
UNIVERSITY OF EDINBURGH

MASTER THESIS

Diffusion to Vector –
Scalable Representation

Learning of Graphs

Benedek András Rózemberczki

Supervisor:
Dr. Rik Sarkar

A thesis submitted in fulfilment of the requirements
for the degree of Master of Research in Data Science

in the

Center for Doctoral Training in Data Science
School of Informatics

August 18, 2017

http://www.ed.ac.uk/
https://github.com/benedekrozemberczki
http://homepages.inf.ed.ac.uk/rsarkar/
http://datascience.inf.ed.ac.uk
http://www.ed.ac.uk/informatics

i

Declaration of Authorship

I declare that this thesis was composed by myself, that the work contained herein is my own
except where explicitly stated otherwise in the text, and that this work has not been submitted
for any other degree or professional qualification except as specified.

(Benedek András Rózemberczki)

Signed:

Date:

ii

University of Edinburgh

Abstract
School of Informatics

Master of Research in Data Science

Diffusion to Vector –
Scalable Representation

Learning of Graphs

by Benedek András Rózemberczki

A large number of complex networks has no generic vertex attributes that can be used in net-
work analysis. This means that one has to generate vertex features purely using the topological
properties of nodes. One way to extract such features is the creation of a graph embedding. A
graph embedding is a representation of the graph in a latent space created by a graph embed-
ding procedure. This representation maintains the distances observed on the graph in the latent
space. A type of graph embedding procedures uses features extracted from linear sequences of
vertices to create embeddings – these are the so called vertex sequence based embedding proce-
dures. Earlier approaches to sequence based graph embedding are poorly parallelizable, require
complicated preprocessing and slow down under some realistic assumptions about graph evo-
lution. In this paper, we propose two diffusion based network embedding algorithms, ED2V
and FD2V, that are parallelized, require straightforward pre-processing and their performance
is fairly robust to graph evolution. In our experiments we start with showing that our algo-
rithms have consistently good computational performance and they are quite robust to graph
densification. After this, we provide evidence that our procedures preserve graph distances
and centralities in the embedding space. Finally, in a comprehensive investigation we prove the
high quality of representations generated with our approach on a number of downstream ma-
chine learning applications. We evaluated features extracted with our embedding methods by
performance on multi-label node classification, community detection and edge prediction. Our
algorithms are on par with the state of the art sequence based embedding method described by
Grover & Leskovec (2016) and on certain tasks and benchmark networks outperform it.

KEYWORDS: social networks, diffusion process, graph embedding, edge prediction, node la-
beling, community detection, distributed computing

http://www.ed.ac.uk/
http://www.ed.ac.uk/informatics

iii

Acknowledgements
This research project was supervised by Dr Rik Sarkar. His pragmatic approach and our

discussions helped to considerably refine my ideas about the topic. Moreover, he supported me
beyond limits when he corrected my final draft during his vacation and provided detailed feed-
back on it. I also have to express my gratitude towards fellow MRes and PhD students in the
Centre for Doctoral Training in the Data Science. Discussions about related work and possible
applications of my method contributed greatly to this project.

This work was supported in part by the EPSRC Centre for Doctoral Training in Data Science,
funded by the UK Engineering and Physical Sciences Research Council (grant EP/L016427/1)
and the University of Edinburgh.

iv

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 Why do we need graph embeddings? . 1
1.2 Contributions . 2
1.3 Thesis outline . 3

2 Background and related work 4
2.1 Basic terminology . 4
2.2 Graph embeddings . 6

2.2.1 Embedding procedure types . 6
Factorization techniques . 6
Sequence based embedding methods . 7
Deep learning . 8

2.2.2 Possible applications . 8
Visualization . 9
Node labeling . 9
Regression . 10
Edge prediction . 10
Community detection . 10

2.3 Creating node sequence based graph embeddings 11
2.3.1 Feature generation using node sequences . 11
2.3.2 Learning the embedding . 12

3 Learning from diffusion trees 16
3.1 Diffusion tree sampling . 16

3.1.1 Eulerian circuit traceback on diffusion graphs 17
3.1.2 Fast endpoint traceback on diffusion trees . 19

3.2 Parallelized graph embedding based on linear node sequences 21

v

4 Computational performance 24
4.1 Peformance on synthetic graphs . 25

4.1.1 Graph pre-processing experiments . 25
4.1.2 Sequence generation experiments . 27

4.2 Performance on real graphs . 29

5 Properties of samples and embeddings 33
5.1 Why diffusion tree sampling is novel? . 33
5.2 Node position in the latent space and centrality . 36
5.3 Visualizing graphs . 40

6 Applications of the embeddings 43
6.1 Multi-label node classification . 43

6.1.1 Semi-supervised multi-label classification . 44
6.1.2 Comparison to other graph embedding methods 46
6.1.3 Sensitivity to parameters . 47

6.2 Community detection . 49
6.2.1 Community detection with sequence based embeddings 49

K-means clustering . 50
Hierarchical clustering . 52

6.2.2 Comparison to other community detection methods 53
6.2.3 Sensitivity of clustering quality to hyperparameters 55

6.3 Edge prediction . 56
6.3.1 Synthetic sample generation for edge prediction 57

Graph attenuation . 58
Edge sampling with potential neighbourhood overlap 59
Edge feature generation . 60

6.3.2 Edge prediction without overlap constraint 61
6.3.3 Edge prediction with overlap constraint . 63

7 Conclusions 65
7.1 Main findings . 65
7.2 Limitations and possible future work . 65

7.2.1 Limitations . 65
7.2.2 Possible future work . 67

A Synthetic graph embedding benchmarks 69

B Basic properties of the embeddings 72

C Multi-label classification 75

D Edge prediction 77
D.1 Gradient boosted trees . 77
D.2 Logistic regression . 78

vi

E List of abbreviations 81

Bibliography 82

vii

List of Figures

2.1 Example graph embedding . 6
2.2 Example graph with linear vertex sequences . 11
2.3 Example architecture of a neural network used for creating a graph embedding . . 13

3.1 Example diffusion tree . 16
3.2 Eulerian trace backs of diffusion trees – illustrative example 19
3.3 Diffusion to vector – outline of parallel processing 23

4.1 Watts-Strogatz graph – mean graph pre-processing time 26
4.2 Barabási-Albert graph – mean graph pre-processing time 27
4.3 Watts-Strogatz graph – mean sequence generation time 28
4.4 Barabási-Albert graph – mean sequence generation time 28

5.1 Example undirected graph with sample sequences and exact sequence sampling
probabilities . 34

5.2 The distribution of random walk and diffusion tree sampled induced subgraph
statistics on the PPI network. 35

5.3 Distribution of node distance in the latent space conditional on the graph distance 36
5.4 Distance from the origin in the latent space as a function of node centrality mea-

sures – ED2V. 37
5.5 Distances from the origin – association between ED2V and FD2V distance 38
5.6 Distance of edge endpoints as a function of their neighbourhood overlap and cen-

trality . 39
5.7 Visualizing graphs with ED2V embeddings . 41

6.1 Classification performance of node sequence based embedding methods mea-
sured by micro F-1 score . 45

6.2 Sensitivity of node classification performance to parameter changes measured by
micro F-1 score . 48

6.3 Community detection performance of k-means clustering measured by modularity 51
6.4 Community detection performance of hierarchical clustering measured by mod-

ularity . 53
6.5 Sensitivity of clustering performance to parameter changes measured by modularity 55
6.6 Edge prediction with gradient boosted trees – `1 and average operators with neigh-

bourhood overlap . 64

A.1 Erdős-Rényi graph – mean graph pre-processing time 69

viii

A.2 Erdős-Rényi graph – mean sequence generation time 69

B.1 Distance from the origin in the latent space as a function of node centrality mea-
sures – FD2V . 72

B.2 Visualizing a Barabási-Albert graph based on FD2V and DW embeddings 73
B.3 Visualizing a Watts-Strogatz graph based on FD2V and DW embeddings 73
B.4 Visualizing a Kleinberg Navigable Small-World graph based on FD2V and DW

embeddings . 74
B.5 Visualizing an Erdős-Rényi graph based on FD2V and DW embedding 74

C.1 Classification performance of node sequence based embedding methods mea-
sured by micro F-1 score . 75

C.2 Sensitivity of node classification performance to parameter changes measured by
macro F-1 score . 76

D.1 Edge prediction with gradient boosted trees – `2 and Hadamarad operators with
neighbourhood overlap . 77

D.2 Edge prediction with logistic regression – `1 operator with neighbourhood overlap 79
D.3 Edge prediction with logistic regression– `2 operator with neighbourhood overlap 79
D.4 Edge prediction with logistic regression– average operator with neighbourhood

overlap . 80
D.5 Edge prediction with logistic regression– Hadamard operator with neighbour-

hood overlap . 80

ix

List of Tables

4.1 Computational performance results on real life graphs 31

6.1 Size and number of labels on the graphs used to asses classification performance. . 44
6.2 Classification performance compared to other feature generation methods mea-

sured by micro F-1. 47
6.3 Clustering performance compared to other methods measured by modularity . . . 54
6.4 Size of the graphs used to asses link prediction . 61
6.5 Edge prediction performance without overlap – gradient boosted trees 62

A.1 Mean graph prep-processing time . 70
A.2 Mean sequence generation time . 71

C.1 Classification performance compared to other feature generation methods mea-
sured by macro F-1 . 76

D.1 Edge prediction performance without overlap – logistic regression 78

x

List of Algorithms

1 Directed diffusion tree generation and Eulerian sequence traceback 18
2 Diffusion tree generation and endpoint trace back . 21
3 Learning from node sequences – generalized algorithm description 22

4 Graph attenuation and embedding algorithm . 58
5 Edge sampling algorithm with neighbourhood overlap constraint 59
6 Edge prediction dataset generator algorithm . 60

xi

List of Symbols

G A graph
V Vertex set of a graph
E Edge set of a graph

v, w, u Vertices
(v, w) Endpoint vertices of an edge
K0 Null graph

A,D,L Adjacency, degree and Laplacian matrices of a graph
S Seeder set
P Vertex sequence

ŵ Window size
d Feature vector dimensions
α Learning rate
n Number of diffusions
k Number of asynchronous gradient descent epochs
X Graph embedding matrix

b Bias vector
W Weight matrix
h Hidden representation
y∗ Normalized hitting frequency vector
y′ Estimated hitting frequency vector

λ Shrinkage parameter
c Community membership vector
β Attenuation/addition rates
γ Minimal neighbourhood overlap
η Minimal degree
M Symbolic empty matrix
X̃ Edge feature matrix
ỹ Edge existence vector

deg(·) Degree of a vertex
N (·) Neighbourhood set of a node
· Average of a quantity
δ(·) Delta function
d(·) Shortest path between two nodes
d′(·) Distance between two nodes in latent space
| · | Cardinality of a set
Q(·) Modularity of a graph clustering
L(·) Multinomial logarithmic loss
σ(·) Identity function
Φ(·) Softmax function

1

Chapter 1

Introduction

1.1 Why do we need graph embeddings?

Many real world machine learning applications involve the use of network data. One might
want to do tasks such as; classification of users in a social network (Macskassy & Provost,
2003), recommendation of scientific collaborations (Liben-Nowell & Kleinberg, 2007), finding
customers who buy similar products (Fouss et al., 2007), or identification of influential members
in a community (Kempe et al., 2003). Working with large networks involves two main chal-
lenges that one has to face. First, graphs that represent real networks are known to have a low
density (Strogatz, 2001; Newman, 2003; Boccaletti et al., 2006). A low density means that only
a small fraction of edges exist out of all the potential edges among vertices. The Youtube social
network is a prime example for this phenomenon – earlier research shows that in this graph
only 0.00046% of the potential edges exist (Yang & Leskovec, 2015). When such sparse graphs
are represented by an adjacency matrix, the representation will only have a few non zero values.
In addition, even for a fairly small graph the adjacency matrix is considerably large. Second,
networks tend to have a high rate of missingness when it comes to the so called generic vertex
features (Kossinets, 2006; Huisman, 2009). In case of a social network generic vertex features can
be the age, country of origin and interests of users. A high missingness itself means that for a
large number of samples we partially have generic vertex features. Moreover, missingness of the
generic vertex features tends to be spatially concentrated which introduces further challenges.
The problems that these two empirical regularities cause can be solved by embedding the graph
into a continuous space.

Now let us imagine that we have a graph embedding procedure which can generate coordinates
for each node of the graph in a low dimensional continuous space solely using the graph topol-
ogy. Moreover, let us assume that in this space the graph distances among nodes are preserved
approximately. Using this representation of the graph would solve the problems we discussed
earlier. First, we would have a low dimensional continuous representation of our graph instead
of the high dimensional discrete adjacency matrix that is sparse. Second, as we are not using
generic vertex features we do not have to worry about missing values. There is a number of
graph embedding procedures that solely use the topology to create the embedding. Based on
the taxonomy of Goyal & Ferrara (2017) there are three types of methods which can be used
for the generation of such embeddings. These are specifically, (i) factorization procedures (Cao
et al., 2015; Ou et al., 2016), (ii) vertex sequence based embedding techniques (Perozzi et al.,

Chapter 1. Introduction 2

2014; Grover & Leskovec, 2016) and (iii) deep learning (Defferrard et al., 2016; Kipf & Welling,
2016a,b). Our current work contributes to the literature of vertex sequence based embedding
techniques. We are going to demonstrate that diffusion processes can be used to generate node
sequences for creating high quality graph embeddings.

1.2 Contributions

In this thesis we introduce diffusion tree based graph embedding algorithms that result in low-
dimensional representations of nodes. The diffusion tree that we use to create the embedding
could describe the adoption path of a message or the spreading of a disease on a graph from a
source node. Using the diffusion trees that we obtain by simulation we create linear sequences
of nodes that we utilize to extract features of nodes. Diffusion tree based vertex sequence gen-
eration compared to other sequence creation procedures results in node sequences that describe
more closely knit local neighbourhoods in the graph. Meaning that the diffusion tree sampled
induced subgraphs tend to be dense, clustered and have a low diameter. Because of this, the fea-
tures that are extracted are more descriptive regarding local structure of the graph than features
obtained by using other random processes on the graph (e.g. random walks). We investigate
the computational performance of our algorithms. Furthermore, we evaluate the representation
quality of embeddings on downstream machine learning tasks such as multi-label node classi-
fication, community detection and edge prediction. Specifically our theoretical and empirical
contributions are:

THEORETICAL CONTRIBUTIONS

(i) We introduce diffusion tree based node sampling procedures to generate vertex sequences
that can be used for learning graph embeddings. In addition, we describe two distinct
methods that can create linear sequences of nodes from diffusion trees. Later these vertex
sequences are used to create the node embedding.

(ii) We propose a general framework for creating synthetic datasets for testing the representa-
tion quality of embeddings on the edge prediction task. Our scheme allows for totally syn-
thetic dataset creation but also for generating more realistic data for representation quality
testing.

(iii) We implemented the diffusion tree based embedding procedures and the synthetic edge
prediction dataset generators in Python.

EMPIRICAL CONTRIBUTIONS

(i) We investigate the computational performance of our methods compared to other node
sequence based embedding methods. We show that our approach has considerable speed
advantage in the graph pre-processing and sequence generation phases on real and certain
synthetic graphs. In addition, we establish that our performance advantage increases as
the size of the graph or its density increases.

Chapter 1. Introduction 3

(ii) We provide evidence that the distance between nodes on the graph is approximately pre-
served in the latent embedding space that is created by the mapping procedure. Moreover,
our experiments reveal that those nodes which are central in the graph are also central in
the embedding space we create. Furthermore, we highlight the visualization capabilities of
the embeddings.

(iii) We demonstrate that the quality of learnt representations is competitive with other node-
sequence based graph embedding methods when the downstream machine learning task
is multi-label node classification. On a number of widely used benchmark datasets we per-
form similarly to other node sequence based graph embedding methods such as Node2Vec
and DeepWalk (Grover & Leskovec, 2016; Perozzi et al., 2014).

(iv) We present exclusive results on the task of community detection and show that our algo-
rithms create the highest quality embeddings in this regard. Our results are competitive
with widely used graph clustering methods and scale to networks with a million of nodes.

(v) We evaluate the sensitivity of representation quality to embedding algorithm parameter
changes on the multi-label node classification and community detection tasks.

(vi) We validate that our embeddings can be used effectively to perform edge prediction under
the conditions that are widely used to benchmark embedding representation quality. We
also support results on this task under a more realistic evaluation regime.

1.3 Thesis outline

Background, related work and the task of sequence based graph embedding are discussed in
Chapter 2. The discussion covers sequence generation, feature extraction and representation
learning in quite detail. The ideas of parallelized diffusion tree generation and linearisation are
outlined in Chapter 3. Computational performance of the reference implementation is bench-
marked to implementations of other vertex sequence based graph embedding methods in Chap-
ter 4. Basic properties of the embeddings are presented in Chapter 5 where the visualization
capabilities of the proposed algorithms are also highlighted. In Chapter 6 we evaluate the rep-
resentation quality of the embeddings on downstream machine learning tasks. Section 6.1 is
about multi-label node classification, the first downstream machine learning application of the
graph representation method introduced by this thesis. The second application, community de-
tection (vertex clustering), is examined in Section 6.3. Results regarding the last application,
edge prediction, are presented in Section 6.3. The thesis ends with Chapter 7 which includes the
concluding remarks and gives layout for possible extensions of the work in hand.

4

Chapter 2

Background and related work

In this chapter we are going to introduce basic definitions, discuss the literature and applica-
tions of graph embeddings. Finally, we will review node sequence based graph embedding
procedures in detail. Definitions related to graph embedding procedures are presented in Sec-
tion 2.1. The literature of graph embedding methods is discussed in Section 2.2. We review the
main types of embedding procedures in Subsection 2.2.1 while possible applications of the em-
beddings are considered in Subsection 2.2.2. We discuss extensively node sequence based graph
embedding methods in Section 2.3, we study feature extraction from sequences in Subsection
2.3.1 and consider learning from the extracted features in Subsection 2.3.2.

2.1 Basic terminology

In this section we overview basic terminology regarding graph embedding procedures. We will
introduce a number of definitions and comment on them where needed. Our discussion loosely
follows the work of Goyal & Ferrara (2017) and extends on it.

Definition 2.1. (Graph) A graph G(V,E) consists a vertex set denoted by V and an edge set noted by E.
The edge set is a set of pairs (v, w), where v, w ∈ V .

We assume that the graph is a mathematical representation of a real world network. We use
the vertex-node and edge-link words interchangeably in the whole paper. The cardinality of the
vertex and edge sets is denoted by |V | and |E| in the thesis. These cardinalities are respectively
the number of nodes and links in the graph.

Definition 2.2. (Adjacency matrix) An adjacency matrix A is a |V |×|V | square matrix with binary val-
ues which describes the existence of connections between nodes of a graph. Columns and rows correspond
to nodes in an ordered way. An element Ai,j = 1 if two nodes i and j are adjacent else Ai,j = 0.

Based on Definition 2.2 one can deduce that the adjacency matrix is a symmetric matrix for
non directed graphs. Moreover, it only has non zero elements in the diagonal if self loops of
nodes are allowed. It is evident that for a large graph it has a really high dimensionality. It is not
necessarily a positive semidefinite matrix.

Definition 2.3. (Degree matrix) The degree matrix D is a |V | × |V | diagonal square matrix obtained by
putting the degree of each node to the diagonal elements. An element Dv,w = deg(v) if v = w else it is 0.

Definition 2.4. (Laplacian matrix) The Laplacian matrix L is a |V | × |V | square matrix obtained by
subtracting the adjacency of a graph by the degree matrix. Simply it is defined as L = D− A.

Chapter 2. Background and related work 5

It is important to note that the Laplacian is always a positive semidefinite matrix. This means
that it has no negative eigenvalues.

Definition 2.5. (First-order proximity) The first-order proximity s(v, u) of nodes v and u is the edge
weight of (v, u). In an unweighted graph it is 1 when an edge exists between the nodes and it is 0 when
an edge does not exist.

The definition of first-order proximity implies that the adjacency matrix and its weighted
variant describe the first-order proximities between pairs of nodes.

Definition 2.6. (Second-order proximity) The second-order proximity of two nodes v and u is defined
by the proximity of their neighbourhoods. Let we define the first-order proximity vector of node v and all
other nodes in V as Sv = [s(v, 1), s(v, 2), . . . , s(v, |V |)]. Based on this, the second-order proximity of
nodes v and u are defined as the similarity of vectors Sv and Su.

The way definition 2.6 describes second-order proximity allows for the choice of a similarity
measure. For example the neighbourhood overlap and the cardinality of the common neigh-
bourhood of two nodes can be used as second-order proximities.

Definition 2.7. (First-order distance) The first-order distance of nodes v and u is the distance between
nodes d(v, u) defined on graph G measured by some distance measure.

A simple first order distance measure between a pair of nodes is the shortest path distance
between v and u. This is the minimal number of hops required to reach node u from v.

Definition 2.8. (Second-order distance) The second-order distance of two nodes v and w is defined by
the distance of their distances from other nodes. Let us define the first-order distance vector of node v and
all other nodes in V as dv = [d(v, 1), d(v, 2), . . . , d(v, |V |)]. Based on this, the second-order distance of
nodes v and u is defined as the distance of vectors dv and du.

The intuition behind Definition 2.8 is that if two nodes are approximately at the same dis-
tance from other nodes in V and close to each other they have a low second-order distance.
Similarly to second-order proximity this definition allows for an arbitrary distance measure be-
tween the two distance vectors.

Definition 2.9. (Graph embedding procedure) A graph embedding procedure defined on G(V,E) is a
mapping f : V → X ∈ R|V |×d satisfying that d � |V | which preserves certain proximity or distance
measures defined on G(V,E)

It is important to see that if we would not condition on having a low dimension compared
to the number of vertices, meaning that d � |V | does not hold, we would not have a compact
representation of the graph. Because having a compressed representation is one of our goals it is
a fundamental requirement. As definition 2.9 is quite general we have to point out that when we
create an embedding procedure we have the freedom to choose an arbitrary proximity or dis-
tance measure that we preserve. The definition of the chosen distance or proximity is not limited
by the formal definitions that we introduced. For example earlier approaches to sequence based
graph embedding algorithms (Perozzi et al., 2014; Grover & Leskovec, 2016) used approximated

Chapter 2. Background and related work 6

random walk proximities (Newman, 2005) between nodes. We have to emphasize that in our
work the graph embedding procedures themselves are also referenced as graph embedding al-
gorithms, functions, and methods. These terms have somewhat similar meaning so we use them
interchangeably in our work. The embedding procedure described by Definition 2.9 itself can be
understood by a simple example. Let us imagine that we have a graph with the vertex and edge
sets V = {a, b, c, d, e, f} and E = {(a, b), (b, c), (c, a), (a, d), (d, e), (c, f)}. Based on the graph
G(V,E) an embedding function can create a visualization like Figure 2.1, where the coordinates
of vertices in the 2 dimensional plane are defined by the embedding matrix X.

a

b

c d

ef

X =

0 0
0 1
1 0
2 0
3 1
2 1

Figure 2.1: Example graph embedding. The graph G(V,E) is defined by vertex set V = {a, b, c, d, e, f} and edge set E =
{(a, b), (b, c), (c, a), (a, d), (d, e), (c, f)}. We created the layout with a 2 dimensional embedding that we just randomly made up.
The embedding itself is a 6× 2 matrix defined by X.

2.2 Graph embeddings

In this section first we briefly overview the main types of graph embedding methods and discuss
numerous possible applications of these procedures. Embedding methods are in the focus of
Subsection 2.2.1 while possible applications are listed in Subsection 2.2.2.

2.2.1 Embedding procedure types

In this subsection we discuss the most well known graph embedding techniques and recent de-
velopments regarding them. The discussion involves graph factorization techniques, sequence
based embedding methods and deep learning.

Factorization techniques

Graph factorization techniques use a matrix that describe the graph and factorize it in order to
create the embedding of the network. The matrix used to represent the graph can be the ad-
jacency matrix itself, the neighbourhood overlap matrix or the graph Laplacian. Based on the
properties of the matrix either eigenvalue decomposition or some variant of stochastic gradient
descent is used to obtain the graph embedding. These embedding methods all have a weakness,
namely that they cannot incorporate generic vertex features. Besides this, their computational
complexity is usually O(|V |2) – in case of large graphs this complexity is prohibitive.

The Laplacian Eigenmaps method by Belkin & Niyogi (2003) creates embedding vectors that
can reproduce the weights of the graph Laplacian. Weights of the Laplacian are approximately
reconstructed by the inner product of the embedding vectors. Graph factorization by Ahmed et al.

Chapter 2. Background and related work 7

(2013) works in a similar fashion, the inner product of the embedding vectors reconstructs the
weights of the adjacency matrix. Likewise the procedures introduced by Cao et al. (2015) and Ou
et al. (2016) factorize the random walker transmission probability and neighbourhood overlap
matrices.

Sequence based embedding methods

Node sequence based graph embedding methods were inspired by word embedding proce-
dures, specifically by the skip-gram model (Mikolov et al., 2013a,b). The generation of node
sequence based graph embeddings consists three phases. First, the algorithm creates synthetic
vertex sequences. The sequence generation itself involves a random process on the graph that
creates sequences of nodes. This can be demonstrated by an illustrative example. Let us con-
sider again the graph on Figure 2.1. Moreover, let us assume that the random process on the
graph is a random walker that makes truncated random walks with length 4 starting from ran-
domly chosen vertices. A sequence starting from node c could be c− b− a− c while a sequence
starting from node f could be f − c − d − e. Second, after the sequence generation node spe-
cific features are extracted for each of the nodes based on the sequences. The features that are
extracted from the synthetic sequences describe the approximated proximities of nodes. Third,
finally the embedding itself is learned using the extracted node specific features with a neural
network which has a single hidden layer. Rows of the input weight matrix are taken as the node
embeddings for each node. The sequence based embedding methods are all characterized by
O(log(|V |) · |V |) computational complexity as they use certain simplifications to speed up the
embedding creation.

