
Context-Aware Learning

with

Stochastic Variational Inference

Conor Durkan

Master of Science by Research

Centre for Doctoral Training in Data Science

School of Informatics

University of Edinburgh

2017

Abstract

Stochastic gradient variational methods have provided a principled way to marry the

topics of deep learning, statistical inference, and probabilistic graphical models. However,

much of the research in this area has thus far restricted itself to relatively simple graphical

models, based on the original variational autoencoder with a single latent variable. In

this thesis, we present an overview of the two pillars of these modern methods, variational

inference and deep learning. We demonstrate how a confluence of these two ideas has

led to the widely used stochastic gradient variational Bayes framework. We then utilize

the flexibility of stochastic gradient variational Bayes to propose a novel framework

featuring a dynamic graphical model with several hierarchical latent variables. Through

the introduction of collections of datasets with multiple contexts, we develop the context-

aware learner, a model suited to identifying patterns across datasets in an unsupervised

fashion, which enjoys an exponential increase in representational ability for a linear

increase in context count. We show that the theory readily extends to models such as

this which describe a meta-learning framework, and describe a fully unsupervised model

in full generality. Finally, we demonstrate effective learning in a weakly unsupervised

adaptation, using a hierarchy of categorical and continuous latent variables.

iii

Acknowledgements

Firstly, to all the supporters of and contributors to open source software around the

world, and to each individual who has left their mark on the enormous body of research

that comes before me: this thesis would not have been possible without you.

I would like to thank my supervisor Amos Storkey, for narrowing a broad and vague

curiosity, and suggesting that I focus on the papers I would like to have written.

Thanks to all the members of the CDT in Data Science, both students and staff. A

special thanks to Harri Edwards, for guidance above and beyond the call of duty, and

George Papamakarios, for his invaluable feedback.

To Fionnuala, who is always there.

Finally, and most importantly, thanks to my family: my parents and grandparents,

who’ve been on duty for almost twenty four years now, and my brother Donnchadh,

who bears me with great dignity. I am eternally grateful.

This work was supported in part by the EPSRC Centre for Doctoral Training in Data

Science, funded by the UK Engineering and Physical Sciences Research Council(grant

EP/L016427/1), and the University of Edinburgh.

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my

own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Conor Durkan)

v

Table of Contents

1 Introduction 1

1.1 The Challenge of Unsupervised Learning 1

1.1.1 A canonical example . 1

1.2 What is the motivation for unsupervised learning? 2

1.3 Our contribution . 2

1.4 Thesis Structure . 3

2 Inference and Variational Bayes 5

2.1 The Problem of Inference . 5

2.2 Navigating Intractibility . 6

2.3 Variational Inference . 7

2.3.1 Kullback-Leibler Divergence . 8

2.3.2 The Evidence (or Variational) Lower Bound 9

3 Deep Learning 11

3.1 Neural Networks . 11

3.2 Backpropagation . 12

3.2.1 Stochastic Optimization . 13

3.3 Model Architectures . 15

3.3.1 A Note on General Structure . 15

3.3.2 Fully Connected Networks . 16

3.3.3 Convolutional Networks . 16

3.3.4 More Complex Architectures . 18

3.4 Training Tools . 20

3.4.1 Initialization . 20

3.4.2 Normalization . 20

4 Stochastic Variational Inference 23

4.1 Phrasing Inference as Stochastic Optimization 23

vii

4.1.1 The Reparameterization Trick . 24

4.2 Model (The Variational Autoencoder) 25

4.2.1 An Intuitive Interpretation of the Lower Bound 26

4.3 Implementation . 27

4.4 Demonstrations . 27

4.4.1 Model Architecture . 27

4.4.2 Visualizing the Latent Space . 28

5 The Neural Statistician 31

5.1 Models . 32

5.1.1 Basic Model . 32

5.1.2 Full Model . 33

5.2 Implementation . 35

5.3 Demonstrations . 35

5.3.1 Clustering in the Context Space 35

6 The Context-Aware Learner 39

6.1 Model . 40

6.1.1 Theory . 40

6.1.2 A Weakly Supervised Alternative 42

6.2 Related Work . 42

6.3 Implementation . 43

6.3.1 Dealing with a Dynamic Generative Model 44

6.3.2 Categorical Reparamterization 44

6.4 Experiments . 45

6.4.1 Black & White MNIST . 45

6.4.2 Rotated MNIST . 48

6.4.3 The Fully Unsupervised Case . 49

7 Conclusion & Further Work 53

7.1 Our Contribution . 53

7.2 Improving the Current Model . 53

7.2.1 The Fully Unsupervised Case . 53

7.2.2 Exploring Data Sets . 54

7.2.3 Architecture . 54

7.2.4 Digging Deeper into the Lower Bound 55

7.3 Final Thoughts . 56

Bibliography 57

viii

A Supporting Results 63

A.1 Properties of KL Divergence . 63

A.1.1 Non-negativity . 63

A.1.2 Asymmetry . 64

A.2 Variational Lower Bound Derivations . 64

A.2.1 Variational Autoencoder . 64

A.2.2 Neural Statistician . 65

A.2.3 Context-Aware Learner . 68

A.3 KL Divergence for multivariate Gaussians 70

A.4 KL Divergence for Gumbel-Softmax . 72

B Miscellaneous 73

B.1 Nonlinearities . 73

B.1.1 Sigmoid . 73

B.1.2 Recitifed Linear Unit . 74

ix

List of Figures

1.1 k-means clustering . 2

3.1 Simple computational graph. 13

3.2 Demonstration of local receptive field . 17

3.3 Multi-layer convolutional neural network 18

3.4 Skip/residual connection . 19

4.1 Reparameterization trick . 24

4.2 Graphical model for variational autoencoder 26

4.3 Variational autoencoder latent space visualization 28

5.1 Graphical model for neural statistician basic model 32

5.2 Graphical model for neural statistician full model 33

5.3 Neural statistician context space clustering 36

5.4 Neural statistician contexts coloured by moment. 36

6.1 Graphical model for context-aware learner 40

6.2 Black & white MNIST samples . 46

6.3 Black & white MNIST sampling with context-aware learner 47

6.4 Black & white MNIST conditional sampling with context-aware learner 47

6.5 Rotated MNIST samples . 48

6.6 Rotated MNIST sampling using context-aware learner 49

6.7 Rotated MNIST conditional sampling using context-aware 50

6.8 Experimental metrics for fully unsupervised context-aware learner . . . 52

xi

Chapter 1

Introduction

Any sufficiently advanced technology

is indistinguishable from magic.

3rd law of Arthur C. Clarke

1.1 The Challenge of Unsupervised Learning

The field of machine learning has experienced unparalleled interest and growth in the

recent past. Machine learning explores algorithms which can learn from and make

predictions about data. Alongside two other main branches, supervised learning and

reinforcement learning, the problem of unsupervised learning is central to modern

machine learning research. In contrast to supervised learning, this task involves learning

from data without explicit labels, in order to extract the latent structure or distribution.

Since no labelling is provided, it is also difficult to formulate explicit evaluation metrics

by which to judge the performance of an unsupervised learning system. For these

reasons, designing models which learn effectively in an unsupervised environment is a

particularly difficult challenge.

1.1.1 A canonical example

Perhaps the simplest example of unsupervised learning is that of clustering some input

data into a number of groups. We assume each of our n data points belongs to one

of k groups. Figure 1.1 shows some synthetic data in the plane, generated from a

mixture of three Gaussian distributions. Once the number of clusters has been specified,

the k-means algorithm can be used to find a suitable clustering. Even in the plane,

computing the optimal solution is NP-hard [Mahajan et al., 2009]. In practice, heuristic

1

2 Chapter 1. Introduction

algorithms, such as the iterative approach of Lloyd’s algorithm [Kanungo et al., 2002],

are used to find an approximate solution.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(a)

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

(b)

Figure 1.1: The canonical example of unsupervised learning using K-means clustering.

(a) The data consists of samples in the plane from a mixture of Gaussians. (b) Given

K = 3, K-means provides a possible clustering of the data.

1.2 What is the motivation for unsupervised learning?

Of the three main branches of modern machine learning research, unsupervised learning

is arguably the closest to how humans learn, with a helping of supervision to accelerate

the process. Additionally, it does not require expensive labelling of data, which is both

time and cost prohibitive. Unsupervised models provide an extremely useful way to

derive meaning from unlabeled, unstructured data. In many ways, unsupervised learning

stands as the ultimate goal in the pursuit of intelligent machines.

1.3 Our contribution

In this thesis, we focus on one particularly interesting instance of unsupervised learning

in modern research, namely that of generative modeling using stochastic variational

inference. This topic has received considerable attention over the past few years.

Beginning with a background, our contributions are then as follows:

• We examine literature which has shown that stochastic gradient variational Bayes

and the variational autoencoding framework is very flexible, and extends naturally

to a meta-learning setting.

• We propose theory for a novel method with a view to context-aware learning.

1.4. Thesis Structure 3

• We implement a weakly supervised alternative as a first approximation, and look

towards a completely unsupervised version for future work.

1.4 Thesis Structure

Chapter 2 covers the basics of variational inference, and its uses in solving the general

problem of statistical inference. Chapter 3 provides a brief overview of the field of deep

learning as it applies to our uses. In Chapter 4, we tie the previous two topics together,

and outline stochastic variational inference. We also cover the influential variational

autoencoder, based on the theory introduced. In Chapter 5, we examine the neural

statistician model, an extension of the variational autoencoder, which demonstrates

meta-learning capabilities. In Chapter 6, we generalize this model to the context-aware

learner, giving a full theoretical description in the unsupervised case, before carrying

out experiments using a supervised version. Finally, Chapter 7 gives our conclusions,

and sets out a promising direction for future research.

Chapter 2

Inference and Variational Bayes

2.1 The Problem of Inference

One of the main cases of unsupervised learning is that of inference in latent variable

models. In this scenario, we have some observed data set X , containing independent

and identically distributed (i.i.d.) data points x which follow a marginal distribution

p(x) (p(X) is known as the evidence). We assume this data is generated from some

latent, unobserved variable z. We denote the prior distribution over z by p(z), and the

likelihood by p(x|z). Generally, we are interested in the posterior distribution p(z|x).

That is, we would like to infer which z variables were likely to have given rise to a

particular observed x. One major benefit of learning this distribution is that it allows us

to encode data x in a latent code z, forming useful representations of our data. This is

the aspect we focus on in this thesis. Bayes’ rule gives us a way of writing the posterior

in terms of the prior and the likelihood:

p(z|x) =
p(x|z)p(z)

p(x)
(2.1)

=
p(x|z)p(z)∫
p(x, z) dz

. (2.2)

Once we specify a prior and a likelihood, the numerator in this expression can typically

be calculated in a straightforward manner. The problem lies with the denominator. In

general, this integral cannot be computed analytically, and the only option is numerical

approximation. However, numerical approximations of high dimensional integrals such

as these are generally intractable, and so computing this term acts as the primary

stumbling block for inference in arbitrary models.

For instance, consider this example from [Blei et al., 2017], which deals with a Bayesian

mixture of univariate Gaussians with unit variance. There are K components in the

5

6 Chapter 2. Inference and Variational Bayes

mixture, each with mean µ(k), where µ(k) ∼ N (0, σ2), and σ is a hyperparameter. To

sample from the model, we must first choose a cluster c(n) from a categorical (one-hot)

distribution over K classes, and then sample x from that cluster. For a data set X of

N samples, the generative process is as follows:

1. Sample µ(k) ∼ N (0, σ2) k = 1, . . . ,K

2. Sample c(n) ∼ Categorical
(

1
K , . . . ,

1
K

)
3. Sample x(n)|(c(n),µ) ∼ N (c(n)>µ, 1) n = 1, . . . , N.

Here we write µ for the vector of cluster means, and select the correct mean for sampling

through an inner product with c(n). The evidence is

p(X) =

∫ ∑
c

p(X , c,µ) dµ

=
∑
c

p(c)

∫ [N∏
n=1

p(x(n)|c(n),µ)

]
p(µ) dµ.

Since the Gaussian likelihoods are conjugate to the Gaussian prior on cluster means,

each integral in this sum can be computed with some bookwork. However, there are KN

total integrals in the sum, one for each possible configuration of the cluster assignments.

That is, the number of integrals is exponential in the sample size, and thus intractable

in general.

Note that in this case we are still dealing with distributions which can be written down

explicitly. However, the inference task becomes even more difficult in the case where

these distributions are not available in closed form. For example, in the case where

the likelihood is chosen to be some parameterized nonlinear function, such as a neural

network, computing an exact marginal is certainly out of reach.

2.2 Navigating Intractibility

Intractibility stems from a difficulty in calculating integrals. If we can integrate an

arbitrary function, we can do inference. As we’ve seen, this is far from the case. In this

section, we provide an extremely brief overview of some methods which offer solutions

to this problem. These fall under the umbrella of approximate inference techniques.

Generally, we concede that computing the exact posterior is impossible, and look for an

approximate solution which is close in some way.

One of the simplest approaches to approximate inference is the method of Laplace

approximation [MacKay, 2003]. This technique fits a Gaussian distribution to some

2.3. Variational Inference 7

unknown posterior by setting the mode of the Gaussian to be the mode of the posterior,

and matching the curvature of the posterior log density at that mode.1 The mode is

found by minimizing the negative log probability of the distribution up to a constant,

also known as an ‘energy’. We then calculate the curvature by evaluating the Hessian

of the energy at this mode.

The Laplace approximation is cheap to compute, and is accurate when the posterior

is well-behaved and sharply peaked around the mode. However, it can often be the

case that the mode is uninformative about the overall distribution, which may be

multi-modal, or non-Gaussian away from this point.

Another approach to approximate inference is Markov Chain Monte Carlo (MCMC)

[Murray, 2007], which remained dominant for many years. In MCMC, we use an ergodic

Markov chain whose stationary distribution is the posterior we wish to compute, p(z|x).

We collect samples from this stationary distribution by simulating the chain, and then

use these samples to form an empirical estimate of the posterior.

MCMC is a powerful tool, and algorithms such as Metropolis-Hastings, and Gibbs

Sampling are invaluable in modern Bayesian statistics. However, if efficiency is a concern,

MCMC can struggle to produce estimates of the posterior quickly enough (such as in

the case of large amounts of data), and the method becomes impractical.

There are many more approaches to inference, which are far too numerous to cover in

this thesis. We merely gave a flavour of the more commonly known techniques in order

to convey the fact that inference is an enormous field, with many possible takes on the

same problem. From now on, we focus on one particular method, variational inference,

which offers something different than what we have seen thus far.

2.3 Variational Inference

Variational inference looks for a solution to the inference problem by finding a parame-

terized approximate posterior, which is close to the true posterior in some way. More

formally, we propose a family of parameterized distributions qφ(z|x) which are tractable

to work with, and seek φ such that an appropriate measure comparing qφ(z|x) and

p(z|x) is minimized. Typically, we acknowledge that the true posterior distribution may

not be contained in this family, but hope for a close approximation nonetheless, through

the choice of a sufficiently flexible family. For thorough discussions of classic variational

inference, see [Jordan et al., 1999], [Wainwright et al., 2008], or the aforementioned [Blei

1Laplace approximation can also refer to a more general technique of calcualting integrals.

