
Enhancing a Modular Effectful
Programming Language

Lukas Convent

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science
School of Informatics

University of Edinburgh
2017

Abstract
The focus of this thesis lies on several enhancements to Frank, a programming language that
supports algebraic effects and effect handlers as core features. Effects serve as interfaces between
command-requesting and command-handling components, thereby offering the programmer a
modular and powerful means of abstraction.

We improve the expressiveness of commands by making them polymorphic. Together with
an extension of ML-style references, we can demonstrate the gained potential by implementing
two concurrency models (actors, promises) within Frank.

A prominent feature of Frank is the ambient ability which allows convenient composition of
effect generators and effect handlers. We discuss different scenarios of composition and identify
a problem with intermediate effects that are unintentionally exposed. We solve part of the
problem and discuss how to solve the more general scenario.

Another prominent feature of Frank are multihandlers that allow handling of multiple effects
simultaneously. A dynamic semantics of this setting has been given so far via a translation to a
setting of unary handlers. We give an operational small-step semantics that is more direct and
closer to the actual implementation. Furthermore, we prove type soundness of the enhanced
Frank version.

iii

Acknowledgements
Firstly, I would like to greatly thank Sam for giving me the possibility to write this thesis,
discussing ideas with me and supporting me throughout the whole process. A thank-you goes
also to Craig for answering my questions about the Frank compiler and to Daniel for giving me
a jump start on Links. Finally, I would like to thank my brother Simon and my friend Pinak
for proof-reading an earlier draft of this thesis.

iv

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my own
except where explicitly stated otherwise in the text, and that this work has not been submitted
for any other degree or professional qualification except as specified.

(Lukas Convent)

v

Table of Contents

1 Introduction 1

2 The Frank Programming Language 5
2.1 Programming Without Effects . 5
2.2 Programming With Effects . 7

3 Formal Specification of Frank 13
3.1 Syntax . 13
3.2 Typing Rules . 15
3.3 Operational Small-Step Semantics . 17

4 Ability Representation and Operator Composition 21
4.1 Internal Representation of Abilities . 21
4.2 Composing Handlers . 22
4.3 Relaxing the Type System via Up-to-Inactive-Instantiations 24
4.4 Discussion and Future Work . 25

5 Polymorphic Commands 27
5.1 Formal Extension . 27
5.2 Application: Exception Handling . 28

6 Type Soundness 31
6.1 Type Preservation . 34
6.2 Progress . 38

7 Generative Effects and Applications in Concurrency 41
7.1 Referentiable State . 41
7.2 Cooperative Processes . 42
7.3 Actor Model . 44
7.4 Promises . 46

8 Further Technical Enhancements 51
8.1 Interface Aliases . 51
8.2 Implicit Type Variables . 52
8.3 Improving Error Reporting . 54

9 Conclusion 57

vii

Chapter 1

Introduction

In this thesis, we focus on several enhancements to Frank [20], a functional programming lan-
guage that supports algebraic effects and effect handlers as core features. We discuss composi-
tion of effectful components, examine connected problems and solve a part of it. Furthermore,
we add polymorphic commands to Frank as well as ML-style references and demonstrate the
gained expressiveness by implementing two concurrency models (actors, promises) within Frank.
The dynamic semantics of Frank has so far been given via a translation to a core calculus; by
giving an operational small-step semantics we provide an additional, more direct formalisation
that is closer to the actual implementation. Furthermore, we prove type soundness for the
enhanced version of Frank.

We base our enhancements directly on work by Lindley, McBride and McLaughlin in two
ways, firstly by extending the formal syntax and semantics of Frank [20], and secondly by
extending the existing Frank compiler [21] which is written in Haskell. In the following we give
a short primer on effect handling, then mention some of Frank’s characteristics and how they
connect to our work. After reviewing related work done in this field, we summarise our main
contributions.

From Exceptions in Java to Effects in Frank. Algebraic effects serve as an interface between
effect generators and effect handlers. Examples include state, I/O and non-deterministic choice.
A widely used example of effects are exceptions (as in Java) where they are generated via throw

and handled via try...catch. The handler gears into a potentially exception-generating compu-
tation (try block) by either encountering the end of the computation (the end of the try block)
or receiving an Exception object and dealing with it in a corresponding catch block. Below
is an example that demonstrates how exception handling can occur in Frank, as a particular
instance of effect handling.

1 parseContact: {String -> [Malformed]Contact}

2 parseContact s = ... if (hasEmailFormat s’)

3 { stringToEmail s’ }

4 { malformedEmail s’ } ...

5
6 handleBlank: {<Malformed >Contact -> Contact}

7 handleBlank c = c

8 handleBlank <malformedEmail s -> k> = blankContact

9
10 getContact: {String -> Contact}

11 getContact s = handleBlank (parseContact s)

The example gives the definitions of three operators. The parseContact operator parses a
Contact from a String which involves the parsing of emails. If an email string is of the correct
format, it is cast to an Email (line 3). Else, a malformedEmail effect is exhibited (line 4). The
handleBlank operator behaves like try...catch in Java, with its argument being the computation
to try.

1

2 Chapter 1. Introduction

Comparing the argument’s type (<Malformed>Contact) with the return type of parseContact
([Malformed]Contact) reveals their match, allowing handleBlank to be applied to parseContact s

(line 11). When applied, handleBlank behaves like try...catch in the following sense: If no
exception is thrown, the computed contact is returned (“try block successfully executed”, line
7). If an exception is thrown, a blankContact is returned (“catch block executed”, line 8). The
parameter s (the string containing the malformed email) is ignored as well as the continuation
parameter k, which we come back to shortly.

How is effect handling more general than exception handling? In Java, imagine that upon
receipt of an Exception object from within the try block, the try...catch handler additionally
has access to a continuation that allows resuming execution of the try block as part of its
handling behaviour. This is the essence of effect handling: The handler gears into the compu-
tation by handling a request (here: exceptions) and then giving back control to the suspended
continuation as it “wants to”. To demonstrate the use of continuations in Frank, we first reveal
how the Malformed effect is defined and then focus on a second handler.

1 interface Malformed = malformedEmail: String -> Email

2
3 handleDefault: {<Malformed >Contact -> Contact}

4 handleDefault c = c

5 handleDefault <malformedEmail s -> k> = handleDefault

6 (k (toEmail "m@lform.ed"))

7
8 getContact ’: {String -> Contact}

9 getContact ’ s = handleDefault (parseContact s)

The Malformed effect allows one command malformedEmail, in accordance with the first example.
Similar to the handleBlank handler, handleDefault is also able to “catch” the Malformed effect,
but in this case it passes a default Email (representing m@lform.ed) to k. The continuation
k takes exactly one argument whose type corresponds to the return type of the command
malformedEmail. The Contact-parsing computation can thus go on with an alternative Email and
is not discarded in favour of a blankContact as in the last example. Applying the alternative
Email to the continuation results in a computation, which may exhibit further effects and
therefore is passed to the same handler again (lines 5, 6). Only when the computation is
finished, the final Contact is returned (line 4).

Another feature of Java’s exception handling is desirable for general effect handling, namely
a strong support by the type system. In Java, exception-throwing methods must be annotated
with a throws clause that lists the potentially generated exceptions. When calling such a
method, handling of the listed exceptions is statically enforced. In a similar way, Frank enforces
effect safety (no effect remains unhandled) by matching the exhibitable effects ([Malformed])
with the handled effects (<Malformed>). Let us take this aspect of effect safety along to the next
section where we focus on the aspects of Frank that we base our main contributions on.

Building upon Effects in Frank. A prominent feature of Frank is the ambient ability. An
ability is a collection of effects with an optional effect variable, and the ambient ability describes
the effects that are handled at a particular point in the program. By composing handlers, the
ability increases as each handler adds further effects as “offers” to it. A simple example of
how the ambient ability comes into play is found in getContact’ (and getContact) above. At
the point where the sub-term parseContact s is type-checked, the ambient ability includes
Malformed as offered by handleDefault (line 9). Type-checking succeeds because it matches the
effects exhibited by parseContact s. As part of our work, we examine different scenarios for
composing handlers and point out the shortcoming that intermediate effects can unintentionally
be exposed. We discuss remedies and present a solution for a part of the problem.

Frank supports polymorphic effect interfaces. In the following example, BinChoice is poly-
morphic in X and BinChoice Int defines the command binChoose that requests a choice between
two integers. Once the interface is parameterised, the command binChoose itself is not polymor-
phic. We extend Frank by polymorphic commands which allows the implicit parameterisation
on each command request. In the following example, BinChoice’ is not polymorphic but its

3

command binChoose’ is. For contrast, we prepend the definition of an interface BoolChoice

with no polymorphism at all.

interface BoolChoice = boolChoose: Bool

interface BinChoice X = binChoose: X -> X -> X

interface BinChoice ’ = binChoose ’ X: X -> X -> X

Shifting polymorphism down to the commands is of course not always possible, but in this case
it adds more flexibility at no cost. As shown before [14], polymorphic commands integrate
naturally and are rather easy to implement, which we can confirm for Frank.

Another prominent feature of Frank is that functions and handlers are conjoined in the
notion of a multihandler. Multihandlers are simultaneously applied to multiple arguments (like
n-ary functions) and simultaneously handle their effects. When specifying Frank [20], Lindley
et al. give Frank’s dynamic semantics via a translation to Core Frank for which they specify
an operational small-step semantics. Core Frank is a standard calculus that supports functions
and unary handlers but no multihandlers. The translational approach of giving a dynamic
semantics has the advantage of revealing the relation between the two settings but is not as
direct as describing reduction steps of Frank terms themselves. We give a direct operational
small-step semantics together with proofs of type preservation and progress. The two properties
are given for the enhanced version of Frank, thus guaranteeing their soundness.

Related Work. Frank has been plotted since 2007 by McBride [29], implemented as a prototype
for a previous version of Frank in 2012 by McBride [28, 30], reimplemented since 2016 and
presented in 2017 by Lindley, McBride and McLaughlin [20, 21]. We give an overview of
further research done on effect handling, relying on a short review we compiled previously [7].

Although effect systems have been around for a while (e.g. Lucassen and Gifford’s poly-
morphic effect systems [26] in 1988), Plotkin and Power’s algebraic effects [37, 34, 36, 35] only
recently gave rise to Plotkin and Pretnar’s effect handlers [33] in 2009. Plotkin, Power and
Pretnar give a category-theoretic account of how the notion of algebraic effects can be inte-
grated into the monadic semantics of the λ-calculus. Since then, multiple language extensions
and languages have been developed.

Kammar at al. [14] build on Plotkin and Pretnar’s work by giving language extensions for
Haskell, OCaml, SML and Racket that introduce effect handling. Furthermore, these libraries
are formally underpinned by a core calculus λeff with operational small-step semantics and are
accompanied by examples which demonstrate the power of effectful programming in different
settings.

Brady [3] shows how algebraic effects can be integrated in the context of the programming
language Idris which supports dependent types. A key feature of his work is that the type
of effect resources (e.g. the resource of a state) can be transformed by a computation. This
way, computations can be confined to transition systems induced by type signatures. Brady
further builds upon his work by integrating dependent types into the effect system [4]. The key
idea here is that the type of an effectful computation is dependent on its outcome, allowing the
specification of even finer-grained transition systems.

Kiselyov et al. [15] present a library for extensible effects in Haskell. They tackle the problem
of the linearity that is induced by expressing effects in terms of monad transformers. Instead of
stacking up monads through monad transformers, their extensible effects provide open unions,
which represent unordered coproducts of monads. These open unions can be added to and
removed from, depending on where handling occurs.

Leijen [17] introduces the effectful programming language Koka and later extends the lan-
guage by effect handlers [18]. Koka uses row polymorphism to combine effects and provides a
Hindley-Milner-style automatic type inference, also for effect types. Similarly to Frank, Koka
makes a clear distinction between values and (potentially effectful) computations. Koka em-
ploys deep handlers (unlike Frank’s shallow handlers) but allows multi-shot continuations (like
Frank).

Dolan et al. [8] introduce algebraic effects in OCaml as a new language feature and demon-
strate its usefulness by an interface to Multicore OCaml, allowing the encapsulation of concur-
rency primitives via effects. OCaml employs deep handlers (unlike Frank’s shallow handlers)

4 Chapter 1. Introduction

and only allows one-shot continuations (unlike Frank’s multi-shot continuations). Due to being
embedded into an already-existing OCaml type system, the type system does not enforce type
safety to the degree that Frank does.

Bauer and Pretnar [1, 2] present the programming language Eff which supports algebraic
effects, along with denotational semantics, a prototype implementation and a presentation of
useful programming techniques. Effects are defined and then instantiated, e.g. a state effect
can be instantiated multiple times to model distinct states. Furthermore, their effect system
supports local referentiable state.

Hillerström [12] and Hillerström and Lindley [13] give an implementation of effect handlers
using row polymorphism for the programming language Links. They argue that row poly-
morphism is exactly the typing discipline needed to compose effects, solving the problem of
rigid orderings of effects, which occurs for example when expressing effects in terms of monad
transformers.

Dolan et al. [9] explore further applications of effect handling to concurrency (e.g. by
providing an implementation of promises, a concurrency model we implement, too). They
carry their work out in Multicore OCaml.

Contributions. We make the following contributions.

• Operator Composition. We discuss scenarios of handler composition in Frank and
come to the conclusion that intermediate effects can violate encapsulation of components
(Ch. 4.2). We define equivalence-up-to-inactive-instantiations on abilities and integrate
it in the typing rules, which solves part of the problem (Ch. 4.3). We discuss possible
approaches for solving the rest of the problem, including an effect-hiding composition
operator (Ch. 4.4).

• Polymorphic Commands and Generative Effects. We have added polymorphic
commands formally and as an extension to the compiler (Ch. 5). Among the gained
potential, this allows the extension by ML-style referentiable state (Ch. 7.1). We examine
the potential of the new features and give two concurrency models (actors, promises) as
examples, implemented within Frank (Ch. 7.3, 7.4).

• Operational Semantics. We provide an operational small-step semantics of Frank (Ch.
3.3) and prove type preservation and progress for the enhanced Frank version (Ch. 6).
While the dynamic semantics via a translation to Core Frank which was given before [20]
focuses on the relationship between Frank and a standard unary-handler language, the
new operational semantics is more direct and closer to the actual implementation.

• Technical Enhancements and Fixes. We implement interface aliases as a way of
grouping together interfaces, similar to the way in which type aliases can abbreviate
composed types (Ch. 8.1). We also implement a procedure that resolves implicit effect
variables while respecting interdependencies, a procedure that has not been present in the
compiler before and therefore used to cause a bug (Ch. 8.2). Error-reporting has so far
been only rudimentary; we discuss how nodes of the abstract syntax tree can be enriched
by meta-information like source code locations and present our implementation based on
fixed-points of type constructors (Ch. 8.3).

Chapter 2

The Frank Programming Language

Frank is a functional programming language which focuses on the definition, composition and
use of algebraic effects. To this end, it uses the ambient ability to incrementally compose effects,
multihandlers which control evaluation in a fine-grained way, and a clear distinction between
computation and value as well as the instruments to switch between these levels.

In the following, we first give an overview of Frank from the perspective of a functional
programmer to present its key features. Although it covers about the same content as the
tutorial of Lindley et al.’s paper[20], it is entirely written from scratch and focuses more concisely
on core elements of Frank1. In the next chapter then, we formally introduce Frank’s syntax,
its type system and its operational semantics. In both chapters, we present the original version
of Frank (as specified [20] and implemented [21]) and only briefly point out differences to the
current version (as specified in this thesis and implemented [23]).

2.1 Programming Without Effects

Although effect handling is a core feature of Frank, it can also be seen as an extension to a
language that does not deal with effects in the first place. We thus start introducing Frank by
a brief walk-through from the perspective of a functional programmer and then go into more
detail when presenting effect handling.

Algebraic and Primitive Data Types. Let us start by looking at data types. Algebraic data
types can be defined in a standard way.

data Bool = false | true

data Maybe X = nothing | just x

data Unit = unit

data List X = nil | cons X

The algebraic data types Unit and List (with syntactic sugar enabling expressions like a::[b,c])
are built-in, among primitive data types are Int and Char, and String is a type synonym for
List Char.

Operators. Frank generalises the notion of a function to the notion of an operator in three
ways: Operators 1) can handle effects, 2) are n-ary, i.e., n arguments are applied simultaneously
which plays a key role in effect handling, 3) comprise 0-ary computations, so-called thunks.

For now we focus on the aspects of operators that are not directly related to effect handling
by explaining how pure (i.e., effect-free) functions integrate into Frank. Let us consider the
definition of map.

map: {{X -> Y} -> List X -> List Y}

map f [] = []

map f (x::xr) = f x :: map f xr

1Being more elaborate e.g. on multihandling and on comparison to Haskell, it can be insightful in addition
to this overview.

5

6 Chapter 2. The Frank Programming Language

Operators are implicitly parameterised by any occurring type variables (here: X, Y) and operator
application is written as usual (here e.g.: f x). The only non-standard aspect of these definitions
are the curly braces in the type signature. They denote operator types which we classify in the
following.

Value Types. There are two different categories of types, namely value types which correspond
to the standard notion of types and effect types which are entirely different and which we come
back to later. We distinguish value types between:

1. Data types, like Bool

2. Operator types, which we distinguish between

(a) Multihandler types, like {<Effect>X -> <Effect>Y -> X}

(b) n-ary function types, like {X -> Y} or {{X -> Y} -> List X -> List Y}

(c) Thunk types, like {Bool}

The notions of operator types, multihandler types, n-ary function types and thunk types are
listed in a subsuming order in the sense that e.g. an n-ary function type {X -> Y} is also a
multihandler type (without making use of the multihandlers’ handling potential). We mostly
use “operator” as a term when we generally speak of multihandlers, functions or thunks. For
now we leave aside the handling potential of multihandlers and focus on functions and thunks.

Functions. Functions of arrow types in functional programming languages such as Haskell are
present as n-ary functions in Frank, e.g. map. While functions in Haskell can be partially applied
(if they are curried), n-ary functions in Frank allow only “full” application in order to trigger
reduction. Although embedded into the more general setting of effect handling, reduction
follows a left-to-right call-by-value scheme. We will come back to operator application when
explaining the handling mechanism.

