment compares the convergence speed and achieved perplexity of var-
ious alternative softmax methods. The main objective is to determine if the
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alternative methods can match the perplexity of full softmax. Other important
factors are the convergence speed and sensitivity to hyper-parameters.

5.3.2.1 Method

The standard training setup is used where initial models using the Text8 corpus
were trained for 30 epochs with a 25% dropout rate. Later, it was discovered
that a dropout rate of 40% yielded lower perplexity and the experiments were
repeated and trained for 50 epochs.

Most FDT models were trained on the 10% slice for 5 or 10 full epochs. The
methods were compared against each other once with the same global hyper-
parameter settings (SGD with η = 2 and no dropout) and a second time with
hyper-parameters that were adjusted separately for each method 3 The final
evaluation used the entire large-scale FDT corpus and was run on an additional
machine with an older generation NVIDIA Tesla K80 GPU for 2 full epochs.

5.3.2.2 Results and discussion

Figures 5.16a and 5.16b illustrate the convergence of each method on the Text8
corpus using dropout rates of 25% and 40%, respectively. Table 5.2a reports the
validation set perplexity at the end of the training period as well as the averaged
training speed in WPS. The main observation is that adaptive softmax (without
projection matrices) and importance sampling achieve similar competitive results.
The speed ups attained by each method are noticeable with the adaptive softmax
version without projection matrices being ∼ 16.5% slower than importance sam-
pling. In the scenario with 40% dropout NCE could not match the perplexity of
full softmax.

Figures 5.17a and 5.17b show a similar comparison using models trained on
a 10% slice of the FDT corpus. In the scenario with shared hyper-parameters
adaptive softmax converged faster and achieved a lower perplexity than the other
models. This could be due to the reduced number of trainable parameters and its
regularization effect. Thus, in follow up experiments dropout was added to the
other methods. Figure 5.17b plots the convergence using dropout and a learning
rate schedule. With the additional regularization importance sampling reached
the perplexity of adaptive softmax after 10 full epochs. These results confirm

3Due to the available computing resources no extensive grid search was possible.
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Figure 5.17: Comparison of alternative softmax methods on a 10% slice of the FDT
corpus. 10 pseudo epochs correspond to one full epoch over the training set.
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Method WPS PPL
Full softmax 22110 129.51
Adaptive softmax w/o projections 63256 129.33
Adaptive softmax 71203 132.69
Importance sampling 75749 129.17
NCE 78182 131.02

(a) Text8 corpus with 40% dropout

Method WPS
Full softmax 3897
Adaptive softmax 21929
NCE 22188
Importance sampling 23304

(b) FDT corpus

Table 5.2: Comparison of training speed of alternative softmax methods.

that adaptive softmax and importance sampling are both capable of matching
the perplexity of the full softmax. Further, Table 5.2b shows that both methods
achieve similar training speed improvements. Interestingly, the dropout did not
have a clear impact on NCE which still lies 5 perplexity points above adaptive
softmax after half an epoch. Figure 5.18 shows the converge over 2 epochs on full
FDT corpus.

A hypothesis was stated in section 5.2.3.2 that the standard NCE loss is not
well suited to batch mode GPU implementations that share noise samples. This
could provide one possible explanation for the overall discrepancy between im-
portance sampling and NCE observed in the experiments. Retrospectively, it
required extensive experimentation during this work to achieve reasonable re-
sults with NCE. This might also hint at a higher sensitivity to hyper-parameter
choices.

A surprising result is that adaptive softmax with projection matrices did not
achieve good results on Text8 but was the best method on the large-scale FDT
corpus. As argued in section 5.1.1.2 the high probability mass of frequent words in
FDT favors the shortlist in adaptive softmax. In the case of importance sampling
a constant sample set size will cover each word less often due to the increased
vocabulary size. On the other hand, increasing the sample set size will decrease
the training throughput. Future work should further investigate the effect of
vocabulary size and corpus on the accuracy of importance sampling.