8 Chapter 2. Inference and Variational Bayes

et al., 2017].

2.3.1 Kullback-Leibler Divergence

One of the most commonly used criteria for measuring distance between distributions is

the Kullback–Leibler (KL) divergence. Given two distributions q(x) and p(x) over some

random variable x taking values in Rn, the KL divergence between these distributions

is defined as

DKL(q(x) ‖ p(x)) =

∫
q(x) log

q(x)

p(x)
dx (2.3)

= Ex∼q(x)[log q(x)]− Ex∼q(x)[log p(x)]. (2.4)

Two important properties of the KL divergence are as follows:

• Non-negativity i.e. DKL(q(x) ‖ p(x)) ≥ 0.

• Asymmetry i.e. DKL(q(x) ‖ p(x)) 6= DKL(p(x) ‖ q(x)) for q 6= p.

For a proof of these properties, see (A.1.1) and (A.1.2).

This latter property presents a dilemma: which direction should we use, DKL(q(x) ‖ p(x))

or DKL(q(x) ‖ p(x))? When p is the distribution we would like to approximate

with distribution q, DKL(q(x) ‖ p(x)) is known as the reverse KL divergence, while

DKL(p(x) ‖ q(x)) is known as the forward KL divergence. Recalling the definition of the

KL divergence, the forward version would require us to take expectations with respect

to the distribution we wish to approximate, p(x). However, computing p(x) is exactly

the issue we originally faced. Thus, we minimize the reverse KL divergence, which

provides us with the evidence lower bound, as we will see in the next section. For a

method which can be interpreted as minimizing the forward divergence, see expectation

propagation (EP) [Minka, 2001].

With the reverse KL divergence in hand, we can examine some potential shortcomings

of the approach. In particular, note that whenever the true distribution p(x) is zero,

our approximation q(x) must be zero also, so that the KL divergence does not blow

up. For this reason, the approximation in the reverse KL is termed ‘zero-avoiding’, and

will generally be supported on a set of smaller measure than the true distribution. For

more details of forward and reverse KL divergence, an excellent discussion is available

in [Murphy, 2012].

We now have a target distribution for variational inference. We wish to find qφ?(z|x),

2.3. Variational Inference 9

where

φ? = arg min
φ

DKL(qφ(z|x) ‖ p(z|x)). (2.5)

Even with this, it turns out we have the same problem as before. By definition,

DKL(qφ(z|x) ‖ p(z|x)) = Ez∼q(z|x)[log q(z|x)]− Ez∼q(z|x)[log p(z|x)]. (2.6)

Expanding the conditional in the second term,

Ez∼q(z|x)[log p(z|x)] = Ez∼q(z|x)[log p(z,x)]− log p(x). (2.7)

In other words, we need the log evidence in order to calculate the KL divergence, but

the intractibilty of the evidence is the reason we appealed to variational inference in the

first place. However, there is a solution which allows us to navigate around this issue.

2.3.2 The Evidence (or Variational) Lower Bound

Rather than minimizing the KL divergence between the approximate and true posterior

distributions directly, we typically minimize an alternative quantity, equivalent to the

KL up to a constant (the log evidence). This is known as the evidence (or variational)

lower bound. Deriving this is a matter of invoking Bayes’ rule on the true posterior,

and rearranging terms.

DKL(qφ(z|x) ‖ p(z|x)) =

∫
qφ(z|x) log

qφ(z|x)

p(z|x)
dz

=

∫
qφ(z|x) log

qφ(z|x)p(x)

p(x|z)p(z)
dz

=

∫
qφ(z|x) log

qφ(z|x)

p(z)
dz−

∫
qφ(z|x) log p(x|z) dz

+

∫
qφ(z|x) log p(x) dz

= DKL(qφ(z|x) ‖ p(z))− Ez∼qφ(z|x)[log p(x|z)] + log p(x).

(2.8)

The key observation here is that log p(x) does not depend on the variational parameters

φ. Thus, minimizing DKL(qφ(z|x) ‖ p(z|x)) is equivalent to minimizing

−L(φ) = DKL(qφ(z|x) ‖ p(z))− Ez∼qφ(z|x)[log p(x|z)]. (2.9)

We write the criterion −L(φ) with a negative sign since L(φ) is usually understood to

be a lower bound on the log evidence. To see this, just recall the non-negative property

10 Chapter 2. Inference and Variational Bayes

of the KL divergence.

DKL(qφ(z|x) ‖ p(z|x)) ≥ 0

⇐⇒ DKL(qφ(z|x) ‖ p(z))− Ez∼qφ(z|x)[log p(x|z)] + log p(x) ≥ 0

⇐⇒ log p(x) ≥ L(φ) = Ez∼qφ(z|x)[log p(x|z)]−DKL(qφ(z|x) ‖ p(z)). (2.10)

Finally we have a feasible direction of attack for variational inference. We would like

to minimize −L(φ) in order to find a good approximation for our intractable posterior

p(z|x). In the next chapter, we give a brief overview of the field of deep learning, which

will equip us with the tools necessary for performing this optimization procedure across

large data sets.

Chapter 3

Deep Learning

The recent surge in machine learning research is due in no small part to the advent

of the neural network. Modern computational power, the ‘big data’ phenomenon, and

the development of a wide variety of methods which help to stabilize learning in these

networks, has caused an explosion in the study of deep1 models. In this chapter, we

present the main concepts of deep learning relevant to our work in this thesis. For a

comprehensive overview of the field, see [Goodfellow et al., 2016].

3.1 Neural Networks

Neural networks (NNs) are parameterized function approximators. As we will see,

they can serve as excellent candidates for the parameterized distributions needed in

variational inference. Typically they consist of operations which alternate between affine

or convolutional transformations, and piecewise application of some nonlinear function.

These operations are more commonly referred to as layers.

NNs are universal function approximators. That is, given some domain Ω ⊂ Rn, and a

well-behaved function f : Rn 7→ Rm, a network with sufficient representational power

can approximate this function to arbitrary precision on this domain. This result is known

as the universal approximation theorem. For an intuitive visual explanation, see [Nielsen,

2015]. For a more formal treatment, making explicit the conditions necessary on Ω and

f , see [Cybenko, 1989] or [Hornik, 1991].

In practice, modern networks cannot be shown to satisfy the conditions of the universal

approximation theorem, since it is a limit and existence argument. Generally we rely

1While there is no explicit definition of the word ‘deep’ in this context, it is usually used to refer to
models with multiple hidden layers.

11

12 Chapter 3. Deep Learning

on heuristics and empirical validation to justify their use. In addition, the term ‘non-

parametric limit’ has recently come into use, referring to a model’s capabilities when

the limitations of a finite parameterization are not present. Despite these difficulties,

neural networks have proven themselves to be powerful tools for a variety of machine

learning tasks.

3.2 Backpropagation

Backpropagation, or reverse-mode automatic differentiation, is the workhorse of deep

learning. Given some input data X and corresponding labels Y , we create a criterion L,

which is some function of the network input and output (generally the labels and the

network output in the case of supervised learning). The criterion allows us to compare

the produced output with the intended result, and adjust the parameters accordingly,

with a view to finding the optimal parameters θ? for that particular criterion. More

formally, if θ are the parameters of the network, we calculate ∇θL, the gradient of

the criterion with respect to the parameters, and move in the direction (or opposite

direction) of this gradient in parameter space. Recall that the gradient points in the

direction of greatest increase of the criterion L. If L is differentiable, the existence of a

step size small enough so that L either increases or decreases is guaranteed (this is the

definition of the derivative). We write the updated parameters θ′ as

θ′ = θ + α∇θL. (3.1)

The magnitude of the step size α determines how much we want to move in the direction

of the gradient, and its sign indicates whether we would like to minimize or maximize

the criterion L.

At its heart, backpropagation is really just the chain rule of multivariable calculus in

disguise, utilised over large computation graphs with many parameters. The clever

application of the technique in neural networks lies in the computation of the gradients

in reverse, hence the ‘back’ in backpropagation. Consider the computational graph

shown in Figure 3.1, where the criterion L depends on the variables B and C directly,

and A indirectly. We would like to calculate ∂L
∂A , ∂L

∂B , and ∂L
∂C . The latter two terms are

computable directly, if we sweep from right to left in the computation graph. For the

gradient with respect to A, we have

∂L
∂A

=
∂L
∂B

∂B

∂A
+
∂L
∂C

∂C

∂A
. (3.2)

Note that although this derivative has four terms, we have already computed ∂L
∂B and

∂L
∂C . This is the key to the backpropagation algorithm, and the cheap calculation of

3.2. Backpropagation 13

A

B

C

L

Figure 3.1: Simple computational graph.

gradients. In fact, computing gradients like this has the same order of computational

complexity as one forward pass (from left to right) in the graph. This is not the

case when calculating gradients using finite differences, where we need to evaluate the

function multiple times for each gradient approximation. In addition, reverse-mode

is cheaper than forward-mode when we map from a higher to a lower dimensional

space, as is often the case with deep learning. For a thorough discussion of forward and

reverse-mode differentiation, see [Giles, 2008].

The overall picture then looks as follows: given a network parameterized by θ, and a

data set of samples X , we pass the data through the network, calculate the criterion L,

compute ∇θL, the gradient of this criterion with respect to the parameters, and then

update the parameters accordingly. This process is then repeated until the parameters

converge suitably, measured by some metric or heuristic. To make clear the iterative

process, we index the parameters by t, which is incremented each time an update is

performed.

3.2.1 Stochastic Optimization

While iteratively stepping in the direction of the gradient over an entire data set is a

sound approach in theory, in practice it proves extremely difficult due to very large data

sets and limited computational power. Instead, we perform stochastic (or mini-batch)

gradient descent, by passing a single example (or mini-batch) through the network at

each step, and updating the parameters after each iteration. Note that the convention is

always to minimize the criterion L, and since any maximization problem can be phrased

as minimizing a negative criterion, this is easily achieved. For this reason, we take the

step size α > 0, and move in the direction of the negative gradient.

The content presented in this section restricts itself to the methods used in training

stochastic variational models in this thesis. For a more complete overview of gradient

optimization algorithms, we refer the reader to [Ruder, 2016].

14 Chapter 3. Deep Learning

3.2.1.1 Stochastic Gradient Descent

Stochastic gradient descent proceeds exactly as outlined in the section on backpropaga-

tion. However, instead of using the entire data set to calculate gradients, we use one

randomly chosen sample at a time. That is, if x is a single data point passed to the

network, and x̂ is the corresponding output, then we update

θ(t+1) = θ(t) − α∇θL(x, x̂). (3.3)

In practice, we don’t process exactly one sample at a time. Instead, we pass a mini-

batch of samples through the network at each iteration. There a number of reasons

for this. Using a single sample exhibits high variance in the stochastic gradient, and

can destabilize training, though this can be mitigated by reducing the step size. More

importantly, the linear algebra operations involved in passing a single sample through

the network are trivially parallelizable across a mini-batch, meaning training is quicker.

The choice of the step size is obviously an important one, as is the decision about

whether to keep it fixed, or vary it by some schedule. Additionally, we might wonder

if stepping in exactly the direction of the negative gradient is the optimal thing to do

each time. Indeed, more advanced and nuanced methods are often used, one of which is

outlined in the next section.

3.2.1.2 Adam

Adaptive moment estimation (Adam) [Kingma and Ba, 2014] is a stochastic optimization

method with an adaptive learning rate for each parameter, and benefits from the effects

of momentum. Its ‘off-the-shelf’ capabilities have made it an extremely popular choice

when looking for a gradient descent algorithm that does not require manual tweaking of

learning rates and schedules.

Per-parameter update rules are useful when data is sparse, or more generally, when

parameter updates happen with an inconsistent frequency. Parameters which are

modified infrequently can receive larger updates, and vice versa. On the other hand,

momentum (i.e. keeping a running estimate of gradients) eases the pain of noisy gradients,

and allows for effective online learning, or learning with a non-stationary objective. The

typical analogy used for momentum-based learning is that of a ball released from the

edge of a bowl. The ball picks up speed and reaches the centre of the bowl faster than

taking repeated steps in the direction of the gradient and ignoring past behaviour.

Like the name suggests, Adam keeps track of exponentially decaying moment estimates

of the gradient, namely the mean m and variance v. At each step these moments are

3.3. Model Architectures 15

updated as

m(t+1) = β1m(t) + (1− β1)∇θL (3.4)

v(t+1) = β2v(t) + (1− β2)(∇θL)2 (3.5)

Since these quantities are initialized as vectors of zeros, they are biased towards zero,

and so the bias-corrected moments are used instead.

m̂(t+1) =
m(t+1)

1− βt1
(3.6)

v̂(t+1) =
v(t+1)

1− βt2
(3.7)

These are then used in the update rule for Adam itself, namely

θ(t+1) = θ(t) − η
m̂(t+1)√
v̂(t+1) + ε

(3.8)

The authors suggest values of β1 = 0.9, β2 = 0.999, and ε = 10−8.

3.2.1.3 Behind the Scenes

The truth behind stochastic optimization for large parameterized models is a great deal

more complex than the content of this section might suggest. Typically we are optimizing

non-convex criteria L, with many minima, and there is no guarantee whatsoever that

the minimum we end up in is global, let alone desirable. There are many heuristics for

coping with this, including early stopping, annealing the learning rate by a particular

schedule, or ensembling a number of models. This is often where the field of deep

learning becomes more of an art than a science.

3.3 Model Architectures

In this section we examine some of the common architectures used in modern deep

learning, with a focus on those models which will be useful for work presented in this

thesis.

3.3.1 A Note on General Structure

In their most common form, neural networks alternate between linear operations, and

the piecewise application of a particular nonlinear function, called the nonlinearity or

activation function. This nonlinearity is typically used across the entire network, except

16 Chapter 3. Deep Learning

for special cases where we would like to use a function which constrains a particular

output to a certain range. Picking the correct nonlinearity can be of central importance

in deep learning, and is an ongoing direction of research. For an overview of the choices

used in this thesis, namely the sigmoid and rectified linear unit (ReLU), see Appendix

B.1.

3.3.2 Fully Connected Networks

Fully connected networks (FCNNs) consist of alternating linear transformations and

nonlinearities. The linear transformation can optionally include a bias term. That is,

for an input x, the operation prior to the nonlinearity computes the quantity Wx + b.

W and b are called the weight and bias for that particular layer, and a FCNN may

stack many of these layers. These are the parameters which are learned during training

of the network.

FCNNs are perhaps the simplest form of modern networks. Many architectures use

them as building blocks from which to form more complex models. As we will see,

FCNNs serve very capably as general purpose function approximators when plugged

into models in the right way.

3.3.3 Convolutional Networks

While FCNNs are useful tools, it is often preferable to use models which have been

developed with some domain specificity in mind. For example, convolutional2 neural

networks (CNNs) are particularly suited for use with image data. They have come

into widespread use in the computer vision community over the past number of years,

repeatedly surpassing state of the art on a variety of tasks [Krizhevsky et al., 2012] [Rus-

sakovsky et al., 2015]. Where FCNNs alternate between standard linear transformations

and nonlinearities, CNNs opt for the use of a convolution operation between these

nonlinearities.