Thunks. Thunks are n-ary function for the special case of n = 0, i.e., they don’t expect
arguments. Thunks are suspended computations and need to be triggered in order to evaluate.
We call this triggering forcing which can be viewed as the 0-ary application of a thunk and is
denoted by the ! suffix. The following example shows how Frank’s clear separation between
value and computation allows the elegant definition of control structures such as if.

if: {Bool -> {X} -> {X} -> X}

if true t _ = t!

if false _ f = f!

Here, if takes a consequence t and an alternative f as thunks and only after examining the
boolean condition, forces either t or f. An example of Lindley et al. [20] where premature
evaluation would be fatal demonstrates a use of if.

if fire! {launch missiles} {unit}

Note that premature evaluation would only be fatal if launch actually causes effects. A con-
sequence of the curly braces is that the use of such control structures bears similarity to C
syntax.

Anonymous Operators. Similar to anonymous functions (i.e., lambda expressions) in standard
functional programming languages, Frank provides anonymous operators. We start with the
anonymous thunk, because it is so simple: Given a term t of type T, an anonymous thunk is
given by {t} of type {T}.

Anonymous multihandlers are given the same pattern-matching construct as present in mul-
tihandler definitions. Consider the following anonymous multihandler of type {Bool -> Bool}

that computes boolean negation.

2.2. Programming With Effects 7

{ false -> true

| true -> false }

It could be used in combination with map like this:

map {false -> true | true -> false} [true , false] [false , true]

Anonymous multihandlers are very expressive in that they comprise ad-hoc-ness (by being
anonymous) and pattern-matching at the same time. This allows us to have the standard case-
expression construct (as present e.g. in Haskell) available in terms of anonymous multihandlers.

case: {X -> {X -> Y} -> Y}

case x f = f x

For an example of how case can be used, consider the following operator first which takes a
list of thunks that Maybe contain a value and forces them until one of them computes to just a
value. If none of them does so, nothing is returned.

first: {List {Maybe X} -> Maybe X}

first [] = nothing

first (x::xr) = case x! { (just x) -> just x

| nothing -> first xr }

Let-expressions and Sequences. Using the case operator, we can enable (monomorphic) let-
expressions as syntactic sugar. Let-expressions are desugared as follows: let x = t in t’

:= case t in {x -> t’}. Another standard syntactic construct that can be defined in terms
of case is sequencing. A sequence t; t’ has semantics as expected: First t is evaluated and
discarded, then t’ is evaluated and returned. Sequences can thus be desugared as follows: t; t’

:= case t {_ -> t’}.

2.2 Programming With Effects

Effects in Frank are interfaces for both requesting and handling certain operations. They are a
means of abstraction in that effect-generating and effect-handling behaviour can be separated
into components that are easy to compose. In particular, effects can deliberately be leaking
outside of pure Frank and be handled e.g. via user input on the console. Let us stay in our
pure Frank world for now and make effect handling more concrete by considering our first effect
interface.

Defining Effects. A typical example of effects is state. Getting and putting a state are op-
erations that are requested by a stateful program (that uses a state) and handled by a state-
handling program (capable of managing state). Let us take a look at how the state effect
interface is defined.

interface State X = get: X

| put: X -> Unit

interface Choice = choose: Bool

An interface comprises multiple commands (here: get, put), of which each contains a list of
argument types and a result type (the right-most type). Interfaces can be parameterised by type
variables (here: X). We call an instantiated interface like State Bool an interface instantiation.
We also mention here the ambiguity of the term “effect”, which may refer to “interface”,
“command” or other related terms; for this reason we aim to use the defined terminology
whenever the context is not clear.

Generating Effects. Let us stick with the state example and have a look at how interfaces are
used by considering the following example of an operator that takes a list and returns the same
list but with every second element dropped.

8 Chapter 2. The Frank Programming Language

1 dropEverySecond: {List X -> [State Bool](List X)}

2 dropEverySecond [] = []

3 dropEverySecond (x::xr) = put (not get!);

4 if get! { x::(dropEverySecond xr) }

5 { dropEverySecond xr }

The operator reads the state and flips it (line 3) and then — depending on the state — drops
or does not drop the current element before going on with the rest (lines 4, 5). Notice that
although this operator may seem at first glance like an executable program, this is not the
case. The State Bool interface instantiation (and therefore the commands get, put) are as yet
uninterpreted.

Abilities and Pegs. Let us first focus on the operator’s signature. Its result type is List X, and
the prefix [State Bool] denotes that dropEverySecond requires the State Bool interface instanti-
ation. We call a bracket-enclosed collection of such required instantiations an ability or an effect
type2. Every operator has exactly one ability which — if it is explicit as in dropEverySecond

(and unlike in map) — is always prefixed to the result type. We call the ability and the result
type together the peg of an operator (here: [State Bool](List X)). The counterpart of a peg
is a port, giving rise to the image of a peg slotting into a port if their value types and the
exhibited effects (on the peg’s side) and handled effects (on the port’s side) match. Before we
describe ports in more detail, let us move our focus to the operator’s body. All commands
of the interface instantiations requested in the peg’s ability are available as operators. In our
example, this means we have get: {Bool} and put: {Bool -> Unit}, which are both used.

Handling Effects. We have now an operator that exhibits State Bool effects and in order to
use it, we need to provide a handler for it. There is a natural handler for state: It holds the
value of the current state, returns it on every get and updates it on every put. Let us see what
such a definition looks like.

evalState: {<State Y>X -> Y -> X}

evalState <get -> k> s = evalState (k s) s

evalState <put s -> k> _ = evalState (k unit) s

evalState x _ = x

The first two cases belong exactly to the described behaviour and in the third case, when no
more effects are exhibited by the computation, the operator returns the final value. Let us go
into more detail now, beginning with the type signature of evalState.

Adjustments and Ports. Similar to how we have to declare the required effects in the peg,
we prefix the argument types by the effects (i.e., interface instantiations) that can be handled.
We call such a list of interface instantiations an adjustment (here e.g.: <State Y>) and the
adjustment (if explicit) and argument type together a port (here e.g.: <State Y>X). The term
“adjustment” signifies an addition to the current ambient ability, which describes the effects
that are handled at a particular point and which we will explain in detail later.

Ports specify not only that an operator takes values of a particular type as argument.
Additionally, they also specify that an operator participates in the computation of such values
by handling certain commands that arise during their computation. Only when the computation
is finished a value binding will actually occur, in evalState this is covered by the last case.

Computation patterns. To handle the different commands, a new kind of pattern is introduced
which comprises the command name, patterns for the command’s arguments and a name for the
continuation (here e.g.: <put s -> k>). The command’s arguments are computed values and are
provided during the handling of the case. The continuation is an operator that awaits the result
type of the command and can be given to the handler at the same argument position again. Let
us make this more concrete: In the first case of the evalState handler, k: {Y -> [State Y]X}

and in the second case, k: {Unit -> [State Y]X}. The continuations potentially exhibit further

2“Ability” and “effect type” are two further terms that “effect” may refer to.

2.2. Programming With Effects 9

commands of State Y. This is why we can simply give the applied continuations again as
arguments to evalState at the port that can handle commands of State Y.

Combining Effect Generation and Effect Handling. We now have all the ingredients we need
to let the effects flow. Consider the following example of a main operator that applies the
dropEverySecond operator to the list [1, 2, 3, 4], resulting in [1, 3].

main: {List Int}

main! = evalState (dropEverySecond [1, 2, 3, 4]) false

Because the interface instantiation State Bool which is required by dropEverySecond is handled
by evalState, all effects are handled which leaves main with an implicit empty ability. However,
this is only the short explanation and after the next paragraph we demonstrate how effect
generation and effect handling interact.

Escaping Pure Frank. Let us briefly take a look at how Frank programs interact with the
outside world. Generally, the main operator is the default entry point to a program and the
returned value is displayed on standard output. What about any effects exhibited by main?
Effects appearing in the peg of main must be handled from outside of the pure Frank, so these
interfaces must be built-in and handled (translated) by the compiler. An example of such
an interface is Console which allows commands for console input and output. We will see an
example of this later and will now focus back on the handling mechanism.

Effect Variables. First of all, we extend our definition of ability. So far, we have defined an
ability as a collection of instantiated interfaces, e.g. [State Bool] or [State Bool, Choice]. In
addition to this collection, an ability can contain up to one effect variable E, explicitly written
like this: [E | State Bool] or [E | State Bool, Choice]. An effect variable can be bound to
an ability and such bindings occur every time effects are handled.

Implicitness. Before we go into detail about how effect variables come into play, let us take a
look at why we did not come across them so far, although having seen a complete example of
effect handling. The reason for this is implicitness, which acts on three levels: If not written
explicitly, there are 1) implicit abilities, 2) implicit effect variables and 3) implicit adjustments.
To illustrate these three points, we give the type signatures of dropEverySecond, evalState and
main with the mentioned elements explicitly included. As the inclusion of implicit variables
abandons the level of concrete syntax, we use formal notation from now on if appropriate.

dropEverySecond : {〈ι〉List X → [ε | State Bool](List X)}
evalState : {〈State Y 〉X → 〈ι〉Y → [ε|]X}

main : {[ε|]List Int}

First, if a peg is given without explicit ability, it always has an implicit ability as in evalState

and main. Second, if an ability is given without explicit effect variable, it is always assigned an
implicit effect variable ε. In the case of both implicit ability and effect variable, the notation [ε|]
is not particularly nice but unambiguous. Finally, if a port is given without explicit adjustment,
it always has the implicit empty adjustment 〈ι〉. Notice that within a particular signature,
several occurrences of ε refer to the same variable, as is the case for map where the function
passed as argument has the same ability as map itself.

map : {〈ι〉{〈ι〉X → [ε|]Y } → 〈ι〉List X → [ε|]List Y }

Globally though, every signature generally has fresh type variables, e.g. X and ε which are
both referred to from dropEverySecond and evalState are distinct.

10 Chapter 2. The Frank Programming Language

Type-Checking and Ambient Ability. Let us now examine how the type-checker makes sure
that effect generators and effect handlers are tied together in a sensible way. Type-checking
consists of two parts: First, value types have to be checked (e.g., if may only take Bool values as
its first argument), which is standard. Second, effect types have to be checked. Frank introduces
to this means the notion of an ambient ability. The ambient ability is the ability (i.e., available
interface instantiations) that is available at a specific point in the term. By “point” we mean
the sub-term that is currently checked. For each operator that a sub-term is nested within by
operator application (possibly indirectly), the operator’s ability is added to the ambient ability.

We demonstrate the evolution of the ambient ability by walking through a type-check of
main and consider all sub-terms that need to be type-checked. The aim is to informally provide
intuition for how checking effect types via the ambient ability works. We underline the currently-
typed sub-term (the current point of type-checking) in the following.

1. evalState (dropEverySecond [1, 2, 3, 4]) false Σ := [ε1|]

The term’s type is determined by the result type of evalState. So in order to type-check
the term, we need to make sure that the peg of main, [ε1|](List X1), matches the peg
of evalState, [ε2|]X2. We index the ε and X type variables, as they belong to different
definitions and are therefore distinct.

We call the value and effect variables (here: ε1, X1) occurring in the embracing peg
[ε1|](List X) rigid, because they are treated as constants as type-checking must succeed
for any instantiation. On the other hand, we call the value and effect type variables
of [ε2|]X2 (here: ε2, X2) flexible as they can be implicitly instantiated for every single
occurrence of evalState.

Matching the two pegs means to unify them. Not only need the value types be unified
(resulting in X2 := List X1) but also the abilities. This is where the notion of ambient
ability Σ comes in, and initially Σ is just [ε1|]. We give it this special name because it will
accumulate as we type-check further sub-terms. Unifying the ambient ability with [ε2|]
succeeds and results in ε2 := ε1.

2. evalState (dropEverySecond [1, 2, 3, 4]) false Σ := [ε1 | State Y]

Again, the term’s type is determined by the result type of dropEverySecond. Also, the
term is given as argument to evalState at its port 〈State Y 〉X2. So in order to type-check
this term, again we need to unify the value types (which succeeds as the term has type
X2 = List X1).

Let us now focus on the abilities. The ambient ability at this point gets augmented by
the adjustment 〈State Y 〉, evolving from [ε1|] to [ε1 | State Y]. As in 1), we need to unify
this ambient ability with negAltList’s peg’s ability [ε3 | State Bool]. This succeeds as we
can instantiate the flexible variables Y := Bool and ε3 := ε.

3. evalState (dropEverySecond [1, 2, 3, 4]) false Σ := [ε1 | State Y] and
evalState (dropEverySecond [1, 2, 3, 4]) false Σ := [ε1 | State Y]

Both terms are values and thus only need to match their expected value types List X1

and Bool, which is fulfilled for X1 := Int.

The formal typing rules are explained later in Chapter 3.2. Especially relevant with respect to
the ambient ability’s evolution (i.e., its accumulation) is the Ty-App rule.

User Interaction. Before moving on the formalisation of Frank, we come back to the question
of how to communicate with the user. So far, we have only seen a main operator that only
returned a value but did not exhibit any effects to be handled externally. The only means of
user interaction currently is the built-in Console interface, defined as follows.

interface Console = inch: Char

| ouch: Char -> Unit

2.2. Programming With Effects 11

Both its usage and its semantics with respect to the console when exhibited by main are straight-
forward. As an example, after defining a print operator that prints whole Strings, we give a
program that asks the user whether the program output should be true or false.

print : {String -> [Console]Unit}

print s = map ouch s; unit

main: {[Console]Bool}

main! = print "True (t) or false (_)?";

case inch! {’t’ -> true

| _ -> false}

This concludes the practical introduction to Frank, allowing us to proceed to its counterpart,
the formal underpinnings. We hope these will be much more understandable after having gained
some intuition in this chapter.

Chapter 3

Formal Specification of Frank

After giving an practical introduction to Frank we now give its formal definition. We begin with
the syntax in Section 3.1 by describing the abstract syntax of types and terms. The idea is that
every Frank program (written in concrete syntax) can be expressed and type-checked in abstract
syntax terms which we use as the base for further formal reasoning. To reason about typing of
terms, we present Frank’s type system in Section 3.2 and finally the operational semantics in
3.3. We mention here that the syntax and typing rules have been defined by Lindley et al. [20]
while we provide the operational small-step semantics.

3.1 Syntax

We go in the following through the different syntactic categories (Figure 3.1) which relate tightly
to the concrete syntax seen so far in chapter 2.

Types

(value types) A,B ::= D R | {C} | X
(computation types) C ::= T → G

(ports) T ::= 〈∆〉A
(pegs) G ::= [Σ]A

(type variables) Z ::= X | [E]

(type arguments) R ::= A | [Σ]

(polytype) P ::= ∀Z.A
(abilities) Σ ::= ∅ | E | Σ, I R

(adjustments) ∆ ::= ι | ∆ + I R

(type environments) Γ ::= · | Γ, x : A | Γ, f : P

with data types D

interfaces I

value type var.s X

effect type var.s E

Terms

(uses) m ::= x | f R | m n | (n : A)

(constructions) n ::= m | k n | c n | {e}
| let f : P = n in n′

| letrec f : P = e in n

(computations) e ::= r → n

(comp. patterns) r ::= p | 〈c p→ z〉 | 〈x〉
(value patterns) p ::= k p | x

with term var.s x, y, z

polyterm var.s f

constructors k

commands c

Figure 3.1: Abstract Syntax of Types and Terms [20]

Types. We begin by describing the types. Value types A,B are either instantiated data types
D R, operator types {C} or value type variables X. Type variables are instantiated by applying
type arguments R. We denote a list of syntactic objects by overlining a representative (e.g. R

13

14 Chapter 3. Formal Specification of Frank

with a general representative R) or using index notation (e.g. (Ri) with a particular element
(Ri)i).

Computation types C consist of a list of ports T and a peg G, with a port containing
an adjustment ∆ and a peg containing an ability Σ. An adjustment is a list of interface
instantiations I R that may be empty (ι). Similarly, an ability contains also a list of interface
instantiations I R and in addition an effect variable (E) or not (∅).

Type arguments R are to be bound by type variables Z. With the exception of abilities
(which may contain at most a single effect variable E), value and effect type variables can be
declared side by side, e.g. in a data type definition. Because value and effect type variables
belong to separate namespaces, we here explicitly write effect type variables in brackets, [E],
and value type variables without, X. There are three kind of constructs that are parameterised
by type arguments: 1) polymorphic data types, 2) polymorphic interfaces and 3) polymorphic
operators. Notice the significant difference here: 1) and 2) are type-constructs where as 3)
polymorphic operators are terms. By introducing the syntactic category of a polytype P , we
can bestow a notion of typing on polymorphic operators.

When instantiating a polymorphic operator of polytype ∀Z.A with type arguments R, the
instantiated type is A[R/Z] which denotes the substitution of (Ri)i for free type variables (Zi)i
in A.

Terms. Let us now focus on the terms. They are given in two categories, uses m and con-
structions n, with the latter including the former. The reason for introducing two categories is
that Frank uses a bidirectional type system [32] that distinguishes between terms whose type is
inferred (uses m) and checked (constructions n). This distinction will appear straightforward
when looking at the typing rules and should not matter to us for now.

Uses m may be monomorphic term variables x, instantiated polymorphic term variables f R,
applications m n or coercions (n : A). Polymorphic term variables f that are instantiated by
R are used in a more explicit manner in the abstract syntax than in the concrete syntax. E.g.,
for an application map not [false, true] we implicitly instantiate the two value type variables
of map by Bool and the effect type variable by the ambient ability. Implicit instantiation is a
service provided by the unification algorithm during type-checking and while we rely on this
in practice, we facilitate formal reasoning by making these instantiations explicit in abstract
syntax.

Another syntactic object that is solely there to facilitate formal reasoning is the coercion
(n : A). It is used to allow type inference for terms whose type has been determined before. Of
course, annotating n by a type A is only useful if the annotation has been backed by a typing
judgement.

Constructions n may be either uses m, constructor applications k n, command requests
c n, operators {e}, let-expressions or letrec-expressions. Frank allows constructors k only
when directly applied (to n). We mention here a difference to the original Frank version [20]
with respect to commands and command requests. While originally commands c were allowed
as stand-alone use terms, they now behave similarly to constructors k in that only applied
commands are legal1. The let- and letrec-expressions can be essentially used to represent
top-level (recursive) definitions from concrete syntax as abstract syntax terms. There are two
important points to mention here. First, let-expressions in abstract syntax are different from the
concrete syntactic sugar introduced before, which only provides monomorphic let-expressions.
Second, we mention that while abstract letrec-expressions form the counterpart to concrete top-
level operator definitions, abstract let-expressions do not have their counterpart implemented
yet in our compiler. The counterpart would be top-level polymorphic definitions that are not
necessarily operators (e.g. an definition that binds the polymorphic empty list []).