5.3.3 N-best list re-scoring

Measuring validation or test set perplexity is an easy and efficient way to estimate
the generalization error. This is an important intrinsic measure but in practice
language models are integrated into larger ASR or MT systems to improve their
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quality. In ASR the most important metric is the word error rate (WER) indi-
cating the accuracy of output transcriptions. This experiment aims to establish
the effect of alternative softmax output methods on this extrinsic measure.

5.3.3.1 Method

For a series of short utterances an n-best list of possible transcriptions has been
provided. The n-best lists were extracted from a commercial ASR system trained
on a large quantity of data from a variety of financial domains. For each utterance
up to 10 alternative decodings were provided. These alternative sentences were
fed to the previously trained language models on the FDT corpus and the log
probability was computed as the sum over the words in each sentence. This
was performed in a batched, continuous stream where sentences were separated
by the EOS token. A script selected the best candidate transcription for each
utterance according to the log probability. Finally, the output was compared to
the reference transcriptions using the tool sctk which calculated an overall WER.

It should be noted that it was not expected to beat the original ASR system
which was trained on a much larger quantity of data. Additionally, there is some
mismatch between the vocabularies in the FDT corpus and the ASR system which
causes additional OOV words.

5.3.3.2 Results and discussion

Table 5.3 shows the WER achieved on the down-stream re-scoring task for differ-
ent models. Both adaptive softmax and importance sampling resulted in similar
WERs. It is unclear if the small difference between adaptive softmax and im-
portance sampling is statistically significant. As mentioned above it was not
expected for the FDT language models to improve upon the ranking proposed by
the ASR system.

5.4 cuDNN LSTM benchmark

Although the output softmax layer is the main computational bottleneck (Ben-
gio et al., 2003a), a large multi-layer LSTM network can also slow down training
times. As described in section 3.5 NVIDIA offers a GPU optimized implemen-
tation of LSTM networks as part of the NVIDIA cuDNN library. The following
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Method Test PPL WER
1-best N/A 21.6
Adaptive softmax 38.4 21.9
Importance sampling 38.2 22.0

Table 5.3: Re-scoring of n-best lists after training for 2 full epochs on FDT
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Figure 5.19: Comparison of BasicLSTMCell and CudnnLSTM convergence.

benchmarks attempt to quantify the speed up that can be obtained by replacing
the basic Tensorflow LSTM implementation with the optimized cuDNN library.

5.4.1 Method

To measure the difference in training throughput BasicLSTMCell was replaced
by CudnnLSTM in the Tensorflow implementation that was used to run all
previous experiments. As before, the throughput was measured by timing the
training of one pseudo epoch. The benchmarks were run using a NVIDIA GeForce
GTX 1080 GPU.

5.4.2 Results and discussion

Tables 5.4a and 5.4a compares the training throughput achieved with the
BasicLSTMCell and CudnnLSTM implementations. Switching to the
CudnnLSTM implementation resulted in an WPS increase of 35% and 45% with
the standard Text8 and FDT setup, respectively. In other tests a two-fold speed
up of larger LSTM layers was observed. No difference in convergence between
the two implementations could be observed (see Figure 5.19).



Chapter 5. Experiments and discussion 66

1×512 LSTM 1×2048 LSTM
Implementation Text8 SDG FDT SGD

Basic LSTM 84,000 22,000
cuDNN LSTM 115,000 32,000

(a) Adaptive softmax training

1×512 LSTM 2×2048 LSTM
Adagrad SGD Adagrad SGD

78k 102k 8k 9k
76k 133k 13k 16k

(b) NCE training on Text8

Table 5.4: Comparison of training speed in WPS using the standard BasicLSTMCell

and the optimized CudnnLSTM LSTM implementation.

Unfortunately, there are several caveats regarding the CudnnLSTM imple-
mentation. It features an incompatible application programming interface (API)
compared to the standard RNN cells available in the tf.contrib.rnn package.
CudnnLSTM represents an entire multi-layer LSTM network as a closed unit
without any possibility of customization. The model parameters are stored as a
single nontransparent tensor. The parameter tensor size is determined at run-
time whereas many Tensorflow features require static shape information during
construction of the computation graph. These include tf.get_variable as well
as per-weight adaptive optimizers like Adam and Adagrad. There is some re-
cent debate about the benefit of adaptive optimizers (Wilson et al., 2017) but
a workaround4 exists if training with SGD is not an option. The system archi-
tecture dependent tensor shape can be determined in a separate run with SGD
and then hard-coded as a constant. Table 5.4b compares the WPSs throughput
obtained with Adagrad and SGD on Text8.