The key to understanding CNNs lies in the concepts of local receptive fields and shared

weights. RGB images are represented by structures of dimension (channels, height,

width). While this spatial structure is essentially ignored by FCNNs, these concepts,

along with an inherent translation invariance, allow us to use the structure to our

advantage. Beginning with the idea of local receptive fields, consider Figure 3.2. On

2Contrary to its name, a convolutional neural network (CNN) does not use convolutions, but instead
the closely related operation of cross-correlation. In keeping with the convention, we will use the term
convolution throughout.

3.3. Model Architectures 17

the left, we have a 5 × 5 input image, with a single channel. The weights of a CNN,

more commonly called kernels or filters, are two dimensional windows which slide over

the input, carrying out the convolution operation. In this case, we have a 3× 3 square

filter. At each step, the dot product with the underlying image is computed, and this

becomes the feature learned by the filter at this location. The patch of the input image

for which each feature is responsible is called that feature’s local receptive field.

Figure 3.2: Demonstration of local receptive field.3The output value (4), is given by

taking a dot product of the sliding window, or filter, in yellow, and the underlying

image, in green.

In this way, the sharing of weights happens naturally. Because of the sliding window

motion inherent with convolution, the filter is learned so that it adapts well to identifying

features across the entire input image. That is, the learned filter is a global feature

extractor for the entire input image. Note that like FCNNs, a CNN filter can also have

a bias, which is a scalar, since the output of each dot product is a scalar. In this way,

the bias for a particular filter is also shared across the entire image.

Figure 3.3 demonstrates the typical structure of a CNN, which usually takes a multi-

channel input image, and uses many more channels in its intermediate representation

of the data. So far we have used a single channel input image, with a single filter, but

the idea generalizes very easily. For each input channel, we need a distinct filter. The

output, more commonly known as a feature map, is then formed by convolving each

filter with each input channel separately, and summing the results. For more than one

feature map, we repeat this process with different filters. Thus, for an input with nin

channels, a filter of shape h× w, and a desired output with nout channels, we need a

total of nout × (nin × (h×w)) parameters. Typically, this results in networks which are

far more parameter efficient than FCNNs, and achieve better performance in tasks to

3Taken from http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_

convolution

http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution
http://deeplearning.stanford.edu/wiki/index.php/Feature_extraction_using_convolution

18 Chapter 3. Deep Learning

which they are suited. A final fully connected layer is usually inserted in CNNs as a

‘classifier’ which uses the learned convolutional features, and has the added bonus that

the output is of the correct dimensionality.

Figure 3.3: Typical example of a multi-layer CNN.4 Note the alternating convolutions

and subsampling, with a final fully connected layer. Nonlinearities not shown explicitly.

Another important detail which should be mentioned in this overview is downsampling

within a CNN, which is the reduction in the height and width dimensions of an image-like

representation. First, note that convolution as presented above does not preserve the

these dimensions. This is known as valid convolution. Same convolution pads the input

with zeros such that the dimensions of height and width are preserved. This note aside,

we also want a way to downsample intentionally, commonly by a factor of two or four

at a given time. In the past, the operation of pooling was common. Rather than using

an entire feature map as input, the average or max over sub-blocks of this map would

be used such that the dimensionality was reduced appropriately. More recently, striding

has become more prevalent. This is where the sliding filter moves more than one step

at a time, effectively allowing the network to learn down its own form of downsampling.

3.3.4 More Complex Architectures

3.3.4.1 Autoencoders

Autoencoders [Hinton and Salakhutdinov, 2006] are a nonlinear dimensionality reduction

technique. The idea is simple: given an input x, we would like to train a network that

returns our input i.e. f(x) = x. This is trivial without constraints; we simply use the

identity. The problem becomes interesting when the intermediate representations used

by our network must be of dimensionality strictly less than that of our input, which we

enforce by introducing a lower-dimensional bottleneck into our network. In this case,

4Taken from https://upload.wikimedia.org/wikipedia/commons/6/63/Typical_cnn.png. By
Aphex34 (Own work) [CC BY-SA 4.0 (http://creativecommons.org/licenses/by-sa/4.0)], via Wiki-
media Commons

https://upload.wikimedia.org/wikipedia/commons/6/63/Typical_cnn.png
http://creativecommons.org/licenses/by-sa/4.0)

3.3. Model Architectures 19

we can decompose the autoencoder naturally into two parts:

• an encoder E which takes our n-dimensional input x and produces a k-dimensional

representation or code z, where k < n,

• a decoder D which takes the latent representation z, and returns the original

input x.

Note that the concept of the autoencoder is decoupled from any particular architecture.

We are free to choose whichever structure we like for the encoder and decoder, be it

fully connected, convolutional, or a temporal-based architecture like a recurrent neural

network. Note also the resemblance of the model to the probabilistic framework of latent

variables presented in the previous chapter. As we will see, a variational autoencoder

allows us to tie the two settings together nicely.

3.3.4.2 Residual Networks

The idea of residual networks came to the fore in the context of computer vision [He

et al., 2016]. In training very deep models, a central issue is the vanishing of gradients in

the very long chains of backpropagation. To solve this, the concept of skip connections

were introduced. In particular, the notion of a residual block was proposed. These blocks

consist of a number of convolutional layers, and process an input x as any standard

feed-forward model. The key difference is that prior to the final nonlinearity of the

block, the input x is added to the quantity calculated by the block up to that point.

The idea is illustrated in Figure 3.4.

Figure 3.4: Simple figure outlining a residual block. Rather than applying the final

nonlinearity to F(x) which has been computed by the block, we apply the nonlinearity

to the sum F(x) + x. Figure taken from [He et al., 2016].

The reason for the suggestion of a network architecture such as this was to alleviate

the issue of vanishing gradients. When many of these blocks are stacked, the skip

20 Chapter 3. Deep Learning

connections provide gradients with a path to travel directly back through the graph. It

also allows the higher layers of a network to make use of lower level features typically

learned earlier in a deep model. As mentioned, residual networks were first introduced for

the purpose of image classification models, but the idea of skip connections is applicable

in any deep model. Implementing them is trivial, they are computationally cheap, and

they almost always provide improved performance over standard feed-forward networks.

3.4 Training Tools

Neural networks are inherently unwieldy creatures; with so many parameters and so

much representational power, getting them to behave and train as we would like is

a difficult task. In this section we cover some commonly used techniques to improve

stability in training.

3.4.1 Initialization

One natural question to ask when dealing with large parameterized models is which

values these parameters should initially take. This turns out to be quite an important

issue, and has been explored in both [Glorot and Bengio, 2010] and [He et al., 2015],

which introduce schemes known as Xavier and He initialization, respectively. Good

initialization can mean the difference between a network converging in a reasonable

amount of time, or never getting anywhere at all. Without delving into too much detail,

the main idea behind these methods is to keep the variance of pre-nonlinearity quantities

constant throughout the entire network, in either the forward pass, the backward pass,

or a compromise between both. This helps to prevent vanishing or exploding gradients,

and can make a considerable difference in helping the model to learn.

3.4.2 Normalization

Once initialized, we would like our parameters to remain well-behaved for the duration

of training. Large variation per batch in the input to a particular layer means that that

layer must constantly readjust its parameters in order to accomodate a new distribution.

Batch normalization [Ioffe and Szegedy, 2015] was introduced to combat this issue, and

has become widespread in the training of deep models. As the name suggest, batch

normalization first renormalizes the inputs to each layer so that they have zero mean

and unit variance. Moreover, it provides the option of learning a mean and variance per

3.4. Training Tools 21

dimension, which should allow the model to adapt to a particular distribution if it is

advantageous.

Inspired by batch normalization, more recent methods have been proposed which look

to overcome dependence on batch size, though they have not attained the same level

of use thus far. Layer normalization [Ba et al., 2016] can be seen as the transpose of

batch normalization, where the mean and variance are computed per individual item

activations in the batch. This technique was proposed for use in recurrent models, where

it is less obvious how batch normalization might be used. Weight normalization [Salimans

and Kingma, 2016] decouples parameters’ magnitudes from their direction, avoids batch

dependence, and acclerates the convergence of stochastic gradient descent. Finally, the

recent work on self-normalizing networks [Klambauer et al., 2017] takes a fresh approach,

using a specially crafted activation function which yields automatic convergence of

network activations to zero mean and unit variance.

Chapter 4

Stochastic Variational Inference

In this chapter, we combine the topics outlined so far and discuss stochastic variational

inference [Hoffman et al., 2013], a scalable method for performing inference on large

data sets. In particular, we present the ideas of amortizing inference networks and

the reparametrization trick, introduced by [Kingma and Welling, 2013] and [Rezende

et al., 2014]. We then examine this framework as applied to the autoencoder, using

neural networks for the inference and generative models, resulting in the variational

autoencoder (VAE) [Kingma and Welling, 2013].

4.1 Phrasing Inference as Stochastic Optimization

Let us restate our setting up until this point. We have available a data set X , consisting

of N observations x. We have assumed each x is generated from a corresponding latent

z, sampled from some prior p(z). However, as with the approximate posterior from

variational inference, let us now also take this generative process to be parameterized by

some θ?. That is, the conditional distribution on observations given latents is pθ?(x, z).

We assume this likelihood comes from a family of parameterized distributions pθ(x, z),

and that these distributions are differentiable with respect to both θ and z. Similarly, we

also ask for the family of approximate posterior distributions qφ(z|x) to be differentiable

with respect to φ and x. Finally, assume N is very large, so that we can’t work with

the entire data set at one time.

Consider the task of learning the inference and generative parameters, φ and θ, respec-

tively. Since our observations are i.i.d., we can write the log evidence as

log pθ(X) =
∑
x∈X

log pθ(x). (4.1)

23

24 Chapter 4. Stochastic Variational Inference

Recall that in Chapter 2 we derived a variational lower bound for the single datum log

evidence in a similar scenario. This was introduced as an optimization criterion for

determining the optimal parameters φ of the approximate posterior. As we will show

explicitly in the coming section describing the VAE, we can bound the log evidence

when using a parameterized p in a similar way. We can write

log pθ(x) ≥ Lx(θ,φ) = Ez∼qφ(z|x) [log pθ(x|z)]−DKL(qφ(z|x) ‖ p(z)), (4.2)

and propose this as a criterion for stochastic optimization of both φ and θ. However,

there is an immediate issue to contend with when taking gradients of this lower bound

with respect to φ. Assuming we choose a prior and approximate posterior over z which

admit an analytic solution to the KL divergence term, the issue we must contend with

is taking the gradient of the expectation over the log likelihood. Fortunately, there is a

solution, commonly referred to as the reparameterization trick [Kingma and Welling,

2013] [Rezende et al., 2014].

4.1.1 The Reparameterization Trick

The reason backpropagation runs into a problem is that we need to be able to take

gradients through the sampling procedure which generates z from qφ(z|x), in order to

update the parameters φ. However, this is not a differentiable process. The key to

overcoming this hurdle is reparameterizing the distribution qφ, yielding a form which

allows us to do what we want. In particular, many distributions can be written as some

parameterized function of noise, g = gβ(φ,x)(ε), with ε ∼ p(ε). Here the parameters

β(φ,x) are deterministic, and the stochastic element comes from the noise term ε.

z

β(φ,x)

(a) z is stochastic, sampled from a dis-

tribution parameterized by β(φ,x).

z

β(φ,x) ε

(b) Reparameterization moves the

stochastic element to a noise term ε,

making z deterministic.

Figure 4.1: Illustration of the reparameterization trick. Stochastic elements indicated

by round shape. Reparameterization removes stochasticity from z so that we can take

gradients.

4.2. Model (The Variational Autoencoder) 25

With z = gβ(φ,x)(ε), we can rewrite the expectation over the log likelihood and construct

a Monte Carlo estimator as follows:

Ez∼qφ(z|x) [log pθ(x|z)] = Eε∼p(ε)
[
log pθ(x|gβ(φ,x)(ε))

]
≈ 1

L

L∑
l=1

log pθ(x|gβ(φ,x)(ε
(l))), where ε(l) ∼ p(ε). (4.3)

Moreover, this estimator is differentiable with respect to the inference parameters

φ. Better yet, the number of samples L per datapoint x can often be set to 1, by

compensating with the use of larger mini-batches for training. Overall then, we have an

estimator of the variational lower bound which is differentiable with respect to both the

inference parameters φ, and generative parameters θ, and is also unbiased.

The canonical example of the reparameterization trick, and by far the most commonly

used reparameterization in the VAE framework, is the diagonal normal distribution.

Given β(φ,x) = (µ,σ2), the mean and (diagonal) variance of a multivariate normal,

we can sample differentiably from N (µ,diag(σ2)) by taking

gβ(φ,x)(ε) = µ+ σ � ε, (4.4)

where ε ∼ N (0, I), and � denotes the Hadamard product or elementwise multiplication.

This example extends naturally to all location-scale families.

Using the reparameterization trick to perform stochastic gradient descent on the varia-

tional lower bound was termed stochastic gradient variational Bayes (SGVB) by Kingma

& Welling, and we use this to describe the procedure here as well. Most notably, SGVB

turns a statistical inference problem into a large-scale optimization problem. This allows

us to bring the powerful machinery of modern deep learning to bear on the problem of

posterior inference and generative modeling.

4.2 Model (The Variational Autoencoder)

The variational autoencoder (VAE) is the model used by Kingma & Welling to demon-

strate the above theory. For the rest of the chapter, we make the theory explicit in

this context, detail the implementation of such a model, and detail some experiments

which illustrate the model’s capabilities and behaviour. [Doersch, 2016] provides a good

reference for the VAE.

A VAE is a latent variable model, such that for each observation x ∈ X , we have the

following generative process:

pθ(x) =

∫
pθ(x|z)p(z) dz, (4.5)

26 Chapter 4. Stochastic Variational Inference

z x

Figure 4.2: Graphical model for the variational autoencoder.

where the likelihood is parameterized by θ. Through the introduction of a (further

parameterized) approximate posterior qφ(z|x), it is possible to bound the single datum

log marginal likelihood from below in the standard variational way i.e. find Lx(θ,φ)

such that

log pθ(x) ≥ Lx(θ,φ). (4.6)

Note that this is just a restatement of the same setting we have outlined previously.

We seek to maximise LX (θ,φ) =
∑

x∈X Lx(θ,φ) across the entire dataset of examples.

The parameterized functions are represented by neural networks, and we seek to train

the model end-to-end using stochastic gradient descent and the reparameterization trick

in order to learn the encoder (or approximate posterior) qφ(z|x), and the observation

decoder (or likelihood) pθ(x|z).

We now turn to the form of the lower bound.

Claim.

Lx(θ,φ) = Ez∼qφ(z|x) [log pθ(x|z)]−DKL(qφ(z|x) ‖ p(z)) (4.7)

satisfies (4.6).

Derivation. See (A.2.1).

This is exactly the lower bound alluded to in the previous section. As mentioned, it

is often the case in practice that the form of the approximate posterior and the prior

are chosen so that the KL divergence term can be computed analytically. On the other

hand, the expectation is evaluated using Monte Carlo. The choice of a standard normal

prior and diagonal normal approximate posterior is perhaps the most common, but this

has begun to change in the recent past with the use of normalizing flows [Rezende and

Mohamed, 2015].