Computations e consist of patterns r which make binding available for terms n. Each
computation e involves a matrix of patterns r because for each case there must be a pattern for
each port. A pattern r can be either a value pattern p, a command-request pattern 〈c p→ z〉 or
a catch-all pattern 〈x〉. First, a value pattern p corresponds to classical pattern matching that
only can match when a computation has terminated with a value. Second, a command-request

1The motivation for this is that commands c cannot considered as values anymore. They used to be in Core
Frank, but since their occurrence is dependent on the ambient ability, this seemed not sensible to us.

3.2. Typing Rules 15

pattern 〈c p → z〉 matches a particular command c, but only if the command’s arguments
match the value patterns p. Resulting bindings include next to the bindings of p a continuation
z. Finally, a catch-all pattern 〈x〉 matches in any case, no matter whether a value is yielded or
a command request is made, and results in the binding of a thunk.

Definition ::= DatatypeDef | InterfaceDef | TermDef | OperatorDef

DatatypeDef ::= data D Z = Constructor

Constructor ::= k A

InterfaceDef ::= interface I Z = Command

Command ::= c : A→ B

TermDef ::= f : P

f = n

OperatorDef ::= f : ∀Z.{C}
f r = n

Figure 3.2: Abstract Syntax of Top-Level Definitions

Top-Level Definitions. At last, we give a formal account of the top-level definitions available
in Frank (Figure 3.2). Although we will not reason about top-level definitions (we argued
already that terms and types capture all Frank programs), we see their formal specification
useful as 1) it closely connected to the concrete syntax (which we have only given by example)
and 2) it is closely connected to the abstract syntax of terms and types. The specification
should be fairly familiar, but we make a few comments.

Because defined operators f , constructors k and commands k have the same syntactical
form, they share the same namespace. As mentioned before, term definitions TermDef are not
implemented in Frank yet. We can help ourselves though for now by defining thunks instead of
values and forcing them when needed. The following example is given in concrete syntax.

justNil: Maybe (List X)

justNil = just []
can be simulated by

justNil: {Maybe (List X)}

justNil! = just (nil)

Finally, we mention that although in concrete syntax operator definitions are implicitly polymor-
phic, both term definitions TermDef and operator definitions OperatorDef explicitly quantify
over type variables.

3.2 Typing Rules

We now proceed to the typing rules of Frank (Figure 3.3) which establish a bidirectional effect
type system [32]. It is bidirectional in the sense that from an algorithmic perspective, there
are two modes. The first mode is an inferring one: Given a term m, a type annotation A is
inferred. The second mode is a checking one: Given both a term n and a type annotation A,
it is checked whether this annotation fulfils the rules or not. The interplay between the two
modes becomes clear in the following.

Besides the first two kinds of typing judgements representing the check and infer modes,
there are three auxiliary kinds of typing judgements concerned with computation types and
pattern types. Two central elements of most kinds are the type environment Γ and the ambient
ability Σ, keeping track of the bindings and effects that are currently accessible to a term.

16 Chapter 3. Formal Specification of Frank

Γ[Σ]– m⇒ A For environment Γ and ambient Σ, use m is inferred to have type A.

Ty-Var
x : A ∈ Γ

Γ[Σ]– x⇒ A

Ty-PolyVar
f : ∀Z.A ∈ Γ

Γ[Σ]– f R⇒ A[R/Z]

Ty-Coerce
Γ[Σ]– n : A

Γ[Σ]– (n : A)⇒ A

Ty-App

Γ[Σ]– m⇒ {〈∆〉A→ [Σ′]B} Σ′ = Σ Γ[Σ⊕∆]– n : A

Γ[Σ]– m n⇒ B

Γ[Σ]– n : A For environment Γ and ambient Σ, construction n is checked to have type A.

Ty-Switch
Γ[Σ]– m⇒ A A = B

Γ[Σ]– m : B

Ty-Data

k A ∈ D R Γ[Σ]– n : A

Γ[Σ]– k n : D R

Ty-Command

c : A→ B ∈ Σ Γ[Σ]– n : A

Γ[Σ]– c n : B

Ty-Let
P = ∀Z.A Γ[Σ]– n : A Γ, f : P [Σ]– n′ : B

Γ[Σ]– let f : P = n in n′ : B

Ty-Operator
Γ ` e : C

Γ[Σ]– {e} : {C}

Ty-LetRec

P = ∀Z.{C} Γ, f : P ` e : C Γ, f : P [Σ]– n : B

Γ[Σ]– letrec f : P = e in n : B

Γ ` e : C For environment Γ and ambient Σ, comp. e is checked to have comp. type C.

Ty-Comp
(ri,j : Tj –[Σ] Γ′i,j)i,j (Γ, (Γ′i,j)j [Σ]– ni : B)i ((ri,j)i,j) covers (Tj)j

Γ ` ((ri,j)j → ni)i : (Tj →)j [Σ]B

p : A a Γ Value pattern p matches values of type A and provides bindings Γ.

Ty-P-Var

x : A a x : A

Ty-P-Data
k A ∈ D R p : A a Γ

k p : D R a Γ

r : T –[Σ] Γ Comp. pat. r matches comp.s of port T under amb. Σ and provides bind.s Γ.

Ty-P-Value
p : A a Γ

p : 〈∆〉A –[Σ] Γ

Ty-P-Request

c : A→B ∈ ∅⊕∆ (pi : Ai a Γi)i

〈c p→ z〉 : 〈∆〉B′ –[Σ] Γ, z : 〈ι〉B → [Σ⊕∆]B′

Ty-P-CatchAll

〈x〉 : 〈∆〉A –[Σ] x : {[Σ⊕∆]A}

Figure 3.3: Typing Rules [20]

Inferring Types. We begin by explaining the rules belonging to the infer mode of the form
Γ[Σ]– m⇒ A. A monomorphic term variable x is inferred to have the type A that Γ assigns to
it (Ty-Var). A polymorphic term variable f that is assigned the polytype ∀Z.A by Γ can be
instantiated to f R and consequently is inferred to have the type A[R/Z] (Ty-PolyVar).

We come now to the Ty-App rule which captures how the ambient ability evolves and how
type inference and type checking interact. The type of an application m n under ambient ability
Σ is inferred by first inferring the type of m under Σ and then checking that each argument
(ni)i is of the type expected by m, under an augmented ambient ability Σ⊕ (∆i)i. The ability

3.3. Operational Small-Step Semantics 17

is augmented by exactly the adjustment that is handled at the respective port. Finally, the
ability required by m must match exactly the current ambient ability (Σ′ = Σ).

The last type inference rule Ty-Coerce establishes a switch of mode (from inference to
checking) based on a very straightforward consequence: If a term n has an annotated type A
and the annotation is checked to be true, then A can be inferred to be indeed the type of n.

Checking Types. We proceed by explaining the rules belonging to the checking mode of the
form Γ[Σ]– n : A. First, checking that a use m is of type B is achieved by inferring m’s type and
then making sure that it is equal to B (Ty-Switch). Type-checking applied constructors k n
via Ty-Data, requested commands c n via Ty-Command, operators {e} via Ty-Operator,
let- and letrec-expressions (Ty-Let and Ty-LetRec) is rather standard, relying on recursive
type-checks of sub-terms.

Checking Computation Types. The rule Ty-Comp checks the sub-terms of a computation
e: Patterns must respect the expected argument types of e and for each clause, when provided
with bindings of the clause’s patterns, the handling term must respect the result type of e.
Furthermore, the clauses must be exhaustive2.

Checking Pattern Bindings. The remaining rules connect patterns with the bindings they
yield. There are two sets of rules, one for value patterns and one for computation patterns.
Value patterns represent classical pattern matching by decomposing constructors and yielding
according bindings (Ty-P-Var, Ty-P-Data). Computation patterns subsume value patterns
(Ty-P-Value) and catch command requests. Let us take a closer look at the Ty-P-Request
rule. When matching a particular command request via 〈c p→ z〉, the command c needs to be
available in the port’s adjustment ∆ and the patterns p need to respect the argument types of
c. The bindings include not only the bindings yielded by p but also the continuation z which
takes a value of the argument type of c and results in the port’s type. The ability of z is the
augmented ambient ability Σ ⊕∆ making z suitable to be handed to the port again. Finally,
by the Ty-P-CatchAll rule, any value or command request that is matched by 〈x〉 will be
bound to x as a thunk.

3.3 Operational Small-Step Semantics

We specify the operational semantics of Frank by providing an operational small-step reduction
relation. Lindley et al. [20] give a small-step reduction relation for Core Frank which inspires
our definition, but because Frank differs in important aspects like effect-handling from Core
Frank, so does its operational semantics. Before finally giving the small-step reduction relation,
we begin by defining additional syntactic categories like values and contexts (Figure 3.4) and
later define how pattern matching results in mono-value substitutions.

(use values) v ::= (w : A)

(construction values) w ::= v | k w | {e}
(normal forms) u ::= w | E [c w]

(evaluation contexts) E ::= • | E n | {e} (u, E , n) | k (w, E , n) | c (w, E , n) |
let f : P = E in n | (E : A)

(mono-value substitutions) σ ::= ∅ | σ, [x 7→ (w : A)]

TyEnv : σ 7→ Γ

TyEnv [x 7→ (w : A)] = x : A

Figure 3.4: Further Abstract Syntax w.r.t. Operational Semantics

2Coverage checking is not yet implemented in the Frank compiler [23]

18 Chapter 3. Formal Specification of Frank

Values. Values are terms that are irreducible and considered as desired output of a computa-
tion. We prove later that every well-typed and terminating Frank program reduces to a value
(Chapter 6. We distinguish again between use values v and construction values w which to-
gether are made up of operators (anonymous operators {e}, applied constructors k w and their
coerced variants (w : A).

Normal Forms and Contexts. Let us take a look at contexts which are central to the reduction
relation. Next to the atomic context hole •, contexts fix the evaluation position within different
syntactic constructs. In an application, a context can take up two different positions. First, it
can take up the position of the operator, E n. Second, if the operator is already reduced to an
operator {e}, it can focus the position of an argument whose left neighbour arguments are all
in normal form, {e} (u, E , n).

A term is in normal form if it is either a value w or in a form where the next reduction step
requires the handling of a command request, E [c w]. Taking a second glance at the context
{e} (u, E , n), we can observe that this is a fitting choice, as arguments are allowed to reduce from
left to right until they are all either values or exhibit a command — at which point handling
can take place.

The other contexts are rather standard. Arguments in constructor applications and com-
mand requests are reduced from left to right, k (w, E , n) and c (w, E , n). Finally, let-expressions
allow reduction of their bound term, let f : P = E in n, and reduction can happen under co-
ercion, (E : A).

Term Substitutions. Reducing terms involves the substitution of values for variables. In our
setting, we deal with two kinds of term substitutions, namely polymorphic substitutions and
monomorphic substitutions σ which are used for different constructs. On one hand, because let-
and letrec-expressions bind polymorphic terms, we need polymorphic substitutions to resolve
them. On the other hand, pattern matching generates monomorphic bindings, thus requiring
monomorphic substitutions. A particularity common to both substitutions is that due to further
formal reasoning we require the substituted values to be annotated by their type (coercions) and
to keep this annotation. Instead of choosing the most general form of substitution (polymorphic
with annotated polytypes), we distinguish between the two kinds and define them here. Because
monomorphic substitutions are used extensively during reasoning, we assign to them the meta-
variable σ.

Applying a single-entry polyvalue substitution is defined as follows: n[(w : ∀Z.A)/f] is the
term n with (w : A[R/Z]) substituted for every free variable occurrence f R. This definition
extends to general substitutions of multiple entries.

Applying a single-entry monovalue substitution σ = [x 7→ (w : A)] is defined as follows:
n[σ] is the term n with (w : A) substituted for every free variable occurrence x. This definition
extends to general substitutions of multiple entries.

Given a mono-value substitution σ, we can strip off the actual values and obtain a type
environment Γ, a transformation that is defined as the function TyEnv . This is of course only
possible due to the annotations in σ and will enable us later to reason about pattern bindings.

Pattern Binding. Before we finally come to the reduction relation, we need to define the
relationship between patterns and normal forms to be matched by them (Figure 3.5). If there
is a match, this will result in a set of bindings — which is just a monovalue substitution σ. In
this case in particular, σ will only contain monomorphic entries. Notice that the Bind-P rules
we describe in the following constitute the dynamic counterparts to the static Ty-P typing
rules.

We distinguish between two sets of rules, one for value patterns and one for computation
patterns. Value patterns either bind whole values (Bind-P-Var) or first decompose them into
sub-values (Bind-P-Data). Computation patterns subsume value patterns (Bind-P-Value)
and catch command requests. Let us take a closer look at the Bind-P-Request rule. When
matching a particular command request via 〈c p → z〉, the command c needs to be available
in the port’s adjustment ∆. Furthermore, patterns pi need to match the request’s arguments

3.3. Operational Small-Step Semantics 19

p : A← w a σ Value pattern p for type A matches w and binds σ.

Bind-P-Var

x : A← w a {x 7→ (w : A)}

Bind-P-Data
k A ∈ D R pi : Ai ← wi a σi
k p : D R← k w a σ1, ..., σn

r : T ← u –[Σ] σ Comp. pattern r for peg T matches w under ambient Σ and binds σ.

Bind-P-Value
p : A← w a σ

p : 〈∆〉A← w –[Σ] σ

Bind-P-Request

c : B → C ∈ ∆ pi : Bi ← wi a σi
〈c p → z〉 : 〈∆〉A← E [c w] –[Σ] σ1, ..., σn, {z 7→ ({x→ E [x]} : {C → [Σ⊕∆]A})}

Bind-P-CatchAll

〈x〉 : 〈∆〉A← u –[Σ] {x 7→ ({u} : {[Σ⊕∆]A})}

Figure 3.5: Pattern Binding

wi, resulting in bindings (i.e., mono-value substitutions) σi. The overall generated mono-value
substitution contains next to the entries of all σi the continuation z that is bound to an operator
{x → E [x]} of the according continuation type. When fed with the handler’s provided result
value, that value is substituted in and the handled computation can continue to reduce. Finally,
by the Bind-P-CatchAll rule, any value or command request that is matched by 〈x〉 will be
bound to x as a thunk.

Small-Step Reduction. We have now introduced all preliminaries to proceed to the core of the
description of the dynamic semantics, the small-step reduction relation (Figure 3.6). We begin
with the rule that describes handling (including the degenerate case of ordinary beta-reduction),
Step-Handle. More specifically, it describes the reduction of an operator that provides a
pattern matrix ri,j and handling terms ni, applied to a vector of normal-form arguments uj .
We require that at least one case i matches the arguments, resulting in mono-value substitutions
σi,j (one for each argument). If multiple cases i match, we pick the minimal i, as is standard
in pattern matching. Finally, the application reduces to ni with all mono-value substitutions
σi,j provided as bindings.

Reduction via Step-Let and Step-LetRec are standard. While a let-expression binding
an value w is simply dissolved by substituting in w, the letrec-expression reproduces itself for
further recursive calls, in particular by substituting itself into the reduced expression.

A use value coerced to a type, (v : A), can strip off its coercion as coercions are only
important for construction values (Step-Coerce). Last, reduction can happen under context,
relying on contexts to define the desired evaluation order (Let-Ctx).

20 Chapter 3. Formal Specification of Frank

Step-Handle
(ri,j : Tj ← uj –[Σ] σi,j)i,j i is minimal {r1,1 ... r1,l → n1

| ...
| rk,1 ... rk,l → nk}

: {T → [Σ]B}

u1 ... ul → ni[σi,1, ..., σi,l]

Step-Let

let f : P = w in n→ n[(w : P)/f]

Step-LetRec

e = r → n

letrec f : P = e in n′ → n′[({r → letrec f : P = e in n} : P)/f]

Step-Coerce

(v : A)→ v

Step-Ctx
n→ n′

E [n]→ E [n′]

Figure 3.6: Small-Step Reduction Relation

Chapter 4

Ability Representation and Operator
Composition

An ability consists of an optional effect variable and a set of instantiated interfaces, e.g.
[ε | State Int , Console]. When handlers are composed, the handlers’ adjustments are accu-
mulated by the ambient ability and thereby offer an execution environment for the handlers’
arguments. What happens if two handlers offer to handle the same interface? The mechanism
to resolve this issue is shadowing, i.e., the inner handling offer shadows the outer handling offer.
We make ability shadowing precise as follows.

• Shadowing can occur between instantiations of the same interface.
For example, State Int can shadow State Bool and vice versa (despite different instanti-
ations).

• For the notation of interface instantiations, left-to-right precedence denotes shadowing
order.
For example, in [ε | State Bool , State Int], State Bool is shadowed by State Int .

• Abilities bound to the effect variable have lower precedence than listed interface instan-
tiations.
For example, if ε := [0 | State Bool], then [ε | State Int] expands to [0 | State Bool , State Int].

• Adjustments shadow previous interface instantiations.
For example, [ε | State Bool] adjusted by 〈State Int〉 results in [ε | State Bool , State Int].

We say that the right-most instantiation of an interface is active. Given an operator of a
computation type {A → [Σ]B}, any command issued on the operator’s application belongs
necessarily to an active instantiation of Σ.

Besides the precedence which determines shadowing for each interface, the order of interface
instantiations in the notation of an ability is irrelevant. For example, we have:

[ε | State Int , Console] = [ε | Console, State Int]

4.1 Internal Representation of Abilities

How shall abilities be represented internally, i.e., during the unification process? Because shad-
owed interface instantiations might seem to have no role any more within an ability, one could
think of discarding them and represent abilities merely in terms of their active instantiations.
This would for example identify [ε | State Bool , State Int] = [ε | State Int] as both abilities
would have the same representation. Even though the Frank specification [20] does not state
precisely whether identification should be allowed or not, the original Frank compiler [21] does
implement this identification.

21

22 Chapter 4. Ability Representation and Operator Composition

However, there is a problem with this identification1. When resolving two unification con-
straints, it should not matter in which order these are resolved, i.e., for any order, unification
should either succeed or fail. Choosing a canonical representation of interface instantiations
that discards inactive instantiations breaks this property. To see this, consider the following
example.