Sequence based embedding models originate from the DeepWalk model by Perozzi et al.
(2014) who used random walks to generate the node sequences. Based on these sequences the
extracted features approximate node specific random walk closeness centralities described by
Newman (2005) and Brandes & Fleischer (2005). These centralities measure proximity by mea-
suring the frequency that a random walker starting from a given node hits other nodes. The
higher the hitting frequency is the closer the source and the other node is. This approach was
generalized by Grover & Leskovec (2016) who proposed second-order random walks to gen-
erate the vertex sequences and named their method as Node2Vec. Second-order random walks
alternate between depth-first and breadth-first search on the graph in a random, but somewhat
controlled way. The main drawback of this model is that it has parameters that control the al-
ternation between the search strategies and the embedding’s representation quality depends on
these parameters. Because of this one has to find the optimal parameters with a quite costly
grid-search to obtain a high quality graph representation. Recently Pimentel et al. (2017) further
refined the sequence based embedding procedures by Neighborhood Based Node Embedding which
requires less synthetic data to learn the graph representation.

Importantly these models that we listed do not use generic vertex features for the creation of
the embedding, so extending them with the inclusion of node metadata was a straightforward
extension by Yang et al. (2016). Other related works consider graphs with specific topology such

Chapter 2. Background and related work 8

as graphs with signed edge weights (Yuan et al., 2017), rooted subgraphs (Narayanan et al., 2016)
and temporal graphs (Rahman & Al Hasan, 2016).

Deep learning

Graph embedding methods that use deep learning are all based on the same idea – they encode
a matrix representation of the graph and at the same time they maintain first and higher or-
der proximities or distances. The matrix representation used for creating the embedding is the
adjacency matrix in the model created by (Wang et al., 2016). While (Cao et al., 2016) uses the
random walk transmission probability matrix. These representations are known to have higher
quality than the ones obtained by sequence based graph embedding methods. However, due
to complexity constraints (a considerable computational complexity ofO(|E| · |V |)) benchmarks
are only presented on small graphs by the authors. Importantly, the architectures introduced by
Wang et al. (2016) and Cao et al. (2016) did not use node features. Nevertheless, recent develop-
ments in graph signal processing allow the use of generic vertex features when an embedding
is created. For a detailed introduction to the topic see Shuman et al. (2013). Building on this
progress of graph signal processing Defferrard et al. (2016) and (Kipf & Welling, 2016a) intro-
duced semi-supervised graph convolutional deep neural networks that create embeddings that
use generic vertex features and at the same time maintain proximities of nodes in the embedding
space. They use their method on citation network data with word occurrence features extracted
from the papers to classify them into scientific fields. They show that graph convolutional neural
networks achieve state of the art results on node labeling if generic vertex features are available.
An unsupervised procedure to create embeddings is discussed in Kipf & Welling (2016b). We
have to note that these convolutional networks have an appealing computational complexity of
O(|E|) and their memory complexity is the same. Essentially this means that for smaller graphs
one can use high performance deep learning libraries with graphical processing unit support to
fit these models.

2.2.2 Possible applications

Embedding procedures create low dimensional and continuous representations of input graphs.
These learnt representations have a number of useful applications. Some of them is quite evident
and widely discussed in the literature. Moreover, some of the possible applications is used to
benchmark the representation quality of embedding algorithms. We must note that the fact
that embeddings can be used in supervised machine learning tasks such as regression and node
labeling originates from the phenomena called homophily and assortative mixing. These terms
describe the birds of a feather regularity observed in most of the social and technological networks
(McPherson et al., 2001). Meaning that nodes with similar features are connecting to each other
with a higher probability. As embeddings preserve distance and proximity in the latent space
one can exploit homophily and assortativity to do supervised and unsupervised learning.

Chapter 2. Background and related work 9

Visualization

Network visualization is the most evident application of the learnt embeddings. Graph visu-
alizations are powerful exploratory data analysis tools. They can help to identify the possible
number of clusters or assess the level of homophily/assortativity when one colours nodes by
discrete or continuous generic vertex features. Besides these, one might also use them to get a
general understanding of the network – whether bridges are present, are there large communi-
ties or small fragmented ones, or how closely knit the communities are. The graph visualization
capabilities of sequence based embedding algorithms are emphasized by Perozzi et al. (2014);
Grover & Leskovec (2016); Kipf & Welling (2016a) on some small real world networks while
Goyal & Ferrara (2017) presents results on synthetic graphs for a number of embedding proce-
dures.

Node labeling

Node labeling is a supervised learning task where one wants to classify nodes into different
categories. One can predict the topic of scientific papers in citation networks to different topics,
pages that users in a social network will like or the function of proteins in a protein-protein inter-
action network. Nodes might belong to multiple category at the same time – in such situations
the task is multi-label node classification. There are algorithms that solve this task without cre-
ating an embedding such as the weighted vote relational neighbour classifier (Macskassy & Provost,
2003) or using node features extracted with the label propagation algorithm (Gregory, 2010). While
these algorithms do classification without embedding creation most of them has a low classifica-
tion accuracy compared to embedding based procedures. The referenced embedding algorithms
perform well when features extracted with them are used to do node labeling. Moreover, node
labeling is an important task to consider as the quality of the embedding representation is pri-
marily evaluated on this task in the literature.

Results obtained by (Perozzi et al., 2014) using social network data collected from sites such
as Flickr, BlogCatalog and Youtube demonstrated that sequence based embedding techniques
support good features for node labeling with regards to group membership and interests. In
addition, they demonstrated that predictions using features extracted with sequence based em-
bedding are extremely accurate even when only 1% of data is labelled and plain logistic regres-
sion is used to classify nodes. Findings by Grover & Leskovec (2016) extend the investigation
of (Perozzi et al., 2014) by showing that features that were created by sequence based graph
embeddings are valuable for node labeling when protein-protein interaction networks are con-
sidered. Findings of Pimentel et al. (2017) gave further evidence to support the capabilities of
these methods on the same datasets. Experiments by Kipf & Welling (2016a) had shown that
embedding based methods do fairly on citation networks but they are outperformed by graph
convolutional networks that can use node features. Importantly, the work of Kipf & Welling
(2016a) was limited to node classification on small graphs with thousands of vertices.

Chapter 2. Background and related work 10

Regression

Regression on networks corresponds to predicting continuous (non-categorical) features of nodes.
One might try to infer quantities like the age of users in a social network, the amount of traf-
fic that visits a blog or the number of citations a scientific paper will receive (Al Zamal et al.,
2012; Peersman et al., 2011; Sarigöl et al., 2014). The simplest model that solves this task on
networks is similar to the weighted vote relational neighbour classifier (Macskassy & Provost, 2003;
Al Zamal et al., 2012). It extracts a neighbourhood of nodes and uses the weighted average of
the neighbours’ features to predict the quantity of interest. Currently there is little research on
the usefulness of node sequence based embedding learnt features for regression tasks. The only
work that considers this is an application of the method described by Perozzi et al. (2014). The
same authors show that the created embedding can be used to predict the age of users and that
their methods outperform a number of simple baselines (Perozzi & Skiena, 2015).

Edge prediction

Edge prediction is essentially a binary classification task – based on a pair of nodes one has to
predict whether a link is formed between them or not. This description of the task itself makes
it evident that in an optimal scenario one has temporal snapshots of the network. However, in
most of the cases it is not possible to obtain temporal data and because of this synthetic data
is needed. Classical non embedding based link prediction procedures that solve this task use
similarity metrics of the neighbourhood sets of nodes as predictors. These metrics include the
neighbourhood overlap, preferential attachment index or the SimRank measure (Liben-Nowell & Klein-
berg, 2007).

While Perozzi et al. (2014) does not consider solving this downstream machine learning task
Grover & Leskovec (2016) had illustrated that embedding methods create features that are effec-
tive to predict link formation among nodes. Results on social and collaboration networks pre-
sented by Grover & Leskovec (2016) show that sequence based embeddings outperform other
baseline methods on this task. The findings of (Pimentel et al., 2017) support additional evi-
dence that sequence based graph embedding procedures perform well on this task. The edge
prediction performance of graph convolutional neural networks is discussed by (Kipf & Welling,
2016b) where deep learning methods are evaluated on citation networks and generic vertex fea-
tures are used for creating an embedding. We have to point out that most of the embedding
methods are evaluated in an unrealistic setting with synthetic data. In our opinion this evalua-
tion questions the link prediction performance of the models that use embedding features.

Community detection

The extraction of communities from a network is essentially the clustering of nodes based on
topology. This is one of the simplest unsupervised machine learning tasks that one can do with
networks. Standard approaches to community detection do not create latent space embeddings
of the nodes to cluster them, but use micro level topological properties of nodes to group them
into dense subgraphs (Girvan & Newman, 2002; Clauset et al., 2004; Pascal & Latapy, 2005;

Chapter 2. Background and related work 11

Blondel et al., 2008). As the survey presented in Goyal & Ferrara (2017) points out previous re-
search on sequence based graph embeddings does not consider this task to evaluate the learned
representation quality. We are going to fill this gap and show that using features derived with
these methods to cluster nodes in latent space gives impressive clustering results on a number
of social, technological and biological networks.

2.3 Creating node sequence based graph embeddings

In this section we will give a general overview on how node sequence based graph embedding
procedures work. First, we discuss the extraction of node features from vertex sequences in
Subsection 2.3.1. Second, in Subsection 2.3.2 we demonstrate how we learn the embedding
based on the extracted features. In both subsections we give examples to illustrate how the
mechanics of node sequence based graph embedding procedures work.

2.3.1 Feature generation using node sequences

Let us consider the node sequence generation first. In the following the graph representing the
network is again denoted by G(V,E). The set of vertices is V while the set of edges is E. In the
remainder we assume that graph can be either directed or undirected and also that edge weights
are not present.

With the framework that node sequence based graph embedding methods use in order to
generate node specific features one needs linear sequences of nodes. Moreover, it is required that
each of the nodes appears at least in one of the sequences. These sequences of nodes might be
present in the data naturally or generated by some artificial process. Examples of non-synthetic
node sequences include content sharing patterns on social networks, movement of vehicles be-
tween traffic points or series of financial transactions among bank customers. Regarding the
synthetic node-sequences the data generation possibilities that can be considered include ran-
dom walks, second order random walks or diffusion processes. The paper in hand proposes the
application of diffusion processes as they have amenable properties regarding the representation
quality. The use of diffusion processes to create sequences and description of parallel sequence
generation is described in Chapter 3.

a

b c

d e a− b− c− d− c− d− e− c− d− c− d

e− d− e− d− c− d− e

b− a− c− d− a− b− a− c− b− c− d

Figure 2.2: Example graph with linear vertex sequences. The graph G(V,E) is defined by vertex set V = {a, b, c, d, e} and edge set
E = {(a, b), (b, c), (c, a), (c, d), (d, a), (d, e), (c, e)}. Three vertex sequences are listed with differing lengths and these sequences
are used for feature extraction in our example.

Now let us assume that we have already available node sequences and these sequences were
extracted from the graph depicted on Figure 2.2. Specifically, the vertex set contains nodes

Chapter 2. Background and related work 12

a, b, c, d, e where these nodes are indexed respectively from 1 to 5. Furthermore, we assume
that we have 3 node sequences available for feature extraction.

In the following we will consider a simple example to illustrate how node sequence based
embedding algorithms work. To generate features from the sequences at hand we need to choose
a sliding window size denoted by ŵ. The window size that we choose limits the maximal graph
proximity among nodes that we are going to approximate. In this specific case we consider
that ŵ = 2. We calculate the co-occurrence frequencies for node c as follows – we count how
many times other nodes appeared at given positions before and after node c limited by the
windows size. In this toy example it means positions at maximal 2 steps before or after c in
the sequence. Counts at different positions are stored in separate vectors for each node. The
resulting frequency vectors at different positions are as follows:

yc,−2 =

1

2

3

1

1

 yc,−1 =

2

2

0

3

1

 yc,+1 =

0

1

0

7

0

 yc,+2 =

1

0

3

0

2

The components of these vectors have a well defined meaning. For example, the 2nd com-

ponent of yc,−2 is the number of times node b appeared 2 steps before node c in the processed
sequences. Similarly, the 4th component of yc,+1 is the number of times node d appeared 1 step
after node c in our sequences. These feature vectors can form a vector with 2 · ŵ · |V | components
if they are concatenated in increasing order of the positions. We coined this vector as the hitting
frequency vector of node c and denote it by y∗c . The general notation of this hitting frequency
vector specific to a given node node v is y∗v. Importantly this vector is a vector of features for
node c that we just generated. Later this vector is normalized by the sum of components so
the hitting frequencies sum up to zero. By applying the sliding window on each sequence for
each of the nodes we obtain a hitting frequency vector for each node – we extract features for
all of them. This means that altogether after processing each sequence we are going to have |V |
feature vectors that each have a size of 2 · ŵ · |V |.

Components of the vectors can be interpreted in a less formal way as noisy proximities in the
graph. The higher a given component of the hitting frequency vector is, the closer the respective
node is to the node which the hitting frequency vector corresponds to. These vectors charac-
terize the location of the node in the graph quite well but at the same time they have a high
dimensionality. Later when we learn the representation of nodes with the embedding function
we essentially reduce the dimension of these hitting frequency vectors.

2.3.2 Learning the embedding

In this section we consider the learning of an embedding as we already discussed feature gen-
eration in the previous subsection. We defined the embedding function as a mapping between

Chapter 2. Background and related work 13

G(V,E) and X ∈ R|V |×d in Section 2.1. The hitting frequency vectors themselves that we just cre-
ated are already a representation of the network, but not in R|V |×d as they describe the graph in
R|V |×2·ŵ·|V |. In order to resolve this Perozzi et al. (2014) proposes based on the ideas of Mikolov
et al. (2013a,b) the use of neural networks to compress the node-graph representation. Their
solution is that the embedding itself is created by fitting a fully connected neural network with
a single hidden layer. We will adopt this idea and a schematic of the architecture that we will
use, specific to the toy example investigated in this section, is on Figure 2.3.

hv = σ(WT
inxv + bin)

y′v = Φ(WT
outhv + bout)

hv

x v

y’v-2 y’v-1 y’v+1 y’v+2

y’v

Figure 2.3: Example architecture of a neural network used for creating a graph embedding. The binary input vector has |V |
components and in this specific example we create the embedding of a graph with 5 nodes and we use a window size of 2. The
embedding weight matrix Win is a |V | × d matrix – in our example we have 2 neurons (number of embedding dimensions) in the
hidden layer. So the input weight matrix is 5 × 2. The input bias bin vector has d components – again in this instance this means
2 components. Our goal is to approximate the hitting frequency vector by y’ based on the hidden layer values, the output weight
matrix and bias vector. The hitting frequency vector has 2 · ŵ · |V | components, thus in our example it has 2 ·2 ·5 = 20 components.
The output weight matrix Wout is a d × (2 · ŵ · |V |) matrix so in line with this in our illustration it would be 2 × 20. Finally, the
output bias vector bout has 2 · ŵ · |V | components hence in our example it has 20 components.

Now let us assume that each v in V has a corresponding binary vector denoted by xv. Every
binary vector has |V | components and every component is zero except for the vth. Later this
vector is referenced as the hot-one encoded vector. We will predict the hitting frequency vector
of nodes with hot-one encoded vectors. The approximated hitting frequency vector is outputted
by the network and the hot-encoded one is imputed to the network on Figure 2.3. Between the
output and input layers we have a single hidden layer. The vector hv is the hidden represen-
tation of node v in d dimensions. We obtain this hidden representation by Equation 2.1 where
the weight matrix Win is a |V | × d matrix, Win is the bias vector with d components and σ is
an elementwise function. In our model Win and bin are trainable weights. In the actual imple-
mentation the function σ is chosen to be the identity function. There is a simple justification for
this – if σ is the identity function the WT

inxv multiplication is simplified to taking the vth row of
the input weight matrix. In the definition of a graph embedding function we postulated that
d � |V | meaning that we should have a low dimensional representation of nodes compared

Chapter 2. Background and related work 14

to the number of nodes. In order to achieve this we will have a low number of neurons in the
hidden layer – in other terms we will form a so called bottleneck.

hv = σ(WT
inxv + bin) (2.1)

Based on the hidden representation of v one wants to approximate the normalized vector of
hitting frequencies from v – this is defined by Equation 2.2. The rational behind this is simple
– the hidden layer vector is a compressed representation of the hitting frequency vector. Fur-
thermore, because d � |V | we can only approximate the real hitting frequency vector. The
approximated hitting frequency vector y′v of v is on the left hand side, the weight matrix Wout

is a d × (2 · ŵ · |V |) matrix while the bias column vector has 2 · ŵ · |V | components. Finally the
non-linear function Φ is chosen as the softmax function.

y′v = Φ(WT
outhv + bout) (2.2)

As our goal is the approximation of y∗v we have to define the loss of approximation. The loss is
a function of y∗v and y′v that is described by Equation (2.3). The loss function L is chosen as the
cross entropy of y∗v and y′v.

L
(
y∗v,y

′
v

)
= L

(
y∗v,Φ(WT

outhv + bout)
)

(2.3)

As a next step we have to calculate the loss for all of the vertices in V and have to sum it up.
This sum is described by Equation (2.4). Our goal is to minimize this sum. We are searching for
the weight matrices Win,Wout and vectors bin,bout that minimize Equation (2.4).∑

v∈V
L
(
y∗v,Φ(WT

outhv + bout)
)

(2.4)

Essentially the weight matrix Win is the embedding itself – for each v in V we have a d dimen-
sional representation in a latent space. The weight matrix is used to approximately reconstruct
the hitting frequencies of a node. If two nodes have similar hitting frequency vectors, meaning
that their proximity is high, they will also have a similar latent space representation. We can
assume that two nodes with similar hitting frequency vectors are going to be close on the graph
itself (Newman, 2005).

In order to find the optimal weights of the proposed neural network we can use stochastic
gradient descent (Bottou, 1991). As our goal originally is the efficient and scalable learning of
the embedding we can use asynchronous gradient descent – henceforth ASGD – to learn the
embedding in a parallel way (Recht et al., 2011). Earlier work regarding sequence based graph
embedding has already proven that parallelized learning with ASGD does not deteriorate the
representation quality (Perozzi et al., 2014; Grover & Leskovec, 2016). During the training of
the network we will always linearly decrease the learning rate α from its starting value to zero.
We must emphasize that using parallelization does not solve the problem that passing a single
sample through the neural network has O(|V |) computational complexity. On account of this

Chapter 2. Background and related work 15

a single training epoch with all of the nodes has a computational complexity of O(|V |2). This
complexity would render our model useless for larger graphs.

The creators of the skip-gram model had two propositions to improve upon this quadratic
computational complexity (Mikolov et al., 2013b). One of the propositions is the use of nega-
tive sampling (Gutmann & Hyvärinen, 2010) to reduce the number of weights that they have to
update during training. Another solution is the use of hierarchical softmax activations instead of
the softmax activations in the output layer. As Perozzi et al. (2014), Grover & Leskovec (2016)
and Pimentel et al. (2017) all choose the use a hierarchical softmax activations we also decided
to use it. With this modelling choice the computational complexity of a single training epoch
is reduced to O(log(|V |) · |V |). Considering that log 107 ≈ 16 this complexity essentially means
that for most of the practical applications we have a scalable (near linear complexity) training
of our neural network and we can possibly learn embeddings of graphs with millions of nodes.
We have to note that sequence generation and feature extraction is independent from the model
chosen for the dimension reduction. One could use other dimensionality reduction methods
such as principal component analysis to create an embedding. However, most of the other di-
mension reduction methods have a computational complexity that is worth thanO(log(|V |)·|V |).

It is evident that the earlier described feature extraction mechanism and the model used
to create the embedding allows for free choice of parameters. However, as the literature on
sequence based embedding procedures is already quite extensive we will evaluate our models
in most of the experiments with parameters that are used as standards in other works (Perozzi
et al., 2014; Grover & Leskovec, 2016; Yang et al., 2016; Pimentel et al., 2017). These parameters
that we reference as the standard parameter settings are ŵ = 10, d = 128, α = 0.025 and k the
number of training epochs is set to be 1. We emphasize in our work when we deviate from these
settings.

16

Chapter 3

Learning from diffusion trees

This chapter gives an overview on how the neural network described in the end of Chapter 2 is
able to use features extracted with diffusion trees. We discuss the sampling of diffusion trees and
learning from them in different sections. The notion of diffusion trees and sequence sampling
methods are outlined in subsections of Section 3.1 with examples. While the application of the
sampling methods themselves and parallelization possibilities are overviewed in Section 3.2.

3.1 Diffusion tree sampling

In this section we will describe how can we sample linear sequences of nodes with diffusion
trees that necessarily include an arbitrarily chosen node. This is needed as we will want to
sample linear sequences of nodes for all of the nodes in the vertex set. The two proposed
node sequence sampling procedures both use diffusion processes to sample vertices from the
graph. In generic terms a diffusion process on a network describes the spreading of something
on a graph. This thing that spreads can be a disease, a technology or a piece of information. A
diffusion tree is a directed graph which describes the way the spreading phenomenon proceeds
on the graph. In our examples it would show who infected whom, who adopted the technol-
ogy from whom or who told the message to whom. A simple illustrative exemplar graph is
depicted on Figure 3.1. The graph is defined by vertex set V = {a, b, c, d, e, f} and edge set
E = {(a, b), (b, c), (c, a), (a, d), (d, e), (c, f), (b, f), (f, e)}. The graph on Subfigure 3.1a can rep-
resent a group of friends and the diffusion process can be the spread of a rumour. We plotted
a diffusion tree on Subfigure 3.1b where the seeder (the node which started the diffusion) was
node c and we assumed that all of the nodes received the rumour.

(a) Sample graph

a

b

c d

ef

(b) Sample diffusion tree

a

b

c d

ef

Figure 3.1: Example diffusion tree. The graph G(V,E) is defined by vertex set V = {a, b, c, d, e, f} and the edge set E =
{(a, b), (b, c), (c, a), (a, d), (d, e), (c, f), (b, f), (f, e)}. The original graph is on the left and the diffusion tree originating from c
is on the right. At the end of the process all of the nodes adopted the rumour.

Chapter 3. Learning from diffusion trees 17

A diffusion tree is not a linear sequence of nodes. Because of this we have to define a trace-
back procedure that generates linear sequences of nodes based on the sampled diffusion tree. In
this specific example an arbitrarily defined linear sequence of nodes that does not consider the
direction of edges based on the tree could be the following one:

c− d− c− a− c− b− c− d− c− f − e

Before describing the sampling and traceback procedures we have to make a remark regard-
ing how we store the graph on which we will initiate the diffusion process. In order to generate
vertex sequences we need a connected graph denoted by G(V,E). In our implementation this
graph is stored as an edge list hash table. This data structure uses the nodes as keys and the
corresponding values are lists of the nodes’ first order neighbours. Choosing this data structure
is useful because looking up the first order neighbours of node v and retrieving them as a list
takes O(NG(v)). Moreover, the memory complexity of this data structure is O(|V | + |E|) which
is considerably better than keeping an adjacency matrix in memory. Consequently, simulating
diffusion processes on the graph becomes easier with an edge list hash table as looking up first
order neighbours of a node is a fundamental operation of the diffusion process simulation.

The sophisticated Eulerian circuit diffusion graph traceback algorithm is discussed in Sub-
section 3.1.1, while the fast endpoint traceback method is presented in Subsection 3.1.2. In both
subsections we provide examples to illustrate how the traceback procedures work.

3.1.1 Eulerian circuit traceback on diffusion graphs

In this subsection we will overview how can we generate a single diffusion tree starting from
node v and how can we linearise it with an Eulerian circuit. The basic idea is that one can gener-
ate a connected graph from a seeding node that has an Eulerian circuit by design. The obtained
Eulerian circuit is a linear sequence of nodes which can be used for feature extraction. This
method requires the before mentioned strongly connected graph, a starting node v and a fixed
number of vertices to be sampled l. We have to make sure that |V | ≤ l holds, namely that we do
not want to sample more nodes than the number of vertices in the graph.

In order to generate a sequence we will initiate a probabilistic diffusion process on the graph.
The initial seeder is v and the set of seeders S is initialized as v. The diffusion graph G̃ is the null
graph K0, and its initial vertex set is {v}. Until we do not reach the number of desired vertices
in the seeder set we repeat the following process:

(i) We sample a random node u from S.

(ii) From the first order neighbours of u we take a random node w.

(iii) If the node w is not in S we know that it is not in the seeder set but it is connected to a
node in the seeder set. We add the node to the set of seeders and to the vertex set of the
diffusion tree. Finally, we also add the directed edges (u,w) and (w, u) to the edge set of
the diffusion tree.

Chapter 3. Learning from diffusion trees 18

When the while loop terminates we have a graph with l nodes and it contains the start node v.
This graph is not a tree in the graph theory terms as it has cycles. Moreover, it is not necessarily
a linear sequence of nodes. We coin the subgraph generated by Algorithm 1 as the bidirectional
diffusion graph. To help with the understanding of the procedure we described it with pseudo-
code in Algorithm 1.

Data: G – Graph object – (hash table with node keys and edge lists as values).
l – Number of vertices to be sampled.
v – Starting node .

Result: P – Eulerian sequence traceback of diffusion tree from node v on graph G containing l unique nodes.

1 S ← {v}
2 G̃ ← K0

3 VG̃ ← S

4 while |S| < l do

5 w ← Random Sample(S)

6 u← Random Sample(NG (w))

7 if u /∈ S then
8 S← S ∪ {u}
9 VG̃ ← VG̃ ∪ {u}

10 EG̃ ← EG̃ ∪ {(u,w), (w, u)}
11 end

12 end
13 P ← Random Eulerian Circuit(G̃, v)

Algorithm 1: Directed diffusion tree generation and Eulerian sequence traceback

Claim 3.1. The bidirectional diffusion graph is Eulerian.

Proof. According to Biggs et al. (1976) a directed graph has an Eulerian circuit if it has the fol-
lowing properties:

(i) It has a single strongly connected component.

(ii) All other vertices have an equal in and out degree.

First, our sampling procedure ensures that the graph has a single strongly connected component.
Second, if the vertex set is singleton in the end of the diffusion process the seeder node’s in-
degree and out-degree are both zero. Third, in the iterative process the edges are added in a
manner that the in-degree and out-degree of nodes is always the same. �

This means that starting from node v in the bidirectional diffusion graph one can traverse the
edges of the graph in a way that every directed edge is visited once. To put it simply, starting
from node v one can initiate a random Eulerian circuit on G̃ which generates a linear sequence
of nodes. Earlier we demonstrated that a linear sequence of nodes can be used to extract fea-
tures for learning. Generation of this Eulerian circuit has time complexity O(l) if the method
described in (Edmonds & Johnson, 1973) is used. The number of non-unique nodes in the se-
quence generated by the circuit will be 2 · l − 1 (Biggs et al., 1976). Intuitively the starting node
will appear at least twice in the sequence (starting and end node). Moreover, the diffusion graph

Chapter 3. Learning from diffusion trees 19

and the traceback itself is random. From a given starting node possibly a number of unique sam-
ple graphs and traceback sequences are obtainable. The outline of the idea is summarized with
pseudo-code by Algorithm 1.