4.2.1 An Intuitive Interpretation of the Lower Bound

The particular form of the lower bound as presented above lends itself to an intuitive

interpretation. The expectation over the log likelihood can be viewed as an expected

4.3. Implementation 27

reconstruction error, using terminology from the autoencoder. If this were the sole term

in the lower bound, our latent space would collapse to a set of measure zero. It is the

KL divergence term which prevents this, by acting as a ‘regularizer’ for our approximate

posterior, and forcing it to resemble the prior.

While the lower bound for the VAE will be the simplest presented in this work, it is

important to stress that the form stays very similar, even with more complex models. As

we will show, we can always present the lower bound as a reconstruction error (i.e. the

expected log likelihood), with added ‘regularization’ terms in the form of KL divergences

on the latent variables.

4.3 Implementation

With the theory in place, the implementation of a VAE bears a remarkable resemblance

to that of an autoencoder. The encoder, which is sometimes referred to as the recognition

network, is a neural network which takes as input x, and produces a parameterization

of the approximate posterior qφ(z|x). Using this, we apply the reparameterization trick

in order to sample differentiably from the approximate posterior, yielding a sample z.

This is then passed to the decoder, another neural network, which acts as the likelihood

pθ(x|z). The lower bound is composed of the KL divergence term, which involves the

parameterization of the z variable, and the log likelihood term, which involves the

output of the decoder. We can then choose an optimizer, and minimize the negative

lower bound by stochastic gradient descent.

4.4 Demonstrations

In this section we outline the implementation of a simple VAE model with a two

dimensional z variable. The trained model is then used to visualize the learned latent

space by exploring its encoding and decoding behaviour on a held-out test set. We use

the MNIST data set [LeCun et al., 1998], binarized in the standard way [Salakhutdinov

and Murray, 2008].

4.4.1 Model Architecture

The encoder consists of two hidden layers, with 500 and 200 units, respectively. The

decoder mirrors the encoder, and also contains two hidden layers with the same di-

mensionality. All hidden layers use batch normalization and a ReLU nonlinearity. The

28 Chapter 4. Stochastic Variational Inference

encoder outputs two unconstrained quantities: the mean and log variance parameterizing

the approximate posterior, chosen to be a diagonal Gaussian distribution. We then

sample z from this approximate posterior, and pass this sample to the decoder. The

output of the decoder is passed through a sigmoid nonlinearity so that it is constrained

to the range [0, 1], like the binarized inputs. The model is trained using mini-batch

gradient descent with a batch size of 32, and training takes place for 50 epochs. The

optimizer used is Adam, with default parameter settings.

4.4.2 Visualizing the Latent Space

With a trained model in hand, it is possible to visualize the learned latent space in

two interesting ways. The first is to create a scatter plot of the embedded test set in

the latent space. We do this by passing the test set through the encoder, and use the

produced two dimensional means as coordinate values. The coordinates can be coloured

by MNIST class, and we would expect to see clustering by digit. This behaviour is

demonstrated in Figure 4.3, with label position given by the mean coordinate of the

corresponding class.

0

1

2
3

4

56

7

8

9

(a) (b)

Figure 4.3: Visualization of MNIST latent space using VAE.

Next, we can exploit the fact that the posterior is constrained to be similar to a two

dimensional standard normal distribution, due to the KL divergence term. Using this,

we can grid the latent space in the range [−b, b] along both axes, then pass this grid

through the decoder to obtain a grid of MNIST images arrange by their location in the

latent space. We use b = 2.5 to cover a number of standard deviations of the standard

normal prior, and 15 equally spaced points along each axis. The outputted images

4.4. Demonstrations 29

are shown in Figure 4.3. Note the correspondence of the latent space representation

between the scatter plot and the grid of images.

Chapter 5

The Neural Statistician

Though the VAE restricted itself to a single latent variable per data point, the framework

of SGVB extends naturally to more complex graphical models. All we need do is write

down a KL divergence between some approximate posterior and the true posterior of

a generative process, derive a lower bound, and perform training as before. In this

chapter we present one such avenue of research, the neural statistician.

The neural statistician [Edwards and Storkey, 2016] extends SGVB and the VAE to a

meta-learning setting. The model now considers datasets D ∈ D consisting of multiple

observations {x(n)}Nn=1, which we explicitly index per data set. Each dataset is assumed

to share some context variable c across the entire set. In other words, c is sampled

once per dataset. Within each dataset, the generative process per item x(n) remains

as before i.e. z(n) → x(n). Two models are presented: a basic extension of the original

VAE, and a more complex model with hierarchical latent variables {z(l)}Ll=1, which are

referred to as stochastic layers.

The goal is once again to learn the parameters θ and φ through optimization of a lower

bound on the log marginal likelihood. In this case we seek the variational lower bound

LD(θ,φ) such that

log pθ(D) ≥ LD(θ,φ), (5.1)

and then look to maximize LD(θ,φ) =
∑

D∈D LD(θ,φ) across the entire collection of

datasets.

Due to the fact that we now need to consider items grouped by dataset D, along with a

hierarchical structure, we stress the slight change notation from the VAE model. As

mentioned, we now write D = {x(n)}Nn=1, where N is the number of samples per dataset.

31

32 Chapter 5. The Neural Statistician

Note the latent variables are also grouped by dataset using the notation z = {z(n)}Nn=1.

To indicate the lth level in the hierarchy of the nth latent z, we write z(n)(l).

5.1 Models

5.1.1 Basic Model

The basic model is an extension of the VAE which introduces a context variable c. The

corresponding graphical model, shown in Figure 5.1, bears a close resemblance to that

of a topic model [Blei et al., 2003].

c

z x

Figure 5.1: Neural statistician basic model. The plates denote the fact that c is shared

across each dataset D, while z varies per instance x ∈ D.

The generative process for the basic model is given by

pθ(D) =

∫
pθ(D|c)p(c) dc, (5.2)

where

pθ(D|c) =

N∏
n=1

pθ(x(n)|c)

=

N∏
n=1

∫
pθ(x(n)|z(n))pθ(z(n)|c) dz(n). (5.3)

As before, we can derive a variational lower bound on the log evidence.

Claim.

LD(θ,φ) = RD − (LD + CD), (5.4)

5.1. Models 33

where

RD = Ec∼qφ(c|D)

[
N∑
n=1

Ez(n)∼qφ(z(n)|c,x(n))[log pθ(x(n)|z(n))]

]
, (5.5)

LD = Ec∼qφ(c|D)

[
N∑
n=1

DKL(qφ(z(n)|c,x(n)) ‖ pθ(z(n)|c))

]
, (5.6)

CD = DKL(qφ(c|D) ‖ p(c)), (5.7)

satisfies (5.1).

Derivation. See (A.2.2.1).

Note that the essential difference between the lower bound term for the neural statistician

and that for the VAE is the addition of a context divergence term CD. As we’ve previously

mentioned, the lower bound still consists of a reconstruction term, and KL divergence

‘regularization’.

5.1.2 Full Model

c

z1 z2 zL

x

. . .

Figure 5.2: Neural statistician full model. The {zl}Ll=1 form a hierarchy of latent

variables, each of which is passed c directly, and the context c is now connected to each

observation x directly.

The full model adds a hierarchical structure for the z variables. The context is passed

to each level of the hierarchy directly, with a view to explaining away generic aspects of

the data. This was inspired by [Sønderby et al., 2016]. In addition, the context variable

c, along with each of the z(l), are connected directly to each observation x. The idea

behind these skip connections is to prevent later layers in the hierarchy needing to copy

information from previous layers, meaning each level can focus on a specific level of

abstraction. A similar approach was outlined in [Maaløe et al., 2016]. See Figure 5.2 for

34 Chapter 5. The Neural Statistician

details. Note that the z variables now have two associated indices: a superscript l to

identify position in the hierarchy, and a subscript i, as before, to facilitate grouping per

dataset. Where a subscript or superscript is omitted, the notation indicates a grouping

over the omitted index e.g. z(n) = {z(n)(l)}Ll=1.

The generative process for the full model is given by

p(D) =

∫
pθ(D|c)p(c) dc, (5.8)

where

pθ(D|c) =

N∏
n=1

pθ(x(n)|c)

=

N∏
n=1

∫
pθ(x(n)|z(n), c)pθ(z(n)|c) dz(n)

=
N∏
n=1

∫
pθ(x(n)|z(n), c)

[
pθ(z(n)(1)|c)

L∏
l=2

pθ(z(n)(l)|z(n)(l−1), c)

]
dz(n). (5.9)

Claim.

LD(θ,φ) = RD − (LD + CD), (5.10)

where

RD = Ec∼qφ(c|D)

[
N∑
n=1

Ez(n)∼qφ(z(n)|c,x(n))[log pθ(x(n)|z(n), c)]

]
, (5.11)

LD = E(z(n),c)∼qφ(z(n),c|D)

[
N∑
n=1

DKL(qφ(z(n)(1)|c,x(n)) ‖ pθ(z(n)(1)|c))

+

N∑
n=1

L∑
l=2

DKL(qφ(z(n)(l)|z(n)(l−1)c,x(n)) ‖ pθ(z(n)(l)|z(n)(l−1)c))

]
,

(5.12)

CD = DKL(qφ(c|D) ‖ p(c)), (5.13)

satisfies (5.1).

Derivation. See (A.2.2.2).

In both the basic and full models, approximate posteriors and priors are once again

chosen so that KL divergence terms can be computed analytically. In particular, all

approximate posteriors are chosen to be diagonal normal, the prior on c is standard

normal, and the prior on z is diagonal normal. As with the VAE, any expectations are

computed using Monte Carlo.

5.2. Implementation 35

5.2 Implementation

One of the most important aspects for understanding the neural statistician is the

shape of mini-batches passed to the model. Like most deep learning models, the VAE

deals with batches of shape (batch size, n features). However, the fact that our

‘data set’ is now a collection of smaller data sets means that batches are now of shape

(batch size, sample size, n features). This detail is important to keep in mind

when considering the shape of representations and variables used in training the model.

The implementation of a neural statistician model is slightly more involved than that

of a VAE. The framework necessitates the introduction of a statistic network, which

parameterizes qφ(c|D), and reduces across the sample size dimension. This is a module

consisting of a pre-pooling network, the pooling operation itself (the sample mean), and

a post-pooling network which outputs the parameterization of qφ(c|D).

Also contrary to the VAE, the neural statistician has a parameterized prior pθ(z|c)

over the z variable. As we have mentioned, this is chosen to be diagonal normal, again

parameterized by a neural network. The prior over contexts, p(c), is standard normal.

5.3 Demonstrations

5.3.1 Clustering in the Context Space

As with the latent space for the VAE, we can visualize the context space with the

neural statistician. This allows us to see how data sets are distributed in relation to one

another. Similarly to the synthetic case presented by [Edwards and Storkey, 2016], we

consider a collection of one-dimensional distributions, each of one of four types. Each

data set is chosen uniformly at random as a mixture of (two) Gaussians, a Laplacian, an

exponential, or a reverse exponential distribution. Each set has a mean m and variance

v, selected uniformly at random from the intervals [−1, 1] and [0.5, 2], respectively.

We use a model with two stochastic layers, since the classes of distributions are more

complex than those used in the original paper. This provides the model with sufficient

representational power to disentangle the data sets effectively. The latent variables

c and z are of dimension 3 and 32, respectively. The latent decoder, pθ(z|c), and

approximate posterior over z, qφ(z|c,D) are each diagonal Gaussian, with means and

log variances given by three-layer fully connected networks, with a hidden dimension of

128. Similarly, the statistic network, qφ(c|x), consists of a three-layer fully-connected

network both before and after pooling. The observation decoder, pθ(D|z, c), also uses a

36 Chapter 5. The Neural Statistician

Mixture Of Gaussians
Laplacian
Exponential
Reverse Exponential

Figure 5.3: Plotting the test set in the context space shows the datasets clearly clustering

by distribution.

three-layer sturucture, and we employ a Gaussian likelihood. Each network uses batch

normalization and ReLU nonlinearities. Additionally, residual connections were added

between the first and last layers of each subnetwork, as these improved the lower bound.

0.5

0.0

0.5

1.0

1.5

(a) Coloured by mean

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

(b) Coloured by variance

Figure 5.4: Distributions in the context space coloured by moment. The contrasting

colour gradients per cluster suggest the moments are learned in orthogonal directions.

The model is trained for 50 epochs using the Adam optimizer with default parameters.

A total of 10000 data sets are used, with a batch size of 16, and 200 samples per dataset,.

The test set contains 1000 data sets. Gradients are clipped to the range [−0.5, 0.5] to

stabilize training. Additionally, a simple weighting scheme is initially applied to the

lower bound so that the KL divergence terms do not overly affect the learning of latent

variables. In particular, we optimize the following lower bound:

LD(θ,φ) = ωRD −
1

ω
(LD + CD), (5.14)

5.3. Demonstrations 37

where ω = 1 +α, and α has initial value 1, and is reduced by 0.5 after each epoch. This

means we are optimizing the true lower bound after only a few epochs, since α decays

exponentially. The weighting allows the approximate posteriors more flexibility initially,

since deviating from the prior isn’t penalised as much. This idea was also inspired by

work on deep VAEs and ladder networks [Sønderby et al., 2016].

To calculate the position of a data set in the context space, we use the statistic network,

qφ(c|D), to output the mean and log variance for that data set. The mean is then

used as the data set’s location in context space. In this way, we can embed a test set

in the context space, and visualize how data sets compare. This is shown in Figure

5.3, and we see clearly that the four classes of distribution have clustered accordingly.

Furthermore, we can colour the data sets by their mean and variance, shown in Figure

5.4, and examine whether the clustering is meaningful in this respect. Indeed, it seems

as if this is the case, with the opposing colour gradients per cluster indicating that these

moments have been learned in orthogonal directions.

Chapter 6

The Context-Aware Learner

Following the neural statistician, it is natural to question whether this meta-learning

take on SGVB can be further extended. In particular, we might seek a model which

could be applied in a setting where datasets exhibit multiple contexts instead of a single

shared context. Each observed dataset D would then consist of some subset of these

which are held constant across the entire set, while the rest are free to vary per instance

x. The key point is that the contexts which are constant change per data set. Once

more, the learning objective remains the same; we look to optimize a lower bound on

the log marginal likelihood across the entire collection of datasets in order to learn the

parameters φ and θ of the inference and generative networks, respectively. The theory

is outlined in the next section, but first we present an example to demonstrate the

usefulness of such a model.

As is common with current work on deep generative models, imagine we have a collection

of sets containing images of faces. Each set consists of faces which are consistent in

some aspects e.g. one set features only male faces with blond hair, another features only

female faces with glasses. Ideally, we would like to create disentangled representations

of this data which reflect our high level impressions. The model should learn these in

an unsupervised way. Moreover, we might hope that such a model would then be able

to reason about joint distributions of which it has seen only some factor. For instance,

having never been explicitly shown female faces with blond hair, but instead only these

features in isolation, it should be capable of generating suitable samples in the joint

style. This is a novel unsupervised and data efficient regime, allowing for powerful

modelling even when our data set fails to describe a distribution exhaustively.