1. Unify [ε|] with [0 | Console]

2. Unify [ε | Console] with [0 | Console]

First unifying 1) results in the solution ε := [0 | Console], then solving 2) is successful as we
have [0 | Console, Console] = [0 | Console]. On the other hand, first unifying 2) results in the
solution ε := [0 |], then solving 2) fails as there is no solution to [0 |] = [0 | Console]. This
kind of situation can indeed occur in Frank [25].

This phenomenon rules out discarding inactive interface instantiations during unification
and lets us stick with a representation comprising both active and inactive instantiations. Note
that unification order is irrelevant now since in situations as given above neither unification
order succeeds.

4.2 Composing Handlers

The central aspect of the ambient ability is that it makes handlers compositional: When compos-
ing handlers, their handling capabilities expressed as adjustments are implicitly accumulated.
When a term is executed in a particular ambient ability, the ambient ability can be seen both 1)
as an offer to handle certain effects but at the same time also 2) as a demand to handle certain
effects. The first point of an offer is quite clear as this is the whole point of using handlers. The
second point, we think, is more subtle but can come in our way when composing handlers as
shown during our discussion of the following four scenarios. We believe these scenarios represent
the common ways in which handlers are composed in Frank and are therefore worth examining.

4.2.1 Scenario 1: Accumulating Effects

Consider the following example in which two handlers are presented. First, boolFix handles
binary choice requests by always returning false. Second, intFix handles integer choice by
always returning 42.

interface BChoice = bchoose: Bool

interface IChoice = ichoose: Int

boolFix: {<BChoice >X -> X}

boolFix x = x

boolFix <bchoose -> k> = boolFix (k false)

intFix: {<IChoice >X -> X}

intFix x = x

intFix <ichoose -> k> = intFix (k 42)

Let us now compose the two handlers to arrive at a handler fixBoolInt that handles both
BChoice and IChoice. By composing fixBool and fixInt, we arrive at the following definition.

boolIntFix: {<BChoice ,IChoice >X -> X}

boolIntFix <m> = boolFix (intFix m!)

Understanding why the definition matches our expectation and type-checks is straightforward:
The ambient ability at the point where m is executed is [ε | BChoice, IChoice]. The argument m

is thus expected to match the ambient ability which it does by specification of the adjustment
〈BChoice, IChoice〉.

1This was pointed out by Conor McBride, Sam Lindley and Craig McLaughlin via private communication.

4.2. Composing Handlers 23

We can generalise this scenario by allowing the two composed handlers to exhibit effects
themselves, too. As an example, let us swap the first handler boolFix: {<BChoice>X -> X} by
a handler boolByCons: {<BChoice>X -> [Console]X} that asks the user to determine the choice,
resulting in the handler boolByConsIntFix.

boolByCons: {<BChoice >X -> [Console]X}

boolByCons x = x

boolByCons <bchoose -> k> = print "true (t) or false (_)? "; case inch!

{ ’t’ -> print "t\n"; boolByCons (k true)

| _ -> print "_\n"; boolByCons (k false) }

boolByConsIntFix: {<BChoice ,IChoice >X -> [Console]X}

boolByConsIntFix <m> = boolByCons (intFix m!)

Any effects required by the composed handlers have to occur in the peg of the composition
boolByConsIntFix, which ensures that the required effects are indeed available, thus making
unification during type-checking succeed. The pattern behind the given example is very common
and demonstrates how composition can be implemented in a straightforward manner.

4.2.2 Scenario 2: Unintentionally Exposed Intermediate Effects

Consider now an extension to the previous example. We introduce the handler intByBool which
handles integer choice requests by making multiple binary choice requests (for conciseness, it
only chooses from 0 to 3).

intByBool: {<IChoice >X -> [BChoice]X}

intByBool x = x

intByBool <ichoose -> k> = let n = if bchoose! { if bchoose! {3} {2} }

{ if bchoose! {1} {0} }

in intByBool (k n)

Let us now compose the two handlers boolByCons and intByBool to arrive at a handler intByCons
that handles IChoice and makes use of Console. At first thought, we would expect the type to
be {<IChoice>X -> [Console]X}. However, by composing boolByCons and intByBool in the same
way as in scenario 1), we arrive at the following definition.

intByCons: {<BChoice ,IChoice >X -> [Console]X}

intByCons <m> = boolByCons (intByBool m!)

The reason for having the adjustment 〈BChoice, IChoice〉 instead of 〈IChoice〉 is that at the
point where m is executed the ambient ability is [ε | Console, BChoice, IChoice]. The ambient
ability thus demands m to have the same ability which it only does by the specified adjustment.

Violation of Encapsulation We observe that this causes a major shortcoming, namely violation
of encapsulation. The internal mechanism of intByCons (the fact that it uses BChoice) is
exposed to the outside as part of the interface. This violation bears two undesired consequences:

First, there is potential for undesired interference with internals. If intByCons is applied to
an argument that requires BChoice (but which is to be handled completely differently), the
internals of intByCons will capture this ability and unwantedly handle it.

Second, determining the correct adjustment is cumbersome. Determining the accumulated
adjustment 〈BChoice, IChoice〉— although straightforward in this particular case — generally
requires understanding the internals of the embracing handler.

We conclude that when composing handlers in this way, having an intermediate handling con-
struct (intByBool issues effects handled by boolByCons) will inevitably cause intermediate effects
to leak outside. We take up this issue again in Section 4.4.

4.2.3 Scenario 3: Intentionally Exposed Intermediate Effects

However, if we had a different intention about what intByCons should do, we could be satisfied
with its type. Let us assume we give it the different name boolIntByCons and expect it to issue

24 Chapter 4. Ability Representation and Operator Composition

both binary and integer decisions. In this case, the signature

boolIntByCons: {<BChoice , IChoice >X -> [Console]X}

is exactly what we would expect. We conclude that it depends on the intention whether the
leakage of effects issued by intermediate handling constructs is acceptable or not. While it is
not desired for intByCons, it is desired for boolIntByCons.

4.2.4 Scenario 4: Intermediate Handling Without Introducing New Effects

It is revealing to look into one particular case of intermediate handling constructs, namely that
in which handlers handle and generate effects which are exposed to the outside anyway. Let
us consider the following example of such an intermediate handler that increases every integer
choice.

incrInt: {<IChoice >X -> [IChoice]X}

incrInt x = x

incrInt <ichoose -> k> = let n = ichoose! in incrInt (k (n + 1))

Let us define on top of incrInt a handler doubleIncrInt which increments every integer choice
twice. We would like it to have the same type as incrInt, namely {<IChoice>X -> [IChoice]X}.
In the same manner as in scenario 2) though, we have to line up the adjustment with the
ambient ability and do not arrive at our desired type.

doubleIncrInt: {<IChoice , IChoice >X -> [IChoice]X}

doubleIncrInt <m> = incrInt (incrInt m!)

However, there is a difference to scenario 2) here. At the point where m is executed, the ambient
ability is [ε | IChoice, IChoice, IChoice]. Any ichoose command at this point is handled only
by the handler offering the active instantiation of IChoice. The inactive instantiations of the
ambient ability are irrelevant at this point. Similarly, the inactive instantiations of the ability of
m are irrelevant, because a term can only exhibit commands of its active interface instantiations.
Because of this, we are able to introduce a modification to the type system which we make
precise in the next section. We already give away that it allows us to give doubleIncrInt the
type we would like to give it: {<IChoice>X -> [IChoice]X}.

4.3 Relaxing the Type System via Up-to-Inactive-Instantiations

We make a modification to the Ty-App rule in that we don’t require the ambient ability and
the argument’s ability to be equal (=) but equal-up-to-inactive-instantiations (∼). We first give
the modified rule of Ty-App and then define ∼.

Ty-App

Γ[Σ]– m⇒ {〈∆〉A→ [Σ′]B} Σ′ ∼ Σ Γ[Σ⊕∆]– n : A

Γ[Σ]– m n⇒ B

When inferring the type of an application m n under an ambient ability Σ, we first infer the
type of the operator m (left premise). We then check that for the ability of m’s peg, Σ′, we
have Σ ∼ Σ′ (center premise). This relaxes the original premise Σ = Σ′. Last, we check that
the arguments’ types match the ports of m (right premise). Let us now define ∼, based on the
notion of the active fragment of an ability Σ.

Definition 4.3.1 Given an ability Σ, we call Act(Σ) the active fragment of Σ (all inactive
interface instantiations are discarded).

Act : [0 | I1 R1, ..., In Rn] 7→ [0 | Ii1 Ri1 , ..., Iik Rik] s.t. Iij Rij ∈ {I1 R1, ..., In Rn}
is active ∀j ∈ {1, ..., k}

[E | I1 R1, ..., In Rn] 7→ [E | Ii1 Ri1 , ..., Iik Rik] s.t. Iij Rij ∈ {I1 R1, ..., In Rn}
is active ∀j ∈ {1, ..., k}

4.4. Discussion and Future Work 25

Definition 4.3.2 Given Σ,Σ′, we say that Σ is equal-up-to-inactive-instantiations to Σ′ (Σ ∼
Σ′) if Act(Σ) = Act(Σ′).

For better illustration, consider these three examples:

• [ε|] � [ε | Console] (active instantiation Console missing on left hand side)

• [ε | State Int , State Bool] ∼ [ε | State Bool] (instantiation State Int is inactive)

• [ε | State Bool , State Int] � [ε | State Bool] (active instantiations do not match)

Revisiting Scenario 4). Let us briefly revisit scenario 4 to justify that incrInt can indeed be
given the type {<IChoice>X -> [IChoice]X} instead of {<IChoice,IChoice>X -> [IChoice]X}:

doubleIncrInt: {<IChoice >X -> [IChoice]X}

doubleIncrInt x = x

doubleIncrInt <m> = incrInt (incrInt m!)

At the point when m is executed, the ambient ability is [ε | IChoice, IChoice, IChoice].
The ability of the peg of m is [ε | IChoice, IChoice]. By [ε | IChoice, IChoice, IChoice] ∼
[ε | IChoice, IChoice] and Ty-App, the expression type-checks. Note that as ∼ subsumes
equality, the former definition of type {<IChoice,IChoice>X -> [IChoice]X} is still admissible.

4.4 Discussion and Future Work

We have seen that relaxing the Ty-App rule solves part of the issue of unintentionally exposed
intermediate effects (scenario 2), namely the special case of scenario 4. The more general case
of scenario 2 though still bears a shortcoming that is not solved yet in Frank. In the original
Frank paper [20] (Sect. 6), Lindley et al. take up a similar issue where they consider to
remove interface instantiations by a “negative adjustment” from the ambient ability. Although
the presented issue is similar, we cannot see how negative adjustments can directly help us in
scenario 2.

We have explored how the scenarios are represented in the effect-extended version of Links
[12] and the programming language Koka [18] and obtain the same results about the uninten-
tional leaking of intermediate effects (scenario 2) [6, 5].

An approach that seems promising to us is the idea of a hiding composition operator2

that allows hiding of effects. We demonstrate the idea on the example of scenario 2 by first
giving the original code, but this time rewritten with some pseudo-code (o represents ordinary
composition).

intByCons: {<BChoice , IChoice >X -> [Console]X}

intByCons <m> = (boolByCons o intByBool) m!)

Let us imagine now that instead of an ordinary composition operator o we have a hiding
composition operator oE where E is the “hiding adjustment”, similar to the notion of a negative
adjustment. We can now hide the intermediate effect.

intByCons: {<IChoice >X -> [Console]X}

intByCons <m> = (boolByCons oBChoice intByBool) m!)

A straightforward implementation of this operator consists of command renaming. We first
explain the idea and then demonstrate it on the given example. Every operator has of multiple
ports, each defining a set of commands that are handled, and a peg defining a set of commands
that can potentially be requested. Imagine now that the compiler can rewrite these names for
particular operator occurrences. The internal behaviour of the operator is still the same, but
its interaction with the environment may change completely. By changing the output names
(i.e., of requested commands) of one operator and the input names (i.e., of handled commands)
of another in the same way, we achieve a tunnel between the two. Other operators will not
interfere with this tunnel if the compiler makes sure that the commands were renamed in a

2This idea was first brought up by Sam Lindley via private communication.

26 Chapter 4. Ability Representation and Operator Composition

unique way. With the renaming during compile time, we believe that the translated programs
can be quite efficient.

Let us carry this idea over to our example intByCons, where a possible translation through
the compiler could involve the following. The intByBool operator is modified s.t. every issued
bchoose request becomes a bchooseTunnel request. The boolByCons operator is modified s.t. on
its first port, instead of catching bchoose requests, it catches bchooseTunnel requests. This has
as consequence that boolByCons does not add to the ambient ability, resulting in the ambient
ability [ε | Console, IChoice] (instead of [ε | Console, BChoice, IChoice]) at the point where
m is forced.

In a more general manner, multi-tunnels could be established between one effect-handling
operator and several effect-exhibiting operators. The only condition is that the effect-handling
operator is “wrapping” the effect-generating ones. An issue that still needs to be tackled is
notation as the components of such a multi-tunnel can be at very different locations. Naming
such a multi-tunnel and then explicitly referencing it seems thus a good approach to us.

Chapter 5

Polymorphic Commands

Interfaces are polymorphic, i.e., they can be parameterised by types as for example in Send Int

where Send is parameterised by Int. The first major extension to the Frank language is to
make commands polymorphic, too. This means that on each command call, the caller can
choose a particular instantiation and the command’s handler must be able deal with any such
instantiation. The following simple example demonstrates both the new functionality and its
usefulness. The choose command of PolyChoice can be seen as a mix of if (taking two suspended
computations of which only one gets forced) and boolean choice (non-determinism).

interface PolyChoice = choose X: {[Polychoice]X} -> {[PolyChoice]X} -> X

nondeterministicGreeting : {[PolyChoice]String}

nondeterministicGreeting! = choose {"Good afternoon"} {"Guten Tag"}

pickLeft: {<PolyChoice >X -> X}

pickLeft <choose a b -> k> = pickLeft (k a!)

pickLeft x = x

As observable in the first line, type variables (for both value type and effect type) can be
specified right between a command’s name and the colon. A function requiring PolyChoice

(e.g. nondeterministicGreeting) can now call choose and thereby implicitly instantiate the
type variable X (e.g. with String).

Polymorphic commands are a straightforward extension as only the syntax and the type
system need some modification. While widening the number of programs which type-check,
we do not introduce new dynamic semantics and thus need not change anything concerning
post-type-check processing.

In the next sections, we present the formal integration of the extensions into Frank and
how it enables a flexible kind of exception handling. In Chapter 7.1, we present further how
polymorphic commands enable generative effects such as referentiable state and in Chapter 7.3,
7.4 we will see that they are indispensable for concurrency abstractions such as the actor model.

5.1 Formal Extension

We formally present the changes made to the syntax and the type system of Frank. We begin
with the syntax. Commands c are now polymorphic in the same way as polymorphic variables
f . Since we only allow monomorphic terms, commands c need to be applied to type arguments
R first to become usable. We update the abstract syntax as follows.

(constructions) n ::= m | k n | c R n | {e} | let f : P = n in n′ | letrec f : P = e in n

Furthermore, we update the abstract syntax of top-level definitions as follows.

Command ::= c : ∀Z.A→ B

27

28 Chapter 5. Polymorphic Commands

We now come to two modified typing rules. When inferring the type of a command use as
described by Ty-Command, we have to consider a command now as being of polytype, not a
mere type any more. We can thus infer any instantiation of this polytype.

Ty-Command

c : ∀Z.A→ B ∈ Σ Γ[Σ]– n : A[R/Z]

Γ[Σ]– c R n : B[R/Z]

A similar change is done to the handling counterpart: When checking that a command pat-
tern matches its corresponding adjustment in the Ty-P-Request rule, the type scheme of a
command can simply be stripped because the type variables must be considered as arbitrarily
instantiated.

Ty-P-Request

c : ∀Z.A→B ∈ ∅⊕∆ (pi : Ai a Γi)i

〈c p→ z〉 : 〈∆〉B′ –[Σ] Γ, z : 〈ι〉B → [Σ⊕∆]B′

At last, we come to the dynamic semantics where we update the syntax of normal forms and
evaluation contexts as well as a rule for bindings during pattern matching.

(normal forms) u ::= w | E [c R w]

(evaluation contexts) E ::= • | E n | {e} (u, E , n) | k (w, E , n) | c R (w, E , n) |

let f : P = E in n | (E : A)

Bind-P-Request

c : ∀Z.B → C ∈ ∆ pi : Bi ← wi a σi
〈c p → z〉 : 〈∆〉A← E [c R w] –[Σ] σ1, ..., σn, {z 7→ ({x→ E [x]} : {C → [Σ⊕∆]A})}

For the Bind-P-Request rule, nothing changes for the resulting mono-value substitutions as
the handling expressions must handle commands of arbitrary instantiation.

5.2 Application: Exception Handling

Another useful application is providing convenient exception handling in Frank without resort-
ing to additional language primitives. Consider the following interface marking the ability of
raising exceptions.

interface Exception E = raise X: E -> X

The command raise is expected to produce a value for any type X whenever executed. There
is of course no handler that can satisfy this, but the crux is that never to continue after a call
of raise is exactly what one expects from an exception handler. The following presents 1) a
fallible example operator boolToInt and 2) a handler try that executes a fallible program and
returns Either its result or the raised exception.

boolToInt: {Bool -> [Exception String]Bool}

boolToInt "false" = false

boolToInt "true" = true

boolToInt _ = raise "not a bool"

try: {<Exception E>X -> Either E X}

try <raise e -> _> = Left e

try x = Right x

Without much effort we have integrated exception handling in a flexible manner: Any type
can serve as an exception and exceptions can be caught and forwarded, using merely the core
facilites of Frank.

5.2. Application: Exception Handling 29

5.2.1 Multiple Instances of Exceptions

We mention one shortcoming of exception handling in the current Frank setting. It is not
possible to deal with multiple instantiations of the Exception interface at the same time. The
reason for this is that different instantiations shadow each other and only the most recent one
is active, e.g. [Exception String, Exception Int] behaves as [Exception Int]. This issue can
be addressed by introducing interface instances which are distinguishable entities and do not
shadow each other. Eff [2] is an example of a language that supports effect instances.

