
Language Integrated
Incremental Relational Lenses

Rudi Horn

Master of Science by Research
School of Informatics

University of Edinburgh

2017

Abstract
Existing work by Bohannon et al. show that it is possible to define lenses for
relational data. The idea is that the user can make updates to a view, and
the updated view is translated into updated underlying database tables. These
relational lenses suffer from being inefficient on larger databases in traditional web
server configurations. This is caused by the fact that entire database tables need
to be recomputed, which is expensive and requires the entire tables to be copied
to and from the server. The proposed solution is to incrementalize relational
lenses, so that changes to a view can be tracked as a change set. This change set
to the view is translated into a change set which is applicable to the underlying
database. During translation, any information that is required but missing from
the change set can be obtained by querying the database server.

We also implement our incremental relational lenses as a Links language ex-
tension. By offering the lenses as a language extension they become easy and
intuitive to use. It also helps prevent security issues such as injection attacks and
bugs by making use of type checking.

We evaluate the performance of our incremental lenses in comparison to a naive
version. We also compare different types of changes and how they scale with
different lens compositions. Our experiments show that incremental relational
lenses are able to outperform our naivly implemented relational lenses by a factor
of up to 300 for the total execution time and up to 10 times for the time spent
querying the database server.

iii

Acknowledgements
First of all I would like to thank my supervisor Dr. James Cheney, who took the
time for weekly meetings and always gave great and helpful feedback.

I would like to thank Wen Kokke, Simon Fowler and Casey Beall for proof reading
my thesis on short notice. All of you gave great feedback that helped a lot to
improve my thesis.

The work here also would not have been possible without the Links project and
so I would like to thank everyone who has worked on it so far. The same goes for
the authors of the Relational Lenses paper, as the work presented here heavily
relies on it.

iv

Declaration
I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualification except
as specified.

(Rudi Horn)

v

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 4
1.3 Structure of Thesis . 4

2 Background 7
2.1 Lenses . 7
2.2 Relational Databases . 8
2.3 Links Programming language . 9
2.4 Relational Lenses . 10

2.4.1 Helper Definitions . 10
2.4.2 Selection Lens . 12
2.4.3 Join Lens . 14
2.4.4 Projection Lens . 16
2.4.5 Composition Lens . 17

3 Incremental Relational Lenses 19
3.1 Overview . 19
3.2 Change Set Generation . 20
3.3 Invariant Properties . 21

3.3.1 No conflicting output . 21
3.3.2 Validity of changes . 22
3.3.3 Changes contain complements 22

3.4 Notation . 23
3.4.1 Phrase Quasiquotation . 23

3.5 Helper Definitions . 24
3.5.1 Common Functions . 24

vii

3.5.2 Sort Function . 24
3.5.3 Record Functions . 24
3.5.4 Update Set . 25

3.6 Select Lens . 26
3.7 Projection Lens . 30
3.8 Join Lens . 32

3.8.1 Notation and Assumptions 33
3.8.2 Helper Definitions . 34
3.8.3 Case Analysis . 43
3.8.4 Coverage . 51

3.9 Put Function . 52
3.9.1 Table Put . 52
3.9.2 Combined Put . 54

3.10 Discussion on Correctness . 55

4 Language Integration 57
4.1 Types . 57
4.2 Values . 58
4.3 Syntax Rules . 58
4.4 Context . 59
4.5 Evaluation . 59
4.6 Typing Rules . 61
4.7 Links Example . 63

5 Evaluation 67
5.1 Number of Input Rows . 67

5.1.1 Setup . 67
5.1.2 Analysis . 68

5.2 Number of Tables . 70
5.2.1 Setup . 70
5.2.2 Analysis . 70

6 Related Work 73
6.1 Edit Lenses . 73
6.2 Incremental View Maintenance 74
6.3 Language Integrated Query . 75

viii

7 Conclusion 79
7.1 Problem Summary . 79
7.2 Proposed Solution . 80
7.3 Results . 80
7.4 Future Work . 81

Bibliography 83

ix

Chapter 1

Introduction

1.1 Motivation

Relational databases continue to be one of the most used storage back ends for
many different types of applications, especially including web servers. These
databases offer the advantage that they are highly performant while being easy
to use and flexible enough for a range of applications. Most databases allow inter-
action using a standardized language called Structured Query Language (SQL).