39

40 Chapter 6. The Context-Aware Learner

6.1 Model

6.1.1 Theory

Writing down the generative model for the context aware learner is slightly more involved

than with the VAE or neural statistician. This is due to the presence of a categorical a

variable, which must be introduced to indicate which contexts are constant, and which

are varying in a particular data set. We use the convention ak = 1 to indicate that the

kth context is constant. We also define the constant and varying index sets

Ac = {k : ak = 1} and Av = {k : ak = 0},

respectively. The generative model is only specified once a has been sampled. That is,

the process is now dynamic per dataset D in our collection, and the inner ‘plate’ in

Figure 6.1 is effectively free to move. There is not a single distribution over constant

contexts, nor is there a single distribution over varying contexts. In fact, we have a

total of K distributions for the constant contexts, and likewise for the varying contexts.

Once sampled, a selects which of these should be used in the generative process for each

dataset.

c(1) c(2)

z

x

(a)

c(1) c(2)

z

x

(b)

Figure 6.1: Graphical models describing two possible generative processes for the

two-context case. (a) c(1) is held constant while c(2) varies. (b) Vice versa.

In the most general case, a is K-dimensional binary vector, taking on 2K possible values,

corresponding to 2K distinct generative models. In other words, it is equipped to handle

datasets which have any subset of K contexts held constant, including the extreme

cases of all or none. There are natural simplifications to this setting, namely where

we have a guarantee that some fixed number K ′ ≤ K of contexts are constant in each

6.1. Model 41

dataset, or simpler still, where we know exactly one context is held constant in each

data set. We present the theory in full generality here.

We use the notation c
(n)
(k) to denote the kth context for the nth data point, and use c(n)

to refer to the complete vector of contexts for that data point, similarly to the grouping

by omission we utilized previously. We also denote the restriction to either the set of

constant or varying contexts by writing cAc , or cAv , respectively.

The inclusion of a latent z variable is made so that the model has the capacity to

represent aspects of the data which are neither strictly constant nor strictly varying.

To encourage the variable to focus on this type of information, the distribution over z is

not explicitly conditioned on a. Instead, we condition solely on the context variables, so

that z may learn useful features that are not represented by the contexts. In practice,

we found that including z in the model resulted in a better variational lower bound,

and more convincing samples.

The generative process for the context-aware learner is given by

p(D) =
∑
a

pθ(D|a)p(a) (6.1)

where

pθ(D|a) =

∫ [N∏
n=1

pθ(xn|z(n), c(n))pθ(z(n)|c(n)) dz(n)

]
pθ(c|a) dc. (6.2)

Furthermore, we can factorize the context distributions using the Dirac delta as a point

mass for the ‘copying’ of constant contexts, yielding

pθ(c(1)|a) =
∏
k∈Ac

pθ(c
(1)
(k)|a)

∏
k∈Av

pθ(c
(1)
(k)|cAc ,a) (6.3)

pθ(c(n)|a) =
∏
k∈Ac

δ
(
c

(n)
(k) − c

(1)
(k)

) ∏
k∈Av

pθ(c
(n)
(k) |cAc ,a), n > 1. (6.4)

We make the assumption that the approximate posterior factors in an analagous way.

It is important make the distinction here between the random variable c = {c(k)}Kk=1,

and the choice we make to model this random variable with 2K distributions, K of

which handle the constant case, while the others are responsible for the varying case. In

addition, we note that the varying context distributions are conditioned on the constant

contexts, so that the model is better informed as to how exactly these varying aspects

should be expressed.

With some work, it is possible to derive the variational lower bound for the single datum

log marginal likelihood. We find it advantageous to separate the KL divergence terms

for the constant and varying contexts.

42 Chapter 6. The Context-Aware Learner

Claim.

LD(θ,φ) = RD − (LD + CvD + CcD +AD), (6.5)

where

RD = Ez(n)∼qφ(z(n)|c(n),x(n))

[
Ec(n)∼qφ(c|a,D)

[
N∑
n=1

log pθ(x(n)|z(n), c(n))

]]
(6.6)

LD = Ec(n)∼qφ(c(n)|a,x(n))

[
N∑
n=1

DKL(qφ(z(n)|c(n),x(n)) ‖ pθ(z(n)|c(n)))

]
(6.7)

CvD = E(cAc ,a)∼qφ(c,a|D)

 N∑
n=1

∑
k∈Av

DKL(qφ(c
(n)
(k) |cAc ,a,x

(n)) ‖ pθ(c
(n)
(k) |cAc ,a))

 (6.8)

CcD = Ea∼qφ(a|D)

∑
k∈Ac

DKL(qφ(c
(1)
(k)|a,D) ‖ pθ(c

(1)
(k)|a))

 (6.9)

AD = DKL(qφ(a|D) ‖ p(a)) (6.10)

satisfies (5.1).

Derivation. See (A.2.3).

6.1.2 A Weakly Supervised Alternative

Though we have presented the theory in full generality above, one interesting narrowing

of focus concerns the case where we know a, a priori. This corresponds to a weak form

of supervision in which we tell the model which data sets have a particular context

held constant. The model must still learn representations which correspond to these

factors of variation, but the task is now simpler since we do not need to worry about

additionally inferring a. Indeed, the a variable can be thought of a binary context label

which informs the model of commonalities between data sets, but does not specify the

exact nature of these common traits. The theory outlined above still applies; we just

remove the KL term from the loss, and provide the model with a context label for each

input. This is the aspect we choose to focus on in this thesis, leaving a promising open

direction for future research. As we will see, this alternative model can still demonstrate

novel capabilities.

6.2 Related Work

The context-aware learner touches on several interesting areas. Transfer learning remains

a central interest in modern machine learning, and [Pan and Yang, 2010] provide a

6.3. Implementation 43

useful survey. We share distributions and network parameters across data sets, and look

to leverage learned concepts to generate novel ‘out-of-distribution’ sets. A similar idea

is presented in [Bengio, 2012], with a view to improving classification methods on test

samples which may come from a different distribution.

Very recent work has directly explored VAE extensions toward a similar goal. [Boucha-

court et al., 2017] introduce the multi-level VAE, who seek to learn representations which

disentangle factors of variation per groups with some common attribute. This is achieved

through the introduction of style and content variables, which account for different

aspects of the data. A closely related semi-supervised model is proposed by [Siddharth

et al., 2017], who also look to encode various facets of data into distinct latent variables.

Our work differs in that it naturally extends to many factors of variation, or contexts.

Though we have not explored the generative adversarial network (GAN) [Goodfellow

et al., 2014] in this work, it remains a highly influential and popular method for generative

modeling (for a brief outline, see section 7.2.4.2). InfoGAN [Chen et al., 2016] takes

an information theoretic interpretation of latent variables, and maximizes the mutual

information between a conditioning variable and an observation. This results in a subset

of the latent variables successfully disentangling factors of variation in an unsupervised

fashion, which is useful when we do not possess common grouping knowledge as in

the setting of the context-aware learner. Finally, [Donahue et al., 2017] propose an

algorithm which can learn subject identity, and a specific observation (e.g. configuration

of lighting, pose etc.) of that subject, in a separate manner. Our model is capable of

more granular representations, but again relies on meaningful grouping of the data in

advance.

6.3 Implementation

The overall sketch of the context-aware learner is similar to what we have seen so

far. Each generative and approximate posterior distribution is diagonal Gaussian

parameterized by a neural network, and we have a statistic network which collapses

across the sample size dimension to parameterize the distributions over constant

contexts. However, the introduction of the categorical variable necessitates some extra

work, and this is detailed below.

44 Chapter 6. The Context-Aware Learner

6.3.1 Dealing with a Dynamic Generative Model

The fact that the categorical variable a can take on 2K values, and thus specify 2K

possible generative models, also introduces practical difficulties. A priori, we don’t know

which generative model we need, even when we assume a is given to us. The solution we

propose is to parameterize every distribution which may be used, and use a as a binary

mask to zero out extraneous information. That is, we always generate a mean and log

variance for each of the K constant context distributions, and each of the K varying

context distributions, and use the mask implied by a to dynamically select the correct

subset. In this way, the samples from the constant and varying context distributions

complement one another; where one is zeroed out, the other has nonzero values, and

vice versa. The mask also allows us to select the correct mean and log variance terms

when computing the various KL divergence contributions.

6.3.2 Categorical Reparamterization

As mentioned, the introduction of multiple contexts also necessitates the addition of a

categorical random variable which indicates which contexts are held constant, and which

are free to vary. Applying the reparameterization trick to categorical distributions has

received attention in the recent past, in an effort to extend the variational autoencoding

framework to models with discrete latent variables. Both [Jang et al., 2016] and

[Maddison et al., 2016] independently proposed the same reparameterizable distribution

to handle this use case, which is a continuous relaxation of a categorical distribution.

The former work terms the distribution Gumbel-Softmax, while the latter chooses the

portmanteau Concrete. Though both papers consider identical density functions for the

relaxation of a K-dimensional categorical variable y, namely

pπ,τ (y) = (K − 1)! τK−1
K∏
k=1

(
πky

−τ−1
k∑K

j=1 πjy
−τ
j

)
, (6.11)

the manner in which they are integrated into a discrete latent variable model differs (here

π is the vector of unnormalized class probabilities, and τ is the temperature parameter,

which controls how closely the relaxation matches a true categorical distribution). The

Gumbel-Softmax samples directly from the distribution using the reparameterization

yk =
exp((logπk + gk)/τ)∑K
j=1 exp((logπj + gj)/τ)

, (6.12)

where g is noise from a Gumbel distribution, which is easily generated using the inverse

cumulative density function. The KL divergence term is computed using the categorical

implied by the normalized class probabilities (for details see A.4).

6.4. Experiments 45

On the other hand, the Concrete distribution performs reparameterization based on

a log-space treatment, and an auxiliary distribution termed the Exp-Concrete, since

taking the exponent of samples from this distribution yields a Concrete distribution.

The method views the KL divergence as the expectation of a log density ratio, and this

expected ratio is computed by evaluating the true relaxed densities in a Monte Carlo

fashion across mini-batches. The paper notes that this approach is the only method

giving a guaranteed lower bound on the log evidence in the relaxed setting, unlike the

use of the implied categorical by the Gumbel-Softmax.

6.4 Experiments

6.4.1 Black & White MNIST

As a basic proof of concept, we consider binarized MNIST with varying background.

This yields K = 2 candidate contexts: digit and background colour. Images are either

black on a white background, or white on a black background. Each dataset consists of

a number of samples which are consistent in exactly one of digit or background colour.

Figure 6.2 demonstrates a collection of five datasets with five samples in each. The task

is based on seen data, and we look to produce samples in two ways:

• sampling a data set conditioned on a particular context

• sampling a data set conditioned on some input data set with a particular context

held constant.

We note that these tasks are likely achievable by a conditional generative model, but

we include them here as a first demonstration of our model’s ability to also act in this

capacity.

Concerning architecture, we initially use a convolutional encoder to produce features

for each item in each of our data sets. In other words, the model does not work with

the data directly, but instead with extracted features. This encoder consists of nine

convolutional layers, divided into groups of three, with 16, 32, and 64 filters, respectively.

The observation decoder, parameterizing pθ(x(n)|z(n), c(n)), mirrors this, using transpose

convolution operations. The model still features a statistic network, as in the neural

statistician, which now parameterizes a distribution over the constant contexts. Both

pre and post-pooling modules feature 3 fully connected layers with 256 units. Networks

parameterizing distributions over varying contexts and z variables also use 3 layers,

with 128 units. We use skip connections between the first and last hidden layers in all

46 Chapter 6. The Context-Aware Learner

Figure 6.2: Five data sets from black & white MNIST, each containing five samples.

Either the digit or the background colour is constant across rows.

fully connected subnetworks. The context variables are 64 dimensional, and z is 16

dimensional. All layers, fully connected or convolutional, use batch normalization and

ReLU activations, with the exception of output layers.

The model is trained for 100 epochs using the Adam optimizer with a learning rate of

3× 10−4. We create 20000 data sets in advance, where the proportion of constant digit

data sets to constant background data sets is 5:1, due to the fact that we have ten digits,

but only two background colours. The batch size is 32, and we use 10 samples per data

set. The weighting scheme is similar to that used in the neural statistician, in order to

facilitate flexibility of the latent variables during initial training. The only modification

we make is to decrease the weighting of the latent variables, giving a criterion

LD(θ,φ) = ωRD −
1

ω2
(LD + CvD + CcD), (6.13)

where ω = 1 + α, and α is annealed as before. We use a Bernoulli likelihood.

To sample based on a particular context, all we need do is provide the model with

a batch of context labels, and run the generative model forward. The output should

consist of one collection of data sets with constant digit and varying background, and

another collection of data sets with constant background and varying digit. This is

shown in Figure 6.3, which demonstrates 20 total data sets, 2 per row, with constant

digit on the left, and constant background on the right.

Next we look to condition on a batch of data sets, and produce new samples with

the appropriate contexts held constant. To do this, we calculate the approximate

posteriors over constant contexts, and condition on the mean of these distributions to

generate samples using the most likely contexts given the data. The results are shown

in Figure 6.4. The format is similar to previous figure, but now the conditioning data

set is displayed on the left, with the conditioned output on the right. The samples

6.4. Experiments 47

Figure 6.3: Samples generated by the model given context labels, for black & white

MNIST. Left side depicts constant digit, right side constant background.

correspond to the correct constant context in each data set. Additionally, there are two

interesting properties to note. In the fourth row, the model has produced a data set

with black background and varying digit, but contains digits which are not present in

the conditioning set. In addition, the row second from bottom shows a data set constant

in the digit seven, but each sample also features a black background, which happened

by chance during the creation of the data. The model is able to handle this detail, and

produces samples of the digit seven, but with varying background.

Figure 6.4: Conditional samples generated by the model for black & white MNIST. Left

side shows data sets provided to the model, right side shows samples conditioned on

these data sets.

48 Chapter 6. The Context-Aware Learner

6.4.2 Rotated MNIST

In this experiment, we pose a slightly more challenging problem. Background is a

relatively simple factor of variation to discover, so we choose to replace this context

with digit rotation instead. Thus, we again have K = 2 contexts, digit and angle of

rotation, exactly one of which is held constant in each dataset. Figure 6.5 demonstrates

a collection of five data sets with five examples in each. We use 8 distinct rotations,

spaced evenly between 0◦ and 360◦.

Figure 6.5: Five data sets from rotated MNIST, each containing five samples. Either

the digit or the angle of rotation is constant across rows.

So far the context-aware learner has acted as a conditional generative model. However,

the framework is designed for more interesting generalization abilities. For instance, we

might train the model using data sets that hold exactly one context constant, but at test

time ask it to produce samples of data sets with neither or both of these held constant.

Furthermore, we might look to condition on two data sets with distinct contexts held

constant, and synthesize a data set with the specific constant properties of both. These

‘out-of-distribution’ tasks are the focus of this section.

The architecture remains as in the experiments featuring varying background, as does

the training scheme. We also use the same weighting for the lower bound, and we

found that this was important for good convergence. The proportion of constant digit

data sets to constant rotation data sets was evenly split despite the slight difference in

number of classes per context, and this also seemed to benefit learning.

Sampling new context combinations is straightforward; we provide the model with

context labels it hasn’t seen before, and examine the output of the generative process.