5.2.2 Non-informative Exceptions

A special case of exceptions — one without any exception object — is even simpler to define,
use and handle.

interface Abort = abort X: X

stringToBool ’: {String -> [Abort]Bool}

stringToBool ’ "false" = false

stringToBool ’ "true" = true

stringToBool ’ _ = abort!

try ’: {<Abort >X -> Maybe X}

try ’ <abort -> _> = Nothing

try ’ x = Just x

This particular example can be directly compared to an example given in the original Frank
paper [20]. Having no polymorphic commands at hand, the abort functionality had to be
implemented on top of a vacuous pattern match to make stringToBool’ and try’ work in the
same way (both definitions stringToBool’ and try’ are still valid when redefining Abort and
abort as follows).

data Zero =

interface Abort = aborting: Zero

abort: {[Abort]X}

abort! = case aborting! {}

Although this does not save many lines of code in this example, it becomes clear that poly-
morphic commands do not only enlarge the spectrum of what can be implemented but can also
offer a more direct way of expression.

Chapter 6

Type Soundness

We provide a proof of type soundness of the new Frank setting (i.e., including the enhancements)
in the following. It guarantees that a terminating well-typed program yields a value of the same
type. Next to classical value-type-safety this implies in particular effect-type safety, because
any commands not provided in the ambient ability are guaranteed not to occur. No dangling
unexpected command requests are therefore possible.

In the following, we first reiterate the syntax, typing rules and operational semantics due
to the changes we have done to them in the last Chapters. Since they have been explained
before, we only state the definitions and and highlight the updated parts. After introducing
and proving further preliminaries, we establish type soundness by dividing it into two parts,
type preservation and progress, and proving those properties separately.

Definition ::= DatatypeDef | InterfaceDef | TermDef | OperatorDef

DatatypeDef ::= data D Z = Constructor

Constructor ::= k A

InterfaceDef ::= interface I Z = Command

Command ::= c : ∀Z.A→ B

TermDef ::= f : P

f = n

OperatorDef ::= f : ∀Z.{C}
f r = n

Figure 6.1: Abstract Syntax of Top-Level Definitions (updated)

31

32 Chapter 6. Type Soundness

Types

(value types) A,B ::= D R | {C} | X
(computation types) C ::= T → G

(ports) T ::= 〈∆〉A
(pegs) G ::= [Σ]A

(type variables) Z ::= X | [E]

(type arguments) R ::= A | [Σ]

(polytype) P ::= ∀Z.A
(abilities) Σ ::= ∅ | E | Σ, I R

(adjustments) ∆ ::= ι | ∆ + I R

(type environments) Γ ::= · | Γ, x : A | Γ, f : P

with data types D

interfaces I

value type var.s X

effect type var.s E

Terms

(uses) m ::= x | f R | m n | (n : A)

(constructions) n ::= m | k n | c R n | {e}
| let f : P = n in n′

| letrec f : P = e in n

(computations) e ::= r → n

(comp. patterns) r ::= p | 〈c p→ z〉 | 〈x〉
(value patterns) p ::= k p | x

with term var.s x, y, z

polyterm var.s f

constructors k

commands c

Figure 6.2: Abstract Syntax of Types and Terms [20] (updated)

(use values) v ::= (w : A)

(construction values) w ::= v | k w | {e}

(normal forms) u ::= w | E [c R w]

(evaluation contexts) E ::= • | E n | {e} (u, E , n) | k (w, E , n) | c R (w, E , n) |

let f : P = E in n | (E : A)

(mono-value substitutions) σ ::= ∅ | σ, [x 7→ (w : A)]

TyEnv : σ 7→ Γ

TyEnv [x 7→ (w : A)] = x : A

Figure 6.3: Further Syntax w.r.t. Dynamic Semantics (updated)

33

Γ[Σ]– m⇒ A For environment Γ and ambient Σ, use m is inferred to have type A.

Ty-Var
x : A ∈ Γ

Γ[Σ]– x⇒ A

Ty-PolyVar
f : ∀Z.A ∈ Γ

Γ[Σ]– f R⇒ A[R/Z]

Ty-Coerce
Γ[Σ]– n : A

Γ[Σ]– (n : A)⇒ A

Ty-App

Γ[Σ]– m⇒ {〈∆〉A→ [Σ′]B} Σ′ ∼ Σ Γ[Σ⊕∆]– n : A

Γ[Σ]– m n⇒ B

Γ[Σ]– n : A For environment Γ and ambient Σ, construction n is checked to have type A.

Ty-Switch
Γ[Σ]– m⇒ A A = B

Γ[Σ]– m : B

Ty-Data

k A ∈ D R Γ[Σ]– n : A

Γ[Σ]– k n : D R

Ty-Command

c : ∀Z.A→ B ∈ Σ Γ[Σ]– n : A[R/Z]

Γ[Σ]– c R n : B[R/Z]

Ty-Let
P = ∀Z.A Γ[Σ]– n : A Γ, f : P [Σ]– n′ : B

Γ[Σ]– let f : P = n in n′ : B

Ty-Operator
Γ ` e : C

Γ[Σ]– {e} : {C}

Ty-LetRec

P = ∀Z.{C} Γ, f : P ` e : C Γ, f : P [Σ]– n : B

Γ[Σ]– letrec f : P = e in n : B

Γ ` e : C For environment Γ and ambient Σ, comp. e is checked to have comp. type C.

Ty-Comp
(ri,j : Tj –[Σ] Γ′i,j)i,j (Γ, (Γ′i,j)j [Σ]– ni : B)i ((ri,j)i,j) covers (Tj)j

Γ ` ((ri,j)j → ni)i : (Tj →)j [Σ]B

p : A a Γ Value pattern p matches values of type A and provides bindings Γ.

Ty-P-Var

x : A a x : A

Ty-P-Data
k A ∈ D R p : A a Γ

k p : D R a Γ

r : T –[Σ] Γ Comp. pat. r matches comp.s of port T under amb. Σ and provides bind.s Γ.

Ty-P-Value
p : A a Γ

p : 〈∆〉A –[Σ] Γ

Ty-P-Request

c : ∀Z.A→B ∈ ∅⊕∆ (pi : Ai a Γi)i

〈c p→ z〉 : 〈∆〉B′ –[Σ] Γ, z : 〈ι〉B → [Σ⊕∆]B′

Ty-P-CatchAll

〈x〉 : 〈∆〉A –[Σ] x : {[Σ⊕∆]A}

Figure 6.4: Typing Rules [20] (updated)

34 Chapter 6. Type Soundness

p : A← w a σ Value pattern p for type A matches w and binds σ.

Bind-P-Var

x : A← w a {x 7→ (w : A)}

Bind-P-Data
k A ∈ D R pi : Ai ← wi a σi
k p : D R← k w a σ1, ..., σn

r : T ← u –[Σ] σ Comp. pattern r for peg T matches w under ambient Σ and binds σ.

Bind-P-Value
p : A← w a σ

p : 〈∆〉A← w –[Σ] σ

Bind-P-Request

c : ∀Z.B → C ∈ ∆ pi : Bi ← wi a σi
〈c p → z〉 : 〈∆〉A← E [c R w] –[Σ] σ1, ..., σn, {z 7→ ({x→ E [x]} : {C → [Σ⊕∆]A})}

Bind-P-CatchAll

〈x〉 : 〈∆〉A← u –[Σ] {x 7→ ({u} : {[Σ⊕∆]A})}

Figure 6.5: Pattern Binding (updated)

Step-Handle
(ri,j : Tj ← uj –[Σ] σi,j)i,j i is minimal {r1,1 ... r1,l → n1

| ...
| rk,1 ... rk,l → nk}

: {T → [Σ]B}

u1 ... ul → ni[σi,1, ..., σi,l]

Step-Let

let f : P = w in n→ n[(w : P)/f]

Step-LetRec

e = r → n

letrec f : P = e in n′ → n′[({r → letrec f : P = e in n} : P)/f]

Step-Coerce

(v : A)→ v

Step-Ctx
n→ n′

E [n]→ E [n′]

Figure 6.6: Small-Step Reduction Relation

6.1 Type Preservation

Type preservation means that reduction preserves typing for well-typed terms, i.e., after doing
a reduction step, a well-typed term still has the same type. Before proving this property, we
need to introduce some preliminaries. First of all, contexts need to be assigned context types.
A context type of the form A V B specifies that when a context’s hole is filled by a term of
type A, then the resulting term is of type B. We have one rule per context form.

6.1. Type Preservation 35

First, when filling the atomic context, the resulting term has the type of the hole (Ctx-
Hole). The other rules lift up the hole’s type to composed contexts. Let us examine one
example, Ctx-App-L. The type of a context of the form E n is determined by the type of
operator E and the types of arguments n. Because the operator is a context, its hole type A
fixes the hole type for the expression E n. The result type B is determined by the operator’s
result type, in alignment to the normal typing rule Ty-App. The other rules follow this pattern
of lifting the hole type while following the normal typing rules.

Γ[Σ]– E : AV B For environment Γ and ambient Σ, context E with hole type A has type B.

Ctx-Hole

Γ[Σ]– • : AV A

Ctx-Coerce
Γ[Σ]– E : AV B

Γ[Σ]– (E : B) : AV B

Ctx-App-L

Γ[Σ]– E : AV {〈∆′〉B′ → B} Γ[Σ⊕∆′]– n : B′

Γ[Σ]– E n : AV B

Ctx-App-R

Γ[Σ]– {e} : {〈∆′〉B′ → 〈∆′′〉B′′ → 〈∆′′′〉B′′′ → [Σ]B}
Γ[Σ⊕∆′]– u : B′ Γ[Σ⊕∆′′]– E : AV B′′ Γ[Σ⊕∆′′′]– n : B′′′

Γ[Σ]– {e} (u, E , n) : AV B

Ctx-Data

k (B,B′, B′′) ∈ D R Γ[Σ]– w : B Γ[Σ]– E : AV B′ Γ[Σ]– n : B′′

Γ[Σ]– k (w, E , n) : AV D R

Ctx-Command
c : ∀Z.B → B′ → B′′ → B′′′ ∈ Σ

Γ[Σ]– w : B[R/Z] Γ[Σ]– E : AV B′[R/Z] Γ[Σ]– n : B′′[R/Z]

Γ[Σ]– c R (w, E , n) : AV B′′′[R/Z]

Ctx-Let
Γ[Σ]– E : AV C Γ, f : ∀Z.C [Σ]– n : B

Γ[Σ]– let f : ∀Z.C = E in n : AV B

Figure 6.7: Context Typing Rules

Typing judgements form a congruence with respect to contexts. This important property means
that given a filled context, we can invert the context-filling, swap the filling (thereby respecting
the hole type) and have the same judgement for the re-filled context. While this is a standard
lemma, we mention one particularity of this lemma due to Frank’s effect type system. A hole
that is nested within a larger context may have access to a larger ambient ability. We deal
with this by acknowledging that the filled term has access to the ambient ability Σ extended by
some accumulated adjustment ∆. In some sense we can view this particularity as a technical
detail that will not explicitly come into our way later.

Lemma 6.1.1 (Context Inversion) Let E be a context. Then

1. Γ[Σ]– E [m]⇒ B implies ∃ A,∆. Γ[Σ⊕∆]– m⇒ A

and Γ[Σ]– E : AV B

and (∀ m′. Γ[Σ⊕∆]– m′ ⇒ A implies Γ[Σ]– E [m′]⇒ B)

2. Γ[Σ]– E [n] : B implies ∃ A,∆. Γ[Σ⊕∆]– n : A

and Γ[Σ]– E : AV B

and (∀ n′. Γ[Σ⊕∆]– n′ : A implies Γ[Σ]– E [n′] : B)

36 Chapter 6. Type Soundness

Proof By induction on E . �

Next, we establish substitutivity of typing judgements, with respect to both mono-value substi-
tutions σ and poly-value substitutions. Substitutivity is a standard and indispensable property
stating that substituting values for free variables in terms preserves typing judgements, given
that the values are of the right type.

Lemma 6.1.2 (Typing is Substitutive)

1. Γ, (x : B) [Σ]– m⇒ A implies Γ [Σ]– m[x 7→ (v : B)]⇒ A

and Γ [Σ]– v ⇒ B

2. Γ, (x : B) [Σ]– n : A implies Γ [Σ]– n[x 7→ (w : B)] : A

and Γ [Σ]– w : B

3. Γ, (f : ∀Z.B) [Σ]– m⇒ A implies Γ [Σ]– m[(v : ∀Z.B)/f]⇒ A

and Γ [Σ]– v ⇒ B

4. Γ, (f : ∀Z.B) [Σ]– n : A implies Γ [Σ]– n[(w : ∀Z.B)/f] : A

and Γ [Σ]– w : B

Proof For all 1), 2), 3), 4) by induction on the first premise. �

We now focus on pattern matching, one of core elements of computation in Frank. As defined
before (Figure 6.5), patterns applied to values result in mono-value substitutions. We refine
the notion of a mono-value substitution by the property of well-typedness, which we can expect
of the substitutions yielded by pattern-matching.

Definition 6.1.3 (Well-Typed Mono-Value Substitutions) We say that a mono-value sub-
stitution σ is well-typed if for all its entries [x 7→ (w : A)] it holds that for any Γ and Σ,
Γ[Σ]– w : A.

The following lemma fuses static and dynamic judgements about pattern matching. Given
a typing judgement for a pattern r and a judgement describing the resulting substitution σ
when matched against a value w, the typing judgements must agree with the types annotated
in σ. Furthermore, as σ binds closed values (i.e., without occurrences of free variables), σ is
guaranteed to be well-typed.

Lemma 6.1.4 (Pattern Typing Correspondence)

1. p : A a Γ implies TyEnv(σ) = Γ

and p : A← w a σ and σ is well-typed

2. r : 〈∆〉A –[Σ] Γ implies TyEnv(σ) = Γ

and r : 〈∆〉A← u –[Σ] σ and σ is well-typed

Proof For 1) by induction on p and for 2) by case analysis on r, then using 1). �

We need one further connection between equality-up-to-inactive-instantiations (Σ ∼ Σ′) and
typing judgements. Because a term can only exhibit command requests of an active interface
instantiation, only the active fragment of the ambient ability is essential for typing. This means
that a typing judgements under Σ holds also under Σ′ for Σ ∼ Σ′.

6.1. Type Preservation 37

Lemma 6.1.5 (Typing Up-to-Inactive-Instantiations)

1. Γ[Σ]– m⇒ A implies Γ[Σ′]– m⇒ A

and Σ ∼ Σ′

2. Γ[Σ]– n : A implies Γ[Σ′]– n : A

and Σ ∼ Σ′

Proof By mutual induction on the typing judgements. �

Finally, we prove type preservation.

Theorem 6.1.6 (Type Preservation) Let n, n′ be terms with n→ n′. Then

1. Γ[Σ]– m⇒ A implies Γ[Σ]– m′ ⇒ A for m = n, m′ = n′

2. Γ[Σ]– n : A implies Γ[Σ]– n′ : A

Proof Induction on n→ n′.

• (Step-Coerce) (v : A′)→ v. We prove 1) and 2).

1. Let Γ[Σ]– (v : A′) ⇒ A. By inversion (Ty-Coerce), A = A′ and Γ[Σ]– v : A. By
inversion (Ty-Switch), Γ[Σ]– v ⇒ A.

2. Let Γ[Σ]– (v : A′) : A. By inversion (Ty-Switch, Ty-Coerce), A = A′ and
Γ[Σ]– v : A.

• (Step-Ctx) E [n]→ E [n′] with n→ n′. We prove 1) and 2).

1. Let Γ[Σ]– E [m]⇒ B. We have to show Γ[Σ]– E [m′]⇒ B.
By Lemma 6.1.1, there exist A, ∆ s.t. Γ[Σ⊕∆]– m⇒ A and (∀ m′. Γ[Σ⊕∆]– m′ ⇒
A implies [Σ]– E [m′]⇒ B).
By induction, we have Γ[Σ⊕∆]– m′ ⇒ A. This implies [Σ]– E [m′]⇒ B.

2. Let Γ[Σ]– E [n] : B. We have to show Γ[Σ]– E [n′] : B.
By Lemma 6.1.1, there exist A, ∆ s.t. Γ[Σ ⊕ ∆]– n : A and (∀ n′. Γ[Σ ⊕ ∆]– n′ :
A implies [Σ]– E [n′]⇒ B).
By induction, we have Γ[Σ⊕∆]– n′ : A. This implies [Σ]– E [n′] : B.

• (Step-Handle)

 {r1,1 ... r1,l → n1

| ...
| rk,1 ... rk,l → nk}

: {T → [Σ′]B}

u1 ... ul → ni[σi,1, ..., σi,l]

with (ri,j : Tj ← uj –[Σ′] σi,j)i,j . We prove 1) and 2).

1. Let Γ[Σ]– (m : {T → [Σ′]B}) u⇒ B′. We have to show Γ[Σ]– ni[σi,1, ..., σi,l]⇒ B′.
By inversion (Ty-App, Ty-Coerce), we have B = B′ and Σ′ ∼ Σ and Γ[Σ′]– m :
{T → [Σ]B}.
By inversion (Ty-Operator, Ty-Comp), we have (ri,j : Tj –[Σ′] Γ′i,j)i,j and
(Γ, (Γ′i,j)j) [Σ′]– ni : B)i.
Together with the premise (ri,j : Tj ← uj –[Σ′] σi,j)i,j , we have TyEnv(σi,1, ..., σi,l) =
Γ′i,1, ...,Γ

′
i,l and well-typedness of σi,j by Lemma 6.1.4.

By Lemma 6.1.2, it suffices to show (Γ, T yEnv(σi,1, ..., σi,l)[Σ]– ni ⇒ B)i. This is
equivalent to showing (Γ, (Γ′i,1, ...,Γ

′
i,l)[Σ]– ni ⇒ B)i. By (Γ, (Γ′i,j)j) [Σ′]– ni : B)i

and Σ′ ∼ Σ we can conclude with Lemma 6.1.5.

2. Let Γ[Σ]– (m : {T → [Σ]B}) u : B′. We have to show Γ[Σ]– ni[σi,1, ..., σi,l] : B′.
By inversion (Ty-Switch), we have Γ[Σ]– (m : {T → [Σ]B}) u ⇒ B′. By the
same argument as in 1), we obtain Γ[Σ]– ni[σi,1, ..., σi,l] ⇒ B′. We conclude by
Ty-Switch.

38 Chapter 6. Type Soundness

• (Step-Let) let f : P = w in n→ n[(w : P)/f]. By inversion, we only need to prove 2).
Let Γ[Σ]– let f : P = w in n : B. We have to show Γ[Σ]– n[(w : P)/f] : B.
By inversion (Ty-Let) we have P = ∀Z.A and Γ[Σ]– w : A and Γ, f : P [Σ]– n : B. We
conclude by Lemma 6.1.2.