To demonstrate the idea of Eulerian diffusion graph traceback let us look at the example
graph on Subfigure 3.2a. The number of nodes in this graph is 12, it is undirected and con-
nected. Now let us consider sampling a sequence with l = 6 nodes starting from node b. A
possible diffusion graph is depicted on Subfigure 3.2b. Two randomly chosen examples of Eule-
rian tracebacks from b on this specific diffusion tree are below.

b− d− e− d− a− d− b− c− b− i− b

b− i− b− c− b− d− e− d− a− d− b

Another diffusion graph that can be obtained by a random spreading process is on Subfigure
3.2c. On this tree two examples of tracebacks are down.

b− c− e− c− f − g − l − g − f − c− b

b− c− f − g − l − g − f − c− e− c− b

This simple example demonstrates that from the same starting node and graph quite heteroge-
neous vertex sequences might originate. It also pinpoints the fact that the same diffusion graph
is a possible source for multiple sequences.

(a) Sample graph

d c f k

e h

a b g

i j l

(b) Diffusion tree

d c f k

e h

a b g

i j l

(c) Alternative diffusion tree

d c f k

e h

a b g

i j l

Figure 3.2: Eulerian trace backs of diffusion trees – illustrative example. The graph itself is either directed or undirected and we
must sample a set of nodes that is smaller than |V |. From a given starting node one might sample multiple diffusion trees. The
resulting diffusion trees can have a number of distinct tracebacks with the methods that we describe.

3.1.2 Fast endpoint traceback on diffusion trees

The previously outlined method traces back the vertices in a way that does not rely on the way
that the diffusion process spreads on the network. Another traceback method can use the al-
ready existing paths among vertices on the tree that were generated by the diffusion process
itself. Simply, we might want to have a traceback procedure that is faster than the Eulerian
method.

Chapter 3. Learning from diffusion trees 20

The algorithm that we propose needs the original graph represented by an edge list hash table,
a fixed number of unique vertices to be sampled and a starting node for the diffusion process.
As part of the initialization one has to create a counter hash table – this contains the number of
nodes that a given node is connected to in the tree. In case of the initial seeder its value is set
to be zero. The shortest paths on the tree are stored in a list of lists. The seeder set S initially
contains node v. Until the required number of seeder nodes is reached the following is repeated:

(i) From the shortest paths list the first sublist is taken. From this sublist the last vertex u is
extracted.

(ii) From the original graph w a random neighbour of u is extracted.

(iii) If this random neighbour is not in the set of seeders the number of infected nodes is incre-
mented. A new sublist is created by appending w to the chosen sublist. This new sublist
is appended to the list of lists containing the diffusion paths. Consequently, w is added to
the seeders set. The degree counter hash is modified by setting the value corresponding to
w as 1. Moreover, the value corresponding to the key u is incremented by 1.

(iv) The diffusion paths list of lists is shuffled so in the next iteration a random diffusion path
will be the first path in the list.

When the iteration terminates we have sampled l nodes. Based on the counter hash one can tell
which are those nodes that have only one neighbour and one can easily select these endpoints
from the tree. Based on the Node Degrees hash, the Shortest Paths list and v one can select diffusion
paths that start in the original seeder node and end in a node with degree 1. The final vertex
sequence Traceback is initialized with the start node. Finally, in an iterative process the vertex
sequence to be created is augmented with the diffusion paths and their reverts without allowing
neighbouring duplicates in the sequence. We summarized the graph sampling and sequence
traceback with pseudo-code by Algorithm 2.

Similarly to the other vertex sequence generation algorithm the idea behind the method can
be truly understood by an illustrative example. Let us consider again the graph on Subfigure
3.2a. Diffusion trees obtained are again the same and they are once again Subfigures 3.2b and
3.2c respectively. In case of Subfigure 3.2b the end nodes are c, e, and i. Two randomly chosen
endpoint tracebacks of this tree are just below.

b− i− b− c− b− d− e− d− b− d− a− d− b

b− d− e− d− b− c− b− d− a− d− b− i− b

Looking at Subfigure 3.2c one notices that the end nodes are e and l. Using these nodes two
possible tracebacks from the endpoints are below.

b− c− e− c− b− c− f − g − l − g − f − c− b

b− c− f − g − l − g − f − c− b− c− e− c− b

Chapter 3. Learning from diffusion trees 21

This example shows that this method is biased towards nodes with a high centrality in the dif-
fusion tree. In the first example b appears 5 times in the sequence, in the second one c appears 4
times. Moreover, the size of the resulting sequence is not a direct function of l. Let us consider
that c is the seeder in case of Subfigure 3.2b – this would result in vertex sequences with a total
length of 17. The sequences that we described earlier only had lengths of 13.

Data: G – Graph object – (hash table with node keys and edge lists as values).
l – Number of vertices to be sampled.
v – Starting node .

Result: Traceback – Endpoint sequence traceback of diffusion tree from node v of graph G containing l unique
nodes.

1 Node Degrees← {}
2 Node Degrees

v
← 0

3 Shortest Paths← [[v]]
4 S ← {v}
5 while |S| < l do
6 u← Take Last Vertex of Sequence(Shortest Paths0)
7 w ← Random Sample(NG (u))
8 if w /∈ S then
9 Append(Shortest Paths0, [w])

10 S ← S ∪ {v}
11 Node Degrees

w
← 1

12 Node Degrees
u
← Node Degrees

u
+ 1

13 end
14 Random Shuffle(Shortest Paths)

15 end
16 Endpoints← Select Endpoint Vertices(Node Degrees)
17 Shortest Paths← Select Endpoint Diffusion Paths(Shortest Paths, v,Endpoints)
18 Traceback← [v]
19 for Shortest Path in Shortest Paths do
20 Append Without Repetition(Traceback,Shortest Path)
21 Append Without Repetition(Traceback,Revert(Shortest Path))
22 end

Algorithm 2: Diffusion tree generation and endpoint trace back

3.2 Parallelized graph embedding based on linear node sequences

The sequence generation methods that we just described in Section 3.1 can generate a linear se-
quence of nodes from a single starting node. Our goal is to ensure that we have a set of sequences
in which every node appears at least one of the sequences. A simple procedure that ensures that
every node appears at least in one sequence is obtained by generating trees from every vertex.
Later on we will extract features from the created sequences and learn the embedding itself. In
this section we introduce a framework to generate the sequences in a way that multiple workers
can be used to do the sampling. These workers using a connected graph, a vertex set cardinality
and a starting node create linear sequences of nodes. The idea is outlined with pseudo-code by
Algorithm 3.

Now let us look at what are the input parameters and data that our method requires. The
graph embedding method first needs a source for the graph that it will embed. From each node

Chapter 3. Learning from diffusion trees 22

in the graph we will generate n sample sequences. The sampling procedure needs a parameter l
which sets the unique number of nodes sampled. It is the length of the random walks or in our
sampling methods it is the number of unique nodes in the sequence. During the feature extrac-
tion we use the sliding window size parameter ŵ. The neural network that we fit has d neurons
in the hidden layer – this is also the number of embedding dimensions. Lastly, the optimization
procedure used for finding the optimal weights of the neural network requires the number of
epochs k and an initial learning rate α.

Data: Source – Path to the edge list used.
n – Number of sequence samples per node.
l – Number of unique nodes parameter.
d – Dimension of vector representation.
k – Number of epochs in optimization procedure.
ŵ – Size of sliding window.
α – Learning rate.

Result: X – Embedding of nodes from graph G in d dimensions.

1 G ← Read Graph(Source)

2 G1,G2, . . .GS ← Connected Component Extraction and Sorting(G)

3 Path Samples← []

4 for i in 1 : n do

5 Paths← {}
6 l′ ← l

7 for j in 1:|{G1,G2, . . .GS}| do

8 V ← VGj
9 if |V | < l′ then

10 l′ ← |V |
11 end
12 for v in V do
13 P ← Diffusion Tree Generation and Traceback(Gj , v, l′)
14 Paths(v)← P

15 end

16 end
17 Path Samples(i)← Paths

18 end
19 X← Learn Embedding(Path Samples, d, ŵ, α, k)

Algorithm 3: Learning from node sequences – generalized algorithm description

The way the we create the sequences is the following. After obtaining the graph it is de-
composed into a set of strongly connected components. The connected subgraphs are ordered
by the number of nodes they contain – each subgraph is an edge list hash table. We need this
ordering as we want to know what is the maximal number of nodes that one can sample from
the subgraph. For each subgraph we do the following:

(i) We create a vertex set from the shuffled vertices of the subgraph.

(ii) If the cardinality of the subgraph is lower than l (the unique nodes parameter) we replace
it with the cardinality of the subgraph.

Chapter 3. Learning from diffusion trees 23

(iii) We generate for each of the nodes in the subgraph a vertex sequence sample which is added
to the Paths hashtable.

We store the obtained samples in the Path Samples list. For each node we create n samples.
After the nth iteration the vertex sequences are stored in the hash table Paths. When all of the
nodes have a corresponding sample in Paths we add it to the list Path Samples. Based on the
samples and hyperparameters we can extract the hitting frequency features and we can learn an
embedding with the neural network using the obtained features.

...
...Coordinator

Worker1

Worker2

Workern−1

Workern

Sequences1

Sequences2

Sequencesn−1

Sequencesn

Sequences Workers Embedding

G, l

G, l

G, l

G, l

Figure 3.3: Diffusion to vector – outline of parallel processing. The sequences are generated by n workers who each create a copy
of the graph G and they receive the sequence length controlling parameter l. Each of them generates diffusion tree based sequences
for the vertices in V . Sequence generation is random seeded and the sequences are aggregated when each of the workers finish.
The hitting frequency features described in Section 2.3 are extracted based on parameter ŵ. Finally, the embedding is learned based
on the hitting frequency features with parameters α, d, k using asynchronous gradient descent with the architecture described in
Subsection 2.3.2 of Chapter 2 .

It has to be noted that the sample generation that happens between lines 6 and 17 inclusive
in Algorithm 3 can be distributed among n workers. Each of the workers gets the sequence
length controlling parameter and creates a graph object representing the network itself. After
this the workers would generate samples for every vertex in V in a seeded random way. The
seed could be the identifier of the worker itself. So we would have n sequences for each node in
V – altogether this means |V | × n vertex sequences where the maximal length of the sequences
is controlled by l. Each of the nodes would appear in at least n sequence out of the |V | × n

vertex sequences. Using the sequences that we just created in a distributed fashion the workers
could extract hitting frequency vectors based on the sliding window parameter ŵ. Lastly, the
hitting frequency features are utilized to generate the embedding with parameters α, d, k with
asynchronous gradient descent and the architecture described in Subsection 2.3.2 of Chapter 2 .
Essentially we have parallel sequence creation, feature generation and embedding learning. We
have to note that the sample generation has a computational complexity of O(n · l · |V |). This
complexity becomes O(l · |V |) when parallelization with n workers is introduced.

24

Chapter 4

Computational performance

In this chapter we focus on the computational performance of the proposed node sequence gen-
eration algorithms. The motivation behind this is simple, most industry application would re-
quire that an embedding can be created in reasonable time even when the graph is large. More-
over, understanding how the possible evolution of a graph affects running time is a crucial
aspect in real life applications. We will compare the time needed for performing node sequence
generation and graph pre-processing to other similar node sequence based embedding methods.
The reason for the separate investigation of sequence generation and pre-processing is the fact
that the embedding methods have considerably different bottlenecks. Learning the embedding
itself based on the node sequences is not in the focus of the chapter as all of the methods use the
same learning procedure introduced by Mikolov et al. (2013a,b). Investigated graph embedding
algorithms are the following:

(i) Diffusion2Vec with Eulerian sequence traceback – ED2V (our algorithm).

(ii) Diffusion2Vec with Endpoint sequence traceback – FD2V (our algorithm).

(iii) Node2Vec (Grover & Leskovec, 2016) – N2V.

(iv) DeepWalk (Perozzi et al., 2014) – DW.

The Python reference implementations of the D2V variants are enclosed with the thesis sub-
mission. In the benchmarks we only used a single core. Benchmarks for N2V were created
with the Python reference implementation of Grover & Leskovec (2016). This is accessible at:
https://github.com/aditya-grover/node2vec. Using this implementation one could also measure the
performance of DW. However, it has to be pointed out that DW is a corner case of N2V, because
of this running benchmarking experiments with the same reference implementation for both of
them would be meaningless. At the same time, the original reference implementation of DW
does not include the generation of transition probabilities and because of this it is considerably
faster than N2V. It is true both for the pre-processing and sequence generation phases. This orig-
inal Python implementation of DW is accessible at: https://github.com/phanein/deepwalk. Finally, I
modified the DW and N2V implementations with lines that allow for performance measurement
in the pre-processing and sequence generation phases.

First, in Section 4.1 we test the sensitivity of pre-processing and sequence generation times
on synthetic graphs. We investigate in a series of experiments how performance changes with

Chapter 4. Computational performance 25

the increase in graph size and average degree. Second, in Section 4.2 we run experiments on
a number of real world graphs that were used for benchmarking the representation quality of
graph embedding methods in earlier works.

4.1 Peformance on synthetic graphs

Besides the comparison of the algorithms, we also want to point out some simple empirical
regularities regarding the performance of these methods. The chosen synthetic graphs used
for our experiments share two common properties. Namely, that the size of these graphs can
be manipulated arbitrarily and in a similar manner the average degree is controllable. We did
experiments with 3 synthetic graph generation models:

(i) Watts-Strogatz graph (Watts & Strogatz, 1998). This model creates a d-regular graph and
later the edges of the created graph are perturbed. In our experiments we only consider
the special case when edges are not randomized.

(ii) Barabási-Albert graph (Albert & Barabási, 2002). This model creates random graphs that
have a power-law degree distribution, which is a property observed quite commonly in
real world networks.

(iii) Erdős-Rényi graph (Erdős & Rényi, 1960). This model creates random graphs that have a
Poisson degree distribution. This is not a realistic model of real world networks, but it is
useful as a baseline benchmark.

Results of the graph pre-processing experiments are discussed in Subsection 4.1.1 while results
of sequence generation are presented in Subsection 4.1.2.

4.1.1 Graph pre-processing experiments

The pre-processing step consists a series of distinct operations for every algorithm. First, in case
of ED2V and FD2V it includes the loading of the edge list, generation of a graph object and the
separation of the graph into connected components. Second, the pre-processing of the graph
for N2V includes the read up of edges, the generation of the graph object and the calculation of
transmission probabilities. Finally, in case of DW it includes the edge list read up and the graph
object generation. Each of the graph-pre-processing experiments was repeated 100 times. When
the graph-size – pre-processing time relationship was investigated the average degree was fixed
to be 10. The number of nodes was 103, 104 and 105 respectively. While the average degree –
pre-processing time connection was examined the graph size was fixed to be 104. The average
degree was set as 8, 16 and 32.

Results obtained by pre-processing the Watts-Strogatz graph are plotted on Figure 4.1. Pre-
processing time as a function of graph size is plotted on Subfigure 4.1a. The pre-processing time
is visualized with a log-scale on the vertical axis. One can observe that DW and variants of D2V
have a similar performance. It is also evident that the pre-processing is a linear function of the
graph size when these methods are used. A 10 times larger graphs results in a 10 times longer

Chapter 4. Computational performance 26

pre-processing time. Compared to these methods N2V is considerably slower even when the
graph is minuscule with a thousand nodes. The pre-processing time as a function of average
degree is plotted on Subfigure 4.1b. Based on the average degree similar conclusions can be
drawn: increasing the average degree increases the pre-processing time. In addition, DW and
D2V variants outperform N2V again. Interestingly, doubling the average degree results in a
pre-processing time increase that is disproportionate.

(a) Graph size

DW FD2V ED2V N2V

10−2

10−1

100

101

102

Number of vertices

Se
co

nd
s

103 104 105

(b) Density

DW FD2V ED2V N2V

10−2

10−1

100

101

102

Average degree

Se
co

nd
s

8 16 32

Figure 4.1: Watts-Strogatz graph – mean graph pre-processing time. Columns report mean graph pre-processing times based on
100 replications on a Watts-Strogatz graph. For the graph size benchmarks the number of vertices was set at 103, 104 and 105 while
the average degree was fixed to be 10. In case of the average degree experiments the degree was set as 8, 16 and 32 while number
of vertices was 104.

Experimental data collected from pre-processing of the Barabási-Albert graph is plotted on
Figure 4.2. Just as before the vertical axis measures mean pre-processing time on a log-scale in
seconds. Based on Subfigure 4.2a one can conclude that increasing the graph size increases the
pre-processing time for every model linearly. However, the performance of N2V is a magnitude
worse compared to the other methods – just the pre-processing of the graph is about 10 times
slower. It is a quite intriguing fact considering the fact that most of the real world networks
have a power-law degree distribution like the Barabási-Albert graph. Exemplars that have this
property include the physical internet (Faloutsos et al., 1999), world wide web (Clauset et al.,
2009), citation graphs (Redner, 1998), protein-protein interaction networks (Jeong et al., 2001)
and graphs of social network friendships such as Facebook, Myspace and Twitter (Backstrom
et al., 2012; Thelwall, 2008; Java et al., 2007).

The sensitivity of the pre-processing time to average degree changes is plotted on Subfigure
4.2b when a Barabási-Albert graph is considered. We see that N2V performs poorly compared
to other methods when the number of edges is increasing. Moreover, the pre-processing time
itself is quite high already when a graph with an average degree of 8 is considered. The D2V
variants and DW can process an approximately 4 times denser graph in a considerably lower
time. This is also an important property to be considered in real life applications as there is
supporting evidence that networks with power-law degree distribution show a densification of
the network (Leskovec et al., 2007). Based on our findings the pre-processing performance of
N2V deteriorates as the graph densification takes place.

Chapter 4. Computational performance 27

(a) Graph size

DW ED2V FD2V N2V
10−2

10−1

100

101

102

103

Number of vertices

Se
co

nd
s

103 104 105

(b) Density

DW ED2V FD2V N2V

100

101

102

Average degree

Se
co

nd
s

8 16 32

Figure 4.2: Barabási-Albert graph – mean graph pre-processing time. Columns report mean graph pre-processing times based on
100 replications on a Barabási-Albert graph. For the graph size benchmarks the number of vertices was set at 103, 104 and 105

while the average degree was fixed to be 10. In case of the average degree experiments the degree was set as 8, 16 and 32 while
number of vertices was 104. Time was measured in seconds.

4.1.2 Sequence generation experiments

After the preprocessing of the graph every algorithm starts to generate sequences of nodes for
every vertex in the graph. As sequence generation is an essential element of embedding creation
its sensitivity to the graph size has to be investigated. To have comparable results I have set the
parameters controlling sequence length as follows:

(i) ED2V – Vertex set size of 40. This setting results in sequences that have an approximate
sequence length of 80.

(ii) FD2V – Vertex set size of 25. Similarly, this setting results in sequences that have an ap-
proximate sequence length of 80.

(iii) N2V – Second order random walks with length 80.

(iv) DW – Random walks with length 80.

The properties of the graphs used for the sequence generation benchmarks themselves are the
same as in Section 4.1.1. A single sequence generation run generates a sequence for each vertex
of the pre-processed graph. Sequence generation is repeated 100 times and we calculate the
mean generation time. Experimental results of generating node sequences on the Watts-Strogatz
graph are plotted on Figure 4.3. Graph size increase related time measurements are on a log
scale and density expansion related ones are on a linear scale. Sensitivity analysis of sequence
creation time regarding the vertex set size is on Subfigure 4.3a. The first insight is that the
diffusion based methods underperform compared to the procedures that generate sequences
with a random walk. It is also evident that DW performs better on this graph than any other
model. When the increase of the average degree is investigated on Subfigure 4.3b we see that
performance of DW and N2V drops slightly. Mean sequence generation time increases with
the density. While FD2V and ED2V generally performs poorly the average time needed for
generating sequences with these methods decreases as the average degree of nodes increases.

Chapter 4. Computational performance 28

(a) Graph size

DW FD2V ED2V N2V

10−1

100

101

102

103

Number of vertices

Se
co

nd
s

103 104 105

(b) Density

DW FD2V ED2V N2V

0

10

20

Average degree

Se
co

nd
s

8 16 32

Figure 4.3: Watts-Strogatz graph – mean sequence generation time. Columns report mean sequence generation times based on 100
replications on a Watts-Strogatz graph. For the graph size benchmarks the number of vertices was set at 103, 104 and 105 while
the average degree was fixed as 10. In case of the average degree experiments the degree was set as 8, 16 and 32 while number of
vertices was 104.

This result might seem counterintuitive, but there is a simple reason why this is the case. It
is a known fact that a non-perturbed Watts-Strogatz graph has a high neighbourhood overlap –
two neighbours have a large number of shared neighbours. Because of this in a large number of
cases the diffusion tree sampled nodes are already in the diffuser set. This forces our method to
draw a new sample in order to extend the tree. On the other hand, random walk based sampling
allows for sequences that contain the same node multiple times.

(a) Graph size

DW ED2V FD2V N2V

10−1

100

101

102

Number of vertices

Se
co

nd
s

103 104 105

(b) Density

DW ED2V FD2V N2V

0

10

20

Average degree

Se
co

nd
s

8 16 32

Figure 4.4: Barabási-Albert graph – mean sequence generation time. Columns report mean sequence generation times based on 100
replications on a Barabási-Albert graph. For the graph size benchmarks the number of vertices was set at 103, 104 and 105 while
the average degree was fixed to be 10. In case of the average degree experiments the degree was set as 8, 16 and 32 while number
of vertices was 104.

Our benchmark results on the Barabási-Albert graph are plotted on subfigures of Figure 4.4.
We have to emphasize again that these findings are the most relevant to possible applications of
these methods as the graph’s topology is a fair model of real networks. Findings with respect
to manipulation of the graph size are on Subfigure 4.4a. Our core finding again is that linear
increases in the graph size result in linear increases in the sequence generation time. Moreover,
in these types of graphs N2V is way slower than other methods. Finally, sequence generation

Chapter 4. Computational performance 29

time as a function of average degree is on Subfigure 4.4b. Incrementation of the average degree
only slightly increases the sequence generation time when D2V is used for the sequence gener-
ation. When N2V is considered the increase in density results in a quite considerable increase
in the sequence generation time. A 4 times denser graph results in approximately two times
longer sequence generation. The reason that we observe this phenomenon is quite fascinating.
Our methods sample nodes in a local manner – when one samples a tree for a non central and
low-degree node other nodes in the tree are likely to be low degree nodes. Taking samples from
these list of neighbourhoods is computationally cheap. On the other hand, random walks escape
the vicinity of the periphery nodes and end up in the core of the network. Sampling from the
neighbourhood of high degree nodes and calculating the transmission probabilities for vertices
with a high degree in the centre of the network is costly. Moreover, versions of D2V have to
sample a lower number of nodes from the graph.

Bar charts comparing the performance of algorithms on Erdős-Rényi graphs are enclosed in
Appendix A. The graph pre-processing results are plotted on Figure A.1, while the sequence
generation results are on Figure A.2. In addition, tables summarizing the computational per-
formance statistics on the synthetic graphs are also in Appendix A. Results regarding graph
pre-processing are enclosed as Table A.1, while results of sequence generation are enclosed as
Table A.2.

4.2 Performance on real graphs

In this section we provide evidence that our method outperforms N2V when one considers real
networks. Our results were obtained by using the Python reference implementations of the algo-
rithms. The graph pre-processing and sequence generation steps were both repeated 100 times.
The parameters controlling the sequence length were taken from Subsection 4.1.2. As these are
the settings used to benchmark these algorithms in the literature. From the pre-processing and
sequence generation time measurements we calculated the means. For the sequence generation
we also present minimal and maximal sequence creation times. The results are enclosed as Ta-
ble 4.1. We present benchmarks on the following real life networks that we will later also use to
investigate the representation quality of embeddings:

(i) Blogcatalog: A social network of bloggers – nodes represent users and links are social
relationships (Agarwal et al., 2009).

(ii) PPI: A protein-protein interaction network (Chatr-Aryamontri et al., 2014). We use the
subset of nodes and edges extracted by (Grover & Leskovec, 2016).

(iii) Wikipedia: A word co-occurrence graph derived from the Wikipedia corpus (Mahoney,
2011). This is the same dataset as the one created and used by (Grover & Leskovec, 2016).

First, let us consider the results on the BlogCatalog social network. Our methods are the
fastest when it comes to the graph pre-processing phase. It is not surprising as the graph pre-
processing steps of ED2V and FD2V are the same and indeed we observe that the time needed

Chapter 4. Computational performance 30

for this step is approximately the same. On this graph the performance of N2V in terms of time
needed for the pre-processing is almost 250 times worth than the performance of D2V variants.
The mean sequence generation time of ED2V is 3 times faster than N2V. We also see that DW
is 1.25 times slower than ED2V on the BlogCatalog dataset. Finally, FD2V is the fastest of all,
it outperform every other method even DW. Our earlier results had shown that N2V performs
poorly compared to D2V when the average degree is high and the degree distribution of the
graph is described by a power-law. Considering, that the BlogCatalog network has a power-law
degree distribution and a high average degree (it has an approximate average degree of 64.775)
the result that we have was expectable.

Second, let us review the finding on the PPI network. The graph pre-processing is again
fastest when diffusion based methods are used and DW performs comparably. Pre-processing
time of N2V is again relatively long – it is roughly 40 times slower than variants of D2V. The se-
quence generation is the fastest with DW and one can also observe that even N2V outperforms
the Eulerian D2V method. These results are also somewhat expected as the PPI network has a
low average degree (it has an approximate average degree of 19.732) and consists of small sized
subgraphs that are disjoint. Sequence generation time of FD2V is slightly slower than that of DW.

Third, we focus on the results with respect to the Wikipedia word co-occurrence network.
We see that the time gap between D2V and N2V is quite considerable when pre-processing per-
formance is measured. This phase takes roughly 280 times longer for N2V. Also we can establish
that the graph-pre processing performance of D2V versions is 1.5 faster than DW – this seems
to be a constant proportion of pre-processing time differences between the two. The sequence
generation results show that hat ED2V is faster than N2V but slower than DW. Moreover, the
performance of FD2V is the best of all. If one looks at average degree these findings are in line
with our earlier findings (the graph has an approximate average degree of 38.734), namely that
a high average degree favours D2V in the sequence generation phase.