Here, since each training data set has exactly one context held constant, corresponding

to two-dimensional one-hot context labels, this means we are providing the model with

either two-dimensional vectors of zeros, or two-dimensional vectors of ones. The results

6.4. Experiments 49

are shown in Figure 6.6. On the left, we have data sets consisting of varying digit and

varying rotation. That is, there is no discernible pattern, since neither of the contexts

are constant. On the other hand, the right hand side demonstrates samples which are

consistent in both digit and rotation, and have both contexts held constant. We stress

that the model has not been trained on either of these types of data sets, and can readily

transfer the concepts it has learned to generate new combinations of contexts.

Figure 6.6: Left side shows samples with neither rotation nor digit held constant, right

side shows samples with both held constant.

Synthesizing a data set from two others is similar to the conditional sampling we

demonstrated in the previous experiment. In this case, we need to calculate the

approximate posteriors over constant contexts for the data sets with those corresponding

contexts held constant. As before, these quantities can then be passed through the

generative process so that we condition on the most likely contexts given the data. The

results are shown in Figure 6.7. The top row shows the data set with the constant digit

‘5’, while the second displays the data set with constant rotation, 90◦ clockwise. Thus,

we would expect the model to produce data sets of the digit ‘5’, rotated 90◦ clockwise.

Eight such synthesized data sets are shown in the remaining rows.

6.4.3 The Fully Unsupervised Case

Finally, we present some results from the fully unsupervised case i.e. when a is not

known, and must be inferred. This is where categorical reparameterization is necessary.

We emphasize that this section presents preliminary results, and is included solely as a

proof of concept.

50 Chapter 6. The Context-Aware Learner

Figure 6.7: Top two rows show data sets with specific contexts held constant. Bottom

eight rows are samples of data sets synthesized by combining these two constant

properties.

The major architectural change required is the addition of a network which parameterizes

qφ(a|D). This is another module similar to the statistic network of the neural statistician,

which must collapse across the sample size dimension. We make the choice to once

again perform mean pooling, and the module closely resembles the structure we have

seen thus far. We use a pre-pooling network with 3 layers of 512 units, and a post-

pooling network with 3 layers of 128 units, both of which feature skip connections. For

categorical reparameterization, we choose the Gumbel-Softmax, and use a temperature

annealing scheme as presented in that paper, beginning at τ = 1, and reduced to

τ = 0.5 over the course of training. Since this method outputs soft categories, and we

require hard binary labels, we perform the ‘straight-through’ approximation outlined in

the paper, where we binarize the samples, but take gradients with respect to the soft

samples.

The remaining architecture, along with the training method, remain as before, with two

important exceptions:

• we use black & white MNIST with only two digits, ‘0’ and ‘1’, with an even

proportion of constant digit and constant background data sets, to set an easier

task overall,

• we use an extreme weighting of the KL terms in the lower bound in order to

strongly encourage the model to rely on the categorical variable a.

6.4. Experiments 51

In particular, we use the following weighting scheme

LD(θ,φ) = RD − ω(LD + CvD + CcD)− 1

ω
AD, (6.14)

where ω = 1 + α, α = 100 is the starting value, and α is annealed much more slowly

so that the weighting effects are present across the entirety of training. It is vital to

remember that we are not optimizing the variational lower bound here, and we tread

on theoretically weak ground. Instead, we have a heuristic which makes it extremely

expensive for the model to store information in latent variables other than a, and

conversely, extremely cheap to make a flexible, since it receives such a small penalty for

deviating from the prior. This forces reliance on a as a consequence.

Various metrics for the training procedure are shown in Figure 6.8. One particularly

novel feature of the fully unsupervised case is that we can fashion a pseudo-accuracy

metric by comparing the model’s sampled a variable to the true context label for a given

data set. This is a unique aspect of the context-aware learner; we can induce something

akin to an easily interpretable classic evaluation method for fully unsupervised learning.

We use the term pseudo-accuracy here since the configuration of a is only unique up to

permutation; the model may assign the k contexts in any order, and each of these is

perfectly valid. In other words, an ‘accuracy’ of 0% is also optimal here, and indicates

the model has learned the contexts in exactly the opposite way we have arbitrarily

assigned them. This perhaps gives an explanation as to why the fully unsupervised

model is difficult to train; in the weakly-supervised case, we observe a, the assigment of

contexts is clear, and the inference task becomes easier.

The highest value achieved for the pseudo-accruacy was 92.3%, but this is unstable,

and oscillates significantly. Across the whole training run, we see the KL divergence

terms for cAv and cAc increase steadily, and the KL term for z increase right at the end,

indicating their corresponding approximate posterior distributions gaining expressivity.

This is mirrored by a steady decrease in the accuracy during the second half of training.

Once more, we stress that these results are based on heuristic manipulation of the

true lower bound, and significant exploration is required to achieve a reliable and

theoretically sound approach. Nevertheless, the outcome is encouraging, and suggests

the fully unsupervised case is an attainable goal.

52 Chapter 6. The Context-Aware Learner

0
10

20
30

40
50

60
70

80
90

100
0

5000

10000
Opt. Loss

0
10

20
30

40
50

60
70

80
90

100

400

200

VLB

0
10

20
30

40
50

60
70

80
90

100

400

200

Recon.

0
10

20
30

40
50

60
70

80
90

100
0.0

0.5

1.0
KLz

0
10

20
30

40
50

60
70

80
90

100
0 2 4

KLcv

0
10

20
30

40
50

60
70

80
90

100
0.1

0.2

0.3

KLcc

0
10

20
30

40
50

60
70

80
90

100
0.02

0.04

KLa

0
10

20
30

40
50

60
70

80
90

100
0 50

100
W

eight

0
10

20
30

40
50

60
70

80
90

100
0 25 50 75

100
Accuracy

0
10

20
30

40
50

60
70

80
90

100

0.6

0.8

1.0
Tem

p.

F
ig

u
re

6
.8

:
E

x
p

erim
en

ta
l

m
etrics

fo
r

fu
lly

u
n
su

p
erv

ised
co

n
tex

t-aw
a
re

lea
rn

er
ov

er
1
0
0

ep
o
ch

s
o
f

tra
in

in
g
.

T
o
p

row
,

left
to

rig
h
t:

C
riterio

n

o
p
tim

ized
b
y

A
d
a
m

,
tru

e
va

ria
tio

n
a
l

low
er

b
o
u
n
d
,

reco
n
stru

ctio
n

term
(ex

p
ected

lo
g

lik
elih

o
o
d
),

K
L

d
iv

erg
en

ce
o
n
z
,

K
L

d
iv

erg
en

ce
o
n
c
v .

B
ottom

row
,

left
to

righ
t:

K
L

d
ivergen

ce
on

c
c ,

K
L

d
ivergen

ce
on

a
,

w
eigh

tin
g

for
low

er
b

ou
n
d

term
s,

‘accu
racy

’
in

p
red

iction
of

con
tex

t
lab

els,

tem
p

eratu
re

fo
r

G
u

m
b

el-S
o
ftm

ax
sam

p
lin

g.

Chapter 7

Conclusion & Further Work

In this chapter, we recapitulate our work so far, and look to a variety of promising

avenues for future development.

7.1 Our Contribution

We have given an overview of modern stochastic variational inference, presented as a

confluence of classic variational inference and modern deep learning. Using this, we

have explored the variational autoencoder as a realization of SGVB, and seen how

the framework has been readily extended to the neural statistician, which offers a

meta-learning take on learning representations of data. Based on this, we have proposed

the context-aware learner, a model suited to disentangling numerous factors of variation

across data sets. Following a comprehensive theory, a series of experiments demonstrate

the usefulness of such a model, and we observe results which align with our expectations.

We now turn our attention to the next step: extending and improving the model.

7.2 Improving the Current Model

The context-aware learner, as described and implemented in the previous chapter, stands

to benefit from a number of interesting modifications and avenues of exploration.

7.2.1 The Fully Unsupervised Case

Perhaps the most prominent extension involves the the case where we must also

infer a i.e. the model is fully unsupervised. The success of this modification hinges

53

54 Chapter 7. Conclusion & Further Work

on a reliable method for integrating a categorical random variable into the SGVB

framework. This is a problem with a number of aspects to consider; we must successfully

incorporate categorical reparameterization in our model, as well as determine the best

way for our network to collapse across samples per data set in order to provide a good

parameterization. The former issue has been broached in the previous chapter, and it

seems as if this will receive increased attention in the near future. The latter problem of

reasoning across data sets has also benefitted from recent developments, and we look to

the novel work on relational networks [Santoro et al., 2017] as a possible improvement

to the mean-pooling we currently employ. A relational structure might be particularly

advantageous for our use case. The question we ask of the model is implcit: do there

exist constant contexts in this data set?

7.2.2 Exploring Data Sets

As noted, for each context added to a prospective data set, the model can learn to hold

that context constant, or allow it to vary. In other words, we get an exponential increase

in representational ability for each context added. This is especially useful when we

have a multi-context data set which is not exhaustive in all possible categories. We

have seen the powerful generalization ability of the context-aware learner, and look to

exploit this advantage to the fullest extent.

We might also look to explore a more diverse range of data sets. This requires some

measure of creativity, since many modern resources offer a simpler structure, amenable to

classification tasks or straightforward generative modeling, instead of the multi-context

setting we require. Nevertheless, achieving success with a task involving face images

like that specified at the outset of the previous chapter poses an exciting challenge. We

might also consider the task of disentangling style and content in various art media,

such as paintings or music.

7.2.3 Architecture

The context-aware learner can benefit from architectural upgrades in a natural way. As

a direct result of the surge in deep learning research, new methods improving training

stability and model behaviour are continuously available. We have mentioned a few

these in terms of normalization strategies (layer, weight, and self-normalization), skip

connections (residual networks), and improved optimizers (Adam). As new work in these

areas comes into widespread practice, it is easily incorporated into the context-aware

learner. We note that the model as presented in the previous chapter offers great

7.2. Improving the Current Model 55

flexibility with image data in particular, since it is bookended by a convolutional encoder

and decoder. When dealing with more complex images, we need only leverage recent

developments in computer vision [Huang et al., 2016] to compensate.

7.2.4 Digging Deeper into the Lower Bound

As we added increased complexity to the variational autoencoder, we saw how the lower

bound changed by the addition of KL divergence terms for each of the latent variables.

In each case, we used a diagonal Gaussian to parameterize these distributions. This

choice is made almost exclusively for analytic convenience; it is not too much work to

write down the KL divergence between two diagonal Gaussian distributions (see A.3 for

details). However, there is generally no reason to believe these latent variables factor as

such, and are totally uncorrelated. Closed form expressions are helpful, but if better

tools are available to specify more flexible distibutions, our methods should be updated

accordingly. In this section, we explore recent developments which improve upon these

analytically tractable, but often prohibitive, choices.

7.2.4.1 Normalizing Flows

We have briefly mentioned normalizing flows when talking about the standard choice

of posterior in SGVB models, which has up until recently been the diagonal Gaussian.

Normalizing flows for variational inference [Rezende and Mohamed, 2015] offers an

interesting progression from this standard. The central idea is to begin with a simple

density, such as the diagonal Gaussian we have been utilizing all along, and applying a

series of invertible transformations until the density is sufficiently complex. This idea

was further developed with the introduction of inverse autoregressive flow [Kingma

et al., 2016], whose flow offers particularly rich and expressive approximate posteriors.

This is an active area of research which we can integrate directly into our work as new

findings are released, in order to improve the lower bound, achieve better latent variable

representations, and generate more convincing samples.

7.2.4.2 Implicit Distributions and Adversarial Training

The topic of implicit distributions in the context of variational inference has received

considerable attention in the very recent past [Huszár, 2017] [Tran et al., 2017]. The

working definition for these distributions encompasses models whose density may be

intractable, but possess the following properties:

56 Chapter 7. Conclusion & Further Work

• we can sample from them, and/or compute expectations with respect to them,

• we can compute gradients of these expectations with respect to the model param-

eters.

Implicit distributions allow us to parameterize extremely flexible densities, and have

seen extensive use in generative modeling over the past number of years. A widely used

example is the generative adversarial network (GAN) [Goodfellow et al., 2014], which

looks to directly model a data distribution by passing samples from a simple distribution

(such as a uniform or Gaussian) through a neural network, or generator. Through the

introduction of a discriminator, which attempts to differentiate between samples from

the generator, and samples from the true (empirical) distribution, the model is trained

using a two player mini-max game. The GAN literature is considerable, and we direct

the reader to [Goodfellow, 2016] for more details.

While GANs are typically used to directly model data distributions, we might also

wonder whether they can be applied in the approximation of latent variable distributions

for variational inference. This leads to the topic of adversarial training for VAE-based

models, and more generally, the fusion of GAN-type training with VAE-type training,

which has a wide variety of approaches [Makhzani et al., 2015] [Mescheder et al., 2017].

The α-GAN [Rosca et al., 2017] encompasses many of these ideas, and also provides

interesting extensions. We expect this direction of research to equip us with yet another

set of tools with which we might enrich our the expressivity of the distributions in our

model.

7.3 Final Thoughts

The SGVB framework offers a great degree of flexibility for specifying and training

complex graphical models using the machinery of deep learning. We emphasize the VAE

as one particular instance of this framework, and highlight that SGVB facilitates the

implementation of more elaborate generative models, with many interesting capabilities.

The context-aware learner is one such model, whose framework offers significant potential

for future work, and we anticipate many more exciting developments at the crossroads

of stochastic variational inference and deep learning for generative modeling.

Bibliography

[Ba et al., 2016] Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normalization.

arXiv preprint arXiv:1607.06450.

[Bengio, 2012] Bengio, Y. (2012). Deep learning of representations for unsupervised and

transfer learning. In Proceedings of ICML Workshop on Unsupervised and Transfer

Learning, pages 17–36.

[Blei et al., 2017] Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. (2017). Variational

inference: A review for statisticians. Journal of the American Statistical Association,

(just-accepted).

[Blei et al., 2003] Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent Dirichlet

allocation. Journal of machine Learning research, 3(Jan):993–1022.

[Bouchacourt et al., 2017] Bouchacourt, D., Tomioka, R., and Nowozin, S. (2017). Multi-

level variational autoencoder: Learning disentangled representations from grouped

observations. arXiv preprint arXiv:1705.08841.

[Chen et al., 2016] Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., and

Abbeel, P. (2016). Infogan: Interpretable representation learning by information

maximizing generative adversarial nets. In Advances in Neural Information Processing

Systems, pages 2172–2180.

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal

function. Mathematics of Control, Signals, and Systems (MCSS), 2(4):303–314.

[Doersch, 2016] Doersch, C. (2016). Tutorial on variational autoencoders. arXiv preprint

arXiv:1606.05908.

[Donahue et al., 2017] Donahue, C., Balsubramani, A., McAuley, J., and Lipton, Z. C.

(2017). Semantically decomposing the latent spaces of generative adversarial networks.

arXiv preprint arXiv:1705.07904.

57

58 Bibliography

[Edwards and Storkey, 2016] Edwards, H. and Storkey, A. (2016). Towards a neural

statistician. arXiv preprint arXiv:1606.02185.

[Giles, 2008] Giles, M. (2008). An extended collection of matrix derivative results for

forward and reverse mode automatic differentiation.