• (Step-LetRec) letrec f : P = e in n′ → n′[({r → letrec f : P = e in n} : P)/f] with

e = r → n.
By inversion, we only need to prove 2). Let Γ[Σ]– letrec f : P = e in n′ : B.

We have to show Γ[Σ]– n′[({r → letrec f : P = e in n} : P)/f] : B.
We argue in the following for every (fi)i in the above substitution. By inversion (Ty-

LetRec), we have P = ∀Z.{〈∆〉A→ A′} and Γ, f : P ` e : 〈∆〉A→ A′ and Γ, f : P [Σ]– n′ :
B.
By Lemma 6.1.2, it suffices to show that Γ[Σ]– {r → letrec f : P = e in n} : {〈∆〉A→A′}.
By Ty-Operator, it suffices to show that Γ[Σ]– r → letrec f : P = e in n : 〈∆〉A→ A′.
We can show this via Ty-Comp by providing the required premises through inversion of

Γ, f : P ` e : 〈∆〉A→ A′ which also gives us (Γ, f : P , (Γ′i,j)j [Σ]– ni : A′)i. It remains to

show the second premise, (Γ, (Γ′i,j)j [Σ]– letrec f : P = e in ni : A′)i. We have this by
Ty-LetRec and by weakening of type environment. �

6.2 Progress

Progress means that a well-typed term either is normal or can progress (i.e., reduce). Usually,
values and normal terms are used synonymously. We make a distinction by having normal
terms contain — next to values — terms whose next evaluation step requires the handling of a
command, E [c w]. Bestowing this class of syntactic constructs with a constraint to an ambient
ability, we have — next to values — a class of terms that we do not perceive as stuck.

Definition 6.2.1
For a term n with either Γ[Σ]– n⇒ A or Γ[Σ]– n : A, we say:

• n is normal w.r.t. Σ if it is a value w or of the form E [c w] where c : A→ B ∈ Σ.

• n is non-stuck w.r.t. Σ if n is normal w.r.t. Σ or ∃ n′. n→ n′.

We need one more property of pattern matching that is related to progress in the sense that
pattern matching must succeed in some way. We required in our typing rules (Figure 6.4) that
the cases for each pattern-matching operator are exhaustive. Because we have not formally
defined what it means for a pattern r to cover a type A, we cannot formally reason about it.
We argue nevertheless that exhaustive pattern matching results in a binding σk for some k-th
case.

Proposition 6.2.2 (Pattern Matching)

1. Let (pi : A a Γ′i)i be a collection of value patterns that cover A. Furthermore, let Γ[Σ]– w :
A. Then there exist k and σk s.t. pk : A← w a σk and k minimal.

2. Let (ri : 〈∆〉A –[Σ] Γ′i)i be a collection of computation patterns that cover A. Furthermore,
let Γ[Σ⊕∆]– u : A. Then there exist k and σk s.t. rk : 〈∆〉A← u –[Σ] σk and k minimal.

Finally, we prove progress which together with type preservation gives type soundness.

Theorem 6.2.3 (Progress) Let n be construction. Then:

1. ∅[Σ]– m⇒ A implies m is non-stuck w.r.t. Σ for m = n, m′ = n′

2. ∅[Σ]– n : A implies n is non-stuck w.r.t. Σ

Proof Induction on n.

6.2. Progress 39

• n is a use m. We prove 1) and 2).

1. Let ∅[Σ]– m ⇒ A. By inversion, m can neither be x nor f R and we distinguish
between two remaining cases.

(a) (Ty-Coerce) ∅[Σ]– (n : A) ⇒ A with ∅[Σ]– n : A. Then by induction, n is
non-stuck w.r.t. Σ.

– Let n be normal w.r.t. Σ. Then (n : A) is normal w.r.t. Σ, too.

– Let n→ n′. Then (n : A)→ (n′ : A) by Step-Ctx.

(b) (Ty-App)∅[Σ]– m n⇒ B with∅[Σ]– m⇒ {〈∆〉A→ [Σ′]B} and∅[Σ⊕∆]– n : A
and Σ′ ∼ Σ.
By induction, m is non-stuck w.r.t. Σ.

– Let m be normal w.r.t. Σ. By induction, every ni is non-stuck w.r.t. Σ⊕∆.
We distinguish two cases.

∗ There exist k, n′k s.t. nk → n′k and k is minimal.
Then m (n1, ..., nk−1, nk, nk+1, ...nl) → m (n1, ..., nk−1, n

′
k, nk+1, ...nl) by

Step-Ctx.

∗ All nj = uj are normal w.r.t. Σ⊕∆. Case distinction on normal m.

· m = (w : A′). By inversion (Ty-Coerce), ∅[Σ]– w : {〈∆〉A→ [Σ′]B}.
Again by inversion, w can only be of the form w = {e}. Again, inversion
(Ty-Operator, Ty-Comp) yields ∅ ` e : 〈∆〉A→ [Σ′]B with (ri,j :
〈∆j〉Aj –[Σ′] Γ′i,j)i,j and (Γ′i,j)j [Σ′]– n′i : B)i and ((ri,j)i,j) covers (〈∆j〉Aj)j .

We show that there exist minimal i, (σj) s.t. ({e} : {〈∆〉A→ [Σ′]B}) n→
n′i[σj]. It suffices to show (ri,j : Tj ← uj –[Σ′] σi,j)i,j for a minimal i.
This is given by Proposition 6.2.2.

· m = E [c w]. Then m n = (E n)[c w] is normal w.r.t. Σ.

– Let m→ m′. Then m n→ m′ n by Step-Ctx.

2. Let ∅[Σ]– m : A. By inversion (Ty-Switch), we have ∅[Σ]– m⇒ A. By the same
argument as in 1), we have that m is non-stuck w.r.t. Σ.

• n = k n′. By inversion (Ty-Data) and induction, each n′i is non-stuck w.r.t. Σ. If all n′i
are normal w.r.t. Σ, then k n′ is normal w.r.t. Σ, too. Otherwise, n′l → n′′l for minimal
l and by Step-Ctx, k n′ can do a step, too.

• n = c R n′. By inversion (Ty-Command) and induction, each n′i is non-stuck w.r.t. Σ.
Furthermore, we have c : ∀Z.A→B ∈ Σ. If all n′i are normal w.r.t. Σ, then c R n′ is
normal w.r.t. Σ, too. Otherwise, n′l → n′′l for minimal l and by Step-Ctx, c R n′ can
do a step, too.

• n = {e}, which is normal w.r.t. Σ.

• n = let f : P = n′ in n′′. By inversion (Ty-Let) and induction, n′ is non-stuck w.r.t.
Σ. If n′ is normal w.r.t. Σ, then by Step-Let, n can do a step. Otherwise there is a n′′′

s.t. n′ → n′′′ and by Step-Ctx, n can do a step.

• n = letrec f : P = e in n′. Then by Step-Letrec, n can do a step. �

Chapter 7

Generative Effects and Applications
in Concurrency

Generative effects describe the ability to request freshly generated and thereby unique values of
a type. The perhaps most prominent example is referentiable state, where fresh memory cells
are issued on request. The perhaps simplest example is the ability to request fresh tokens which
can be used as unique identifiers. Because referentiable state is an ability which relies upon
the newly introduced polymorphic commands and sets the stage for a range of possibilities,
we explore this construct in more detail in the following. Furthermore, we demonstrate the
expressiveness gained by both referentiable state and polymorphic commands in the field of
concurrency by giving implementations of a variant of the actor model and promises.

7.1 Referentiable State

Thanks to polymorphic commands, an interface providing ML-style memory allocation is easily
defined.

data Ref X =

interface RefState = new X: X -> Ref X

| read X: Ref X -> X

| write X: Ref X -> X -> Unit

Both definitions are built-in because the only place to eventually handle RefState lies — in the
current setting — outside of pure Frank, in the same way as the IO monad is executed outside
of pure Haskell. This also justifies that Ref X has no data constructors: Reference cells cannot
be constructed inside but only generated outside of Frank.

7.1.1 Imperative Programming

The built-in RefState allows programming in an imperative style. The only main primitive
missing for efficient data manipulation are arrays, which can be added similarly to how standard
memory cells have been added. Besides this missing feature, imperative programming is enabled
just as in ML. This comprises the ability to define control structures like the while-loop in terms
of Frank. The following gives the definition of while together with an imperative program
sumUpToN using it and a main operator for a test run.

1 while: {{Bool} -> {Unit} -> Unit}

2 while cond body = if cond! { body!; while cond body }

3 { unit }

4
5 sumUpToN: {Ref Int -> [RefState]Int}

6 sumUpToN n = let res = new 0 in

7 while { case (read n) { 0 -> false -- while n != 0 do

41

42 Chapter 7. Generative Effects and Applications in Concurrency

8 | _ -> true} }

9 { write res (read res + read n); -- res := res + arg

10 write n (read n - 1) }; -- arg := arg - 1

11 read res

12
13 main: {[RefState]Int}

14 main! = sumUpToN (new 4) -- returns 10

The definition of while checks whether the condition is fulfilled; if so, it executes the body and
recurses, otherwise it returns unit. Notice that while does not mention RefState at all, only
when it is called in line 7 its ambient is instantiated by RefState. In general, using a while-loop
makes only sense if the ambient is instantiated by some effect that the boolean condition can
depend upon. This dependence could be reading from a reference cell as in the example (line
7), but could also be through another ability such as Console, relying on console input.

Taking the input n as a reference to a non-negative integer, sumUpToN naively sums up
numbers up to n by first allocating a reference cell res (line 6) initialised by 0, and then adding
n, n−1, ..., 1 to it. It looks a little verbose and could be written more concise by adding syntactic
sugar to Frank.

7.2 Cooperative Processes

Effect handling can be used to make concurrency implementations more flexible and accessible
to the programmer [10, 11, 9] by introducing an interface between cooperative signals and
how they are interpreted and scheduled. As Dolan et al. argue, this gives more control to
the programmer, avoiding a monolithic baked-in mechanism that cannot adapt to particular
program needs.

One of the simplest setups is one of cooperative processes as presented by Dolan et al.,
Hillerström and Lindley et al. [10, 11, 19] where a process can fork new processes and yield to
other processes. Building on the example by Lindley et al. and relying on referentiable state,
we present an implementation of the actor model as well as an implementation of promises.
Remarkable about these concurrency libraries is that they are easily expressed in Frank and
offer a convenient interface to programmers.

A cooperative process is marked by the interface Co, allowing a process to fork new processes
(which inherit the parent’s abilities) and to yield to other processes.

interface Co = fork: {[Co]Unit} -> Unit

| yield: Unit

The way in which yield is used depends on the programmer: It can be used for blocking
when a process is waiting for a specific event (by yielding until the event occurs) but also to
benevolently prevent starvation of other processes. The latter use shows that processes are
expected to cooperate as there is no preemption (at least not in our Frank setting). This
means that the yield and fork commands determine all possible interleavings, of which the
handler/scheduler can pick one. Despite its simplicity, this interface serves well as a base for
more sophisticated concurrency models as described in Sections 7.3 and 7.4. Let us first look
at a use case of Co by considering the following counter.

counter: {[Co [Console], Console]Unit}

counter! = print "start ";

fork {print "one "; yield !; print "two "};

fork {print "eins "; yield !; print "zwei "};

yield!;

print "done? "

As described, the eventual interleaving is only determined by the handler. Two of the possible
outputs would thus be "start one two eins zwei done? " or "start one eins done? zwei two ".

7.2. Cooperative Processes 43

7.2.1 Round-Robin Scheduling

The simplest standard way to schedule the processes is the Round-Robin strategy: Maintaining
a queue of processes, we execute the head of the queue until the next yield or fork. We handle
yield by pushing the continuation onto the queue and popping the next process. We handle
fork by pushing the new process and continuing with the current process.

How can we implement this strategy? We present in the following the implementation as
described by Lindley et al. [19]1. First of all, we define a queue interface which provides an
enqueue and dequeue operation.

interface Queue S = enq : S -> Unit

| deq : Maybe S

Furthermore, we define an operator roundRobin that takes a Co process and translates it re-
cursively into a Queue manager, by which we refer to a computation with the ability to access
a Queue. In particular, roundRobin results in a queue manager that executes the translated
processes according to the described Round-Robin strategy. Because the enqueued items them-
selves are queue managers (i.e., may enqueue/dequeue new queue managers), we define a re-
cursive data type Proc which wraps a queue manager. We can use the operators pushProc to
enqueue a new queue manager, popRunProc to dequeue the next queue manager and execute it,
and popRunAllProcs pop and execute all remaining queue managers. The roundRobin implements
the mechanism describe before on top of the given queue operations.

data Proc = proc {[Queue Proc]Unit}

pushProc : {{[Queue Proc]Unit} -> [Queue Proc]Unit}

pushProc p = enq (proc p)

popRunProc : {[Queue Proc]Unit}

popRunProc! = case deq! { (just (proc x)) -> x!

| nothing -> unit }

popRunAllProcs : {[Queue Proc]Unit}

popRunAllProcs! = case deq! { (just (proc x)) -> x!; popRunAllProcs!

| nothing -> unit }

roundRobin : {<Co [Queue Proc]>Unit -> [Queue Proc]Unit}

roundRobin <yield -> k> = pushProc {roundRobin (k unit)}; popRunProc!

roundRobin <fork p -> k> = pushProc {roundRobin p!}; roundRobin (k unit)

roundRobin unit = popRunAllProcs!

7.2.2 Queue Implementation

Finally, the queue manager gets wrapped by a queue implementation which handles the enqueue
and dequeue commands as expected. We use the fast queue implementation of Okasaki [31]
that represents the queue by two lists of different orders. We have picked a formulation sim-
ilar to how the state monad is run in Haskell: The runZipQ function takes a queue manager
(<Queue S>X), an initial state (ZipQ S) and outputs the computed value and the remaining
queue (Pair X (ZipQ S)). The function evalZipQ restricts the result to the computed value and
evalZipQEmpty fixes the input queue as the empty queue.

data ZipQ S = zipq (List S) (List S)

runZipQ: {<Queue S>X -> ZipQ S -> Pair X (ZipQ S)}

runZipQ <enq q -> k> (zipq ps qs) = runZipQ (k unit)

(zipq ps (q :: qs))

runZipQ <deq -> k> (zipq [] []) = runZipQ (k nothing)

(zipq [] [])

runZipQ <deq -> k> (zipq [] qs) = runZipQ (k deq!)

1We have rewritten parts for a more concise presentation, but the core idea is the same

44 Chapter 7. Generative Effects and Applications in Concurrency

(zipq (rev qs) [])

runZipQ <deq -> k> (zipq (p::ps) qs) = runZipQ (k (just p))

(zipq ps qs)

runZipQ x (zipq ps qs) = pair x (zipq ps qs)

evalZipQ: {<Queue S>X -> ZipQ S -> X}

evalZipQ <t> q = case (runZipQ t! q) { (pair x _) -> x }

evalZipQEmpty : {<Queue S>X -> X}

evalZipQEmpty <m> = evalZipQ m! (zipq [] [])

evalZipQEmpty x = x

7.2.3 Composing the Handlers

We have now everything we need to handle a program such as counter using the Round-Robin
strategy:

main: {[Console]Unit}

main! = evalZipQEmpty (roundRobin counter !)

-- prints: start one eins done? two zwei

Factoring the composition out into a runCo function is very desirable to encapsulate the concrete
handling cascade.

runCo: {<Co [Queue Proc], Queue Proc >Unit -> Unit}

runCo <c> = evalZipQEmpty (roundRobin c!)

main: {[Console]Unit}

main! = runCo counter!

-- prints: start one eins done? two zwei

However, when composing evalZipQEmpty and roundRobin, we encounter the issue of uninten-
tionally exposed intermediate effects (see Chapter 4.2) by disclosing to a user of runCo that it
internally uses Queue Proc effects.

7.3 Actor Model

It turns out that Frank is expressive enough to describe a variant of the actor model. We will
first recall the actor model and present the Frank interface given to the programmer along with
an example actor. Furthermore, we show how the actor model can be implemented in Frank
on top of cooperative processes.

An actor is a computation of type Unit with the additional ability to spawn new actors
and communicate with other actors. For the latter, each actor is assigned a mailbox through
which it can receive messages. When asking for a new message via recv, the actor blocks until
a new value arrives. Actors are addressed by their mailboxes, i.e., when an actor wants to
send a message to another actor via send, it needs to know the receiver’s mailbox. Spawning
a new child actor via spawn results in a new mailbox which can then be addressed. In general,
a mailbox can be seen as a buffer which makes communication between actors asynchronous.
Consider now the Actor interface:

interface Actor X = spawn Y: {[Actor Y]Unit} -> Mailbox Y

| self: Mailbox X

| recv: X

| send Y: Mailbox Y -> Y -> Unit

The parameter X represents the mailbox type, i.e., the type of the messages that can be received.
One will notice that the type Mailbox has not been given yet. We give it in Section 7.3.1 as
it has to be given concretely as part of the implementation. This is due to a shortcoming of
Frank: What we really want is Actor to be polymorphic in the Mailbox functor; if we had higher
kinds we could have written2:

2The same generalisation would be possible in the definition of all operators that do not handle actors.

7.3. Actor Model 45

interface Actor X M = spawn Y: {[Actor Y]Unit} -> M Y

| ...

We see higher kinds as a possibility for future work and for now have to settle with a concrete
type of Mailbox which we give later.

When an actor receives a message, it often wants to reply to the sender later on. An easy
way to enable this is to send its own mailbox address along the message such that the receiver
obtains in addition the return address. This is where self comes into play by enabling self-
reference. Because communicating the return address is such a common scenario, we introduce
the following definition to enrich a message type with the return address.

data WithSender X Y = withSender (Mailbox X) Y

Let us now turn towards a very simple example of a concurrent program using actors. It
demonstrates how a main actor divConqActor spawns two child actors (doubleActor), provides
both of them with a computational task, awaits both responses, finishes the computation and
then prints the result.

doubleActor: {[Actor (WithSender Int Int)]Unit}

doubleActor! = case recv! { (withSender sender n) -> send sender (n + n) }

divConqActor: {[Actor Int [Console], Console]Unit}

divConqActor! = let childA = spawn doubleActor in

let childB = spawn doubleActor in

send childA (withSender self! 1);

send childB (withSender self! 2);

print "calculating (1+1) + (2+2)... ";

case (recv! + recv!) { 6 -> print "6"

| _ -> print "not 6" }

One might be wondering why we would assign divConqActor the type:

{[Actor Int [Console], Console]Unit}

First of all, Actor has an implicit type variable ε which it passes on to any spawned actor com-
putation. Why do we parameterise the Actor ability with Console in the type of divConqActor,
despite the only spawned actor doubleActor not accessing the console? Indeed, admitting the
Console ability to spawned processes within divConqActor seems unnecessary. The reason which
makes this necessary though is that handling a whole actor system (parent actor with children,
grand-children, ...) requires it to be uniform in its ability because it is handled in a uniform
way, too. By providing the Console ability to the parent actor, the handler cannot strip Console

off its ambient for handling the children: Ambients are accumulative and do not allow stripping
off abilities.