Another obstacle making the transition to CudnnLSTM possibly more dif-
ficult is the requirement of time-major encoded batches. Finally, it has to be
reported that using dropout values other than 0.0 resulted in uninformative error
messages. CudnnLSTM is viable option if the main concern is to maximize the
speed of standard models. Within research the above restrictions will limit its
applicability.

4https://github.com/tensorflow/tensorflow/issues/6620

https://github.com/tensorflow/tensorflow/issues/6620
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Conclusion

This project investigated alternative softmax output methods and LSTM layer
implementations in the context of neural language models. A particular emphasis
was put on methods that accelerate training with large vocabulary corpora. An
extensive literature review summarized the research in this field.

An empirical study compared the recently proposed adaptive softmax method
with importance sampling and NCE. The performance of the selected methods
was evaluated on two corpora of varying sizes. Text8 is a small to medium corpus
and the FDT corpus served as an example of a large corpus.

All 3 methods provided substantial training speed improvements over the full
softmax. The main differences between the methods were convergence speed,
number of parameters, memory consumption and sensitivity to hyper-parameter
choices. Adaptive softmax achieved the lowest perplexity on the large-scale FDT
corpus though on the smaller Text8 corpus only a version without projection
matrices matched the accuracy of the full softmax. It was shown that skewed
frequencies of the top ranked words decreases the theoretical cost of adaptive
softmax. When using projection matrices adaptive softmax has vastly fewer pa-
rameters than full softmax and the sampling methods. An ASR re-scoring task
showed no difference between models trained with adaptive softmax and impor-
tance sampling. Profiling showed that importance sampling required twice the
amount of memory than adaptive softmax for specific model parameters during
training.

Importance sampling could match the accuracy of full softmax in all experi-
ments. NCE showed a high sensitivity to the chosen normalization constant. For
the standard setup on Text8 an extensive grid search was able to tune NCE to

67
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achieve validation set perplexity on par with full softmax. But with increased
dropout and in other experiments NCE did not match the low perplexity values
of the other methods. The sharing of noise samples within a batch was pointed
out as a possible cause. Future work is warranted to confirm this effect and inves-
tigate other explanations. In other experiments a gradual shift during training
from uniform to unigram proposal distribution showed some promising results.

A detailed study of existing Tensorflow implementations revealed potential
pitfalls and limitations. The choice between sampling with and without re-
placement changes the way the proposal distribution is calculated. In Tensor-
flow 1.2 only sampling without replacement leads to the actual NCE loss in
tf.nn.nce_loss. Further, the implementation assumes a normalization constant
Z = 1 which was shown to yield suboptimal results on the studied corpora. An
open-source adaptive softmax implementation was augmented and a new method
was devised to calculate the logits over the entire vocabulary. Finally, bench-
marks with the highly optimized cuDNN LSTM implementation showed consid-
erable speed ups for large LSTM networks but various restrictions can make it
difficult to integrate into existing code.

The experimental results highlighted that it is crucial to train models until
convergence before claims about the model’s final accuracy can be made. The
large impact of hyper-parameter choices confirms that extra care needs to be
taken before drawing firm conclusions from empirical results Melis et al. (2017).

In future work the computational overhead of adaptive softmax might be
decreased further with a native GPU implementation fusing multiple Tensorflow
ops. Another potential optimization is to precompute separate batch tensors for
each tail cluster in the preprocessing step. This avoids repeated computation of
boolean masks during the training. Choosing the adaptive softmax cluster sizes
involved a trade-off between training speed and model accuracy. Testing various
settings on large corpora is often not feasible and additional work is required to
devise good guidelines. Finally, there has been little or no work investigating the
effect of adaptive softmax on extrinsic tasks in ASR and MT systems.
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