[Glorot and Bengio, 2010] Glorot, X. and Bengio, Y. (2010). Understanding the diffi-

culty of training deep feedforward neural networks. In Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, pages 249–256.

[Goodfellow, 2016] Goodfellow, I. (2016). NIPS 2016 tutorial: Generative adversarial

networks. arXiv preprint arXiv:1701.00160.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep

Learning. MIT Press.

[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-

Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative adversarial

nets. In Advances in neural information processing systems, pages 2672–2680.

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep into recti-

fiers: Surpassing human-level performance on imagenet classification. In Proceedings

of the IEEE international conference on computer vision, pages 1026–1034.

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 770–778.

[Hinton and Salakhutdinov, 2006] Hinton, G. E. and Salakhutdinov, R. R. (2006). Re-

ducing the dimensionality of data with neural networks. science, 313(5786):504–507.

[Hoffman et al., 2013] Hoffman, M. D., Blei, D. M., Wang, C., and Paisley, J. (2013).

Stochastic variational inference. The Journal of Machine Learning Research,

14(1):1303–1347.

[Hornik, 1991] Hornik, K. (1991). Approximation capabilities of multilayer feedforward

networks. Neural networks, 4(2):251–257.

[Huang et al., 2016] Huang, G., Liu, Z., Weinberger, K. Q., and van der Maaten, L.

(2016). Densely connected convolutional networks. arXiv preprint arXiv:1608.06993.

[Huszár, 2017] Huszár, F. (2017). Variational inference using implicit distributions.

arXiv preprint arXiv:1702.08235.

Bibliography 59

[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-

celerating deep network training by reducing internal covariate shift. In Bach, F.

and Blei, D., editors, Proceedings of the 32nd International Conference on Machine

Learning, volume 37 of Proceedings of Machine Learning Research, pages 448–456,

Lille, France. PMLR.

[Jang et al., 2016] Jang, E., Gu, S., and Poole, B. (2016). Categorical reparameteriza-

tion with Gumbel-softmax. arXiv preprint arXiv:1611.01144.

[Jordan et al., 1999] Jordan, M. I., Ghahramani, Z., Jaakkola, T. S., and Saul, L. K.

(1999). An introduction to variational methods for graphical models. Machine learning,

37(2):183–233.

[Kanungo et al., 2002] Kanungo, T., Mount, D. M., Netanyahu, N. S., Piatko, C. D.,

Silverman, R., and Wu, A. Y. (2002). An efficient k-means clustering algorithm:

Analysis and implementation. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 24(7):881–892.

[Kingma and Ba, 2014] Kingma, D. and Ba, J. (2014). Adam: A method for stochastic

optimization. arXiv preprint arXiv:1412.6980.

[Kingma et al., 2016] Kingma, D. P., Salimans, T., and Welling, M. (2016). Improving

variational inference with inverse autoregressive flow. arXiv preprint arXiv:1606.04934.

[Kingma and Welling, 2013] Kingma, D. P. and Welling, M. (2013). Auto-encoding

variational Bayes. arXiv preprint arXiv:1312.6114.

[Klambauer et al., 2017] Klambauer, G., Unterthiner, T., Mayr, A., and Hochreiter, S.

(2017). Self-normalizing neural networks. arXiv preprint arXiv:1706.02515.

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Ima-

genet classification with deep convolutional neural networks. In Advances in neural

information processing systems, pages 1097–1105.

[Kuczma, 2009] Kuczma, M. (2009). An introduction to the theory of functional equa-

tions and inequalities: Cauchy’s equation and Jensen’s inequality. Springer Science &

Business Media.

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-

based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–

2324.

[Maaløe et al., 2016] Maaløe, L., Sønderby, C. K., Sønderby, S. K., and Winther, O.

(2016). Auxiliary deep generative models. arXiv preprint arXiv:1602.05473.

60 Bibliography

[MacKay, 2003] MacKay, D. J. (2003). Information theory, inference and learning

algorithms. Cambridge University Press.

[Maddison et al., 2016] Maddison, C. J., Mnih, A., and Teh, Y. W. (2016). The Concrete

distribution: A continuous relaxation of discrete random variables. arXiv preprint

arXiv:1611.00712.

[Mahajan et al., 2009] Mahajan, M., Nimbhorkar, P., and Varadarajan, K. (2009). The

planar k-means problem is NP-hard. In International Workshop on Algorithms and

Computation, pages 274–285. Springer.

[Makhzani et al., 2015] Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., and Frey,

B. (2015). Adversarial autoencoders. arXiv preprint arXiv:1511.05644.

[Mescheder et al., 2017] Mescheder, L., Nowozin, S., and Geiger, A. (2017). Adversar-

ial variational bayes: Unifying variational autoencoders and generative adversarial

networks. arXiv preprint arXiv:1701.04722.

[Minka, 2001] Minka, T. P. (2001). Expectation propagation for approximate Bayesian

inference. In Proceedings of the Seventeenth conference on Uncertainty in artificial

intelligence, pages 362–369. Morgan Kaufmann Publishers Inc.

[Murphy, 2012] Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective.

MIT Press.

[Murray, 2007] Murray, I. (2007). Advances in Markov chain Monte Carlo methods.

University of London, University College London (United Kingdom).

[Nielsen, 2015] Nielsen, M. A. (2015). Neural networks and deep learning.

[Pan and Yang, 2010] Pan, S. J. and Yang, Q. (2010). A survey on transfer learning.

IEEE Transactions on knowledge and data engineering, 22(10):1345–1359.

[Petersen et al., 2008] Petersen, K. B., Pedersen, M. S., et al. (2008). The matrix

cookbook. Technical University of Denmark, 7:15.

[Rezende and Mohamed, 2015] Rezende, D. J. and Mohamed, S. (2015). Variational

inference with normalizing flows. arXiv preprint arXiv:1505.05770.

[Rezende et al., 2014] Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic

backpropagation and approximate inference in deep generative models. arXiv preprint

arXiv:1401.4082.

Bibliography 61

[Rosca et al., 2017] Rosca, M., Lakshminarayanan, B., Warde-Farley, D., and Mohamed,

S. (2017). Variational approaches for auto-encoding generative adversarial networks.

arXiv preprint arXiv:1706.04987.

[Ruder, 2016] Ruder, S. (2016). An overview of gradient descent optimization algorithms.

arXiv preprint arXiv:1609.04747.

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,

Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., et al. (2015). Imagenet

large scale visual recognition challenge. International Journal of Computer Vision,

115(3):211–252.

[Salakhutdinov and Murray, 2008] Salakhutdinov, R. and Murray, I. (2008). On the

quantitative analysis of deep belief networks. In Proceedings of the 25th international

conference on Machine learning, pages 872–879. ACM.

[Salimans and Kingma, 2016] Salimans, T. and Kingma, D. P. (2016). Weight normal-

ization: A simple reparameterization to accelerate training of deep neural networks.

In Advances in Neural Information Processing Systems, pages 901–909.

[Santoro et al., 2017] Santoro, A., Raposo, D., Barrett, D. G., Malinowski, M., Pascanu,

R., Battaglia, P., and Lillicrap, T. (2017). A simple neural network module for

relational reasoning. arXiv preprint arXiv:1706.01427.

[Siddharth et al., 2017] Siddharth, N., Paige, B., de Meent, V., Desmaison, A., Wood,

F., Goodman, N. D., Kohli, P., Torr, P. H., et al. (2017). Learning disentan-

gled representations with semi-supervised deep generative models. arXiv preprint

arXiv:1706.00400.

[Sønderby et al., 2016] Sønderby, C. K., Raiko, T., Maaløe, L., Sønderby, S. K., and

Winther, O. (2016). How to train deep variational autoencoders and probabilistic

ladder networks. arXiv preprint arXiv:1602.02282.

[Tran et al., 2017] Tran, D., Ranganath, R., and Blei, D. M. (2017). Deep and hierar-

chical implicit models. arXiv preprint arXiv:1702.08896.

[Wainwright et al., 2008] Wainwright, M. J., Jordan, M. I., et al. (2008). Graphical

models, exponential families, and variational inference. Foundations and Trends R© in

Machine Learning, 1(1–2):1–305.

Appendix A

Supporting Results

A.1 Properties of KL Divergence

A.1.1 Non-negativity

Lemma. DKL(q(x) ‖ p(x)) ≥ 0.

The non-negativity of the KL divergence can be proven using Jensen’s inequality. The

inequality is stated as follows.

Lemma (Jensen’s Inequality). Let x be a random variable taking values in Rn, let p(x)

be some distribution over x, let y = y(x) : Rn 7→ R be a function defining a real-valued

random variable in terms of x, and let ϕ : R 7→ R be convex. Then

Ex∼p(x) [ϕ(y(x))] ≤ ϕ
(
Ex∼p(x) [y(x)]

)
.

Proof of Jensen’s inequality. The proof is beyond the scope of this thesis. We refer the

reader to [Kuczma, 2009] for a thorough discussion.

Proof of non-negativity of KL divergence. Consider Jensen’s inequality in the following

63

64 Appendix A. Supporting Results

case: y(x) = q(x)
p(x) and φ(y) = log(y). We have

DKL(q(x) ‖ p(x)) =

∫
q(x) log

q(x)

p(x)
dx

= −
∫
q(x) log

p(x)

q(x)
dx

= −Ex∼q(x)

[
log

p(x)

q(x)

]
≥ − log

(
Ex∼q(x)

[
p(x)

q(x)

])
(Jensen’s inequality)

= − log

(∫
q(x)

p(x)

q(x)
dx

)
= − log

(∫
p(x) dx

)
= − log(1) (properties of pdf)

= log(1)

= 0.

A.1.2 Asymmetry

Lemma. DKL(q(x) ‖ p(x)) 6= DKL(p(x) ‖ q(x)).

Proof. Consider DKL(q(x) ‖ p(x))−DKL(p(x) ‖ q(x)).

DKL(q(x) ‖ p(x))−DKL(p(x) ‖ q(x)) =

∫
q(x) log

q(x)

p(x)
dx−

∫
p(x) log

p(x)

q(x)
dx

=

∫
(q(x) + p(x)) log

q(x)

p(x)
dx.

This integral is non-zero in general.

A.2 Variational Lower Bound Derivations

A.2.1 Variational Autoencoder

Derivation. Consider the KL divergence between the approximate posterior and the

true posterior,

DKL(qφ(z|x) ‖ p(z|x)) =

∫
qφ(z|x) log

qφ(z|x)

pθ(z|x)
dz.

A.2. Variational Lower Bound Derivations 65

Substituting p(z|x) = pθ(z|x)p(z)
pθ(x) by Bayes’ rule, we have

DKL(qφ(z|x) ‖ p(z|x)) =

∫
qφ(z|x) log

qφ(z|x)pθ(x)

pθ(z|x)p(z)
dz

=

∫
qφ(z|x) log pθ(x) dz +

∫
qφ(z|x) log

qφ(z|x)

p(z)
dz

−
∫
qφ(z|x) log pθ(x|z) dz

= log pθ(x) +DKL(qφ(z|x) ‖ p(z))− Ez∼qφ(z|x)[log pθ(x|z)]

Rearranging, we have

log pθ(x) = Ez∼qφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x) ‖ p(z)) +DKL(qφ(z|x) ‖ p(z|x))

≥ Ez∼qφ(z|x)[log pθ(x|z)]−DKL(qφ(z|x) ‖ p(z)),

since the KL divergence is a non-negative quantity.

A.2.2 Neural Statistician

A.2.2.1 Basic Model

Derivation. Using the same method as above, we consider the KL divergence between

the approximate posterior and the prior

DKL(qφ(z, c|D) ‖ p(z, c|D)) =

∫
qφ(z, c|D) log

qφ(z, c|D)

p(z, c|D)
dz dc.

Substituting p(z, c|D) = pθ(D|z,c)p(z,c)
pθ(D) by Bayes’ rule, we have

DKL(qφ(z, c|D) ‖ p(z, c|D)) =

∫
qφ(z, c|D) log

qφ(z, c|D)pθ(D)

p(D|z, c)p(z, c)
dz dc

=

∫
qφ(z, c|D) log pθ(D) dz dc

+

∫
qφ(z, c|D) log

qφ(z, c|D)

p(D|z, c)p(z, c)
dz dc

= log pθ(D) +

∫
qφ(z, c|D) log

qφ(z, c|D)

p(D|z, c)p(z, c)
dz dc.

66 Appendix A. Supporting Results

Factorizing qφ(z, c|D) = qφ(z|c,D)qφ(c|D) and p(z, c) = p(z|c)p(c) yields

DKL(qφ(z, c|D) ‖ p(z, c|D)) = log pθ(D) +

∫
qφ(z|c,D)qφ(c|D) log

qφ(z|c,D)qφ(c|D)

p(D|z, c)p(z|c)p(c)
dzdc

= log pθ(D) +

∫
qφ(z|c,D)qφ(c|D) log

qφ(c|D)

p(c)
dz dc

+

∫
qφ(z|c,D)qφ(c|D) log

qφ(z|c,D)

p(z|c)
dz dc−

∫
qφ(z|c,D)qφ(c|D) log p(D|z, c) dz dc

= log pθ(D) +

∫
qφ(c|D) log

qφ(c|D)

p(c)
dc

+ Ec∼qφ(c|D)

[∫
qφ(z|c,D) log

qφ(z|c,D)

p(z|c)
dz

]
− Ec∼qφ(c|D)[Ez∼qφ(z|c,D)[log p(D|z, c)]]

= log pθ(D) +DKL(qφ(c|D) ‖ p(c)) + Ec∼qφ(c|D) [DKL(qφ(z|c,D) ‖ p(z|c))]

− Ec∼qφ(c|D)[Ez∼qφ(z|c,D)[log p(D|z, c)]].

It remains to simplify the KL divergence terms and the log likelihood, by decomposing

D.

Rewriting the log likelihood is straightforward.

log p(D|z, c) = log

(
N∏
n=1

p(x(n)|z(n), c)

)

=
N∑
n=1

log p(x(n)|z(n), c).

Moving to the KL divergence terms for the z variables,

DKL(qφ(z|c,D) ‖ pθ(z|c)) =

∫
qφ(z|c,D) log

qφ(z|c,D)

pθ(z|c)
dz∫ N∏

n=1

qφ(z(n)|c,x(n)) log

(
N∏
n=1

qφ(z(n)|c,x(n))

pθ(z(n)|c)

)
dz

=

∫ N∏
n=1

qφ(z(n)|c,x(n))
N∑
n=1

log
qφ(z(n)|c,x(n))

pθ(z(n)|c)
dz

=

N∑
n=1

∫ N∏
n=1

qφ(z(n)|c,x(n)) log
qφ(z(n)|c,x(n))

pθ(z(n)|c)
dz

=
N∑
n=1

DKL(qφ(z(n)|c,x(n)) ‖ pθ(z(n)|c)).

Putting it all together, rearranging, and again using the fact that the KL divergence is

a non-negative quantity, we have

log pθ(D) ≥ RD − (LD + CD),

A.2. Variational Lower Bound Derivations 67

where

RD = Ec∼qφ(c|D)

[
N∑
n=1

Ez(n)∼qφ(z(n)|c,x(n))[log pθ(x(n)|z(n), c)]

]
,

LD = Ec∼qφ(c|D)

[
N∑
n=1

DKL(qφ(z(n)|c,x(n)) ‖ pθ(z(n)|c))

]
,

CD = DKL(qφ(c|D) ‖ p(c)).