The sequence generation phase allows for parallelization of sequence generation in the ref-
erence implementation of DW. Intriguingly, because of the use of the object that contains the
transmission probabilities neither the reference Python N2V implementation nor its high per-
formance C++ version is parallelized when the sequences are generated. This simply means
that besides the fact that sequence generation is slow in N2V compared to other methods on
power-law networks only the embedding learning phase benefits from the use of multiple cores.
Contrarily, both variants of D2V are parallelized and DW also generates the vertex sequences in
a parallel way.

With the results outlined in Table 4.1 and the fact regarding the parallelization of current D2V
and N2V implementations additional performance comparisons are possible. Let us consider
the following scenario. We want to embed the BlogCatalog network with N2V and ED2V. We
choose the sequence length controlling parameters as before – a sequence of nodes with length
approximately equal to 80 is quite generally used when these models are considered. Moreover,

Chapter 4. Computational performance 31

B
L

O
G

C
A

T
A

L
O

G
P

P
I

W
IK

IP
E

D
IA

|V
|=

10
,3

12
|V
|=

3,
89

0
|V
|=

4,
77

7
|E
|=

33
3,

98
2

|E
|=

38
,7

39
|E
|=

92
,5

17

D
W

N
2V

ED
2V

FD
2V

D
W

N
2V

ED
2V

FD
2V

D
W

N
2V

ED
2V

FD
2V

M
ea

n
se

qu
en

ce
ge

ne
ra

ti
on

ti
m

e
14

.4
53

59
.0

89
19

.9
83

8.
89

6
1.

40
3

4.
25

3
4.

68
4

1.
50

4
3.

94
0

12
.1

35
6.

87
9

2.
72

7
(0

.0
14

)
(0

.0
37

)
(0

.0
28

)
(0

.0
05

)
(0

.0
01

)
(0

.0
02

)
(0

.0
05

)
(0

.0
02

)
(0

.0
04

)
(0

.0
05

)
(0

.0
04

)
(0

.0
03

)

M
ea

n
gr

ap
h

pr
e-

pr
oc

es
si

ng
ti

m
e

4.
75

6
78

4.
89

9
3.

23
1

3.
18

9
0.

48
0

12
.7

97
0.

36
2

0.
36

2
0.

92
7

18
5.

28
7

0.
66

7
0.

68
0

(0
.0

19
)

(2
.4

40
)

(0
.0

06
)

(0
.0

03
)

(0
.0

03
)

(0
.1

29
)

(0
.0

01
)

(0
.0

01
)

(0
.0

04
)

(0
.5

57
)

(0
.0

01
)

(0
.0

01
)

M
ax

im
al

se
qu

en
ce

ge
ne

ra
ti

on
ti

m
e

16
.2

12
62

.2
47

26
.0

4
9.

90
3

1.
79

2
4.

67
5

5.
72

4
2.

09
4

4.
56

8
12

.8
87

7.
87

5
3.

59
1

M
in

im
al

se
qu

en
ce

ge
ne

ra
ti

on
ti

m
e

13
.1

74
56

.4
92

18
.0

75
7.

87
6

1.
27

1
4.

17
4

4.
39

1
1.

38
6

3.
44

2
11

.7
79

6.
48

8
2.

48
5

Ta
bl

e
4.

1:
C

om
pu

ta
ti

on
al

pe
rf

or
m

an
ce

re
su

lt
s

on
re

al
lif

e
gr

ap
hs

.H
ea

de
rs

co
nt

ai
n

th
e

na
m

e
of

th
e

da
ta

se
t,

th
e

nu
m

be
r

of
ve

rt
ic

es
an

d
ed

ge
s.

Th
e

su
b-

he
ad

er
s

de
no

te
th

e
al

go
ri

th
m

s
us

ed
.C

ol
um

ns
re

po
rt

ru
nn

in
g

ti
m

e
st

at
is

ti
cs

ex
tr

ac
te

d
fr

om
10

0
ex

pe
ri

m
en

ts
on

th
e

da
ta

se
ts

.V
al

ue
s

in
th

e
pa

re
nt

he
se

s
ar

e
st

an
da

rd
er

ro
rs

ca
lc

ul
at

ed
fo

r
th

e
m

ea
ns

.B
ol

d
nu

m
be

rs
de

no
te

th
e

fa
st

es
ts

eq
ue

nc
e

an
d

gr
ap

h
ge

ne
ra

ti
on

m
et

ho
ds

.I
ft

he
95

%
co

nfi
de

nc
e

in
te

rv
al

s
ov

er
la

p
fo

r
th

e
tw

o
m

ea
ns

an
d

on
e

of
th

em
is

fo
r

th
e

fa
st

es
ta

lg
or

it
hm

th
ey

ar
e

bo
th

hi
gh

lig
ht

ed
,a

s
th

er
e

is
no

si
gn

ifi
ca

nt
di

ff
er

en
ce

be
tw

ee
n

th
e

tw
o

m
ea

su
re

m
en

ts
.

Chapter 4. Computational performance 32

let we assume that we generate 10 sequences for each unique node in the graph. Doing this
with the unparallelized N2V Python reference implementation would take about 1375 seconds
– preprocessing takes 785 seconds and sequence generation takes 10 times 59 seconds (using the
mean sequence generation time). To put it simply, the optimization starts after 23 minutes have
passed. Now let us focus on ED2V. If our machine has 10 cores we can leverage on the parallel
sequence generation framework introduced by our reference implementation. In this case each
of the machines creates a copy of the graph and creates a sequence for each of the nodes. Because
of this, the whole pre-processing and generation process takes 29 seconds – assuming average
graph read times and maximal sequence generation time. It has to be noted that graph pre-
processing is somewhat deterministic while sequence generation is more random. We took the
maximal value of 26 seconds, because idle workers have to wait for the worker that finishes last.
Considering all of these numbers it means that ED2V is 47 times faster than N2V. In a scenario
where parallelization is not available the same graph pre-processing and sequence generation
process with ED2V takes 203 seconds – using mean sequence generation times. This means that
even without parallelization one could still obtain a 4 times speed up compared to N2V.

33

Chapter 5

Properties of samples and embeddings

When we embed the graph our primary goal is to represent the graph in a latent space such way
that pairwise distances and proximities between pairs of nodes on the graph are approximately
maintained. In this chapter we will demonstrate that our method achieves this target quite well.
Moreover, we argue that other topological properties (centrality measures and neighbourhood
overlap) of the nodes and edges are correlated with certain distances in the latent space. Investi-
gating these properties is essential to our later applications as solutions to downstream machine
learning tasks such as node labeling and clustering have certain assumptions about the position
of nodes in the latent space. We will discuss how these assumptions relate to properties of the
embeddings.

First, in Section 5.1 we consider the differences between the topologies of subgraphs ex-
tracted with random walks and diffusion trees. Second, we will present basic empirical regu-
larities regarding the position of nodes and node pairs in the latent space in Section 5.2. Third,
in Section 5.3 we demonstrate that our proposed methods allow for visualizing graphs in two
dimensional space. We also give examples of graph layouts with other sequence based graph
embedding methods.

5.1 Why diffusion tree sampling is novel?

Earlier approaches to node sequence based graph embedding use random walks to generate lin-
ear sequences of nodes (Perozzi et al., 2014; Grover & Leskovec, 2016). The graph exploration of
random walks is fundamentally different from the way diffusion processes traverse the graph.
A truncated random walk which visits a fixed number of nodes tends to leave the neighbour-
hood of the starting node after a few hops. On the contrary, a diffusion process stays local and
explores the neighbourhood of the starting node. Because of this the nodes sampled by a diffu-
sion tree are from neighbourhoods that are remarkably different from the ones that are sampled
by random walks. The induced subgraphs defined by the diffusion tree tend to be denser and
more clustered than the induced subgraphs extracted with random walks. We will demonstrate
this by two examples. First, we will consider a small synthetic toy example. Second, we will
show that the sampled subgraphs are different when real graphs are considered.

Chapter 5. Properties of samples and embeddings 34

Let us now consider a simple toy example to show that the sampling procedures have a quite
distinctive behaviour even on small graphs. An undirected graph is depicted on Figure 5.1. It
has a vertex and edge sets defined respectively by V = {a, b, c, d} and E = {(a, b), (a, c), (b, c),
(c, d), (b, d)}. Now let us imagine that we want to sample 3 nodes with diffusion trees and
random walks starting from node a. The exact probabilities of obtaining certain node sequences
with the sampling methods are on the right hand side.

a

b

c

d

Random Walk Diffusion

a− b− c 1
6

5
14

a− b− d 1
6

2
14

a− c− b 1
6

5
14

a− c− d 1
6

2
14

a− b− a 1
6

a− c− a 1
6

Figure 5.1: Example undirected graph with sample sequences and exact sequence sampling probabilities. The graph G(V,E) is de-
fined by vertex set V = {a, b, c, d} and edge setE = {(a, b), (a, c), (c, b), (b, d), (c, d)}. The sequences have length 3 and all of them
originates from vertex a. Sequence sampling probabilities show that diffusion trees are biased towards clustered neighbourhoods
with short average path lengths.

We can conclude that random walks sample the possible sequences with equal probability.
Moreover, we also see that random walks might sample nodes multiple times. We also observe
that the diffusion process is biased towards sampling nodes in a manner that the induced sub-
graph has a lower diameter, shortest average path length and higher clustering. Importantly,
this originates from the fact that a node ends up in the tree with higher probability if it has a
higher number of neighbours in the seeder set. Because of this diffusion tree sampled node sets
describe local neighbourhoods. Now we will demonstrate that this is true when we have a large
graph that represents a real network.

To show that samples obtained by random walks and diffusion processes are quite different
on a real network we will run a number of simple experiments. We will initiate 104 random
walks and diffusion processes from a given vertex in the PPI network (Chatr-Aryamontri et al.,
2014). With both sampling methods we will extract 40 nodes per sample graph and we will
investigate the properties of the resulting induced subgraphs. We define the induced subgraphs
by keeping the 40 nodes and the edges between them that appear in the original graph. Using the
induced subgraphs we calculate three macro-level descriptive statistics to point out differences
between the obtained sample graphs. These quantities are the graph density, transitivity (global
clustering coefficient) and average shortest path length. These metrics are defined by Equations
(5.1), (5.2) and (5.3) respectively. We use these measures to compare the subsampled graphs as
they are quite informative regarding the sampled neighbourhoods.

Density =
2 · |E|

|V | · (|V | − 1)
(5.1)

Chapter 5. Properties of samples and embeddings 35

Transitivity =
3×Number of triangles

Number of connected triangles of vertices
(5.2)

Average shortest path length =

∑
v∈V

∑
w∈V

d(v, w)

|V | · (|V | − 1)
, v 6= w (5.3)

Using the sampled subgraphs one can plot the distribution of the graph density, transitivity
and average shortest path length and compare the distributions of these metrics obtained by the
random walks and diffusion process. The distributions of induced subgraph statistics are plot-
ted on the subfigures of Figure 5.2. Based on Subfigure 5.2a it is quite evident that nodes sampled
with a diffusion tree are from more dense neighbourhoods on average than nodes sampled with
random walks. The distributions on Subfigure 5.2b back up that diffusion tree sampled nodes
are expected to be from more clustered subgraphs than nodes sampled with random walks. Fi-
nally, the results about average distance in the sample graphs are on Subfigure 5.2c. We can
conclude that the induced subgraphs obtained with a diffusion tree have lower shortest path
lengths on average. This was expected based on the fact that the induced subgraph density is
higher on average when nodes are sampled with a diffusion tree. Essentially these observations
imply that the regularities observed on the toy example hold for larger real networks. These
findings also hint that diffusion tree based sampling will result in an embedding that is better
at describing local network structure and worse in representing macro-level network structure.
Furthermore, it also foreshadows that on the downstream machine learning task of community
detection the diffusion tree generated embedding features outperform might the random walk
generated ones.

(a) Density

0.05 0.1 0.15 0.2 0.25 0.3

0

5

10

15

Density of induced subgraph

PD
F

(b) Transitivity

0 0.2 0.4 0.6

0

2

4

6

Transitivity of induced subgraph

PD
F

Random walk Diffusion

(c) Average distance

2 3 4

0

0.5

1

1.5

Average distance in induced subgraph

PD
F

Figure 5.2: The distribution of random walk and diffusion tree sampled induced subgraph statistics on the PPI network. The
sampling was initiated from the node with ID 100 and the size of the sampled subgraphs was set as 40. Altogether we sampled 104

graphs and for each of the induced subgraphs we calculated the graph density, transitivity and average shortest path length. The
distribution of the statistics is plotted respectively on the left, centre and right subfigures. Based on the plots one can deduce that
diffusion tree sampling takes nodes from more dense and clustered neighbourhoods than random walks.

Chapter 5. Properties of samples and embeddings 36

5.2 Node position in the latent space and centrality

In this section we discuss how topological properties of nodes are related to properties of nodes
in the latent space. When we use the expression pairwise distances of nodes on the graph we
mean the length of the shortest path(s) between nodes. Now we formalize the meaning of ap-
proximate distance preservation. Let us consider that on a graph we have the randomly selected
nodes e, f , g and h. The distance d is a distance on the graph and d′ is a distance in the latent
space. An embedding preserves pairwise distances between nodes if d(e, f) < d(g, h) implies
that E[d′(e, f)] < E[d′(g, h)]. To put it simply, if a randomly selected pair of nodes is closer than
an other randomly selected pair on the graph we expect that the distance between pairs of nodes
in the latent space has the same relation.

Now we create a simple experiment to show that embedding methods that we introduce
have this property. We will use ED2V on the PPI network (Chatr-Aryamontri et al., 2014). The
parameter settings of the algorithm were l = 40, d = 128, n = 10, ŵ = 10, α = 0.025. We
randomly sample pairs of nodes from the graph that are at 1, 2, . . . , 5 distance from each other
on the graph. For each of these graph distances we took 104 unique vertex pairs. After this we
calculated the `1 distance in the latent space between these pairs of nodes. Finally, we plot the
distribution of distances in the latent space conditional on the graph distance. These conditional
distributions of pairwise distances are plotted on Figure 5.3.

15 20 25 30 35 40 45 50 55 60

0

0.05

0.1

0.15

`1 distance in the latent space

PD
F

d = 1
d = 2
d = 3
d = 4
d = 5

Figure 5.3: Distribution of distances in the latent embedding space of the PPI network conditional on the graph distance between
randomly selected nodes. The embedding itself was generated by ED2V with settings such as l = 40, d = 128, n = 10, ŵ = 10,
α = 0.025. Each curve was estimated from 104 unique node pairs – we only sampled nodes from the largest connected component
of the graph.

Based on Figure 5.3 it is evident that the relation of pairwise distances on graphs is only pre-
served between pairs of nodes approximately in the latent space. Moreover, it is also quite
noticeable that the means of the conditional distributions of distances increase with the graph
distance. The fact that relation of distances is approximately preserved in the latent space is
quite helpful in the following cases:

Chapter 5. Properties of samples and embeddings 37

(i) Node classification: Nodes that share the same label are expected to be close to each other
when distances are measured with graph distances. As we mentioned earlier, this phe-
nomenon is known as homophily. Because, pairwise distances are preserved in the latent
space labels of a node can be predicted based solely on its position in the latent space.

(ii) Edge prediction: Nodes that have an edge between (nodes that are at distance 1 from
each other) them have a distribution of distances that is separated from other distance
distributions. This is particularly fascinating as later we will do edge prediction and having
a well separated distribution will help with this task.

(iii) Graph visualization: Based on the embedding we can create low-dimension layouts where
distances between nodes are approximately maintained.

Besides the pairwise distances other properties of nodes are also preserved approximately in the
latent space. One can also investigate the association between node centrality on the graph and
node distance from the origin in the latent space. We investigated two basic relationships:

(i) Distance of a node from the origin in the latent space and its closeness centrality. We de-
fine closeness centrality of node v as CCv =

∑|V |
u=1

1
d(v,u) using the standard assumption

regarding disconnected nodes that 1/∞ = 0.

(ii) Distance of a node from the origin in the latent space and its degree centrality. By degree
centrality of node v we simply mean deg(v).

(a) Closeness centrality

10−0.7 10−0.6 10−0.5 10−0.4
20

25

30

35

40

45

Closeness Centrality

` 1
di

st
an

ce
fr

om
or

ig
in

(b) Degree centrality

100 101 102
20

25

30

35

40

45

Degree centrality

` 1
di

st
an

ce
fr

om
or

ig
in

Figure 5.4: Association between the distance of vertices from the origin in latent space and node centrality measures. The dataset
we used to create the plots is the PPI network. The embedding itself was generated by ED2V with settings l = 40, d = 128, n = 10,
ŵ = 10, α = 0.025. Each scatter plot was made with a subsample of 800 randomly selected nodes. The horizontal axes measure
centrality on a log scale while the verticals measure `1distance from the origin.

We use the ED2V embedding of the PPI network to investigate these relationships between
node centrality and position in the latent space. The parameter settings of the algorithm were
l = 40, d = 128, n = 10, ŵ = 10, α = 0.025. We took a sample of 800 nodes to create scatter

Chapter 5. Properties of samples and embeddings 38

plots that are informative. These are plotted on subfigures of Figure 5.4. Association between
closeness centrality and `1 distance from the origin is plotted on Subfigure 5.4a. We observe that
nodes that have a high closeness centrality are less distant from the origin – these vertices are in
the centre of the latent space. Meaning that nodes that are central in the graph are also central
in the latent space. This is a useful property to have when one does network visualization. The
degree centrality and distance from origin relationship is plotted on Subfigure 5.4b. Importantly,
there are two things to note. First, that a higher degree is associated with a position close to the
origin in the latent space. Second, when the degree is low the variance of the distances from the
origin is higher. This is due to small sized components of the graph that are not connected to
the largest component and the fact that weights of the neural network are randomly initialized.
Nodes from small components end up in random locations of the latent space. The FD2V em-
bedding gives similar results and it is enclosed in Appendix B as Figure B.1. The distance and
closeness centrality relationship is on Subfigure B.1a while the distance and degree scatter plot
is on Subfigure B.1b.

(a) PPI

20 25 30 35 40

20

25

30

35

40

Eulerian `1 distance from origin

En
dp

oi
nt
` 1

di
st

an
ce

fr
om

or
ig

in

(b) Wikipedia

22 24 26 28 30 32

22

24

26

28

30

32

Eulerian `1 distance from origin

En
dp

oi
nt
` 1

di
st

an
ce

fr
om

or
ig

in

Figure 5.5: Association between the distance of vertices from the origin in latent spaces. We embedded the PPI and Wikipedia
graphs with our proposed methods. Using the graph embeddings we calculated the `1 distances of vertices from the origin. The
ED2V embeddings were generated with settings l = 40, d = 128, n = 10, ŵ = 10, α = 0.025. Similarly, the FD2V embeddings
were generated with settings l = 25, d = 128, n = 10, ŵ = 10, α = 0.025. Each scatter plot was created with a subsample of 400
randomly selected nodes.

As the results plotted on Figures 5.4 and B.1 show the behaviour of ED2V and FD2V is sim-
ilar. Both of them conserves the centrality of nodes in the latent space approximately. This can
be shown with a fairly simple simple experiment. First, we create embeddings of graphs with
the two methods. Second, we calculate the distance of nodes from the origin in the two created
latent spaces. Third, we create a scatter plot of the resulting distances based on a subsample of
nodes. We created such scatter plots for the PPI and Wikipedia datasets – these are the subfig-
ures of Figure 5.5. We see that the distances from the origin in the different embedding spaces
are positively associated. In addition, we see that the association depicted on Subfigure 5.5a is
stronger than the one on Subfigure 5.5b. Generally we deduce that nodes which are central in
one of the embedding spaces will be central in the other one.

Chapter 5. Properties of samples and embeddings 39

Besides the position of vertices in the latent space one can also investigate the distance of edge
endpoints and how their distance relates to their centrality and neighbourhood overlap. In
the following we will investigate these relationships. Once again we do analysis on the PPI
network as it has a considerably small size and calculating centrality measures is less costly on
smaller graphs. We generated embeddings with ED2V and the chosen parameter settings of the
algorithm were l = 40, d = 128, n = 10, ŵ = 10, α = 0.025. From the set of edges we draw
subsamples of 400 edges to create the plots which are the subfigures of Figure 5.6. We calculated
the `1 distance between the endpoint nodes of edges and plotted this distance as a function of
the two quantities.

(i) Neighbourhood overlap: We define the neighbourhood overlap of nodes v and u as the
fraction |N (v)∩N (u)|

|N (v)∪N (u)| , whereN (u) andN (v) is the set of neighbours of nodes v and u respec-
tively.

(ii) Current flow betweenness: Is the probability that a random walker on the graph goes
through a given edge. For detailed discussion see Newman (2005) and Brandes & Fleischer
(2005).

(a) Neighbourhood overlap

10−2 10−1 100
15

20

25

30

35

Neighbourhood overlap

` 1
di

st
an

ce
of

ed
ge

en
dp

oi
nt

s

(b) Current flow betweenness

10−4.5 10−4 10−3.5

15

20

25

30

35

40

Current flow betweenness

` 1
di

st
an

ce
of

ed
ge

en
dp

oi
nt

s

Figure 5.6: Association between neighbourhood overlap–edge endpoint distance and endpoint distance. The dataset we used
to create the plots is the PPI network. The embedding itself was generated by ED2V with settings l = 40, d = 128, n = 10,
ŵ = 10, α = 0.025. Each scatter plot was made with a subsample of 400 randomly selected edges. The horizontal axes measure
neighbourhood overlap and centrality on a log scale while the vertical axes measure `1 distance of endpoint nodes on a linear scale.

The distance of vertices at edge endpoints is plotted as a function of neighbourhood overlap on
Subfigure 5.6a. We can observe that nodes that have an edge between them and have a high
neighbourhood overlap are also located closer to each other in the latent space. This observed
regularity is a fairly useful property when one does community detection. Namely because,
clustering nodes in the latent space will also result in a partitioning of the nodes that is a dense
subgraph. Our later results on the task of community detection tasks will underpin this. The
current flow betweenness of edges and the distance of endpoints is plotted on Subfigure 5.6b.

Chapter 5. Properties of samples and embeddings 40

The results on this plot are also fairly intuitive. If two nodes are distant in the latent space, but
there is an edge between them it will have a high centrality. In a certain sense an edge like that
is a bridge that fills a structural hole in the graph.

5.3 Visualizing graphs

In this section we will demonstrate that embeddings created by variants of D2V are useful tools
when one creates network visualizations. This usefulness is not a unique property of D2V
embeddings, because of this reference visualizations created with DW are included in the Ap-
pendix. In Section 5.2 we already demonstrated with our experiments that D2V approximately
preserves the relation of graph distances between nodes in the latent space. Earlier we also
provided considerable evidence that nodes with high centrality will end up in the centre of the
latent space. These properties theoretically make D2V ideal for graph visualizations. We have
visualized a number of synthetic graphs that have comparable sizes. Finally, we have to note,
that we chose these graphs specifically because one might have prior assumptions about how
a fair quality visualization of these graphs look like. The visualized synthetic graphs were the
following:

• Barabási-Albert graph: We used a Barabási-Albert tree with 150 nodes. One expects that
a high quality visualization positions nodes with high degree in the centre and branches
of the tree are laid out in the embedding space uniformly (Albert & Barabási, 2002).

• Watts-Strogatz graph: Our experiment was done with a Watts-Strogatz graph with 150
nodes, 10 neighbours per node and a rewiring probability of 0.03 (Watts & Strogatz, 1998).
A high quality visualization should lay out the nodes on a circle. In addition nodes with
long range connections should gravitate towards the centre of the embedding space.

• Kleinberg navigable small-world graph: The embedding was created using a graph with
144 nodes, 1st order neighbours, 1 random edge per node and connection probability ex-
ponent equal to -2 (Kleinberg, 2000). A good visualization should convey the message that
rarely extant long edges shrink the graph. Nodes with these edges should be central. At
the same time peripheral nodes should be laid out sparsely far from the centre.

• Erdős-Rényi graph: We chose an Erdős-Rényi graph with 150 nodes and 0.05 connection
probability for creating the visualization (Erdős & Rényi, 1960). A fair layout of nodes
would have a high number of nodes in the centre and the spatial concentration should
decrease with the distance from this centre. In addition, a node’s distance from the centre
should be negatively associated with its degree.

The embedding algorithms parameter settings were set as l = 40, d = 3, n = 100, ŵ = 10, α =

0.025. Visualizations were created based on the normalized 1st and 3rd vector of embeddings and
plots are subfigures of Figure 5.7. Our plots support that the introduced embedding method
is capable of generating informative visualizations for a range of synthetic graphs. However,
the visualizations of the Barabási-Albert and Watts-Strogatz graphs have minor imperfections.
First, the Barabási-Albert graph’s layout on Subfigure 5.7a positions high centrality nodes in the

Chapter 5. Properties of samples and embeddings 41

centre and lays out the branches somewhat uniformly – these are favourable features. At the
same time nodes with a single edge gravitate towards the centre of the embedding space, which
is less favourable. Second, looking at Subfigure 5.7b we can conclude that the circular layout
of the the Watts-Strogatz graph is generally quite informative. We also see that high-centrality
nodes with rewired edges gravitate towards the centre. Furthermore, the shape of the circle is
deformed by these nodes that gravitate towards the centre.

(a) Barabási-Albert graph (b) Watts-Strogatz graph

(c) Kleinberg navigable graph (d) Erdős-Rényi graph

Figure 5.7: Visualizing graphs with ED2V embeddings. All of the embeddings were created with settings such that l = 40, d = 3,
n = 100, ŵ = 10, α = 0.025. Feature vectors were normalized and the 1st and 3rd feature vector was used to create the
visualizations. (a) Barabási-Albert tree with 150 nodes. (b) Watts-Strogatz graph with 150 nodes, 10 neighbours per node and
rewiring probability equal to 0.03. (c) Kleinberg’s Navigable Small-World graph with 144 nodes, 1st order neighbours, 1 random
edge per node and connection probability exponent equal to -2. (d) Erdős-Rényi graph with 150 nodes and random connection rate
of 0.05.