The most common operations which can be used to query databases are pro-
jections, selections and joins. A projection takes a view and removes unwanted
columns, e.g. πA,B(S) in relational algebra, takes the source table S and drops all
columns except for A and B. Selections filter out rows not satisfying a specified
predicate and can be used to only return desired rows. An example of a selection
is σB=3(S) which takes the table S and removes all rows in S which do not have
the value of column B equal to 3. Finally join operations take two tables and
combine all rows which have the same values in certain columns. A special case
is the natural join, which joins all rows which have the same values in common
columns, e.g. Ron S.

A view is a modification of one or more input tables to produce an output table
and is specified as a combination of different relational operations. Views are used
to calculate data in such a way that the data can be used for different scenarios
in a given application. Being able to calculate views is a useful concept that
helps databases to be efficient. While the forward direction is trivial to calculate

1

2 Chapter 1. Introduction

and can be performed by the database server, tracking the changes back to the
underlying database is a more difficult problem that is also referred to as the view
update problem [1, 2]. Finding a method to work with updatable views would
have multiple benefits though, including:

1. Confidentiality: Views allow the hiding of sensitive information such as
rows belonging to other users or columns that are not supposed to be shown
to the user.

2. Security: The view prevents changes out of the scope of the view, including
different tables or rows that are filtered out by the view. Existing work also
specifically designs lenses with the purpose of ensuring security [3].

3. Ease of use: The programmer only has to write the code to determine
how the view is calculated and does not have to manage the minor details
of how updates are applied to the database.

The concept of having updatable views is strongly related to the field of bidirec-
tional transformations [4] and lenses [5]. In the case of relational data, lenses can
be assumed to be asymmetric lenses [6], where the source data structure is the
underlying database and the target structure is the view. Here lenses consist of a
get function, which takes the underlying database and calculates the view, and
a put operation which takes the modified view and the underlying database and
produces the updated underlying database. Additionally there are two properties
which a lens must satisfy in order for them to be well-behaved.

Existing work by Bohannon et al. [11] define a set of composable lenses for
projections, selections and joins on relational data. The relational lenses are
defined as functions which take the whole underlying database and an updated
view and return the entire updated source data structure, while satisfying the
well-behavedness properties.

The approach of recomputing the entire underlying data tables by naively follow-
ing the definitions of relational lenses is infeasible in the traditional web server
and SQL database setup. The issue is that web servers normally interface with
larger databases, which are most likely located on different servers and difficult
to manipulate directly. This means that in order to commit changes, it would be
necessary to download the required tables, recompute them and replace them on
the server. This process quickly becomes very slow for larger datasets.

1.1. Motivation 3

The approach taken here, as shown in Figure 1.1, is to try and commit changes
made to a view by calculating a change set for the underlying database, which can
be applied using the SQL INSERT, UPDATE and DELETE commands. This is done
by initially calculating a change set between the original view and a modified view
and then tracking the changes through the different lenses. By using a change
set it is now longer required to download and replace entire tables. Performing
computations on change sets which are much smaller than full database tables
reduces the amount of computation and makes it less problematic if algorithms
are less efficient.

Determining the correct change set cannot be done without having access to the
full database. It is however possible to access this information by querying the
database server, which is able to perform these operations efficiently.

��

�
���

���

�’

Δ�ΔQ�Δ�� �
��������	�

�������

��������

�	�
������	�

Figure 1.1: How changes to a view can be applied to a database.