7.3.1 Implementation Using Cooperative Processes

We now advance to an implementation of the actor model and base it on cooperative processes
as presented in Section 7.2. The essential idea is that each actor will be translated into a
process (i.e., spawning becomes forking) and each mailbox corresponds to a reference to a
queue of messages. Let us begin with the postponed definition of the latter which the already
implemented zip queue is based on:

data Mailbox X = mbox (Ref (ZipQ X))

An actor is made up of a mailbox component and a computational component. Combined as
a whole, they can be translated into a cooperative process. Notice that handling allows us to
translate the actor computation step by step, thereby yielding the overall translation.

1 step: {Mailbox X -> <Actor X [RefState , Co[RefState]]>Unit ->

2 [RefState , Co [RefState]]Unit}

3 step mine <self -> k> = step mine (k mine)

4 step mine <spawn you -> k> =

5 let yours = mbox (new (zipq [] [])) in

46 Chapter 7. Generative Effects and Applications in Concurrency

6 fork {step yours you !};

7 step mine (k yours)

8 step (mbox mine ’) <recv -> k> = case (runZipQ deq! (read mine ’))

9 { (pair nothing _) ->

10 yield !;

11 step (mbox mine ’) (k recv!)

12 | (pair (just x) q) ->

13 write mine ’ q;

14 step (mbox mine ’) (k x) }

15 step mine <send (mbox yours ’) x -> k> =

16 let q = read yours ’ in

17 case (execZipQ (enq x) q)

18 { q’ -> write yours ’ q’;

19 step mine (k unit) }

20 step mine unit = unit

We denote the current mailbox of an actor as mine and the mailbox of a spawned child as yours.
Let us briefly go through step. In line 3, the request for the own mailbox is straightforwardly
handled. In lines 4 to 7, we spawn a new actor by first allocating a new mailbox for it, then
forking its translation. We continue with the execution of the current actor. In lines 8 to 14,
we handle a recv command. There are two cases: 1) The mailbox is empty. Blocking the actor
is translated by a call to yield and a subsequent retry. 2) The mailbox is non-empty. We take
out the first message and continue. In lines 15 to 19 we handle send by enqueueing the new
message into the addressed mailbox.

7.3.2 Composing the Handlers

We can now compose the operators in a similar way to how operators for the execution of
cooperative processes were composed. Again, running a specific actor in a direct manner is
straightforward as effects are implicitly instantiated.

main: {[Console , RefState]Unit}

main! = evalZipQEmpty (roundRobin (step (mbox (new (zipq [] [])))

divConqActor !))

-- prints: calculating (1+1) + (2+2)... 6

The same problem as experienced in Section 7.2 occurs though when factoring the handler
composition out into a runActor operator, and this time the type is severely larger, leaking the
use of several intermediate effects.

runActor : {<RefState ,

Queue (Proc [RefState]),

Co [Queue (Proc [RefState]), RefState],

Actor X [RefState ,

Queue (Proc [RefState]),

Co [Queue (Proc [RefState]), RefState]]>Unit ->

[RefState]Unit}

runActor <m> = evalZipQEmpty (roundRobin (step (mbox (new (zipq [] [])))

m!))

runActor unit = unit

main: {[Console , RefState]Unit}

main! = runActor divConqActor!

-- prints: calculating (1+1) + (2+2)... 6

Again, we see that this is a problem still to be solved.

7.4 Promises

We present how a second model of concurrency can be implemented in Frank, namely promises
in the style of the async library for Haskell [27]. Recently, Dolan et al. implemented promises

7.4. Promises 47

in the same style in Multicore OCaml [9]. After recalling how concurrency based on promises
works, we point out how this mechanism can take shape in Frank.

Promises enable a user to issue computational tasks, carry on with computation, and request
the tasks’ results when needed. Concurrency is thereby harnessed in that several tasks can be
computed concurrently. On issuing a task, the issuing program receives a promise. When the
result of the promise is demanded (by any program having a hold of the promise), the program
blocks until the promise yields a result. Consider now the Async interface:

data PromiseStatus X = done X

| waiting (List {X -> Unit})

data Promise X = promise (Ref (PromiseStatus X))

interface Async = async X: {[Async]X} -> Promise X

| await X: Promise X -> X

An operator implementing Async can issue a task via async, thereby receiving a Promise. At any
later point, the promise can be waited for using the await command. A Promise is a reference
to a PromiseStatus, marking the task either as done and providing a value or containing a list
of operators that are waiting for the promise’s result.

Let us now look at a simple example making use of promises. The binary operator binOp

represents a resource-intensive task and is for now just modelled as the + operator. The operator
calcProg takes three integers and exhibits Async effects by performing two independent resource-
intensive tasks on the input. By spawning the tasks, two promises p1 and p2 are returned (lines
5, 6). Finally, the results of both p1 and p2 are requested (lines 7, 8) for and their sum is
returned (line 9).

1 binOp : {Int -> Int -> Int}

2 binOp m n = m + n

3
4 calcProg : {Int -> Int -> Int -> [Async]Int}

5 calcProg a b c = let p1 = async {binOp a b} in

6 let p2 = async {binOp b c} in

7 let v1 = await p1 in

8 let v2 = await p2 in

9 v1 + v2

7.4.1 Implementation Using Cooperative Processes

How can we handle Async operators? Again, we resort to cooperative processes as presented in
Chapter 7.2. The essential idea is that a Promise and an Async thunk (i.e., a task which results in
a value) can together be translated recursively into a cooperative process that — when executed
— computes the task and stores the result in the promise. Spawning from within the task via
async is translated accordingly to forking. The translation is performed via a step operator
which works similarly to its counterpart for actor translation. We first explain the different
cases of step and afterwards give the auxiliary operator execPromise with explanations.

1 step: {Promise X [RefState , Co[RefState]] ->

2 <Async[RefState , Co[RefState]]>X ->

3 [RefState , Co[RefState]]Unit}

4 step (promise ref) v = write ref (done v)

5 step p <async c -> k> = let ref ’ = new (waiting []) in

6 let job = {step (promise ref ’) c!} in

7 fork { execWakeUp (promise ref ’) job };

8 step p (k (promise ref ’))

9 step p <await (promise ref ’) -> k> = case (read ref ’)

10 { (done v) -> step p (k v)

11 | (waiting js) ->

12 let job = { v -> step p (k v) } in

13 write ref ’ (waiting (job::js)) }

48 Chapter 7. Generative Effects and Applications in Concurrency

The first case describes the situation when the task has resulted in a value. This means that
the promise has just been fulfilled, so the value is written to the promise’s reference cell (line
4).

The second case handles async requests from the task. We create a blank non-fulfilled
promise (line 5) and then a thunk which — as soon as executed — recursively executes the
newly issued task (line 6). We call this thunk a job. The reason for not directly forking this job
is that besides just executing the job, we need to retrieve the suspended computations in the
waiting list in order to “wake them up” after executing the job. For this reason, we wrap the
job by execWakeUp (line 7). Finally, after the new task is issued, we return the newly created
promise to the task that issued the async command request (line 8).

The third case handles await requests from the task, given a promise whose fulfilment is
to be awaited. There are two possibilities. First, if the promise has been fulfilled already, the
stored value is passed on to the continuation (line 10). Second, if the promise has not been
fulfilled yet, we enqueue the current computation (the continuation) as a further job into the
promise’s waiting list (lines 12, 13).

We now come to the execWakeUp wrapper operator that executes a job and delegates the
value to the waiting list’s computations.

1 execWakeUp: {Promise X [RefState , Co[RefState]] ->

2 {[RefState , Co[RefState]]Unit} ->

3 [RefState , Co[RefState]]Unit}

4 execWakeUp (promise ref) f = case (read ref)

5 { (done _) -> unit -- cannot happen

6 | (waiting fs) ->

7 f!;

8 case (read ref)

9 { (done v) -> map { f -> f v } fs;

10 unit

11 | _ -> unit } } -- cannot happen

The operator execWakeUp is applied to each task exactly once. Since the promise is blank in
the beginning, we thus know that when examining the promise (line 4), the first case cannot
happen. However, this semantic invariant is not statically available and we thus handle it by
doing nothing (return unit, line 5). We come back to this point later.

When the promise is indeed found to contain a list of suspended tasks, we first execute the
job which will fulfil the promise (line 7). This means that when looking up the promise again
(line 8), we are guaranteed that it is fulfilled. However, again this semantic invariant is not
statically available and we thus handle the second case again by doing nothing (return unit, line
11). When the promise is indeed found to contain a result value, it is fed to every suspended
task.

Let us take up again the issue of missing static guarantees (lines 5, 11). These are due to the
use of a single global referentiable state. By having a mechanism similar to the ST monad [16]
in Haskell at hand, local state can be used to encapsulate the different tasks and obtain actual
values of their executions. This requires the capability of “running” stateful computation, which
is not possible with RefState as it is run outside of pure Frank.

7.4.2 Composing the Handlers

We can now compose the operators in a similar way to how operators for the execution of
cooperative processes and actors were composed. We directly give an operator runAsync that
factors the comprises the composition. As is clearly visible, the operator suffers severely from
the problem of unintentionally exposed intermediate effects. It takes a task, creates a new
promise (line 10), performs the task on the promise (line 11) and returns it (line 12).

1 runAsync : {<Co [Queue (Proc [RefState]), RefState],

2 Queue (Proc [RefState]),

3 Async[RefState ,

4 Co[Queue (Proc [RefState]), RefState],

5 Queue (Proc [RefState])]>X ->

7.4. Promises 49

6 [RefState] (Promise X [RefState ,

7 Co[RefState ,

8 Queue (Proc [RefState])],

9 Queue (Proc [RefState])])}

10 runAsync <m> = let resRef = new (waiting []) in

11 evalZipQueueEmpty (roundRobin (step (promise resRef) m!));

12 promise resRef

Finally, we can run the calcProg operator using runAsync. Again, we do not get a static
guarantee that the promise returned by runAsync is indeed fulfilled, which is again due to not
“executing” the referentiable state within Frank.

main: {[RefState]Int}

main! = case (runAsync (calcProg 1 2 3))

{ (promise resRef) -> case (read resRef)

{ (done v) -> v

| _ -> 0 } -- cannot happen

}

-- returns: 8

As before, we have to check the promise’s result and provide a dummy value for the case which
will never happen. Executing the program results in 8 as expected.

Chapter 8

Further Technical Enhancements

While focusing on our main goals as laid out so far we have come across some rather technical
issues and ideas of which we discuss the major ones here. As one of our first steps with the
Frank compiler, we extended Frank by interface aliases. Furthermore, we eliminated a bug by
providing an algorithm that identifies implicit effect variables of top-level definitions. Finally, in
order to improve error reporting by displaying meta-information such as source code locations,
we refactored the representation of the abstract syntax tree and discuss the taken approach.

8.1 Interface Aliases

An ability is made up of an (often implicit) effect variable and a set of instantiated interfaces.
We introduce interface aliases as a way to comprise several interface instantiations together.
Consider the following example:

interface Writer X = send: X -> Unit

interface Reader X = receive: X

interface State X = [Writer X, Reader X]

Formally, we update the abstract syntax of top-level definitions as follows.

Definition ::= DatatypeDef | InterfaceDef | InterfaceAliasDef |

TermDef | OperatorDef

DatatypeDef ::= data D Z = Constructor

Constructor ::= k A

InterfaceDef ::= interface I Z = Command

InterfaceAliasDef ::= interface I Z = [I R]

Command ::= c : ∀Z.A→ B

TermDef ::= f : P

f = n

OperatorDef ::= f : ∀Z.{C}
f r = n

Interface aliases do not add any semantics but serve only as a mean of abbreviation. Therefore
no changes to the type system or the dynamic semantics are required.

8.1.1 Implementation

Interface aliases are resolved before the type-checking phase in that they are substituted recur-
sively by their definitions. The only critical issue to encounter here is that of detecting cyclic

51

52 Chapter 8. Further Technical Enhancements

definitions. This issue is easily eliminated though by keeping track of the definitions substituted
so far in each recursion path. Whenever a definition is encountered twice, a cycle is detected
and an error message is output.

8.2 Implicit Type Variables

Operators, constructors and interfaces are often polymorphic in their effects by providing an
effect type variable. This is where implicit type variables can make types considerably more
concise and readable. Consider for instance the definition of MaybeThunk...

data MaybeThunk X = thunk {X} | value X

...which is semantically equivalent to and internally pre-processed to...

data MaybeThunk X [ε] = thunk {[ε|]X} | value X

That is, the ambient ability bound by [ε] is pushed inwards and enabled for the thunk, too. An
example of a definition without implicit effect variable is

data Bool = false | true

How is determined whether top-level definitions like MaybeThunk or Bool possess the implicit
effect parameter [ε]? Determining this is not as straightforward as one might think, because
dependencies between definitions need to be considered. As these dependencies were not taken
care of in an earlier version of the Frank compiler, we have fixed this bug and briefly sketch in
the following how determining implicit effect variables can take place.

We have seen two examples for which we could decide whether an implicit [ε] parameter
is present or not, merely by considering the two definitions by themselves. The data type
MaybeThunk has an implicit [ε] parameter because the thunk constructor contains a thunk whose
ability is implicitly bound to [ε]. The data type Bool has no implicit [ε] parameter because none
of its components implicitly are bound to one. Consider now the following definition.

interface Force = force X: MaybeThunk X -> X

| forceIf X: Bool -> MaybeThunk X ->MaybeThunk X

Whether Force has an implicit [ε] parameter or not depends on its components. The two
contained components to be examined are Bool and MaybeThunk. Having already decided that
MaybeThunk has an implicit [ε] and Bool has not, we decide that Force has an implicit [ε]. It
suffices that one dependency is decided positive (here MaybeThunk). The pre-processed version
of the definition is thus:

interface Force [ε] = force X: MaybeThunk X [ε|] -> X

| forceIf X: Bool ->

MaybeThunk X [ε|] -> MaybeThunk X [ε|]

8.2.1 Examining a Definition

For brevity, we call a definition positive if it has an implicit [ε] and we call it negative
otherwise. Given the definition of a data type, an interface or an interface alias, how can we
either (1) directly decide whether it is positive/negative or (2) determine any definitions on
which its decision depends? We need to examine the whole definition by recursively descending
down its structure. The result of a definition’s examination is correspondingly either:

(1) A is positive.

(2) Only if any of {B1, ..., Bn} is positive, then A is positive.

Note that (2) includes the negative decision (n = 0). Descending the structure of a definition
works quite similar for the different components, so we only demonstrate how this is carried
out by an example and refer to the source code [24] for more detail.

8.2. Implicit Type Variables 53

The examination of a data type definition requires examining its constructors. If any con-
structor is positive (1), so is the data type (1). Otherwise, the constructors’ dependencies (2)
are merged to become the data type’s dependencies (2).

Having examined all definitions, we either have a definite decision or a set of dependen-
cies for each definition. We now show how this information can be transformed into a final
positive/negative decision for every definition.

8.2.2 Reduction to Graph Labeling Problem

Resolving the dependencies reduces to solving the following problem of labeling a directed
graph: The nodes are the top-level definitions. An edge from node A to node B represents
the dependency “If B is positive, then A is positive”. Given an initial set Pos init of positive
nodes, the problem is to find the smallest set of positive nodes (subsuming Pos init) such that
the edges are respected. The solution is unique, because for each node A we can distinguish
between two cases:

1. There is a path A→∗ B for a node B s.t. B ∈ Pos init (“A can reach Pos init”). Then A
must be positive by transitivity of implication.

2. Otherwise (“A cannot reach Pos init”). Then A may be either positive or negative without
disrespecting the edges; but since we are constrained to finding the smallest set of positive
nodes, it must be negative.

As an example, consider how the problem of determining the presence of [ε] for MaybeThunk,
Bool and Force is reduced to the following graph problem (Figure 8.1).

Maybe-
Thunk

Bool

Force

MaybeThunk belongs to Pos init (represented
by a filled node) and has no dependencies.
Bool has no dependencies either. Force has
two dependencies. When labelling the graph,
we observe that MaybeThunk is already decided
positive, Bool does not reach any positive node
and is thus decided negative, Force reaches the
positive node MaybeThunk and is thus decided
positive.

Figure 8.1: Graph for MaybeThunk, Bool and Force

8.2.3 Solving the Graph Labeling Problem

The algorithm consists of a simple graph traversal with the runtime linear in the number of
nodes. We briefly sketch it in the following. Let there be a graph instance as described in the
last section, i.e., a set of nodes, a set of edges and a set of pre-decidedly positive nodes Pos init .
As long as there is an undecided node A left, we decide it by decideSubGraph(A, ∅).

decideSubGraph(A, visited) :
Case distinction.

1. A has no outgoing edges to any B with B /∈ visited . Decide A negative.

2. A has outgoing edges to B1, ..., Bn /∈ visited .
For each Bi, if not decided yet, do so by decideSubGraph(Bi, visited ∪ {A}).
Case distinction.

(a) Some Bi is decided positive. Decide A positive.

(b) All Bi are decided negative. Decide A negative.

The algorithm decideSubGraph(A, visited) explores the subgraph consisting of all nodes and
edges reachable from A and decides its contained nodes.

54 Chapter 8. Further Technical Enhancements

8.3 Improving Error Reporting

Informative error reporting with references to the source code (e.g. line and column numbers)
are indispensable for the programmer. It requires the annotation with meta-information (e.g.
line and column numbers) of each abstract syntax tree (AST) element that can be referred
to in an error message. This annotation was not available in the original Frank compiler [21]
and we refactored the code, thereby enabling informative error messages. We mention that we
have not focused yet on the error messages themselves and not even on what meta-information
is best provided. Instead we briefly describe how the abstract syntax tree is modelled in the
current Frank compiler [23] and how annotations are integrated. We first collect the desiderata
we have for such an AST model and then discuss the implementation in Haskell.