Chapter 5. Properties of samples and embeddings 42

Visualizations created with FD2V and DW are enclosed in Appendix B. Parameters of FD2V
were l = 25, d = 3, n = 100, ŵ = 10, α = 0.025, while settings of DW were l = 80, d = 3,
n = 100, ŵ = 10, α = 0.025. The Barabási-Albert and Watts-Strogatz graphs are on Figures B.2
and B.3. The Kleinberg navigable small-world graph is on Figure B.4 and the Erdős-Rényi graph
is enclosed as Figure B.5. The quality of these layouts is similar except for the Watts-Strogatz
graph, ED2V creates a considerably better layout of nodes than DW or FD2V.

43

Chapter 6

Applications of the embeddings

In this chapter we will use the node representations as features in downstream machine learning
tasks. The chapter has two main goals. First, we want to demonstrate that the representation are
useful for a number of supervised and unsupervised learning task. Second, we argue that the
quality of the learnt representation is fairly competitive with other node sequence based graph
embedding methods. Earlier in Chapter 5 we have implied that certain properties of the embed-
dings can help with semi-supervised node labeling, community detection and edge prediction.
In the literature representation quality of sequence based embeddings is mostly measured by the
performance on semi-supervised node labeling and edge prediction tasks. However, we believe
that providing results for graph-clustering is an important contribution and also a highly rele-
vant possible application of the created embeddings. We provide benchmarks on these down-
stream tasks with a wide variety of networks in terms of size and type.

Results on the multi-label node classification task are discussed in Section 6.1. Findings about
the community detection are presented in Section 6.2. Edge prediction results are overviewed in
Section 6.3 where we also provide algorithms to create synthetic datasets for edge prediction.

6.1 Multi-label node classification

This section solely focuses on how the learnt graph representations behave when they are used
to classify nodes. In Subsection 6.1.1 we provide benchmarks on a number of networks that are
used in the literature to describe the representation quality of sequence based graph embedding
algorithms. We compare the results of sequence based methods to other baseline node label-
ing procedures in Subsection 6.1.2. Finally, the sensitivity of labeling performance to parameter
changes is discussed in Subsection 6.1.3.

We utilize some widely used datasets of real networks to asses the representation quality ob-
tained by using the node sequence based embedding methods. These are the following:

(i) BlogCatalog: Is a social network of bloggers, nodes are bloggers and links are social rela-
tionships – labels represent the interest of bloggers (Agarwal et al., 2009).

(ii) PPI: Is a protein-protein interaction network of humans – labels express biological states
(Chatr-Aryamontri et al., 2014).

Chapter 6. Applications of the embeddings 44

(iii) Wikipedia: Is a word co-occurrence network based on a chunk of the Wikipedia corpus –
labels represent part of speech tags (Mahoney, 2011).

(iv) Flickr: A network of Flickr users – labels describe interests in types of photos (McAuley &
Leskovec, 2012).

(v) Youtube: Is a friendship network of Youtube users – labels are common interests in video
genres (Yang & Leskovec, 2015).

(vi) Markercafe: Is a social network mostly used in Israel, nodes are users and edges are social
ties between them – labels speak for group memberships (Fire et al., 2011, 2013).

A node in these networks can have multiple labels – a Youtuber might have interest in multiple
genres or a Markercafe user might be a member of multiple groups. The number of nodes, edges
and unique labels are summarized by Table 6.1 for these networks. One can easily see that we
present results on a wide variety of networks in terms of size, density and unique label number.
This helps to ensure that our comparison is fair and we are able to show that the relative and
absolute performance of our methods is consistent across datasets.

BLOGCATALOG PPI WIKIPEDIA FLICKR YOUTUBE MARKERCAFE

|V| 10,312 3,890 4,777 80,513 1,128,499 53,253

|E| 333,982 38,379 92,517 5,899,882 2,990,443 1,744,194

Unique labels 39 50 40 195 47 88
Table 6.1: Size and number of labels on the graphs used to asses classification performance. The number of vertices,
edges and unique labels are respectively in the first, second and third row of the table. We included each of the graphs
used for benchmarking the quality of representations for multi-label classification. These datasets later are also used
for assessing representation quality for community detection.

6.1.1 Semi-supervised multi-label classification

In this subsection we will use logistic regression to predict the labels of nodes. For each label
we will fit a separate logistic regression with `1 regularization and the shrinkage parameter is
set as λ = 1. The features extracted with embeddings are all normalized and the use of `1 reg-
ularization allows for potentially shrinking the weights of the regression to zero. Embeddings
were created with parameter settings such that d = 128, n = 10, ŵ = 10, α = 0.025. We set the
sequence length controlling parameters of algorithms to be l = 80 (N2V and DW), l = 40 (ED2V)
and l = 25 (FD2V). These settings for N2V and DW are the ones that were used by Grover &
Leskovec (2016) and (Perozzi et al., 2014). For Flickr, Youtube and MarkerCafe the best perform-
ing N2V inout and return parameters were chosen with grid search over {0.25, 0.5, 1, 2, 4} using
10% of data as the training set. We chose the pair of inout and return parameters that resulted
in the highest micro F-1 score. For the other datasets we took the optimal parameter settings of
Grover & Leskovec (2016). Because of the computational performance issues of the N2V Python
reference implementation, embeddings of the Flickr, Youtube and Markercafe graphs were cre-
ated with the high performance C++ version of N2V. All of the D2V embeddings were generated
by our Python reference implementation. On the subfigures of Figure 6.1 we plotted the average
classification performance as a function of the training dataset size. The horizontal axis repre-
sents the fraction of training data while the vertical measures performance with micro averaged

Chapter 6. Applications of the embeddings 45

F-1 score. Each point represents average performance on the test set based on 10 random train-
ing and test splits. Performance measurements on the same datasets using macro F-1 scores are
enclosed in Appendix C as Figure C.1.

(a) BlogCatalog

0.2 0.4 0.6 0.8

0.3

0.32

0.34

0.36

0.38

0.4

Fraction of train data

M
ic

ro
F 1

-s
co

re

(b) PPI

0.2 0.4 0.6 0.8

0.16

0.18

0.2

0.22

Fraction of train data

M
ic

ro
F 1

-s
co

re

(c) Wikipedia

0.2 0.4 0.6 0.8
0.36

0.38

0.4

0.42

0.44

0.46

0.48

0.5

0.52

Fraction of train data

M
ic

ro
F 1

-s
co

re

(d) Flickr

0.02 0.04 0.06 0.08 0.1

0.3

0.32

0.34

0.36

Fraction of train data

M
ic

ro
F 1

-s
co

re

(e) Youtube

0.02 0.04 0.06 0.08 0.1

0.38

0.39

0.4

0.41

0.42

0.43

0.44

Fraction of train data

M
ic

ro
F 1

-s
co

re

ED2V N2V DW FD2V

(f) MarkerCafe

0.02 0.04 0.06 0.08 0.1

0.3

0.32

0.34

0.36

0.38

Fraction of train data

M
ic

ro
F 1

-s
co

re

Figure 6.1: Classification performance of node sequence based embedding methods measured by micro F-1 score. Multi-label
classification performance of logistic regression using features extracted with the sequence based graph embedding methods. The
classifier was fitted with `1 regularization the shrinkage parameter was set as λ = 1. Embeddings were created with parameter
settings such that d = 128, n = 10, ŵ = 10, α = 0.025. We set the sequence length controlling parameters of algorithms to be
l = 80 (N2V and DW), l = 40 (ED2V) and l = 25 (FD2V). The best performing N2V inout and return parameters were chosen
with grid search over {0.25, 0.5, 1, 2, 4} using 10% of data as training set. These parameter settings and practices ensure that we
present a fair comparison of the embedding methods. The fraction of training data is on the horizontal axis and the classification
performance measured by micro F-1 score on the test set is on the vertical axis. Each point represents the average micro F-1 score
based on 10 random train-test splits. The DW and N2V embeddings for the Flickr, Youtube and Markercafe datasets were generated
with the high performance C++ implementation.

On the BlogCatalog dataset with sufficient amount of data ED2V clearly outperforms N2V
and DW. The performance of FD2V is poor compared to other methods. Considering the PPI
dataset it is evident that DW and ED2V underperform compared to N2V when the fraction of
training data is small. Just as before FD2V performs poorly compared to other embedding meth-
ods. When one looks at the results regarding the Wikipedia dataset it is obvious thaty random
walk based methods outperform the diffusion based ones and the performance difference is not
just marginal. Also it seems like that the parameter settings of N2V given in Grover & Leskovec
(2016) are suboptimal as theoretically DW should not be able to outperform it. Looking at the
results on the Blogcatalog and Wikipedia networks we also observe that some of the models
are slightly overfitted when a large fraction of training data is available. On the Flickr dataset
ED2V outperforms every other method. Roughly with 5% of training data we are able to out-
perform random walk based methods even when those have 10% of labelled data available.

Chapter 6. Applications of the embeddings 46

Performance on the Youtube network is in favour of N2V and DW. Contrarily, on the Marker-
Cafe dataset random walk based methods show good performance when only a small fraction
of nodes is labelled. Besides these dataset specific observations we can also infer that generally
the increased dataset size results in decreasing marginal performance returns in most of the case.
These findings imply that on this task ED2V is competitive with random walk based methods
while FD2V is not. It has to be emphasized that N2V required a quite exhaustive grid-search. We
created 5×5 embeddings for each of the networks and we had to evaluate the node classification
performance for each of them to pick the embedding with the best representation quality. This
is a serious drawback when the dataset is large – e.g. Flickr, Youtube and Markercafe datasets.

6.1.2 Comparison to other graph embedding methods

In this subsection we compare the classification performance of our methods to some baseline
node labeling mechanisms. The baseline methods used for comparison are:

1. EdgeCluster: Clusters the adjacency matrix of the graph with k-means clustering and
hot-one encoded cluster memberships are the features used for classification (Tang & Liu,
2009b). It is fairly scalable compared to methods that require the calculation of eigenvalues
from the adjacency or modularity matrices.

2. Modularity: Extracts eigenvectors from the modularity matrix of the graph and uses the
eigenvectors as features for classification (Tang & Liu, 2009a).

3. WVRN: A considerably simple baseline – a node has a label if majority of its labelled
neighbours has the label. The abbreviation stands for weighted vote relational neighbour
classifier (Macskassy & Provost, 2003). If a node has no labelled neighbours it receives the
most common labels.

4. Majority: The simplest baseline. Each node receives the labels that are the most common
among labelled nodes.

We use results from Perozzi et al. (2014), so we can compare our findings to these baselines on
the BlogCatalog, Flickr and Youtube datasets. Our results used for the comparison of algorithms
is directly taken from Subsection 6.1.1. The micro F-1 values obtained on the test data are tallied
in Table 6.2 where rows denote algorithms, column headers are the datasets used for bench-
marking and subheaders note the fraction of training data used. The macro F-1 summary results
are enclosed in Appendix C as Table C.1. The first and most important notion is that sequence
based embedding methods outperform the baselines on every given benchmark dataset. Even
FD2V has a solid advantage over them. On the BlogCatalog and Flickr graphs ED2V has a clear
advantage over other methods and the same is true for N2V on the Youtube graph. Besides these
we can also see that the performance gap between the top performing sequence based embed-
ding methods and top baseline classifier changes sometimes as more training data is available.
The performance gap on BlogCatalog between ED2V and EdgeCluster is 0.0628 points initially
in terms of micro F-1, just doubling the training data size reduces the gap to 0.0548. On the
Flickr graph we cannot observe such tendencies as changes in the performance gap are negli-
gible. Considering the Youtube dataset we see that the initial advantage of N2V is 0.0551 and

Chapter 6. Applications of the embeddings 47

this is shrank to 0.0440 when the size of the dataset is doubled. Conclusive results about this
observation would need more investigation possibly with the inclusion of other datasets and
parametric settings.

BLOGCATALOG FLICKR YOUTUBE

% Labeled nodes 40% 80% 4% 8% 4% 8%

ED2V 0.3927 0.4147 0.3489 0.3638 0.3992 0.4221

FD2V 0.3448 0.3665 0.3267 0.3400 0.3895 0.4162

N2V 0.3872 0.4064 0.3372 0.3596 0.4227 0.4386

DW 0.3701 0.3842 0.3290 0.3453 0.4078 0.4248

EdgeCluster 0.3299 0.3599 0.3031 0.3176 0.3676 0.3946

Modularity 0.3297 0.3723 0.2760 0.2889 – –

WVRN 0.2882 0.3333 0.2097 0.2125 0.3288 0.3775

Majority 0.1670 0.1649 0.1646 0.1662 0.2523 0.2534

Table 6.2: Classification performance compared to other feature generation methods
measured by micro F-1. Numbers in the columns represent micro F-1 test scores on
the training dataset. Column headers are the dataset names and subheaders are the
training dataset sizes. The results of node sequence based embedding methods are the
same as the ones in Figure 6.1. Baseline results were taken from the work of Perozzi
et al. (2014). Bold numbers denote the best performing method.

6.1.3 Sensitivity to parameters

As part of our investigation in this subsection we also present results regarding the sensitivity
of the performance. We will show how the manipulation of model parameters effects the perfor-
mance on the downstream machine learning task. We will use the Flickr dataset to demonstrate
how the performance changes with model parameter changes. We assume that the baseline em-
beddings were created with graph embedding settings d = 128, n = 10, ŵ = 10, α = 0.025,
k = 1. We set the sequence length controlling parameters of algorithms to be l = 40 (ED2V) and
l = 25 (FD2V). In each experiment we choose one of the parameters to be changed. We trained
`1 regularized logistic regression on 10% of the data and evaluated the micro F-1 score on the
remaining data. We repeated this process 10 times with a random test-train split and obtained
the average test performance. Obtained results for the sensitivity to feature vector dimension,
window size, vertex set size, diffusion number, epoch number and learning rate are subplots of
Figure 6.2. On each plot the manipulated parameter is on the horizontal axis and the perfor-
mance is on the vertical axis. Performance evaluation in terms of macro F-1 score with the same
experimental setup is enclosed in Appendix C as Figure C.2.

Now let us look at the experimental findings. First, looking at Subfigure 6.2a we see that
the size of the feature vectors is optimal when the dimension of the vector is 64. This is true
for both variants of D2V. Increasing or decreasing the feature vector size deteriorates the classi-
fication performance. This implies that in a very low dimensional space the nodes are not well
separated and also that a very sparse representation does not keep nodes with similar labels

Chapter 6. Applications of the embeddings 48

close to each other in the embedding space. Findings regarding the manipulation of the win-
dow size are on Subfigure 6.2b. Sliding window size varies between 2 and 20 with a step size of
2. We see a similar pattern – there is an optimal sliding window size in the chosen interval. For
ED2V a window size of 6 is optimal, for FD2V a smaller window size is better. This also implies
that including hitting frequencies of nodes that are further away from a source node introduces
noise. The effect of increasing the number of vertices included in the diffusion tree is plotted on
Subfigure 6.2c. It is not surprising that increasing the sample size increases classification perfor-
mance. With a larger sample we get better estimates of hitting frequencies and that increases the
representation quality. We also see that marginal micro F-1 gains are decreasing with the size of
the vertex set size.

(a) Dimension

2 4 8 16 32 64 128 256 512

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

Feature vector size

M
ic

ro
F 1

-s
co

re

(b) Window size

5 10 15 20

0.34

0.35

0.36

0.37

Window size

M
ic

ro
F 1

-s
co

re

(c) Vertex set size

10 20 30 40 50 60

0.33

0.34

0.35

0.36

0.37

Vertex set size
M

ic
ro

F 1
-s

co
re

(d) Diffusions

10 20 30 40 50 60

0.32

0.34

0.36

0.38

Number of diffusions

M
ic

ro
F 1

-s
co

re

(e) Iterations

2 4 6 8

0.35

0.35

0.36

0.36

0.37

0.37

ASGD iterations

M
ic

ro
F 1

-s
co

re

FD2V ED2V

(f) Learning rate

0.05 0.1 0.15 0.2

0.2

0.25

0.3

0.35

Learning rate

M
ic

ro
F 1

-s
co

re

Figure 6.2: Sensitivity of multi-label classification performance of logistic regression using features extracted with the D2V variants
to change of parameters. The classifier was fitted with `1 regularization and the regularization parameter was set as λ = 1.
Embeddings were created with the baseline parameter settings such that d = 128, n = 10, ŵ = 10, α = 0.025, k = 1. We set the
sequence length controlling parameters of algorithms to be l = 40 (ED2V) and l = 25 (FD2V). Embedding algorithm parameters
were tuned to show the sensitivity of the results. The manipulated parameters are on the horizontal axis and the classification
performance measured by micro F-1 score on the test set is on the vertical axis. Each point represents the average micro F-1 score
based on 10 random train-test splits. In each split we used 10% of the dataset for training and the remainder for testing.

The classification performance depending on the number of diffusions per source node is
plotted on Subfigure 6.2d. Once again one would expect that having more samples of node
sequences would improve the quality of the learnt representation and this is what we see. In
addition, the marginal performance improvements are decreasing again just as they did on Sub-
figure 6.2c when the vertex set size was increased. Subfigure 6.2e illustrates what happens to
the classification performance when the number of asynchronous gradient descent iterations in-
creases. We can see that increasing the number of epochs initially increases than later reduces the

Chapter 6. Applications of the embeddings 49

performance. This means that even when the representation learning is non supervised overfit-
ting happens. The effect of learning rate variation on performance is plotted Subfigure 6.2f. Just
as in case of the number of epochs we observe that a too high learning rate results in overfitting.
When the learning rate reaches a certain starting value we observe a quite stark drop in labeling
performance.

These findings have interesting implications. First, those parameter settings that are widely
used to benchmark the node sequence based graph embedding methods are suboptimal for
ED2V and FD2V in this dataset. Second, the performance gap between the D2V variants is quite
consistent. The only exception is dimension it seems that in higher dimensions the performance
gap is greater between the two. Third, it is indisputable that increasing the vertex set size and
diffusion number per source with additional parameter changes (for example having 2 epochs
and decreasing the window and dimension sizes) could lead to a significant performance in-
crease on this downstream task.

6.2 Community detection

This section presents how the embeddings can be used to do community detection. Community
detection is one of the most basic unsupervised machine learning tasks on graphs. The goal
of it is to assign the nodes into clusters in a way that they form more dense subgraphs than
the original graph. With the obtained clusters of nodes one might identify interest groups in
social networks, research communities in citation graphs or groups of companies that perform
financial transaction intensively. In certain regards this section is quite unique as the works
that discuss node sequence based graph embedding methods (Perozzi et al., 2014; Tang et al.,
2015; Grover & Leskovec, 2016; Pimentel et al., 2017) do not consider solving this downstream
machine learning task. Moreover, it turns out that results obtained by clustering nodes in the
embedding space are competitive with results attained by a number of widely used community
detection algorithms.

The remainder of the section is structured as follows. In Subsection 6.2.1 we present graph
clustering results on the networks that we used to present our node classification results. We
have experimental results where we demonstrate that k-means and mini batch k-means clus-
tering gives high quality results even on large graphs. Later we also support evidence that
hierarchical clustering of nodes in the latent space gives fair grade clusters on smaller graphs.
We compare the performance of our methods to other widely used graph clustering methods in
Subsection 6.2.2. Lastly, we carry out a complete sensitivity analysis of clustering quality with
respect to model parameters in Subsection 6.2.3.

6.2.1 Community detection with sequence based embeddings

In this subsection we discuss the idea of how the learned representations can be used to perform
graph clustering. The graph embedding itself maps each of the nodes into a latent space. As
our experiments in Chapter 5 have demonstrated this latent space has two properties that are

Chapter 6. Applications of the embeddings 50

fundamental to clustering the nodes. First, nodes that share an edge are expected to be closer
to each other in the latent space than nodes that are at large distances from each other. Second,
connected nodes that have a high neighbourhood overlap are closer to each other than those that
have a lower neighbourhood overlap. This means that the procedure described below should
be able to extract communities from a graph using the embeddings. Our proposed community
detection method allows for parameter tuning in the graph embedding and clustering phases
when nodes are already embedded in the latent space.

(i) Learn an embedding of the graph with a sequence based embedding method.

(ii) Cluster the data points of the embedding with a chosen clustering method.

(iii) Extract cluster memberships for each data point.

(iv) Assign nodes to clusters based on cluster memberships in the latent space.

(v) Calculate graph clustering quality metric.

The choice of the clustering quality metric also gives some freedom. We evaluate the cluster
quality by using the unweighted modularity (Newman, 2006). Let as assume that the compo-
nents of vector c describe the cluster membership of nodes. On a graph G(V,E) the unweighted
modularity of the clustering vector c is defined by Equation (6.1). The matrix A is the adjacency
matrix if v and w are neighbours it takes a value equal to 1 otherwise it is 0. Lastly, δ is the
Kronecker delta function, if two nodes are in the same cluster it is 1 otherwise it is 0. Modularity
is always in the [−1/2, 1) interval and higher values suggest a better clustering of a graph.

Q(G, c) =
1

2 · |E|
·
∑
v∈V

∑
w∈V

[
Av,w −

deg(v) · deg(w)

2 · |E|

]
· δ(cv, cw) (6.1)

In the following we will demonstrate that k-means and hierarchical clustering gives good results
on benchmark networks when we use modularity to evaluate the clustering quality.

K-means clustering

We use the standardized features extracted with sequence based graph embedding methods to
do perform k-means clustering of nodes. We used the squared error as the loss function. Em-
beddings were created with parameter settings such that d = 128, n = 10, ŵ = 10, α = 0.025

and k = 1. We set the sequence length controlling parameters of algorithms to be l = 80 (N2V
and DW), l = 40 (ED2V) and l = 25 (FD2V). The N2V inout and return parameters were taken
from the solution to the classification task. Performance as a function of cluster number is plot-
ted on Figure 6.3 for the Blogcatalog, PPI, Wikipedia, Flickr, Youtube and Markercafe networks.
On the horizontal axis we have the number of clusters and modularity is on the vertical axis.
We varied the number of clusters between 2 and 50. Each point represents the maximal mod-
ularity score based on 10 random cluster centre initializations. The DW and N2V embeddings
for the Flickr, Youtube and Markercafe datasets were generated with the high performance C++

Chapter 6. Applications of the embeddings 51

implementation. Because of the size of the dataset, results on the Youtube dataset were created
by mini-batch k-means clustering with a batch size equal to 100.

(a) BlogCatalog

100.4 100.6 100.8 101 101.2 101.4 101.6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Number of clusters

M
od

ul
ar

it
y

(b) PPI

100.4 100.6 100.8 101 101.2 101.4 101.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of clusters

M
od

ul
ar

it
y

(c) Wikipedia

100.4 100.6 100.8 101 101.2 101.4 101.6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Number of clusters

M
od

ul
ar

it
y

(d) Flickr

100.4 100.6 100.8 101 101.2 101.4 101.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Number of clusters

M
od

ul
ar

it
y

(e) Youtube

100.4 100.6 100.8 101 101.2 101.4 101.6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of clusters

M
od

ul
ar

it
y

ED2V FD2V N2V DW

(f) MarkerCafe

100.4 100.6 100.8 101 101.2 101.4 101.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of clusters

M
od

ul
ar

it
y

Figure 6.3: Community detection performance of k-means clustering using the standardized features extracted with the sequence
based graph embedding methods. We used the squared error as the loss function. Embeddings were created with parameter
settings such that d = 128, n = 10, ŵ = 10, α = 0.025. We set the sequence length controlling parameters of algorithms to be
l = 80 (N2V and DW), l = 40 (ED2V) and l = 25 (FD2V). The N2V inout and return parameters were taken from the solution to
the classification task. On the horizontal axis we have the number of clusters and modularity is on the vertical axis. Each point
represents the maximal modularity score based on 10 random cluster centre initializations. The DW and N2V embeddings for the
Flickr, Youtube and Markercafe datasets were generated with the high performance C++ implementation.

Our results plotted on Subfigure 6.3a on the BlogCatalog network show that ED2V slightly
outperforms other sequence based methods. In the high cluster number region the diffusion
based algorithms do better than the random walk based ones. We also see that with these pa-
rameter settings N2V outperforms DW. Most of the methods performs well when the number of
clusters is 4. Now let us review results on the PPI and Wikipedia networks plotted on Subfigures
6.3b and 6.3c. Once again we see that ED2V outperforms other methods by a margin in terms
of modularity on both networks. Moreover, the diffusion based methods outrun the other two
when we disassemble these graphs to smaller subgraphs. While the performance gaps between
methods seem to be imperceptibly widening as the number of clusters increases we have to keep
in mind that regions with a large number of subgraphs are not necessarily relevant.

On the larger networks results with DW and N2V are quite different from earlier findings.
Results about the Flickr dataset are plotted on Subfigure 6.3d. We see that even with multiple

Chapter 6. Applications of the embeddings 52

initializations DW and N2V results in clusterings that have a particularly low modularity com-
pared to D2V variants. We assume that this regularity and the noticeable modularity drop in the
low cluster number region is caused by the same phenomenon. Namely, that 10 initialization
of the cluster centres for k-means clustering is not sufficient for finding good centres or the ini-
tialization method itself is not suitable for choosing good initial centres. The Youtube network
embedding was clustered by mini-batch k-means – modularity scores are plotted on Subfigure
6.3e. Our methods outperform the random walk based algorithms, but at the same time we
observe again signs that the other methods ended up in local minima in most of the cases when
the number of clusters was low. We assume this because sudden drops and jumps of modularity
should not be observed when the cluster number is increased – a good clustering method should
remove a weakly connected component from the graph when the cluster number is increased
slightly. Surprisingly out of the two diffusion based methods FD2V is the better and it has a
considerable performance lead over ED2V. Finally, results on the MarkerCafe graph are plotted
on Subfigure 6.3f. On this graph the behaviour of the sequence based methods is similar to the
one that we observed on Subfigures 6.3a, 6.3b and 6.3c. We see that ED2V outperforms every
other method and also that most probably neither of the methods ended up in a local minimum.

Hierarchical clustering

Using the already obtained graph embeddings we can create other clusterings of the nodes. In
the coming, we will demonstrate that hierarchical clustering is also an option when the graph
is small. Community detection experiments with hierarchical clustering included the BlogCat-
alog, PPI and Wikipedia networks as these graphs all have somewhat limited vertex set sizes.
We used `2 distance of nodes in the latent space and Ward’s method to create the linkage matrix.
The criterion used to form the clusters themselves is the maximal cluster distance. Because of
the deterministic nature of the method we only did one experimental run while we varied the
number of clusters between 2 and 50 inclusive. We plotted on subfigures of Figure 6.4 the mod-
ularity values as a function of cluster number. Once more we decided to use a log scale on the
horizontal axis of figures.