One of the further challenges related to web programming is the abundance of
languages required for implementing an application. Web applications use Hyper-
text Markup Language (HTML) for the document layout, Cascading Style Sheets
(CSS) for document styling, JavaScript for client side code, SQL for database
communication as well as an additional programming language for server side
code. The multitude of languages makes development difficult and one attempt
to simplify this problem has been the programming language Links [7]. Links
compiles code to JavaScript which can then be executed on the client. It also
assists in generating the output page by integrating HTML document structure
elements into the host language.

Links also includes functionality for querying database servers in the form of
Language Integrated Query (LINQ). Instead of requiring the user to write SQL

4 Chapter 1. Introduction

queries, Links automatically generates SQL queries that are executed on the
database server from Links code [8, 9]. LINQ is a type-safe and easy method to
query database servers, without having to become familiar with SQL. These are
methods similar to those used in Microsoft .NET’s LINQ and Kleisli [20, 19].

We implement incremental relational lenses and show that they are more efficient
than non incremental relational lenses. We also show how they can be integrated
into Links.

1.2 Contributions

Our contribution consists primarily of a formalization of how to process view
updates to relational lenses in an incremental fashion. This allows the relational
lenses to be used in the traditional web server environment, which would normally
be infeasible. There is also no realistic report of an implementation of relational
lenses at the time of writing.

Additionally, this formalization has been implemented as a Links programming
language extension. The language extension was then used to produce some
examples, which allow the performance of the incrementalized version to be com-
pared to the naive implementation.

Finally, using the benchmarks it is possible to show that there is a major perfor-
mance benefit of using the incrementalized version over the naive implementation.
The evaluation also shows that the relational lenses are usable in the traditional
web server setup and allow the user to easily define lenses which can be updated
efficiently.

1.3 Structure of Thesis

Chapter 2 describes existing work necessary to understand the background of
this thesis. Section 2.1 contains more information on lenses and the definitions
of well-behavedness. Section 2.2 gives short overview of required knowledge on
relational databases . Section 2.3 explains the Links programming language in
more detail. Section 2.4 describes in detail the existing work on relational lenses,

1.3. Structure of Thesis 5

which form the foundation of the work presented here. Chapter 3 is about how
relational lenses are incrementalized. Chapter 4 contains details of incremen-
tal relational lenses have been integrated into the Links programming language.
Chapter 5 analyzes and discusses the performance of the implemented relational
lenses. Further related work is discussed in Chapter 6. This includes work on
edit lenses (Section 6.1), incremental view maintenance (Section 6.2) and LINQ
(Section 6.3). Finally Chapter 7 draws a conclusion and discusses future work.

Chapter 2

Background

2.1 Lenses

Lenses define bidirectional transformations between two data structures X and
Y . Lenses are typically determined by two functions, a get operation and a
put operation. The user specifies the get operation, and lenses derive the put

direction. The signatures of the two functions are usually defined as follows:

get :X → Y

put :X×Y →X

In order to try and ensure correctness, the concept of well-behaved lenses are
defined as lenses satisfying two properties. The first property, called PutGet,
ensures that whatever data we put into a lens is returned unchanged if we try
to get it again. The second property, called GetPut, ensures that if we put the
unchanged output of get(X) into a lens, X is returned unchanged.

get(put(x,y)) = y (PutGet)

put(x,get(x)) = x (GetPut)

7

8 Chapter 2. Background

2.2 Relational Databases

Relational databases are an extensive topic and there are many things to con-
sider which cannot all be covered here. In order to understand this dissertation
it is necessary to understand the basics of what databases, tables and functional
dependencies are. These are briefly covered in this section, but for further infor-
mation it is recommended to consult additional reading material [10].

Relational databases consist out of one or more tables. Tables are sets of rows,
which adhere to the same set of columns. An example of this is shown in Figure
2.1.