• Annotations. Meta-information like source code locations should be attachable to the
AST nodes. Preferably, the meta information is flexible such that it can be changed,
added and stripped off during different stages. For example, during the type-checking
phase meta-information may additionally consist of unification history that can improve
error reporting.

• Adaptiveness to different processing stages. In the current implementation, first
the AST comes in raw form from the parser, then the AST is refined (by checking variable
occurrences and more) and finally desugared. Although the structure remains essentially
the same, there are some structural restrictions (e.g. some nodes may only exist after
desugaring while others must not exist any more).

• Structural consistency. When a parent node has passed a certain processing stage
(and therefore is labelled in a certain way), then the same should hold for its child nodes.

• Easy accessibility. When processing the AST nodes, easy decomposition (via pattern-
matching) and easy composition (like with plain constructors) should be possible.

The original AST model [22] already distinguishes between different processing stages, using
generalised abstract data types (GADTs). The data types are labelled by types Raw, Refined

and Desugared. For an example, let us take a look at the definition of the Pattern data type
that is used for modelling pattern-matching.

data Pattern a where

MkVPat :: ValuePat a -> Pattern a -- value pattern

MkCmdPat :: Id -> [ValuePat a] -> Id -> Pattern a -- command pattern

MkThkPat :: Id -> Pattern a -- catch -all pattern

The type parameter a represents the label, and during the refinement stage for example, nodes
of type Pattern Raw are refined into nodes of type Pattern Refined. Note that all AST types
provide this labelling and that labels are handed down (in the example, Pattern a hands it
label a down to ValuePat a) such that AST instances are always homogeneously labelled.

8.3.1 Implementation Approach 1: Using GADTs

In this original implementation and by virtue of GADTs, labelling as a type parameter can only
distinguish between different processing stages. We have observed already that during different
stages, different meta-information may need to be attached to the nodes. One way to solve
this is to let the label types Raw, Refined and Desugared contain information-bearing values and
attach them to each constructor as an additional parameter.

data Pattern a where

MkVPat :: ValuePat a -> a -> Pattern a

MkCmdPat :: Id -> [ValuePat a] -> Id -> a -> Pattern a

MkThkPat :: Id -> a -> Pattern a

The Raw label for example could then contain information like a source location.

data Raw = Raw (Int , Int) -- line #, column #

8.3. Improving Error Reporting 55

Taking this approach seems to be straightforward and concise (by making only a slight extension
to the original definitions) and effective (all of our desiderata are essentially met). The only
disadvantage we see is that each constructor always contains a label, even if we might not need
it. There is a way to structurally separate the AST node definition from labelling using a second
approach we consider.

8.3.2 Implementation Approach 2: Using Fixed-Points of Functors

Haskell allows type constructors to take not only type arguments (i.e., of kind *), but gen-
eral type constructors (e.g. of kind * -> *). This allows the definition of a fixed-point type
constructor which takes a functor f (of kind * -> *) as argument and returns a type.

data Fix f = Fx (f (Fix f))

This fixed-point type constructor allows us to define data types in terms of functors. For
demonstration purpose, we give the example of defining lists in terms of Fix.

data ListF a r where

Nil :: ListF a r

Cons :: a -> r -> ListF a r

type List a = Fix (ListF a)

oneTwoList :: List Int

oneTwoList = Fx (Cons 1 (Fx (Cons 2 (Fx Nil)))) -- represents [1, 2]

The ListF definition is a parameterised functor, with its parameter a representing the type
of the list elements. The r parameter is the “recursor”, representing the same type we are
about to construct. Consider how List a is defined as Fix (ListF a), i.e., as the fixed-point of
ListF a. By definition of Fix then, List a is defined in terms of itself: r is instantiated exactly
by Fix (ListF a) = List a.

The following implementation is inspired by Williams’ Recursion Schemes talk [39]. In
particular, he describes how one can compose data types based on functor definitions, giving
the example of annotating data types which we rely on. The central idea is that we can take
the fixed point of a functor that has been enriched by annotations. More concretely, we define
an annotation transformer that takes an arbitrary functor and yields the same functor, but
wrapping each value with an annotation.

data AnnotT a f r = AnnF (f r, a)

Type parameter a represents the annotation type (e.g. source code location), f represents the
functor that is transformed and r is again the “recursor”. Notice that the parameterisation
results in AnnotT having the kind (* -> *) -> (* -> *). The constructor AnnF serves as a
wrapper for a pair consisting of the annotated object itself (of type f r) and the annotation (of
type a).

The idea is now to define the AST data types in a similar way to how we defined List: In
terms of a parameterised functor (ListF in the case of List). For demonstration purpose, we
focus again on the example of the Pattern data type.

data PatternF :: ((* -> *) -> (* -> *)) -> * -> * where

MkVPat :: TFix t ValuePatF -> PatternF t r

MkCmdPat :: Id -> [TFix t ValuePatF] -> Id -> PatternF t r

MkThkPat :: Id -> PatternF t r

data ValuePatF :: ((* -> *) -> (* -> *)) -> * -> * where

...

As the signature shows, PatternF can be understood as a functor parameterised by a functor
transformer (which is of kind (* -> *) -> (* -> *)). All other AST node types (e.g. ValuePatF)
are parameterised in the same way. We have not defined TFix yet which is used to construct the
type TFix t ValuePatF. This is the point where structural consistency is enforced: The same
given parameter t is handed down to the children nodes.

56 Chapter 8. Further Technical Enhancements

type TFix (t :: (* -> *) -> (* -> *))

(f :: ((* -> *) -> (* -> *)) -> * -> *) = Fix (t (f t))

It is easy to get confused by the large signature, but it is really just a type synonym for
Fix (t (f t)). In our example, ValuePatF is first parameterised with the same t as PatternF,
resulting in a functor ValuePatF t. This functor is then tranformed by t (e.g. enriched by
annotations), resulting in a functor t (ValuePatF t). Finally, we take the fixed-point of this
functor, resulting in Fix (t (ValuePatF t)).

We provide a specialised version of TFix, fixing the transformer as AnnotT a, but leaving the
a as a parameter.

type AnnotTFix a f = TFix (AnnotT a) f

We can now define Pattern as a parameterised AST node type that we will primarily use, a
fixed-point enriched by an annotation whose type is given as a parameter.

type Pattern a = AnnotTFix a PatternF

Notice that the kind of Pattern is * -> *, corresponding exactly to the definition given in
approach 1). The difference is that because of its definition in terms of Fix and AnnotT, its values
are “polluted” by Fx and AnnF constructors. This is no problem though as the “pollution” occurs
very regularly. We can use PatternSynonyms [38] which allow the synonyms in the following
manner.

pattern VPat vp a = Fx (AnnF (MkVPat vp , a))

The Fx, AnnF and MkVPat constructors are now hidden behind a single comprising VPat construc-
tor. This feature ensures our desired property of having easy access to AST nodes.

8.3.3 Discussion

Both approaches satisfy our desiderata.
Approach 1) has the advantage of being easy to implement and causing only little overhead.

On the other hand, every AST definition is bound to have exactly one annotation. For the
current Frank compiler, this is sufficient, but potential future extensions like a second annotation
layer are ruled out.

Approach 2) causes significantly more overhead. Not only need constructs like Fix and
AnnotT be additionally defined, but there is also the need for guiding type class instantiation.
In order to let the AST node types instantiate the type classes Show (to obtain string representa-
tions) and Eq (to check equality), we need to manually provide some hints. The hints are trivial
though and besides the additional overhead this cannot be seen as a serious disadvantage. As
described, the problem of “constructor pollution” is overcome by pattern synonyms such that
together with few auxiliary functions, nothing of the internal fixed-point construction is noticed
from the outside.

The current version of Frank [23] employs the second approach, we stress however that the
source code that uses the syntax definitions remained almost the same if one had implemented
the first approach.

Chapter 9

Conclusion

We conclude by a short final discussion of the targeted problems, the achieved enhancements
and potential future work.

The enhancements we provide to Frank are built on top of each other. First, we establish
polymorphic commands as a natural extension that has proven to be useful before [14]. Then we
provide referentiable state by introducing a built-in interface relying on polymorphic commands
for ML-style reference cells. Having referentiable state and polymorphic commands at hand,
we are able to provide two concurrency models within Frank, namely actors and promises.
Future work could include a more general exploration of generative effects, e.g. to establish
local referentiable state in the style of the ST monad [16] in Haskell.

During the implementation of the concurrency models within Frank we came across a prob-
lem with operator composition, more specifically the problem of unintentionally exposed inter-
mediate effects. We solve only a part of the problem and discuss the potential future approach
of effect-hiding to tackle the more general problem. A first remedy could be effect-hiding
composition operators, but we believe that this could be further generalised to effect-hiding
multi-tunnels that gate effects from multiple output pegs (effect generators) to a single input
port (effect handler).

All enhancements have been integrated into the Frank formalism and also implemented in
the compiler [23]. By providing a direct operational small-step semantics, we 1) verify that the
enhancements preserve type soundness and 2) establish a different perspective on the execution
of Frank programs, forming a contrast to the perspective on the translation to Core Frank
which is based on unary handlers.

We have encountered Frank as a junior and have been in charge of him for several weeks.
On this joyful journey, we believe that besides having discovered some more of his potential,
he has also gained in robustness. We wish him the best as he will further take up his journey
to become a self-reliant member among his peers.

57

Bibliography

[1] Andrej Bauer and Matija Pretnar. “An effect system for algebraic effects and handlers”.
In: International Conference on Algebra and Coalgebra in Computer Science. Springer,
2013, pp. 1–16.

[2] Andrej Bauer and Matija Pretnar. “Programming with algebraic effects and handlers”.
In: Journal of Logical and Algebraic Methods in Programming 84.1 (2015), pp. 108–123.

[3] Edwin Brady. “Programming and reasoning with algebraic effects and dependent types”.
In: ACM SIGPLAN Notices. Vol. 48. ACM, 2013, pp. 133–144.

[4] Edwin Brady. “Resource-dependent algebraic effects”. In: International Symposium on
Trends in Functional Programming. Springer, 2014, pp. 18–33.

[5] Lukas Convent. compos.kk (handler composition in Koka). 2016/17. url: https : / /

github.com/frank-lang/frank/blob/cf33e60/examples/lukas-thesis/compos.kk.

[6] Lukas Convent. compos.links (handler composition in Links). 2016/17. url: https://
github.com/frank-lang/frank/blob/cf33e60/examples/lukas-thesis/compos.

links.

[7] Lukas Convent. Informatics Research Review: Enhancing a Modular Effectful Program-
ming Language. 2017.

[8] Stephen Dolan, Leo White, and Anil Madhavapeddy. “Multicore OCaml”. In: OCaml
Users and Developers Workshop. 2014.

[9] Stephen Dolan et al. “Concurrent System Programming with Effect Handlers”. In: Pro-
ceedings of the Symposium on Trends in Functional Programming (2017).

[10] Stephen Dolan et al. “Effective concurrency through algebraic effects”. In: OCaml Work-
shop. 2015.

[11] Daniel Hillerström. MSc Thesis: Compilation of Effect Handlers and their Applications
in Concurrency. 2016.

[12] Daniel Hillerström. MSc Thesis: Handlers for Algebraic Effects in Links. 2015.

[13] Daniel Hillerström and Sam Lindley. “Liberating effects with rows and handlers”. In:
Proceedings of the 1st International Workshop on Type-Driven Development. ACM, 2016,
pp. 15–27.

[14] Ohad Kammar, Sam Lindley, and Nicolas Oury. “Handlers in action”. In: ACM SIGPLAN
Notices. Vol. 48. ACM, 2013, pp. 145–158.

[15] Oleg Kiselyov, Amr Sabry, and Cameron Swords. “Extensible effects: an alternative to
monad transformers”. In: ACM SIGPLAN Notices. Vol. 48. ACM, 2013, pp. 59–70.

[16] John Launchbury and Simon L. Peyton Jones. “Lazy functional state threads”. In: ACM
SIGPLAN Notices. Vol. 29. ACM, 1994, pp. 24–35.

[17] Daan Leijen. “Koka: Programming with row polymorphic effect types”. In: arXiv preprint
arXiv:1406.2061 (2014).

[18] Daan Leijen. “Type directed compilation of row-typed algebraic effects”. In: POPL. ACM.
2017.

[19] Sam Lindley. Implementation of cooperative processes in Frank. url: https://github.
com/frank-lang/frank/blob/4b7cb52/examples/coop.fk.

59

https://github.com/frank-lang/frank/blob/cf33e60/examples/lukas-thesis/compos.kk
https://github.com/frank-lang/frank/blob/cf33e60/examples/lukas-thesis/compos.kk
https://github.com/frank-lang/frank/blob/cf33e60/examples/lukas-thesis/compos.links
https://github.com/frank-lang/frank/blob/cf33e60/examples/lukas-thesis/compos.links
https://github.com/frank-lang/frank/blob/cf33e60/examples/lukas-thesis/compos.links
https://github.com/frank-lang/frank/blob/4b7cb52/examples/coop.fk
https://github.com/frank-lang/frank/blob/4b7cb52/examples/coop.fk

60 BIBLIOGRAPHY

[20] Sam Lindley, Conor McBride, and Craig McLaughlin. “Do be do be do”. In: Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages. ACM.
2017, pp. 500–514.

[21] Sam Lindley, Conor McBride, and Craig McLaughlin. Frank junior (0.1). 2016/17. url:
https://github.com/frank-lang/frank/tree/4b7cb52.

[22] Sam Lindley and Craig McLaughlin. Syntax.hs in Frank. url: https://github.com/
frank-lang/frank/blob/4b7cb52/Syntax.hs.

[23] Sam Lindley et al. Frank compiler (0.2). 2016/17. url: https://github.com/frank-
lang/frank/tree/cf33e60.

[24] Sam Lindley et al. RefineSyntaxConcretiseEps.hs, part of Frank compiler (0.2). 2016/17.
url: https://github.com/frank-lang/frank/blob/cf33e60/RefineSyntaxConcretiseEps.
hs.

[25] Sam Lindley et al. Regression for unification order problem, part of Frank compiler (0.2).
2016/17. url: https : / / github . com / frank - lang / frank / blob / cf33e60 / tests /

should-fail/r.unificationOrderMatters1.fk.

[26] John M. Lucassen and David K. Gifford. “Polymorphic effect systems”. In: Proceedings of
the 15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages.
ACM, 1988, pp. 47–57.

[27] Simon Marlow. The async package (2.1.1.1). 2012. url: https://hackage.haskell.
org/package/async.

[28] Conor McBride. Frank (0.3). 2012. url: http://hackage.haskell.org/package/Frank.

[29] Conor McBride. How might effectful programs look like? (Workshop on Effects and Type
Theory). 2007. url: http://cs.ioc.ee/efftt/mcbride-slides.pdf.

[30] Conor McBride. The Frank Manual. 2012. url: https://personal.cis.strath.ac.uk/
conor.mcbride/pub/Frank/TFM.pdf.

[31] Chris Okasaki. Purely functional data structures. Carnegie Mellon University, 1996.

[32] Benjamin C. Pierce and David N. Turner. “Local type inference”. In: ACM Transactions
on Programming Languages and Systems (TOPLAS) 22.1 (2000), pp. 1–44.

[33] Gordon D. Plotkin and Matija Pretnar. “Handling Algebraic Effects”. In: Logical Methods
in Computer Science 9 (2013).

[34] Gordon Plotkin and John Power. “Adequacy for algebraic effects”. In: International Con-
ference on Foundations of Software Science and Computation Structures. Springer, 2001,
pp. 1–24.

[35] Gordon Plotkin and John Power. “Algebraic operations and generic effects”. In: Applied
Categorical Structures 11.1 (2003), pp. 69–94.

[36] Gordon Plotkin and John Power. “Notions of computation determine monads”. In: In-
ternational Conference on Foundations of Software Science and Computation Structures.
Springer, 2002, pp. 342–356.

[37] Gordon Plotkin and John Power. “Semantics for algebraic operations”. In: Electronic
Notes in Theoretical Computer Science 45 (2001), pp. 332–345.

[38] GHC Team. GHC Extension: Pattern Synonyms. 2011. url: https://ghc.haskell.
org/trac/ghc/wiki/PatternSynonyms.

[39] Tim Williams. Recursion Schemes by Example. 2013. url: https : / / github . com /

willtim/recursion-schemes/raw/master/slides-final.pdf.

https://github.com/frank-lang/frank/tree/4b7cb52
https://github.com/frank-lang/frank/blob/4b7cb52/Syntax.hs
https://github.com/frank-lang/frank/blob/4b7cb52/Syntax.hs
https://github.com/frank-lang/frank/tree/cf33e60
https://github.com/frank-lang/frank/tree/cf33e60
https://github.com/frank-lang/frank/blob/cf33e60/RefineSyntaxConcretiseEps.hs
https://github.com/frank-lang/frank/blob/cf33e60/RefineSyntaxConcretiseEps.hs
https://github.com/frank-lang/frank/blob/cf33e60/tests/should-fail/r.unificationOrderMatters1.fk
https://github.com/frank-lang/frank/blob/cf33e60/tests/should-fail/r.unificationOrderMatters1.fk
https://hackage.haskell.org/package/async
https://hackage.haskell.org/package/async
http://hackage.haskell.org/package/Frank
http://cs.ioc.ee/efftt/mcbride-slides.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/pub/Frank/TFM.pdf
https://personal.cis.strath.ac.uk/conor.mcbride/pub/Frank/TFM.pdf
https://ghc.haskell.org/trac/ghc/wiki/PatternSynonyms
https://ghc.haskell.org/trac/ghc/wiki/PatternSynonyms
https://github.com/willtim/recursion-schemes/raw/master/slides-final.pdf
https://github.com/willtim/recursion-schemes/raw/master/slides-final.pdf

	Introduction
	The Frank Programming Language
	Programming Without Effects
	Programming With Effects

	Formal Specification of Frank
	Syntax
	Typing Rules
	Operational Small-Step Semantics

	Ability Representation and Operator Composition
	Internal Representation of Abilities
	Composing Handlers
	Relaxing the Type System via Up-to-Inactive-Instantiations
	Discussion and Future Work

	Polymorphic Commands
	Formal Extension
	Application: Exception Handling

	Type Soundness
	Type Preservation
	Progress

	Generative Effects and Applications in Concurrency
	Referentiable State
	Cooperative Processes
	Actor Model
	Promises

	Further Technical Enhancements
	Interface Aliases
	Implicit Type Variables
	Improving Error Reporting

	Conclusion