First, the hierarchical clustering results on the BlogCatalog network are plotted on Subfigure
6.4a. Interestingly N2V performs poorly even when it is compared to DW. The Eulerian version
of D2V is slightly better than DW and the endpoint traceback based D2V performs well when
the number of clusters is large. Compared to the k-means clustering results hierarchical cluster-
ing performs quite poorly with every embedding feature set. Modularity values as function of
cluster number on the PPI dataset are plotted on Subfigure 6.4b. Random walk based methods
are clearly outperforming the diffusion based algorithms. However, we have to note again that
k-means outperformed hierarchical clustering on this dataset. Interestingly k-means and hier-
archical clustering both suggest that the optimal number of communities is between 10 and 16.
Finally, performance measurements on the BlogCatalog dataset are plotted on Subfigure 6.4c.
We observe again, that the random walk based graph embedding procedures outperform the
diffusion based ones when we cluster nodes with hierarchical clustering. This is true for a wide
range of potential cluster numbers. Altogether, we conclude that k-means clustering results in

Chapter 6. Applications of the embeddings 53

higher quality clusters. Besides, this performance gap, we also have to consider the fact that
hierarchical clustering does not scale to the larger datasets e.g. Flickr with approximately 80,000
nodes.

(a) BlogCatalog

100.4 100.6 100.8 101 101.2 101.4 101.6
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of clusters

M
od

ul
ar

it
y

(b) PPI

100.4 100.6 100.8 101 101.2 101.4 101.6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of clusters

M
od

ul
ar

it
y

ED2V FD2V N2V DW

(c) Wikipedia

100.4 100.6 100.8 101 101.2 101.4 101.6
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Number of clusters

M
od

ul
ar

it
y

Figure 6.4: Community detection performance of hierarchical clustering using the standardized features extracted with the se-
quence based graph embedding methods. We used `2 distances and Ward’s method to create the linkage matrix. Finally, the
criterion used to form the flat clusters is the maximal cluster distance. Embeddings were created with parameter settings such that
d = 128, n = 10, ŵ = 10, α = 0.025. We set the sequence length controlling parameters of algorithms to be l = 80 (N2V and DW),
l = 40 (ED2V) and l = 25 (FD2V). The N2V inout and return parameters were taken from the solution to the classification tasks. On
the horizontal axis we have the number of clusters on a log scale and modularity is on the vertical axis.

6.2.2 Comparison to other community detection methods

In this section we will compare the performance of our proposed clustering method to com-
munity detection procedures. We will demonstrate that our algorithms outperform most of the
widely used graph clustering methods that are implemented in the newest version of IGraph
(Csardi & Nepusz, 2006). The community detection methods that we will use to benchmark our
procedures are the following:

(i) Fast-Greedy: Is a hierarchical agglomeration algorithm which merges dense subgraphs to
form communities (Clauset et al., 2004). It has a computational complexity of O(|V | · |E| ·
log |V |) which makes it unfavourable on large graphs.

(ii) Leading Eigenvector: Uses the eigenvectors of the Laplacian matrix to extract higher than
average density subgraphs from the network (Girvan & Newman, 2002). It is also a fairly
complex algorithm considering that it has a O(|V |2 + |E|) runtime.

(iii) Louvain: This procedure optimizes an objective function similar to modularity in a greedy
way (Blondel et al., 2008). Moreover, it has a fairly low computational complexity ofO(|E|)
when the graph is sparse. Sparsity is a property observed in most of the real networks.

(iv) WalkTrap: Uses random walks on the graph to extract dense subgraphs where the random
walker on the graph is stuck (Pascal & Latapy, 2005). It has a relatively high complexity of
O(|E| · |V |2). We cannot use WalkTrap as a baseline on the Youtube graph because of this.

Chapter 6. Applications of the embeddings 54

In our experiments we clustered the BlogCatalog, PPI, Wikipedia, Flickr and MarkerCafe
networks with all of these baseline community detection methods. The Youtube graph was only
clustered with the Louvain method as it has a fairly large size both in terms of vertices and
edges. We used the default parameter settings of the algorithms to extract the communities
and measured the clustering performance of the methods by modularity. The results obtained
with the sequence based embeddings were taken from the experiments that were presented in
Subsection 6.2.1. We took the highest modularity values for all of the embedding methods. Hi-
erarchical clustering results are only presented for the small graphs – the Blogcatalog, PPI and
Wikipedia networks. Our results are summarized by Table 6.3, where dashes denote missing
measurements and the use of bold font stands for the best performing method on a given dataset.

ALGORITHM BLOGCATALOG PPI WIKIPEDIA FLICKR YOUTUBE MARKERCAFE

Fast Greedy 0.2069 0.3029 0.1456 0.4517 – 0.2597

Walktrap 0.1766 0.2571 0.0553 0.4873 – 0.2026

Leading Eigenvector 0.2035 0.2262 0.0915 0.4810 – 0.2455

Louvain 0.2362 0.3323 0.1472 0.5196 0.7107 0.3004

K-means DW 0.2163 0.3240 0.1375 0.3651 0.5718 0.2774

K-means FD2V 0.1959 0.3216 0.1273 0.5047 0.6553 0.2678

K-means ED2V 0.2225 0.3349 0.1420 0.5078 0.6265 0.2818

K-means N2V 0.2184 0.3270 0.1376 0.3647 0.4862 0.2630

Hierarchical DW 0.1559 0.2785 0.0823 – – –

Hierarchical FD2V 0.1298 0.2620 0.0577 – – –

Hierarchical ED2V 0.1610 0.2618 0.0696 – – –

Hierarchical N2V 0.1149 0.2774 0.0709 – – –

Table 6.3: Clustering performance compared to other methods measured by modularity. Numbers in the columns represent
modularity scores of the clusterings. Column headers are the dataset names and row names are the algorithm names. Re-
sults of k-mean clustering applied to node sequence based embeddings are the best ones taken from Figure 6.3. Similarly,
performance metrics of hierarchical clustering applied to node sequence based embeddings are the best ones from Figure 6.1.
Baseline results were created with the listed community detection algorithms that were implemented in IGraph (Csardi &
Nepusz, 2006). Bold numbers note the highest modularity value obtained on the dataset. Dashes denote missing modularity
values when obtaining a clustering is not feasible due to complexity of the algorithm.

Earlier we established that results obtained with k-means outperform hierarchical clustering on
every small dataset. This is evident if one looks at the first three columns of Table 6.3. On the
BlogCatalog dataset ED2V with k-means is 38.1% better than the best sequence based embed-
ding method combined with hierarchical clustering. On PPI the performance gap is 20.3% while
on Wikipedia it is 72.5%. When we compare the results obtained with k-means clustering and
sequence based embedding generation to other algorithms we see that ED2V outperforms most
of the baselines except for Louvain on every dataset. The sequence based embeddings clustered
with k-means outperform the Walktrap and Leading Eigenvector procedures. We also have to
note that ED2V has the best performance on the PPI network but it only has a marginal advan-
tage. In addition, in Subsection 6.2.3 we will support evidence that the performance of ED2V
can be improved with careful parameter tuning of the embedding generation itself. The advan-
tage of the Louvain method over ED2V varies between 2.3% and 13.4% on the different datasets.

Chapter 6. Applications of the embeddings 55

These results show that the clustering of nodes in the latent space is fairly competitive with other
graph clustering methods. It is also quite important that our methods allow for direct control
of the cluster number. Other methods create a large number of small clusters. If our goal is the
extraction of a fixed number of clusters that are somewhat interpretable, methods which result
in thousands of small fragmented clusters will not be helpful.

6.2.3 Sensitivity of clustering quality to hyperparameters

In this section we investigate how the change of certain sequence generation and embedding
learning parameters affects the downstream clustering performance. We only discuss the per-
formance of our own diffusion based algorithms – specifically ED2V and FD2V. As earlier in case
of multi-label classification we will use the Flickr graph to carry out the sensitivity analysis. We
will consider a comparison embedding that was created with settings such that d = 128, n = 10,
ŵ = 10, α = 0.025, k = 1. We set the sequence length controlling parameters of algorithms to be
l = 40 (ED2V) and l = 25 (FD2V). In each experiment we applied k-means clustering 10 times
to the obtained embedding and took the clustering with the best modularity on the graph. The
number of clusters was always fixed as 5. Obtained results for the sensitivity to feature vector
dimension, window size, vertex set size, diffusion number, epoch number and learning rate are
subplots of Figure 6.5. On each plot the manipulated parameters is on the horizontal axis and
the modularity is on the vertical axis.

(a) Dimension

2 4 8 16 32 64 128 256 512

0.45

0.46

0.47

0.48

0.49

0.5

0.51

Feature vector size

M
od

ul
ar

it
y

(b) Window size

5 10 15 20

0.502

0.504

0.506

0.508

Window size

M
od

ul
ar

it
y

(c) Vertex set size

10 20 30 40 50 60
0.503

0.504

0.505

0.506

0.507

0.508

Vertex set size

M
od

ul
ar

it
y

(d) Diffusions

10 20 30 40 50 60

0.500

0.502

0.504

0.506

0.508

Number of diffusions

M
od

ul
ar

it
y

(e) Iterations

2 4 6 8

0.505

0.506

0.507

0.508

ASGD iterations

M
od

ul
ar

it
y

ED2V FD2V

(f) Learning rate

0.05 0.1 0.15 0.2

0.1

0.2

0.3

0.4

0.5

Learning rate

M
od

ul
ar

it
y

Figure 6.5: Sensitivity of k-means clustering performance to change of embedding method parameters. Embeddings were created
with baseline parameter settings such that d = 128, n = 10, ŵ = 10, α = 0.025, k = 1. We set the sequence length controlling
parameters of algorithms to be l = 40 (ED2V) and l = 25 (FD2V). Embedding algorithm parameters were tuned to show the
sensitivity of community detection results. Manipulated parameters are on the horizontal axis and the clustering performance
measured by modularity is on the vertical axis.

Chapter 6. Applications of the embeddings 56

Performance as a function of feature vector dimension is on Subfigure 6.5a. It is quite sur-
prising that our methods are quite robust to the change of the feature vector size – vectors with
size between 8 and 128 have similar representation qualities when used for graph clustering.
Similar to node classification having a high dimensional latent space weakens the performance.
The effect of changing the sliding window’s size is on Subfigure 6.5b. Once more, we see that a
window size below 10 is beneficial – meaning that parameters used to evaluate sequence based
embedding models are not optimal for clustering (at least on this dataset). Results obtained
by changing the vertex set size are on Subfigure 6.5c. Our earlier results about the sensitivity of
performance in multi-label classification and clustering had shown that behaviours of ED2V and
FD2V are correlated. Meaning that the quality of the created representations behaves similarly
when certain parameters are changed. Unusually, the quality of ED2V and FD2V representa-
tions reacts differently when we increase the number of sampled vertices. The modularity is
unchanged by the vertex set size changes when we use ED2V and it drops when FD2V is ap-
plied. Changing the number of diffusions increases the performance initially as Subfigure 6.5d
suggests. After a certain number of vertices is reached performances of both algorithms stag-
nate. About the number of asynchronous gradient descent iterations we can conclude based on
Subfigure 6.5e that the optimal number of iterations is 2. The optimal number of epochs is the
same as it was in case of the classification task. Finally, Subfigure 6.5f displays that increasing
the learning rate results in a representation that has low value when one does clustering.

Altogether our findings about the sensitivity of performance have three important implications.
First, one can obtain minor clustering performance gains by changing the parameters of the
embedding methods. Reducing the window size and increasing the number of diffusions per
node boosts the performance. Second, our findings suggest that having a low dimensional latent
space representation and sampling less nodes than usual does not affect the clustering perfor-
mance adversely. These changes can increase the computational performance, decrease memory
usage and disk space consumption when we store the representation. Third, sensitivities of clus-
tering and node classification performances are quite similar.

6.3 Edge prediction

We discuss edge prediction with sequence based embedding features in this section. Edge pre-
diction is one of the most trivial downstream supervised learning tasks that one can do with
network data. The edge predictions task is as follows: given two nodes in the graph predict
whether an edge is formed between the two in the near future or not. Edge prediction has a
wide range of possible applications. Trivial applications include the recommendation of new
acquaintance on social networks (Backstrom & Leskovec, 2011; Dong et al., 2012), proposition
of potential scientific collaborations (Liben-Nowell & Kleinberg, 2007; Clauset et al., 2017) and
suggestion of pages that a webpage should link to (Chen et al., 2005). Besides these evident use
cases there are other opportunities to use edge prediction. One is the improvement of recipes
with ingredients that result in harmonic flavours (Ahn et al., 2011). Another one, is the detection
of anomalous financial transactions among bank customers (Akoglu et al., 2015). Besides the

Chapter 6. Applications of the embeddings 57

useful possible applications it is self-evident that edge prediction requires either the collection
of very special time series network data or the generation of synthetic data used for training and
evaluation of the edge prediction model. Henceforth, we have an emphasis on explaining the
methods that we use to generate synthetic data for edge prediction.

The synthetic data generation is discussed in Subsection 6.3.1 where we introduce a general
framework for synthetic data creation for the edge prediction task. We also propose specific
algorithms to help with the generation of more realistic synthetic data for this task. In Subsection
6.3.2 we show that our methods perform comparably to other node sequence based embedding
methods on a range of datasets when the synthetic data is generated in a naive way. Lastly, in
Section 6.3.3 we show that current accuracy benchmarks of edge prediction methods are biased
upwards by the fact that synthetic data is created in an unsophisticated way. We also support
evidence that our proposed algorithms outperform other methods in more realistic settings.

6.3.1 Synthetic sample generation for edge prediction

As we stated earlier, in an ideal edge prediction setting we have time series data about the net-
work of interest. However, the collection of such data requires gradual data collection and can
be a cumbersome task. This means that majority of edge prediction methods are evaluated on
synthetic data. A generalized structure of the most widely used synthetic data creation proce-
dures is summarized below.

(i) Remove β fraction of edges from the graph and create an attenuated graph.

(ii) Learn an embedding using the attenuated graph.

(iii) With a custom procedure sample |E| ·β edges that are non existent in the original graph.

(iv) Create edge features based on the new set of edges and the embedding.

(v) Predict whether an edge existed in the original graph and evaluate performance.

First of all, the above described data generation procedure results in an edge set that has
approximately |E| ·(1+β) pairs of nodes. However, only |E| ·(1−β) edges are used to create the
embedding as a fraction was removed with a random edge removal strategy. Roughly |E| · 2 · β
edges are only used in the evaluation phase. Half of these does exist in the original network
and the other half was drawn with an arbitrary sampling strategy. This stylized description of
the synthetic data generation allows for arbitrarily chosen edge deletion, embedding creation
and edge addition procedures. In most of the cases the edges are removed randomly ensuring
that each of the nodes is connected to at least another node in the graph. Similarly edges are
added in a completely random manner. The graph representation learning methods described
by Perozzi et al. (2014); Grover & Leskovec (2016); Kipf & Welling (2016b); Pimentel et al. (2017)
all use random edge deletion and addition to asses the performance of their models.

Chapter 6. Applications of the embeddings 58

About the random deletions and addition we have to note that real complex networks are
quite robust to non-targeted edge removals. This means that random edge removal does not
influence the macro and micro level topological properties of the network significantly. These
properties include the diameter, the distribution of centrality measures and the average length
of shortest paths among others (Klau & Weiskircher, 2005). This also implies that the relative po-
sition of nodes in the latent space will be somewhat maintained when a graph is embedded after
the random edge removal. Furthermore, when one samples random edges in the addition phase
most of the node pairs will be between nodes that are distant and have a low neighbourhood
overlap compared to real edges. To put it simply, these edges describe unrealistic relationships.
Predicting that there is no link between such nodes is a considerably easy and somewhat irrele-
vant task. Therefore, we propose an edge sampling procedure which allows for controlling the
neighbourhood overlap. Our model is formulated in a general way. Basically, the totally random
edge addition is a corner case of our model. In the remainder we will describe the basic graph
attenuation mechanism, our proposed edge sampling strategy and our edge feature generation
procedure.

Graph attenuation

The randomized graph attenuation and embedding method is described by Algorithm 4. Be-
sides the graph edge list, the parameter needed for creating the embedding one also needs β
the rate of attenuation. The goal of the algorithm is to generate an embedding of the randomly
attenuated graph. Before the edge deletion starts we need to create a graph object and based on
the number of edges and the attenuation rate we have to set the number of edges to be deleted.
We also set the counter of already deleted edges to be 0.

Data: Source – Path to the edge list used.
β – Rate of deletion.
k – Number of ASGD iterations.
l – Length of the vertex sequence/Vertex set size.
d – Feature vector size.
n – Number of diffusions per node.
ŵ – Window size.
α – Learning rate.

Result: X – Embedding of the attenuated graph where the rate of deletion is β.

1 G ← Read Graph(Source)
2 Deletion Cardinality← Ceil(β · |E|)
3 Deleted Counter← 0
4 while Deletion Cardinality> Deleted Counter do

5 (v, w)← Random Sample(E)

6 G̃ ← G(V,E \ (v, w))
7 if deg(vG̃) > 0 and deg(wG̃) > 0 then

8 Deleted Counter← Deleted Counter + 1

9 G ← G̃
10 end
11 end
12 X← Create Vertex Seqiences and Learn Embedding(G, k, l, d, n, ŵ, α)

Algorithm 4: Graph attenuation and embedding algorithm

Chapter 6. Applications of the embeddings 59

After these initialization steps we start an iterative process that is halted by reaching the
target number of deleted edges. We sample a random pair of nodes from the edge set. We create
a graph where this edge is removed. If the degree of the edge endpoint nodes is above zero in
the residual graph we increase the deleted counter. In addition, the temporarily created graph
replaces the graph object if the condition on the degrees is satisfied. Based on the attenuated
graph and the embedding parameters one can learn an embedding of the new graph with an
arbitrary embedding method. Later the features of nodes can be used the generate edge features
for the edge prediction task.

Edge sampling with potential neighbourhood overlap

Our proposed edge sampling strategy with neighbourhood overlap is described with pseudo-
code by Algorithm 5. The algorithm needs a path to the graph edge list. Besides this it needs
three parameters. One parameter is β the rate of addition which controls the number of edges
being added to the edge set. The second one is γ which sets the minimal neighbourhood overlap
that nodes at the end of an edge must have. Finally, the third parameter is η which controls
the minimal degree that nodes at the end of the potential edge must have. Before creating the
augmented edge set we read the graph. Using the addition rate β and the number of edges in
the edge set we decide the number of edges to be added. Finally, we set the the newly added
edge number to be 0 and the augmented edge set Ẽ to be the edge set itself.

Data: Source of graph – Path to the edge list used.
β – Rate of addition.
γ – Minimal neighbourhood overlap.
η – Minimal degree.

Result: Ẽ – Edges of the augmented graph where the rate of addition is β.

1 G ← Read Graph(Source of graph)
2 Addition Cardinality← Ceil(β · |E|)
3 Addition Counter← 0

4 Ẽ ← E
5 while Addition Cardinality > Addition Counter do
6 v ← Random Sample(V)
7 w ← Random Sample(V)

8 if v 6= w and (v, w) /∈ Ẽ then

9 Neighbourhood Overlap← NG(v)∩NG(w)
NG(v)∪NG(w)

10 if Neighbourhood Overlap ≥ γ and deg(v) ≥ η and deg(w) ≥ η then
11 Addition Counter← Addition Counter + 1

12 Ẽ ← Ẽ ∪ (v, w)

13 end
14 end
15 end
16 Dump Edges(Ẽ)

Algorithm 5: Edge sampling algorithm with neighbourhood overlap constraint

Following these initialization steps we start an iterative process in which we add the new
edges to the augmented edge set. This process is stopped when the required number of edges is
reached. During the iteration first we sample the nodes v and w. If the two nodes are different
and they are not in the augmented edge set we calculate the neighbourhood overlap. Using the

Chapter 6. Applications of the embeddings 60

neighbourhood overlap of v and w and their respective degrees we decide whether they should
be added to Ẽ. If their neighbourhood overlap is greater than γ and their degrees exceed η we
add them to the augmented edge set. We also increment the counter of newly added edges.
After the iteration halted we save the augmented edge list. It is worth noting that having γ and
η set as 0 means that we sample edges randomly.

Edge feature generation

Using the augmented graph edge list and the embedding of the attenuated networks we can
generate the edge features themselves. The edge feature and outcome variable generation mech-
anism that we use is described by Algorithm 6. First we read the original and the augmented
edge lists – these are the sets E and Ẽ respectively. We also obtain the embedding created with
the graph embedding procedure and extract d the number of columns it has. We create the
matrix X̃ for the edge features and the vector ỹ describing the outcome variable. The edge fea-
ture matrix has |Ẽ| rows and d columns while the binary outcome vector has |Ẽ| rows. Before
creating the edge features we set the augmented edge counter e to be 0.

Data: Source of graph – Path to the origimal edge list.
Source of augmented graph – Path to the augmented edge list.
Source of attenuated embedding – Path to the attenuated embedding.

Result: E – Edges of the augmented graph where the rate of addition is β.

1 E ← Read Edge List(Source of graph)

2 Ẽ ← Read Edge List(Source of augmented graph)
3 X← Read Embedding(Source of attenuated embedding)
4 d← Get Number of Columns(X)

5 X̃←M|Ẽ|×d

6 ỹ←M|Ẽ|×1

7 e← 0

8 for (v, w) in Ẽ do
9 e← e + 1

10 X̃e ← Calculate Operator(Xv,Xw)
11 if (v, w) ∈ E then
12 ỹe ← 1

13 end
14 else
15 ỹe ← 0

16 end

17 end

Algorithm 6: Edge prediction dataset generator algorithm

We iterate through the node pairs in the augmented edge set and increment the augmented
edge counter. Using the edge endpoint nodes we take the corresponding rows of from the em-
bedding and using an arbitrary operator we calculate an edge feature vector. This vector is a
row vector with d columns and it can be created by applying an elementwise operator on the
end node specific vectors. In our experiments we used the `1,`2, average and Hadamard oper-
ators. The resulting feature vector is the eth row of the edge feature matrix. If the pair of nodes
was in E we set the eth element of the outcome variable to be 1 otherwise it is going to be 0.
When the procedure is finished we have edge features and an outcome variable which we can

Chapter 6. Applications of the embeddings 61

use to evaluate the representation quality of the embedding with regards to edge prediction. We
are also able to test the sensitivity of edge prediction to increasing the neighbourhood overlap.
Increasing the neighbourhood overlap will result in adversarial examples of non-existent edges
that are fairly hard to classify.

6.3.2 Edge prediction without overlap constraint

First, we perform edge prediction in a setup where there is no constraint on the neighbourhood
overlap. This means that we will set γ and η to be 0. The datasets used for evaluating the edge
prediction performance are datasets widely used for benchmarking node sequence embedding
algorithms. These networks are the following:

(i) Arxiv: Is a collaboration network of scientists who do work related to astrophysics. Nodes
represent researchers and edges are papers written by two researchers (Leskovec et al.,
2007).

(ii) Facebook: Is a quite dense subsample of the Facebook network. The nodes are users of the
site and edges are friendships (Leskovec & Mcauley, 2012).

(iii) Citeseer: Is a citation network created in a way that the whole graph is connected. Nodes
are papers while the edges are citations (Lu & Getoor, 2003; Sen et al., 2008).

(iv) Cora: Is a citation network similar to Citeseer (Lu & Getoor, 2003; Sen et al., 2008).

(v) Pubmed: Is also a citation network, but it describes fairly niche scientific works. It only
contains papers that investigate diabetes (Namata et al., 2012).

ARXIV FACEBOOK CITESEER CORA PUBMED

|V| 18,772 4,039 3,327 2,708 19,717

|E| 198,110 88,234 9,464 5,429 88,676
Table 6.4: Size of the graphs used to asses link prediction. The number
of vertices and edges are respectively in the first and second row of the
table. We included each of the graphs used for benchmarking the quality
of representations for link prediction.

The number of vertices and edges for the benchmark networks are listed in Table 6.4. Gener-
ally the graph that we use to evaluate the edge prediction performance are smaller than the ones
used to asses the clustering and classification. We also want to emphasize that the Citeseer, Cora
and Pubmed graphs are less dense than the Facebook and Arxiv networks. The embeddings
were generated after 50% of edges was removed from the original set of edges. Embeddings
were created with parameter settings such that d = 128, n = 10, ŵ = 10, α = 0.025. We set
the sequence length controlling parameters of algorithms to be l = 80 (N2V and DW), l = 40

(ED2V) and l = 25 (FD2V). The best performing N2V inout and return parameters were chosen
with grid search over {0.25, 0.5, 1, 2, 4} using 50% of data as the training set. Where it was pos-
sible (Facebook and Arxiv datasets) we took the optimal parameters from Grover & Leskovec
(2016). The augmented edge set contains an additional 50% of randomly sampled edges. We
used the `1, `2, average and Hadamard operators to generate edge features. Finally, we trained

Chapter 6. Applications of the embeddings 62

our edge prediction models on half of the synthetic data and evaluated it on the remainder. Our
results represent the average area under the curve value based on 10 random seeded 50%-50%
train-test set splits.