A.2.2.2 Full Model

Derivation. Having laid the groundwork with the basic model, the full model now

just requires modification of the KL divergence terms for the hierarchical z variables.

Effectively, only LD changes in the above three-term lower bound. To this end, consider

the factorization of the prior on z(n),

pθ(z(n)|c) = pθ(z(n)(1)|c)
L∏
l=2

pθ(z(n)(l)|z(n)(l−1), c),

and analagously, the factorization of the approximate posterior,

qφ(z(n)|c,x(n)) = qφ(z(n)(1)|c,x(n))

L∏
l=2

qφ(z(n)(l)|z(n)(l−1), c,x(n)).

Plugging these into the KL divergence term, we have

DKL(qφ(z(n)|c,x(n)) ‖ pθ(z(n)|c)) =

∫
qφ(z(n)|c,x(n)) log

qφ(z(n)|c,x(n))

pθ(z(n)|c)
dz(n)

=

∫
qφ(z(n)(1)|c,x(n)) log

qφ(z(n)(1)|c,x(n))

pθ(z(n)(1)|c)
dz(n)(1)

+

L∑
l=2

∫
qφ(z(n)(l)|z(n)(l−1), c,x(n)) log

qφ(z(n)(l)|z(n)(l−1), c,x(n))

pθ(z(n)(l)|z(n)(l−1), c)
dz(n)(l)

= DKL(qφ(z(n)(1)|c,x(n)) ‖ pθ(z(n)(1)|c))

+

L∑
l=2

DKL(qφ(z(n)(l)|z(n)(l−1), c,x(n)) ‖ pθ(z(n)(l)|z(n)(l−1), c)).

Thus

log pθ(D) ≥ RD − (LD + CD),

68 Appendix A. Supporting Results

where

RD = Ec∼qφ(c|D)

[
N∑
n=1

Ez(n)∼qφ(z(n)|c,x(n))[log pθ(x(n)|z(n), c)]

]
,

LD = E(z(n),c)∼qφ(z(n),c|D)

[
N∑
n=1

DKL(qφ(z(n)(1)|c,x(n)) ‖ pθ(z(n)(1)|c))

+
N∑
n=1

L∑
l=2

DKL(qφ(z(n)(l)|z(n)(l−1)c,x(n)) ‖ pθ(z(n)(l)|z(n)(l−1)c))

]
,

CD = DKL(qφ(c|D) ‖ p(c)).

A.2.3 Context-Aware Learner

The derivation of the lower bound for the context-aware learner follows the same

structure we have seen in the previous two derivations. The additional latent variables

just mean extra-care is needed with book-keeping. For this reason, we are not as explicit

with each step, but the direction should be clear from the previous details.

Derivation. Once more, consider the KL divergence between the approximate and true

posteriors over latent variables.

DKL(qφ(z, c,a|D) ‖ pθ(z, c,a|D)) =
∑
a

∫
qφ(z, c,a|D) log

qφ(z, c,a|D)

pθ(z, c,a|D)
dz dc.

As was the case in previous derivations, we can use Bayes’ rule to rewrite the true

posterior in terms of the marginal, likelihood, and prior on latent variables, then use

this to massage the KL divergence into a more amenable form.

DKL(qφ(z, c,a|D) ‖ pθ(z, c,a|D)) = log p(D) +DKL(qφ(z, c,a|D) ‖ pθ(z, c,a))

−E(z,c)∼qφ(z,c|D) [log pθ(D|z, c)] .

The latter two terms in the expression on the right hand side are the KL divergence

between the approximate posterior and prior over latent variables, and the reconstruction

term in the from of an expectation over the log likelihood, just as we have seen before.

It remains to write these terms in their most granular forms.

We begin with the likelihood. We have

log pθ(D|z, c) = log

N∏
n=1

pθ(x(n)|z(n), c(n))

=

N∑
n=1

log pθ(x(n)|z(n), c(n)),

A.2. Variational Lower Bound Derivations 69

and we can plug this directly into the expectation.

Next we decompose the KL divergence between the approximate posterior and prior.

For the approximate posterior, we choose a factorization analogous to that specified for

the generative model, meaning we are left with three KL divergence terms.

1. DKL(qφ(a|D) ‖ p(a))

2. Ea∼qφ(a|D) [DKL(qφ(c|a,D) ‖ pθ(c|a))]

3. Ec∼qφ(c|a,D) [DKL(qφ(z|c,D) ‖ pθ(z|c))]

We need only simplify terms 2 and 3. Beginning with term 2, we can split the context

divergence into two parts, one corresponding to constant contexts, and the other to

varying contexts.

DKL(qφ(c|a,D) ‖ pθ(c|a)) =
∑
k∈Ac

DKL(qφ(c(k)|a,D) ‖ pθ(c(k)|a))

+
∑
k∈Av

DKL(qφ(c(k)|cAc ,a,D) ‖ pθ(c(k)|cAc ,a))

=
∑
k∈Ac

DKL(qφ(c
(1)
(k)|a,D) ‖ pθ(c

(1)
(k)|a))

+
N∑
n=1

∑
k∈Av

DKL(qφ(c
(n)
(k) |cAc ,a,x

n) ‖ pθ(c
(n)
(k) |cAc ,a)).

Here we’ve used the fact that for the constant divergence terms, we can just take the

sampled value for the first data point, since it is copied across the entire set.

Finally, we have

DKL(qφ(z|c,D) ‖ pθ(z|c)) =
N∑
n=1

DKL(qφ(z(n)|c(n),x(n)) ‖ pθ(z(n)|c(n))).

Thus, the variational lower bound is given by

LD(θ,φ) = RD − (LD + CvD + CcD +AD),

70 Appendix A. Supporting Results

where

RD = Ez(n)∼qφ(z(n)|c(n),x(n))

[
Ec(n)∼qφ(c|a,D)

[
N∑
n=1

log pθ(x(n)|z(n), c(n))

]]

LD = Ec(n)∼qφ(c(n)|a,x(n))

[
N∑
n=1

DKL(qφ(z(n)|c(n),x(n)) ‖ pθ(z(n)|c(n)))

]

CvD = E(cAc ,a)∼qφ(c,a|D)

 N∑
n=1

∑
k∈Av

DKL(qφ(c
(n)
(k) |cAc ,a,x

(n)) ‖ pθ(c
(n)
(k) |cAc ,a))

CcD = Ea∼qφ(a|D)

∑
k∈Ac

DKL(qφ(c
(1)
(k)|a,D) ‖ pθ(c

(1)
(k)|a))

AD = DKL(qφ(a|D) ‖ p(a))

A.3 KL Divergence for multivariate Gaussians

The derivation of the KL Divergence between two multivariate Gaussians is presented

here since it is central to the lower bound computation for the models presented. As

mentioned, the approximate posterior and prior are often chosen so that this term can

be computed analytically. In particular, Gaussian distributions are commonly used for

both.

For further details on the linear algebra in this section, we refer the reader to [Petersen

et al., 2008].

Let q(x) = N (x;µ1,Σ1), p(x) = N (x;µ2,Σ2), with x ∈ Rn.

Claim.

DKL(q(x) ‖ p(x)) =
1

2

[
(µ1 − µ2)>Σ−1

2 (µ1 − µ2) + Tr
(
Σ−1

2 Σ1

)
− n+ log

|Σ2|
|Σ1|

]

The following lemma is useful for the proof of the claim.

Lemma. If p(x) = N (x;µ,Σ), then

Ex∼p(x)

[
x>Ax

]
= µ>Aµ+ Tr[AΣ]

A.3. KL Divergence for multivariate Gaussians 71

Proof of lemma.

Ex∼p(x)

[
x>Ax

]
= Ex∼p(x)

 n∑
i=1

n∑
j=1

Aijxixj

=

n∑
i=1

n∑
j=1

AijEx∼p(x)[xixj] (linearity of expectation)

=
n∑
i=1

n∑
j=1

Aij [Σij + µiµj] (definition of covariance)

=

n∑
i=1

n∑
j=1

AijΣji +

n∑
i=1

n∑
j=1

Aijµiµj (symmetry of covariance)

=

n∑
i=1

[AΣ]ii + µ>Aµ

= Tr[AΣ] + µ>Aµ (definition of trace).

A corollary of this result is that for any constant vector c, we have

Ex∼p(x)

[
(x− c)>A(x− c)

]
= (µ− c)>A(µ− c) + Tr[AΣ].

Proof of claim. We first rewrite the KL Divergence as an expectation.

DKL(q(x) ‖ p(x)) =

∫
q(x) log

q(x)

p(x)
dx

=

∫
q(x) [log q(x)− log p(x)] dx

= Ex∼q(x) [log q(x)− log p(x)] .

The logarithm of a multivariate Gaussian density is given by

log (N (x;µ,Σ)) = log

(
1

(2π)
n
2 |Σ|

1
2

exp

(
−1

2
(x− µ)>Σ−1 (x− µ)

))

= −1

2
(x− µ)>Σ−1 (x− µ) + log

(
1

(2π)
n
2 |Σ|

1
2

)
= −1

2
(x− µ)>Σ−1 (x− µ)− n

2
log 2π − 1

2
log |Σ|.

Thus

log q(x)− log p(x) =
1

2

[
(x− µ2)>Σ−1

2 (x− µ2)− (x− µ1)>Σ−1
1 (x− µ1) + log

|Σ2|
|Σ1|

]
,

and

Ex∼q(x) [log q(x)− log p(x)] =
1

2

[
Ex∼q(x)

[
(x− µ2)>Σ−1

2 (x− µ2)
]

−Ex∼q(x)

[
(x− µ1)>Σ−1

1 (x− µ1)
]

+ Ex∼q(x)

[
log
|Σ2|
|Σ1|

]]
.

72 Appendix A. Supporting Results

Note Ex∼q(x)

[
log |Σ2|

|Σ1|

]
= log |Σ2|

|Σ1| , since this quantity is constant. Then we can make

use of the lemma presented above (in particular its corollary) to simplify the other two

terms in the expression.

First we have

Ex∼q(x)

[
(x− µ2)>Σ−1

2 (x− µ2)
]

= (µ1 − µ2)>Σ−1
2 (µ1 − µ2) + Tr[Σ1Σ−1

2].

Then

Ex∼q(x)

[
(x− µ1)>Σ−1

1 (x− µ1)
]

= (µ1 − µ1)>Σ−1
1 (µ1 − µ1) + Tr[Σ1Σ−1

1]

= Tr[In×n]

= n.

Thus the final result is

1

2

[
DKL(q(x) ‖ p(x)) = (µ1 − µ2)>Σ−1

2 (µ1 − µ2) + Tr[Σ1Σ−1
2]− n+ log

|Σ2|
|Σ1|

]
.

Computing this expression involves solving a linear system, as well as the calculation of

determinants. In practice, two special cases are used in the models presented above,

which simplify the computation significantly. In the following, diag(x) is used to denote

a diagonal matrix with vector x along the diagonal.

Corollary (Two Diagonal Normals). For q(x) = N (x;µ1,diag(σ2
1)), p(x) = N (x;µ2,diag(σ2

2)),

DKL(q(x) ‖ p(x)) =
1

2

n∑
i=1

[
1

σ2
2i

[
(µ1i − µ2i)

2 + σ2
1i

]
− 1 + log

σ2
2i

σ2
1i

]
.

Corollary (Diagonal Normal & Standard Normal). For q(x) = N (x;µ, diag(σ2)),

p(x) = N (x;0, I),

DKL(q(x) ‖ p(x)) =
1

2

n∑
i=1

[
µ2
i + σ2

i − 1− logσ2
i

]
.

Both results follow directly from the original claim.

A.4 KL Divergence for Gumbel-Softmax

For the Gumbel-Softmax distribution, we use the implied categorical distribution to

calculate a KL divergence. That is, for q(y) = GS(y;π1, τ1), p(y) = GS(y;π2, τ2), where

y ∈ RK is one-hot,

DKL(q(y) ‖ p(y)) =

K∑
i=1

π1i log
π1i

π2i
.

Appendix B

Miscellaneous

B.1 Nonlinearities

In this section we give a brief overview of the two nonlinearities used in this work.

B.1.1 Sigmoid

The sigmoid activation was commonly used at the outset of modern deep learning,

but has been replaced over the past few years. It now serves effectively as a tool for

constraining a particular quantity to the range [0, 1]. Its functional form is given by

f(x) =
1

1 + e−x
,

with derivative

f ′(x) = f(x)(1− f(x)).

Note that

lim
x→−∞

f(x) = 0 and lim
x→∞

f(x) = 1.

In fact, the sigmoid saturates very quickly in both limits, and this is the primary reason

it has fallen out of favour in current deep learning. Intermediate activations often lie in

these saturated ranges, meaning the gradient is zero, and effective learning is hindered

73

74 Appendix B. Miscellaneous

B.1.2 Recitifed Linear Unit

The rectified linear unit (ReLU) is activation predominantly used in this work, and has

seen widespread use in the literature. Its functional form is given by

f(x) = max(0, x),

with derivative

f ′(x) =

1 x ≥ 0

0 otherwise.

This solves the problem of saturating activations, promoting desirable gradient behaviour,

and also induces a degree of sparsity in the network, since half of the inputs to any

given layer are now zero on average.

	Introduction
	The Challenge of Unsupervised Learning
	A canonical example

	What is the motivation for unsupervised learning?
	Our contribution
	Thesis Structure

	Inference and Variational Bayes
	The Problem of Inference
	Navigating Intractibility
	Variational Inference
	Kullback-Leibler Divergence
	The Evidence (or Variational) Lower Bound

	Deep Learning
	Neural Networks
	Backpropagation
	Stochastic Optimization

	Model Architectures
	A Note on General Structure
	Fully Connected Networks
	Convolutional Networks
	More Complex Architectures

	Training Tools
	Initialization
	Normalization

	Stochastic Variational Inference
	Phrasing Inference as Stochastic Optimization
	The Reparameterization Trick

	Model (The Variational Autoencoder)
	An Intuitive Interpretation of the Lower Bound

	Implementation
	Demonstrations
	Model Architecture
	Visualizing the Latent Space

	The Neural Statistician
	Models
	Basic Model
	Full Model

	Implementation
	Demonstrations
	Clustering in the Context Space

	The Context-Aware Learner
	Model
	Theory
	A Weakly Supervised Alternative

	Related Work
	Implementation
	Dealing with a Dynamic Generative Model
	Categorical Reparamterization

	Experiments
	Black & White MNIST
	Rotated MNIST
	The Fully Unsupervised Case

	Conclusion & Further Work
	Our Contribution
	Improving the Current Model
	The Fully Unsupervised Case
	Exploring Data Sets
	Architecture
	Digging Deeper into the Lower Bound

	Final Thoughts

	Bibliography
	Supporting Results
	Properties of KL Divergence
	Non-negativity
	Asymmetry

	Variational Lower Bound Derivations
	Variational Autoencoder
	Neural Statistician
	Context-Aware Learner

	KL Divergence for multivariate Gaussians
	KL Divergence for Gumbel-Softmax

	Miscellaneous
	Nonlinearities
	Sigmoid
	Recitifed Linear Unit