ALGORITHM ARXIV FACEBOOK CITESEER CORA PUBMED

Average

ED2V 0.9901 0.9887 0.9747 0.9779 0.9831

DW 0.9881 0.9880 0.9613 0.9733 0.9934

FD2V 0.9913 0.9899 0.9513 0.9761 0.9851

N2V 0.9911 0.9895 0.9751 0.9794 0.9945

Hadamard

ED2V 0.9898 0.9917 0.9855 0.9855 0.9952

DW 0.9834 0.9901 0.9872 0.9869 0.9931

FD2V 0.9875 0.9904 0.9712 0.9856 0.9922

N2V 0.9896 0.9910 0.9898 0.9883 0.9932

L1

ED2V 0.9737 0.9876 0.9707 0.9855 0.9931

DW 0.8951 0.9839 0.9779 0.9865 0.9870

FD2V 0.9328 0.9845 0.9042 0.9776 0.9922

N2V 0.9787 0.9880 0.9823 0.9877 0.9892

L2

ED2V 0.9737 0.9876 0.9707 0.9855 0.9931

DW 0.8989 0.9838 0.9779 0.9865 0.9870

FD2V 0.9310 0.9845 0.9044 0.9776 0.9922

N2V 0.9782 0.9880 0.9823 0.9877 0.9892

Table 6.5: Edge prediction performance of gradient boosted classification trees using features extracted
with the sequence based graph embedding methods. The classifier was fitted with tree depth equal to
3, a learning rate of 0.1 and the number of trees was chosen based on early stopping and 5-fold cross-
validation within the training set. Embeddings were created with parameter settings such that d = 128,
n = 10, ŵ = 10, α = 0.025. We set the sequence length controlling parameters of algorithms to be
l = 80 (N2V and DW), l = 40 (ED2V) and l = 25 (FD2V). The best performing N2V inout and return
parameters were chosen with grid search over {0.25, 0.5, 1, 2, 4} using 50% of data as training set. These
parameter settings and practices ensure that we present a fair comparison of the embedding methods. In
the dataset generation process 50% of edges was attenuated before embedding. Later 50% of randomly
chosen edges was added to the edge set without a neighbourhood overlap limit. Edge features were
generated by applying the `1, `2, Hadamard and average operators elementwise on the vectors describing
the edge endpoint nodes. The table reports performance measured by AUC on the test set. Each value
is the average AUC based on 10 random seeded 50%-50% train-test splits. Bold numbers denote the best
performing model-operator combination on a given dataset.

We used two different classifiers to demonstrate that choosing a non-linear model can im-
prove the edge classification performance. The chosen models and their settings are below.

• Logistic regression: We used `1 regularization and the shrinkage parameter was set as
λ = 1. This setting is the same as the one used by Perozzi et al. (2014) and Grover &
Leskovec (2016).

• Gradient boosted classification trees: This classifier was fitted with tree depth equal to 3, a
learning rate of 0.1 and the number of trees was chosen based on early stopping and 5-fold
cross-validation within the training set. We used gradient boosted tree implementation
described by Chen & Guestrin (2016).

Chapter 6. Applications of the embeddings 63

We enclosed results obtained with gradient boosted classification trees in the main body of
the paper as Figure 6.5. Performance evaluation of logistic regression is in Section D.2 of Ap-
pendix D as Figure D.1. The edge prediction performance obtained with boosted trees is supe-
rior to the logistic regression performance. However, it should be highlighted that when logistic
regression is used the random walk based embedding methods outperform the diffusion based
ones on most of the datasets. Looking at the average and Hadamard operators it is fairly easy
to see that performance of different embeddings is quite similar and performance differences
are marginal. On the three most dense datasets ED2V outperforms other methods while on the
two less dense ones N2V has the best performance. We also see that the Hadamard operator
applied to the extracted edges has a fairly good performance across datasets. In case of logistic
regression the performance gap between operators is quite considerable, but using boosted trees
the difference is less sharp. About these results that seem to favour our model on the standard
benchmarks we have to note that they were obtained on a highly unrealistic task. Most of the
synthetically sampled edges are between nodes that are far from each other on the graph.

6.3.3 Edge prediction with overlap constraint

Next we are going to test how the presence of a neighbourhood overlap constraint effects the
edge prediction performance. We will manipulate the required minimal neighbourhood over-
lap and evaluate predictive performance on the Citeseer, Cora and Pubmed datasets. A required
overlap ensures that unconnected nodes are good potential candidates for being connected in
the future and our classification task is not extremely primitive. We compare our models to ran-
dom walk based algorithms and show that FD2V has good results in this setting.

Embeddings were created with the standard parameter settings of the algorithms used ear-
lier. When we generated the synthetic data 20% of edges was attenuated before embedding.
Later 20% of randomly chosen edges was added later to the edge set with a neighbourhood
overlap limit. Edge features were respectively generated by applying the `1, `2, Hadamard and
average operators elementwise on the vectors describing the edge endpoint nodes. We used lo-
gistic regression and gradient boosted classification trees to predict the existence of edges. The
hyper parameter settings of the classifiers were taken from the previous section. Results re-
garding the `1 and average operators obtained with gradient boosted trees are on the subfigures
of Figure 6.6. The neighbourhood overlap is on the horizontal axis and the classification perfor-
mance measured by AUC on the test set is on the vertical axis. Each point represents the average
AUC based on 10 random 50%-50% train-test set splits.

Looking at results on Subfigures 6.6a, 6.6b and 6.6c obtained with the `1 operator we see that
having a neighbourhood overlap constraint reduces the performance. Moreover, as the required
minimal neighbourhood overlap value is increased the classification accuracy drops. For most
of the neighbourhood overlap values FD2V has a performance that is superior or equal to the
other methods on the Citeseer and Pubmed datasets. This is quite intriguing considering the
fact that it had a poor performance on the node classification and clustering tasks. Our measure-
ments with edge features extracted with the average operator are on Subfigures 6.6d, 6.6e and

Chapter 6. Applications of the embeddings 64

6.6f of Figure 6.6. Surprisingly the prediction accuracy is not always deteriorated by an increas-
ing neighbourhood overlap when one uses the average operator. On the Citeseer and Pubmed
datasets the performance increases with a higher neighbourhood overlap. Furthermore, FD2V is
again able to outperform on these datasets the other embedding methods. On the Cora dataset
FD2V also has a good performance, but at the same time the accuracy of all of the sequence
based embedding methods decreases if the constraint is more stringent. Altogether we observe
that performance is not neutral to setting a neighbourhood overlap limit.

(a) Citeseer – `1

0.1 0.12 0.14 0.16 0.18 0.2

0.68

0.7

0.72

0.74

0.76

0.78

0.8

0.82

Minimal overlap

A
U

C

(b) Cora – `1

0.1 0.12 0.14 0.16 0.18 0.2

0.55

0.6

0.65

0.7

0.75

0.8

Minimal overlap

A
U

C
(c) Pubmed – `1

0.1 0.12 0.14 0.16 0.18 0.2

0.6

0.65

0.7

0.75

Minimal overlap

A
U

C

(d) Citeseer – Average

0.1 0.12 0.14 0.16 0.18 0.2

0.68

0.7

0.72

0.74

0.76

0.78

Minimal overlap

A
U

C

(e) Cora – Average

0.1 0.12 0.14 0.16 0.18 0.2

0.64

0.66

0.68

0.7

0.72

Minimal overlap

A
U

C

ED2V FD2V N2V DW

(f) Pubmed – Average

0.1 0.12 0.14 0.16 0.18 0.2

0.6

0.62

0.64

0.66

0.68

0.7

0.72

Minimal overlap

A
U

C

Figure 6.6: Edge prediction performance of gradient boosted classification trees using features extracted with the sequence based
graph embedding methods. The classifier was fitted with tree depth equal to 3, a learning rate of 0.1 and the number of trees
was chosen based on early stopping and 5-fold cross-validation within the training set. Embeddings were created with parameter
settings such that d = 128, n = 10, ŵ = 10, α = 0.025. We set the sequence length controlling parameters of algorithms to be
l = 80 (N2V and DW), l = 40 (ED2V) and l = 25 (FD2V). The best performing N2V inout and return parameters were chosen with
grid search over {0.25, 0.5, 1, 2, 4} using 50% of data as training set. These parameter settings and practices ensure that we present
a fair comparison of the embedding methods. In the dataset generation process 20% of edges was attenuated before embedding.
Later 20% of randomly chosen edges was added later to the edge set with a neighbourhood overlap limit. Edge features were
respectively generated by applying the `1 and average operators elementwise on the vectors describing the edge endpoint nodes.
The neighbourhood overlap is on the horizontal axis and classification performance measured by AUC on the test set is on the
vertical. Each point represents the average AUC based on 10 random train-test splits. The minimal degree parameter η was set as 2.

Additional supporting results obtained on the task of edge prediction with overlap con-
straint applying gradient boosted classification trees are enclosed in Section D.1 of Appendix D
as Figure D.1. Results obtained with logistic regression are also in Appendix D. In Section D.2
we enclosed the experimental findings as Figures D.2, D.3, D.4 and D.5. The footnotes of the
figures contain detailed description of the experimental settings.

65

Chapter 7

Conclusions

In this concluding chapter we summarize the main achievements and highlights of our work in
Section 7.1. We discuss the limitations of our work and point out possible broadening of our
investigation in Section 7.2.

7.1 Main findings

In this work we proposed ED2V and FD2V two node sequence based graph embedding models
that use diffusion processes on graphs to create vertex sequences. We implemented these meth-
ods in Python and demonstrated that the design of these algorithms results in fast sequence
creation in realistic settings and allows parallel vertex sequence generation which leads to addi-
tional speed up. We supported evidence that the computational performance of our method is
robust to graph densification and growth.We highlighted that embedding vectors are useful for
graph visualization. We established that vertex centralities and graph distances among nodes
are conserved in the embedding space that we create. We confirmed that node features created
with the ED2V and FD2V are useful explanatory variables for downstream machine learning
tasks. We gave a detailed evaluation of the representation quality of embeddings on the machine
learning tasks of multi-label node classification, community detection and edge prediction. Our
findings reinforced that besides the favourable computational performance the representation
quality itself is competitive with other methods. We conclude that our work is an important
contribution towards solving large scale network analysis problems.

7.2 Limitations and possible future work

We discuss the limitations and shortcomings of our work in Subsection 7.2.1. We overview
possible future extensions of the project in Subsection 7.2.2 where we list potential theoretical
and empirical contributions.

7.2.1 Limitations

In the following we will discuss certain considerable limitations of the work that we carried out.
Some of them is fairly theoretical, others are about our experiments and the data we used. We
also mention some technical limitations of our creation. Specifically these are:

Chapter 7. Conclusions 66

• Theoretical limitations: Currently the theory of node sequence based graph embedding
algorithms is more ore less absent. Earlier claims about why these methods are so effec-
tive are not well grounded in terms of probability and graph theory. We only extended
the theory with procedures that are more suitable for vertex sequence generation in our
opinion.

• Exclusion of vertex features: The node sequence based graph embedding methods that
we introduced exclude node features. Vertex specific data potentially helps to improve
the learnt representation quality as it is known that a number of networks show strong
autocorrelation of generic vertex features. We have to note that using only the network
might be still beneficial when we have missing values. For details on this specific topic see
the results of Yang et al. (2016); Defferrard et al. (2016) and Kipf & Welling (2016b).

• Graphs with edge weights: Random walk based graph embedding methods allow for
edge weighted graphs. However, our methods are limited to graphs that have no edge
weights. If weights represent link strength we exclude important information and our
learnt representation is biased by weighting links equally.

• Lack of high performance implementation: We only created a reference implementation
of our sequence generation methods. While these reference versions of the diffusion based
methods are competitive with other reference implementations it is evident that in their
current form they have limited value for possible industrial applications.

• Real vertex sequence based benchmarks: Our methods generate synthetic sequences and
create graph representations based on these sequences. Sequence based embeddings cre-
ated with real node sequences would be important reference baselines in downstream ma-
chine learning tasks.

• Limitations of our experiments:

– When we considered the multi-label node classification we only used logistic regres-
sion to evaluate the representation quality as it is used in other related works (Perozzi
et al., 2014; Tang et al., 2015; Grover & Leskovec, 2016; Pimentel et al., 2017). How-
ever, using non-linear models might show that the representation quality is compet-
itive with more advanced node classification methods. Our early experiments with
k-nearest neighbours, neural networks and tree based ensembles in this regard were
negative.

– On certain graphs poor initializations of k-means clustering resulted in inferior clus-
ter quality. Finding a proper initialization method would be beneficial for fair com-
parison of sequence based embedding procedures.

– We only used synthetic data for assessing the representation quality regarding the
edge prediction. Using temporal network data would help with benchmarking the
edge prediction performance in a realistic setting.

Chapter 7. Conclusions 67

– We did not perform regression – evaluating the value of representations for perform-
ing this task would be essential. However, it would require a number of networks
with various sizes and types that have continuous node features.

7.2.2 Possible future work

Based on the above listed limitations of our work and findings presented earlier we see that
there is a wide range of possible extensions. We enumerate a number of potentially interesting
areas where additional research can be done. Some of these require addressing the above listed
theoretical issues others require additional experiments or some programming.

• General theory of sequence based graph embedding methods: There is need for a better
understanding why the sequence based graph embedding methods work. Our experi-
ments about the basic properties highlighted that a number of distances and centralities
are maintained in the embedding space. It is fair to assume that there are theoretical guar-
antees in this regard.

• Integration of vertex features: As we emphasized using generic vertex features could
improve the representation quality. Concatenating these features to the hitting frequency
vector would allow for the inclusion of generic vertex features. For random walk based
procedures Yang et al. (2016) already made possible the use of generic vertex features.

• Generalizations: Currently there are certain generalizations of these methods. For ex-
ample there is an algorithm that specifically works with signed graphs (Yuan et al., 2017;
Goyal & Ferrara, 2017). However, there is no algorithm that can deal with multiplex graphs
where nodes can have multiple types of edges.

• High performance implementation: Creating a C++ version of our methods with the
SNAP network analysis package would foster possible industry application of our meth-
ods (Leskovec & Sosič, 2016). Using an implementation language different from Python
would also allow for better parallelization of vertex sequence generation.

• Additional time benchmarks: Our experiments about computational performance only
considered graphs with thousands of nodes. Scaling up the investigation to larger graphs
would give additional evidence that our method has a considerable advantage. Also one
could investigate how change of topological properties affect performance gains.

• Downstream machine learning tasks: The evaluation of the representation quality can
be extended by applying regression, other classifiers or other clustering algorithms. Our
assessment was limited to demonstrate that our embedding method is competitive with
other sequence based methods.

• Edge prediction in a realistic setting: With proper temporal network data the assessment
of the representation quality for edge prediction would be an interesting series of exper-
iments. Collaboration networks or data extracted from publicly available API’s of social
networks1 could support data for these investigations.

1For example the Deezer API practically allows for unlimited social network data extraction.

Chapter 7. Conclusions 68

• Diffusion sampling for graph convolutions: Graph convolutional neural networks have
problems when the size of the graph is large. Patch sampling small subgraphs with diffu-
sion trees might help to scale up these models.

69

Appendix A

Synthetic graph embedding benchmarks

(a) Graph size

DW FD2V ED2V N2V

10−2

10−1

100

101

102

Number of vertices

Se
co

nd
s

103 104 105

(b) Density

DW FD2V ED2V N2V

100

101

Average degree

Se
co

nd
s

8 16 32

Figure A.1: Erdős-Rényi graph – mean graph pre-processing time. Columns report mean sequence generation times based on 100
replications on a Erdős-Rényi graph. For the graph size benchmarks the number of vertices was set at 103, 104 and 105 while the
average degree was fixed as 10. In case of the average degree experiments the degree was set as 8, 16 and 32 while number of
vertices was 104.

(a) Graph size

DW FD2V ED2V N2V

10−1

100

101

102

Number of vertices

Se
co

nd
s

103 104 105

(b) Density

DW FD2V ED2V N2V

0

10

Average degree

Se
co

nd
s

8 16 32

Figure A.2: Erdős-Rényi graph – mean sequence generation time. Columns report mean sequence generation times based on 100
replications on a Erdős-Rényi graph. For the graph size benchmarks the number of vertices was set at 103, 104 and 105 while the
average degree was fixed as 10. In case of the average degree experiments the degree was set as 8, 16 and 32 while number of
vertices was 104.

Appendix A. Synthetic graph embedding benchmarks 70

Degree DW N2V ED2V FD2V

8 0.8391 9.734 0.8237 0.8765

Barabási 16 1.563 33.1155 1.4983 1.5457

32 3.0059 113.9357 2.8785 2.9591

8 0.5294 1.8592 0.5354 0.7751

Erdős 16 0.8316 5.6721 0.9123 1.2132

32 1.6084 18.2822 1.7174 2.3341

8 0.4392 1.576 0.474 0.5072

Watts 16 0.6677 4.6116 0.6849 0.7907

32 1.2132 14.3283 1.3359 1.3901

|V| DW N2V ED2V FD2V

103 0.0707 1.0283 0.0756 0.0747

Barabási 104 0.9994 15.1209 0.9797 0.9909

105 18.1231 184.9882 16.3046 17.0141

103 0.0399 0.2419 0.0392 0.0392

Erdős 104 0.6058 2.65 0.5891 0.5784

105 11.8811 29.1177 9.9965 10.9557

103 0.038 0.2032 0.0566 0.0375

Watts 104 0.5086 2.1823 0.6219 0.4937

105 6.8146 22.0627 6.9634 1.2785

Table A.1: Mean graph prep-processing time. Columns report mean
graph pre-processing times based on 100 experimental replications on
Barabási-Albert, Erdős-Rényi and Watts-Strogatz graphs. In case of the
average degree experiments the degree was set as 8, 16 and 32 while num-
ber of vertices was 104. For the graph size benchmarks the number of
vertices was set at 103, 104 and 105 while the average degree was fixed as
10.

Appendix A. Synthetic graph embedding benchmarks 71

Degree DW N2V ED2V FD2V

8 2.9059 7.4983 10.7822 3.128

Barabási 16 3.7542 11.2028 11.0561 3.2991

32 4.9607 18.0961 11.7711 3.5287

8 1.9647 4.2017 11.0151 5.1236

Erdős 16 2.183 5.1308 10.8804 4.5305

32 3.1349 7.0603 11.2604 4.586

8 1.7035 3.4277 16.0224 10.1974

Watts 16 1.9159 3.833 12.7878 5.4239

32 2.5659 4.424 11.5099 4.3079

|V| DW N2V ED2V FD2V

103 0.24 0.6099 1.0602 0.2917

Barabási 104 3.1206 8.6544 10.9499 3.0832

105 44.1338 111.0924 111.3172 35.1909

103 0.1864 0.4076 0.9999 0.9999

Erdős 104 2.107 4.4284 12.3701 10.0363

105 25.5295 45.4164 130.7681 106.2965

103 0.1738 0.3245 1.7858 1.3506

Watts 104 1.8293 3.465 17.9917 13.7024

105 21.2494 35.8815 171.218 130.4653

Table A.2: Mean sequence generation time. Columns report mean sequence
generation times based on 100 experimental replications on Barabási-Albert,
Erdős-Rényi and Watts-Strogatz graphs. In case of the average degree ex-
periments the degree was set as 8, 16 and 32 while number of vertices was
104. For the graph size benchmarks the number of vertices was set at 103,
104 and 105 while the average degree was fixed as 10.

72

Appendix B

Basic properties of the embeddings

(a) Closeness centrality

10−0.7 10−0.6 10−0.5 10−0.4

20

25

30

35

40

Closeness centrality

` 2
di

st
an

ce
fr

om
or

ig
in

(b) Degree centrality

100 101 102

20

25

30

35

40

Degree centrality

` 2
di

st
an

ce
fr

om
or

ig
in

Figure B.1: Association between the distance of vertices from the origin in latent space and node centrality measures. The dataset
we used to create the plots is the PPI network. The embedding itself was generated by FD2V with settings l = 40, d = 128, n = 10,
ŵ = 10, α = 0.025. Each scatter plot was made with a subsample of 400 randomly selected nodes. The horizontal axes measure
centrality on a log scale while the verticals measure `2distance from the origin.

Appendix B. Basic properties of the embeddings 73

(a) FD2V (b) DW

Figure B.2: Visualizing a Barabási-Albert graph based on FD2V and DW embeddings. The FD2V embedding was created with
settings such that l = 25, d = 3, n = 100, ŵ = 10, α = 0.025. Similarly, the DW embedding was created with parameter settings
of l = 80, d = 3, n = 100, ŵ = 10, α = 0.025. Feature vectors were normalized and the 1st and 3rd feature vector was used to
create visualizations. The graph itself is a Barabási-Albert tree with 150 nodes.

(a) FD2V (b) DW

Figure B.3: Visualizing a Watts-Strogatz graph based on FD2V and DW embeddings. The FD2V embedding was created with
settings such that l = 25, d = 3, n = 100, ŵ = 10, α = 0.025. Similarly, the DW embedding was created with parameter settings
of l = 80, d = 3, n = 100, ŵ = 10, α = 0.025. Feature vectors were normalized and the 1st and 3rd feature vector was used to
create visualizations. The graph is a Watts-Strogatz graph with 150 nodes, 10 neighbours per node and rewiring probability of 0.03.

Appendix B. Basic properties of the embeddings 74

(a) FD2V (b) DW

Figure B.4: Visualizing a Kleinberg Navigable Small-World graph based on FD2V and DW embeddings. The FD2V embedding
was created with settings such that l = 25, d = 3, n = 100, ŵ = 10, α = 0.025. Similarly, the DW embedding was created
with parameter settings of l = 80, d = 3, n = 100, ŵ = 10, α = 0.025. Feature vectors were normalized and the 1st and 3rd

feature vector was used to create the visualizations. The graph is a Kleinberg navigable small-world graph with 144 nodes, 1st

order neighbours, 1 random edge per node and distance exponent of 2.

(a) FD2V (b) DW

Figure B.5: Visualizing an Erdős-Rényi graph based on FD2V and DW embedding. The FD2V embedding was created with settings
such that l = 25, d = 3, n = 100, ŵ = 10, α = 0.025. Similarly, the DW embedding was created with parameter settings of l = 80,
d = 3, n = 100, ŵ = 10, α = 0.025. Feature vectors were normalized and the 1st and 3rd feature vector was used to create the
visualizations. The graph is an Erdős-Rényi graph with 150 nodes and random connection rate of 0.05.

75

Appendix C

Multi-label classification

(a) BlogCatalog

0.2 0.4 0.6 0.8

0.16

0.18

0.2

0.22

0.24

0.26

0.28

Fraction of train data

M
ac

ro
F 1

-s
co

re

(b) PPI

0.2 0.4 0.6 0.8

0.12

0.14

0.16

0.18

Fraction of train data

M
ac

ro
F 1

-s
co

re

(c) Wikipedia

0.2 0.4 0.6 0.8

0.07

0.08

0.09

0.1

0.11

Fraction of train data

M
ac

ro
F 1

-s
co

re

(d) Flickr

0.02 0.04 0.06 0.08 0.1

0.1

0.15

0.2

Fraction of train data

M
ac

ro
F 1

-s
co

re

(e) Youtube

0.02 0.04 0.06 0.08 0.1

0.28

0.3

0.32

0.34

0.36

Fraction of train data

M
ac

ro
F 1

-s
co

re

ED2V N2V DW FD2V

(f) Markercafe

0.02 0.04 0.06 0.08 0.1

0.2

0.22

0.24

0.26

0.28

Fraction of train data

M
ac

ro
F 1

-s
co

re

Figure C.1: Multi-label classification performance of logistic regression using features extracted with the sequence based graph em-
bedding methods. The classifier was fitted with `1 regularization and the regularization parameter was set as λ = 1. Embeddings
were created with parameter settings such that d = 128, n = 10, ŵ = 10, α = 0.025. We set the sequence length controlling
parameters of algorithms to be l = 80 (N2V and DW), l = 40 (ED2V) and l = 25 (FD2V). The best performing N2V inout and return
parameters were chosen with grid search over {0.25, 0.5, 1, 2, 4} using 10% of data as training set. These parameter settings and
practices ensure that we present a fair comparison of the embedding methods. The fraction of training data is on the horizontal
axis and the classification performance measured by macro F-1 score on the test set is on the vertical axis. Each point represents the
average macro F-1 score based on 10 random train-test splits. The DW and N2V embeddings for the Flickr, Youtube and Markercafe
datasets were generated with the high performance C++ implementation.

Appendix C. Multi-label classification 76

BLOGCATALOG FLICKR YOUTUBE

% Labeled nodes 40% 80% 4% 8% 4% 8%

ED2V 0.2583 0.2771 0.1824 0.2137 0.3396 0.3605

FD2V 0.2123 0.2318 0.1759 0.1942 0.3355 0.3580

N2V 0.2274 0.2401 0.1257 0.1538 0.3371 0.3618

DW 0.2056 0.2256 0.1118 0.1362 0.3312 0.3582

EdgeCluster 0.2200 0.2461 0.1672 0.2018 0.2917 0.3123

Modularity 0.2185 0.2420 0.1511 0.1710 – –

wvRN 0.1424 0.1886 0.0347 0.0659 0.2090 0.2648

Majority 0.0258 0.0248 0.0046 0.0047 0.0610 0.0616

Table C.1: Classification performance compared to other feature generation methods
measured by macro F-1. Numbers in the columns represent micro F-1 test scores on
the training dataset. Column headers are the dataset names and subheaders are the
training dataset sizes. The results of node sequence based embedding methods are
the same as the ones in Figure C.1. Baseline results were taken from the work of
Perozzi et al. (2014). Bold numbers denote the best performing method.

(a) Dimension

2 4 8 16 32 64 128 256 512

0.05

0.1

0.15

0.2

Feature vector size

M
ac

ro
F 1

-s
co

re

(b) Window size

5 10 15 20

0.19

0.2

0.21

0.22

Window size

M
ac

ro
F 1

-s
co

re

(c) Vertex set size

10 20 30 40 50 60

0.17

0.18

0.19

0.2

0.21

0.22

0.23

Vertex set size

M
ac

ro
F 1

-s
co

re

(d) Diffusions

10 20 30 40 50 60

0.16

0.18

0.2

0.22

0.24

0.26

Number of diffusions

M
ac

ro
F 1

-s
co

re

(e) Iterations

2 4 6 8

0.2

0.21

0.22

0.23

ASGD iterations

M
ac

ro
F 1

-s
co

re

ED2V FD2V

(f) Learning rate

0.05 0.1 0.15 0.2

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

Learning rate

M
ac

ro
F 1

-s
co

re

Figure C.2: Sensitivity of multi-label classification performance of logistic regression using features extracted with the D2V variants
to change of parameters. The classifier was fitted with `1 regularization and the regularization parameter was set as λ = 1.
Embeddings were created with the baseline parameter settings such that d = 128, n = 10, ŵ = 10, α = 0.025, k = 1. We set the
sequence length controlling parameters of algorithms to be l = 40 (ED2V) and l = 25 (FD2V). Embedding algorithm parameters
were tuned to show the sensitivity of the results. The manipulated parameters are on the horizontal axis and the classification
performance measured by macro F-1 score on the test set is on the vertical axis. Each point represents the average macro F-1 score
based on 10 random train-test splits. In each split we used 10% of the dataset for training and the remainder for testing.

77

Appendix D

Edge prediction

D.1 Gradient boosted trees

(a) Citeseer – `2

0.1 0.12 0.14 0.16 0.18 0.2

0.65

0.7

0.75

0.8

Minimal overlap

A
U

C

(b) Cora – `2

0.1 0.12 0.14 0.16 0.18 0.2
0.55

0.6

0.65

0.7

0.75

0.8

Minimal overlap

A
U

C

(c) Pubmed – `2

0.1 0.12 0.14 0.16 0.18 0.2

0.6

0.65

0.7

0.75

Minimal overlap

A
U

C

(d) Citeseer – Hadamard

0.1 0.12 0.14 0.16 0.18 0.2

0.72

0.74

0.76

0.78

Minimal overlap

A
U

C

(e) Cora – Hadamard

0.1 0.12 0.14 0.16 0.18 0.2

0.62

0.64

0.66

0.68

0.7

0.72

0.74

0.76

Minimal overlap

A
U

C

ED2V FD2V N2V DW

(f) Pubmed – Hadamard

0.1 0.12 0.14 0.16 0.18 0.2

0.66

0.68

0.7

0.72

0.74

Minimal overlap

A
U

C

Figure D.1: Edge prediction performance of gradient boosted classification trees using features extracted with the sequence based
graph embedding methods. The classifier was fitted with tree depth equal to 3, a learning rate of 0.1 and the number of trees
was chosen based on early stopping and 5-fold cross-validation within the training set. Embeddings were created with parameter
settings such that d = 128, n = 10, ŵ = 10, α = 0.025. We set the sequence length controlling parameters of algorithms
to be l = 80 (N2V and DW), l = 40 (ED2V) and l = 25 (FD2V). The best performing N2V inout and return parameters were
chosen with grid search over {0.25, 0.5, 1, 2, 4} using 50% of data as training set. These parameter settings and practices ensure
that we present a fair comparison of the embedding methods. In the dataset generation process 20% of edges was attenuated before
embedding. Later 20% of randomly chosen edges was added later to the edge set with a neighbourhood overlap limit. Edge features
were respectively generated by applying the `2 and Hadamard operators elementwise on the vectors describing the edge endpoint
nodes. The neighbourhood overlap is on the horizontal axis and the classification performance measured by AUC on the test set is
on the vertical axis. Each point represents the average AUC based on 10 random train-test splits. The minimal degree parameter η
was set as 2.

Appendix D. Edge prediction 78

D.2 Logistic regression

ALGORITHM ARXIV FACEBOOK CITESEER CORA PUBMED

Average

ED2V 0.7549 0.7705 0.6395 0.5810 0.7159

DW 0.7758 0.7855 0.6502 0.6215 0.6351

FD2V 0.7291 0.7668 0.5522 0.5563 0.6355

N2V 0.7968 0.8009 0.6542 0.6398 0.7594

Hadamard

ED2V 0.9793 0.9887 0.9819 0.9838 0.9911

DW 0.9801 0.9892 0.9802 0.9841 0.9931

FD2V 0.9737 0.9879 0.9496 0.9831 0.9898

N2V 0.9841 0.9895 0.9830 0.9866 0.9935

L1

ED2V 0.9197 0.9843 0.9721 0.9869 0.9938

DW 0.9728 0.9876 0.9809 0.9872 0.9877

FD2V 0.8679 0.9836 0.9008 0.9781 0.9929

N2V 0.9766 0.9878 0.9832 0.9885 0.9896

L2

ED2V 0.9210 0.9843 0.9717 0.9870 0.9941

DW 0.9736 0.9878 0.9801 0.9874 0.9878

FD2V 0.8704 0.9839 0.8971 0.9778 0.9930

N2V 0.9773 0.9879 0.9816 0.9889 0.9898

Table D.1: Edge prediction performance of logistic regression using features extracted with the se-
quence based graph embedding methods. The classifier was fitted with `1 regularization and the reg-
ularization parameter was set as λ = 1. Embeddings were created with parameter settings such that
d = 128, n = 10, ŵ = 10, α = 0.025. We set the sequence length controlling parameters of algorithms
to be l = 80 (N2V and DW), l = 40 (ED2V) and l = 25 (FD2V). The best performing N2V inout and
return parameters were chosen with grid search over {0.25, 0.5, 1, 2, 4} using 50% of data as training
set. These parameter settings and practices ensure that we present a fair comparison of the embedding
methods. In the dataset generation process 50% of edges was attenuated before embedding. Later 50%
of randomly chosen edges was added to the edge set without a neighbourhood overlap limit. Edge
features were generated by applying the `1, `2, Hadamard and average operators elementwise on the
vectors describing the edge endpoint nodes. The table reports performance measured by AUC on the
test set. Each value is the average AUC based on 10 seeded random train-test splits. Bold numbers
denote the best performing model-operator combination on a given dataset.

Appendix D. Edge prediction 79

(a) Citeseer

0.1 0.12 0.14 0.16 0.18 0.2

0.72

0.74

0.76

0.78

0.8

0.82

Minimal overlap

A
U

C

(b) Cora

0.1 0.12 0.14 0.16 0.18 0.2

0.55

0.6

0.65

0.7

0.75

0.8

Minimal overlap
A

U
C

ED2V FD2V N2V DW

(c) Pubmed

0.1 0.12 0.14 0.16 0.18 0.2

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Minimal overlap

A
U

C

Figure D.2: Edge prediction performance of logistic regression using features extracted with the sequence based graph embedding
methods. The classifier was fitted with `1 regularization the regularization parameter was set as λ = 1. Embeddings were created
with parameter settings such that d = 128, n = 10, ŵ = 10, α = 0.025. We set the sequence length controlling parameters of
algorithms to be l = 80 (N2V and DW), l = 40 (ED2V) and l = 25 (FD2V). The best performing N2V inout and return parameters
were chosen with grid search over {0.25, 0.5, 1, 2, 4} using 50% of data as training set. These parameter settings and practices ensure
that we present a fair comparison of the embedding methods. In the dataset generation process 20% of edges was attenuated before
embedding. Later 20% of randomly chosen edges was added later to the edge set with a neighbourhood overlap limit. Edge features
were generated by applying the `1 operator elementwise on the vectors describing the edge endpoint nodes. The neighbourhood
overlap is on the horizontal axis and the classification performance measured by AUC on the test set is on the vertical axis. Each
point represents the average AUC based on 10 random train-test splits. The minimal degree parameter η was set as 2.

(a) Citeseer

0.1 0.12 0.14 0.16 0.18 0.2

0.72

0.74

0.76

0.78

0.8

0.82

Minimal overlap

A
U

C

(b) Cora

0.1 0.12 0.14 0.16 0.18 0.2

0.55

0.6

0.65

0.7

0.75

0.8

Minimal overlap

A
U

C

ED2V FD2V N2V DW

(c) Pubmed

0.1 0.12 0.14 0.16 0.18 0.2

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Minimal overlap

A
U

C

Figure D.3: Edge prediction performance of logistic regression using features extracted with the sequence based graph embedding
methods. The classifier was fitted with `1 regularization the regularization parameter was set as λ = 1. Embeddings were created
with parameter settings such that d = 128, n = 10, ŵ = 10, α = 0.025. We set the sequence length controlling parameters of
algorithms to be l = 80 (N2V and DW), l = 40 (ED2V) and l = 25 (FD2V). The best performing N2V inout and return parameters
were chosen with grid search over {0.25, 0.5, 1, 2, 4} using 50% of data as training set. These parameter settings and practices ensure
that we present a fair comparison of the embedding methods. In the dataset generation process 20% of edges was attenuated before
embedding. Later 20% of randomly chosen edges was added later to the edge set with a neighbourhood overlap limit. Edge features
were generated by applying the `2 operator elementwise on the vectors describing the edge endpoint nodes. The neighbourhood
overlap is on the horizontal axis and the classification performance measured by AUC on the test set is on the vertical axis. Each
point represents the average AUC based on 10 random train-test splits. The minimal degree parameter η was set as 2.

Appendix D. Edge prediction 80

(a) Citeseer

0.1 0.12 0.14 0.16 0.18 0.2

0.7

0.72

0.74

0.76

0.78

0.8

Minimal overlap

A
U

C

(b) Cora

0.1 0.12 0.14 0.16 0.18 0.2

0.64

0.66

0.68

0.7

0.72

Minimal overlap

A
U

C

ED2V FD2V N2V DW

(c) Pubmed

0.1 0.12 0.14 0.16 0.18 0.2

0.62

0.64

0.66

0.68

0.7

0.72

0.74

Minimal overlap

A
U

C

Figure D.4: Edge prediction performance of logistic regression using features extracted with the sequence based graph embedding
methods. The classifier was fitted with `1 regularization the regularization parameter was set as λ = 1. Embeddings were created
with parameter settings such that d = 128, n = 10, ŵ = 10, α = 0.025. We set the sequence length controlling parameters of
algorithms to be l = 80 (N2V and DW), l = 40 (ED2V) and l = 25 (FD2V). The best performing N2V inout and return parameters
were chosen with grid search over {0.25, 0.5, 1, 2, 4} using 50% of data as training set. These parameter settings and practices ensure
that we present a fair comparison of the embedding methods. In the dataset generation process 20% of edges was attenuated before
embedding. Later 20% of randomly chosen edges was added later to the edge set with a neighbourhood overlap limit. Edge
features were generated by applying the average operator elementwise on the vectors describing the edge endpoint nodes. The
neighbourhood overlap is on the horizontal axis and the classification performance measured by AUC on the test set is on the
vertical axis. Each point represents the average AUC based on 10 random train-test splits. The minimal degree parameter η was set
as 2.

(a) Citeseer

0.1 0.12 0.14 0.16 0.18 0.2
0.75

0.76

0.77

0.78

0.79

0.8

0.81

Minimal overlap

A
U

C

(b) Cora

0.1 0.12 0.14 0.16 0.18 0.2

0.65

0.7

0.75

0.8

Minimal overlap

A
U

C

ED2V FD2V N2V DW

(c) Pubmed

0.1 0.12 0.14 0.16 0.18 0.2
0.7

0.71

0.72

0.73

0.74

0.75

Minimal overlap

A
U

C

Figure D.5: Edge prediction performance of logistic regression using features extracted with the sequence based graph embedding
methods. The classifier was fitted with `1 regularization the regularization parameter was set as λ = 1. Embeddings were created
with parameter settings such that d = 128, n = 10, ŵ = 10, α = 0.025. We set the sequence length controlling parameters of
algorithms to be l = 80 (N2V and DW), l = 40 (ED2V) and l = 25 (FD2V). The best performing N2V inout and return parameters
were chosen with grid search over {0.25, 0.5, 1, 2, 4} using 50% of data as training set. These parameter settings and practices ensure
that we present a fair comparison of the embedding methods. In the dataset generation process 20% of edges was attenuated before
embedding. Later 20% of randomly chosen edges was added later to the edge set with a neighbourhood overlap limit. Edge
features were generated by applying the Hadamard operator elementwise on the vectors describing the edge endpoint nodes. The
neighbourhood overlap is on the horizontal axis and the classification performance measured by AUC on the test set is on the
vertical axis. Each point represents the average AUC based on 10 random train-test splits. The minimal degree parameter η was set
as 2.

81

Appendix E

List of abbreviations

ED2V Diffusion to vector with Eulerian traceback

FD2V Diffusion to vector with endpoint traceback

DW Deep walk

N2V Node to vector

CC Closeness centrality

PDF Probability density function

AUC Area under the curve

WVRN Weighted vote relational neighbour classifier

PPI Protein-protein interaction

82

Bibliography

N. Agarwal, et al. (2009). ‘A Social Identity Approach to Identify Familiar Strangers in a Social Network.’.
In ICWSM.

A. Ahmed, et al. (2013). ‘Distributed Large-Scale Natural Graph Factorization’. In Proceedings of the 22nd
international conference on World Wide Web, pp. 37–48. ACM.

Y.-Y. Ahn, et al. (2011). ‘Flavor Network and the Principles of Food Pairing’. Scientific reports 1.

L. Akoglu, et al. (2015). ‘Graph Based Anomaly Detection and Description: a Survey’. Data Mining and
Knowledge Discovery 29(3):626–688.

F. Al Zamal, et al. (2012). ‘Homophily and Latent Attribute Inference: Inferring Latent Attributes of
Twitter Users from Neighbors.’. ICWSM 270.

R. Albert & A.-L. Barabási (2002). ‘Statistical Mechanics of Complex Networks’. Reviews of modern physics
74(1):47.

L. Backstrom, et al. (2012). ‘Four Degrees of Separation’. In Proceedings of the 4th Annual ACM Web Science
Conference, WebSci ’12, pp. 33–42. ACM.

L. Backstrom & J. Leskovec (2011). ‘Supervised Random Walks: Predicting and Recommending Links in
Social Networks’. In Proceedings of the fourth ACM international conference on Web search and data mining,
pp. 635–644. ACM.

M. Belkin & P. Niyogi (2003). ‘Laplacian Eigenmaps for Dimensionality Reduction and Data Representa-
tion’. Neural computation 15(6):1373–1396.

N. Biggs, et al. (1976). Graph Theory, 1736-1936. Oxford University Press.

V. D. Blondel, et al. (2008). ‘Fast Unfolding of Communities in Large Networks’. Journal of statistical
mechanics: theory and experiment 10.

S. Boccaletti, et al. (2006). ‘Complex Networks: Structure and Dynamics’. Physics reports 424(4):175–308.

L. Bottou (1991). ‘Stochastic Gradient Learning in Neural Networks’. Proceedings of Neuro-Nımes 91(8).

U. Brandes & D. Fleischer (2005). ‘Centrality Measures Based on Current Flow.’. In STACS, vol. 3404, pp.
533–544. Springer.

S. Cao, et al. (2015). ‘Grarep: Learning Graph Representations with Global Structural Information’. In
Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp.
891–900. ACM.

S. Cao, et al. (2016). ‘Deep Neural Networks for Learning Graph Representations’. In AAAI, pp. 1145–
1152.

BIBLIOGRAPHY 83

A. Chatr-Aryamontri, et al. (2014). ‘The BioGRID Interaction Database: 2015 Update’. Nucleic acids research
43(D1):D470–D478.

H. Chen, et al. (2005). ‘Link Prediction Approach to Collaborative Filtering’. In Digital Libraries, 2005.
JCDL’05. Proceedings of the 5th ACM/IEEE-CS Joint Conference on, pp. 141–142. IEEE.

T. Chen & C. Guestrin (2016). ‘Xgboost: A Scalable Tree Boosting System’. In Proceedings of the 22nd ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 785–794. ACM.

A. Clauset, et al. (2017). ‘Data-Driven Predictions in the Science of Science’. Science 355(6324):477–480.

A. Clauset, et al. (2004). ‘Finding Community Structure in Very Large Networks’. Physical Review 70(6).

A. Clauset, et al. (2009). ‘Power-Law Distributions in Empirical Data’. SIAM review 51(4):661–703.

G. Csardi & T. Nepusz (2006). ‘The IGraph Software Package for Complex Network Research’. InterJour-
nal, Complex Systems 1695(5):1–9.

M. Defferrard, et al. (2016). ‘Convolutional Neural Networks on Graphs with Fast Localized Spectral
Filtering’. In Advances in Neural Information Processing Systems, pp. 3844–3852.

Y. Dong, et al. (2012). ‘Link Prediction and Recommendation Across Heterogeneous Social Networks’. In
Data Mining (ICDM), 2012 IEEE 12th International Conference on, pp. 181–190. IEEE.

J. Edmonds & E. L. Johnson (1973). ‘Matching, Euler Tours and the Chinese Postman’. Mathematical
programming 5(1):88–124.

P. Erdős & A. Rényi (1960). ‘On the Evolution of Random Graphs’. Publ. Math. Inst. Hung. Acad. Sci
5(1):17–60.

M. Faloutsos, et al. (1999). ‘On Power-Law Relationships of the Internet Topology’. In ACM SIGCOMM
computer communication review, vol. 29, pp. 251–262. ACM.

M. Fire, et al. (2011). ‘Link Prediction in Social Networks Using Computationally Efficient Topological
Features’. In Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third Inernational Conference on
Social Computing (SocialCom), 2011 IEEE Third International Conference on, pp. 73–80. IEEE.

M. Fire, et al. (2013). ‘Computationally Efficient Link Prediction in a Variety of Social Networks’. ACM
Transactions on Intelligent Systems and Technology (TIST) 5(1):10.

F. Fouss, et al. (2007). ‘Random-Walk Computation of Similarities Between Nodes of a Graph with Appli-
cation to Collaborative Recommendation’. IEEE Transactions on knowledge and data engineering 19(3):355–
369.

M. Girvan & M. E. Newman (2002). ‘Community Structure in Social and Biological Networks’. Proceedings
of the National Academy of Sciences 99(12):7821–7826.

P. Goyal & E. Ferrara (2017). ‘Graph Embedding Techniques, Applications, and Performance: A Survey’.
arXiv preprint arXiv:1705.02801 .

S. Gregory (2010). ‘Finding Overlapping Communities in Networks by Label Propagation’. New Journal
of Physics 12(10):103018.

A. Grover & J. Leskovec (2016). ‘node2vec: Scalable Feature Learning for Networks’. In Proceedings of the
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.

BIBLIOGRAPHY 84

M. Gutmann & A. Hyvärinen (2010). ‘Noise-Contrastive Estimation: A New Estimation Principle for
Unnormalized Statistical Models’. In Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, pp. 297–304.

M. Huisman (2009). ‘Imputation of Missing Network Data: Some Simple Procedures’. Journal of Social
Structure 10(1):1–29.

A. Java, et al. (2007). ‘Why We Twitter: Understanding Microblogging Usage and Communities’. In
Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis,
pp. 56–65. ACM.

H. Jeong, et al. (2001). ‘Lethality and Centrality in Protein Networks’. Nature 411(6833):41–42.

D. Kempe, et al. (2003). ‘Maximizing the Spread of Influence Through a Social Network’. In Proceedings
of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 137–146.
ACM.

T. N. Kipf & M. Welling (2016a). ‘Semi-Supervised Classification with Graph Convolutional Networks’.
arXiv preprint arXiv:1609.02907 .

T. N. Kipf & M. Welling (2016b). ‘Variational Graph Auto-Encoders’. arXiv preprint arXiv:1611.07308 .

G. W. Klau & R. Weiskircher (2005). ‘Robustness and Resilience’. In Network analysis, pp. 417–437.
Springer.

J. M. Kleinberg (2000). ‘Navigation in a Small World’. Nature 406(6798):845.

G. Kossinets (2006). ‘Effects of Missing Data in Social Networks’. Social networks 28(3):247–268.

J. Leskovec, et al. (2007). ‘Graph Evolution: Densification and Shrinking Diameters’. ACM Transactions on
Knowledge Discovery from Data (TKDD) 1(1):2.

J. Leskovec & J. J. Mcauley (2012). ‘Learning to Discover Social Circles in Ego Networks’. In Advances in
neural information processing systems, pp. 539–547.

J. Leskovec & R. Sosič (2016). ‘SNAP: A General-Purpose Network Analysis and Graph-Mining Library’.
ACM Transactions on Intelligent Systems and Technology (TIST) 8(1):1.

D. Liben-Nowell & J. Kleinberg (2007). ‘The Link-Prediction Problem for Social Networks’. Journal of the
Association for Information Science and Technology 58(7):1019–1031.

Q. Lu & L. Getoor (2003). ‘Link-Based Classification’. In Proceedings of the 20th International Conference on
Machine Learning (ICML-03), pp. 496–503.

S. A. Macskassy & F. Provost (2003). ‘A Simple Relational Classifier’. In Proceedings of the Second Workshop
on Multi-Relational Data Mining (MRDM-2003) at KDD-2003. Citeseer.

M. Mahoney (2011). ‘Large Text Compression Benchmark’.

J. McAuley & J. Leskovec (2012). ‘Image Labeling on a Network: Using Social-Network Metadata for
Image Classification’. In Computer Vision-ECCV, pp. 828–841.

M. McPherson, et al. (2001). ‘Birds of a Feather: Homophily in Social Networks’. Annual review of sociology
27(1):415–444.

T. Mikolov, et al. (2013a). ‘Efficient Estimation of Word Representations in Vector Space’.

BIBLIOGRAPHY 85

T. Mikolov, et al. (2013b). ‘Distributed Representations of Words and Phrases and Their Compositionality’.
In Advances in neural information processing systems, pp. 3111–3119.

G. Namata, et al. (2012). ‘Query-Driven Active Surveying For Collective Classification’. In 10th Interna-
tional Workshop on Mining and Learning with Graphs.

A. Narayanan, et al. (2016). ‘subgraph2vec: Learning Distributed Representations of Rooted Sub-Graphs
from Large Graphs’. arXiv preprint arXiv:1606.08928 .

M. E. Newman (2003). ‘The Structure and Function of Complex Networks’. SIAM review 45(2):167–256.

M. E. Newman (2005). ‘A Measure of Betweenness Centrality Based on Random Walks’. Social networks
27(1):39–54.

M. E. Newman (2006). ‘Modularity and Community Structure in Networks’. In Proceedings of the National
Academy of Sciences of the United States of America, vol. 103 of 23, p. 8577–8696.

M. Ou, et al. (2016). ‘Asymmetric Transitivity Preserving Graph Embedding.’. In KDD, pp. 1105–1114.

P. Pascal & M. Latapy (2005). In International Symposium on Computer and Information Sciences, chap. Com-
puting Communities in Large Networks Using Random Walks., pp. 284–293. Springer Berlin Heidel-
berg.

C. Peersman, et al. (2011). ‘Predicting Age and Gender in Online Social Networks’. In Proceedings of the
3rd international workshop on Search and mining user-generated contents, pp. 37–44. ACM.

B. Perozzi, et al. (2014). ‘Deepwalk: Online Learning of Social Representations.’. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data mining.

B. Perozzi & S. Skiena (2015). ‘Exact Age Prediction in Social Networks’. In Proceedings of the 24th Interna-
tional Conference on World Wide Web, pp. 91–92. ACM.

T. Pimentel, et al. (2017). ‘Unsupervised and Scalable Algorithm for Learning Node Representations’ .

M. Rahman & M. Al Hasan (2016). ‘Link Prediction in Dynamic Networks Using Graphlet’. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 394–409. Springer.

B. Recht, et al. (2011). ‘Hogwild: A Lock-Free Approach to Parallelizing Stochastic Gradient Descent’. In
Advances in neural information processing systems, pp. 693–701.

S. Redner (1998). ‘How Popular is Your Paper? An Empirical Study of the Citation Distribution’. The
European Physical Journal B-Condensed Matter and Complex Systems 4(2):131–134.

E. Sarigöl, et al. (2014). ‘Predicting Scientific Success Based on Coauthorship Networks’. EPJ Data Science
3(1):9.

P. Sen, et al. (2008). ‘Collective Classification in Network Data’. AI magazine 29(3):93.

D. I. Shuman, et al. (2013). ‘The Emerging Field of Signal Processing on Graphs: Extending High-
Dimensional Data Analysis to Networks and Other Irregular Domains’. IEEE Signal Processing Magazine
30(3):83–98.

S. H. Strogatz (2001). ‘Exploring Complex Networks’. Nature 410(6825):268.

BIBLIOGRAPHY 86

J. Tang, et al. (2015). ‘LINE: Large-Scale Information Network Embedding’. In Proceedings of the 24th
International Conference on World Wide Web, pp. 1067–1077. International World Wide Web Conferences
Steering Committee.

L. Tang & H. Liu (2009a). ‘Relational Learning via Latent Social Dimensions’. In Proceedings of the 15th
ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 817–826. ACM.

L. Tang & H. Liu (2009b). ‘Scalable Learning of Collective Behavior Based on Sparse Social Dimensions’.
In Proceedings of the 18th ACM conference on Information and knowledge management, pp. 1107–1116. ACM.

M. Thelwall (2008). ‘Social Networks, Gender, and Friending: An Analysis of MySpace Member Profiles’.
Journal of the Association for Information Science and Technology 59(8):1321–1330.

D. Wang, et al. (2016). ‘Structural Deep Network Embedding’. In Proceedings of the 22nd ACM SIGKDD
international conference on Knowledge discovery and data mining, pp. 1225–1234. ACM.

D. J. Watts & S. H. Strogatz (1998). ‘Collective Dynamics of ’Small-World’ Networks’. Nature
393(6684):440.

J. Yang & J. Leskovec (2015). ‘Defining and Evaluating Network Communities Based on Ground-Truth’.
Knowledge and Information Systems 42(1):181–213.

Z. Yang, et al. (2016). ‘Revisiting Semi-Supervised Learning with Graph Embeddings’. In International
Conference on Machine Learning, pp. 40–48.

S. Yuan, et al. (2017). ‘SNE: Signed Network Embedding’. In Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pp. 183–195. Springer.

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Why do we need graph embeddings?
	Contributions
	Thesis outline

	Background and related work
	Basic terminology
	Graph embeddings
	Embedding procedure types
	Factorization techniques
	Sequence based embedding methods
	Deep learning

	Possible applications
	Visualization
	Node labeling
	Regression
	Edge prediction
	Community detection

	Creating node sequence based graph embeddings
	Feature generation using node sequences
	Learning the embedding

	Learning from diffusion trees
	Diffusion tree sampling
	Eulerian circuit traceback on diffusion graphs
	Fast endpoint traceback on diffusion trees

	Parallelized graph embedding based on linear node sequences

	Computational performance
	Peformance on synthetic graphs
	Graph pre-processing experiments
	Sequence generation experiments

	Performance on real graphs

	Properties of samples and embeddings
	Why diffusion tree sampling is novel?
	Node position in the latent space and centrality
	Visualizing graphs

	Applications of the embeddings
	Multi-label node classification
	Semi-supervised multi-label classification
	Comparison to other graph embedding methods
	Sensitivity to parameters

	Community detection
	Community detection with sequence based embeddings
	K-means clustering
	Hierarchical clustering

	Comparison to other community detection methods
	Sensitivity of clustering quality to hyperparameters

	Edge prediction
	Synthetic sample generation for edge prediction
	Graph attenuation
	Edge sampling with potential neighbourhood overlap
	Edge feature generation

	Edge prediction without overlap constraint
	Edge prediction with overlap constraint

	Conclusions
	Main findings
	Limitations and possible future work
	Limitations
	Possible future work

	Synthetic graph embedding benchmarks
	Basic properties of the embeddings
	Multi-label classification
	Edge prediction
	Gradient boosted trees
	Logistic regression

	List of abbreviations
	Bibliography