R A B

2 1
3 2
4 2

S B C D

1 1 5
2 2 6
3 2 7

Figure 2.1: Two examples of relational tables called R and S.

Functional dependencies are constraints between sets of columns. Functional
dependencies are written in the form X→ Y , meaning that if two rows have the
same value for all columns in X they also need the same values in all columns Y .

The example in Figure 2.1 assumes the functional dependencies A→B and B→
CD. This means that having an additional row in table R with the values (A=
3,B = 4) would be invalid, since all rows with the value A = 3 need to have
B = 2. Therefore it is valid to have the second row (A = 4,B = 2) despite the
row (A= 3,B = 2) being in the table. In the work presented here we describe the
signature of the tables as R : (A,B) and S : (B,C,D), where the underlined part
indicates which columns have to define all other columns.

Databases are normally located on different machines than the application using
them. As databases can become quite large, it is necessary to be able to retrieve
specific subsets in order for them meet application needs efficiently. In practice
this is done using the Structured Query Language (SQL). We will mainly use
the notation of relational algebra for querying databases, which for the purposes
described here can easily be converted into SQL. Specifically, three commonly

2.3. Links Programming language 9

used operations which are defined as lenses will be explained here: projections,
selections and natural joins.

Figure 2.2 shows examples for the most common relational algebra operations for
which relational lenses exist. A projection takes a table and removes specified
columns. An example is shown in Figure 2.2a, which takes the table S and
projects it onto the columns B and C. Selections filter a table according to some
predicate or filter, an example filtering all rows where B < 3 is shown in Figure
2.2b. Lastly, the natural join operation takes two tables and joins them on all
common columns J . In the example shown in Figure 2.2c, two tables R and S

are joined where J =B.

πB,C (S) B C

1 1
2 2
3 2

(a) Projection

σB<3(S) B C D

1 1 5
2 2 6

(b) Selection

Ron S A B C D

2 1 1 5
3 2 2 6
4 2 2 6

(c) Natural Join

Figure 2.2: Different relational algebra operations.

2.3 Links Programming language

The Links programming language is a language designed to unify the many dif-
ferent languages involved in web development. Web applications consist of server
side code, which is normally written in one of many of different programming
languages, client side code written in JavaScript and database queries formulated
in SQL. Links makes use of code generation techniques in order to perform some
operations on the client in JavaScript. It also makes use of Language Integrated
Query (LINQ) and LINQ to SQL techniques in order to generate queries to be
executed on the database.

While implementing relational lenses cannot be done as a library in the Links
language, it is possible to extend the language to support this feature. This is
because Links does not offer enough flexibility in its type system to be able to
type check lenses.

10 Chapter 2. Background

2.4 Relational Lenses

This work is largely based on the existing work by Bohannon et al. [11] on rela-
tional lenses. Relational lenses define the get and put operations for join, projec-
tion and selection lenses in set semantics. Each lens that is defined is equipped
with a correctness proof for both GetPut as well as PutGet. The following three
sections contain a short overview of the different relational lenses. In all of the
definitions, I refers to the unchanged database while J refers to the database
with the changed view.

2.4.1 Helper Definitions

Functional Dependencies: One restriction that Bohannon et al. sets is that
functional dependencies need to be in tree form [11]. Tree form is defined as being
able to split the set of columns (X1, . . . ,Xn) into a set of disjoint sets, which
then form an acyclic directed graph, where each edge represents a functional
dependency. This graph must also have the limitation that each node may only
appear once, and that each node may only have one edge pointing towards it.
This implies that no two functional dependencies may point to the same node
and that additionally if one node directly depends on a specific node, then no
other node can depend on a part of that node.

In the work presented here we assume that all source tables have a simple primary
key that determines all other columns.

We define the two functions, left and right, which return either the left or the
right side of all functional dependencies X → Y ∈ F :

left(F) =
⋃

X→Y ∈F
X

right(F) =
⋃

X→Y ∈F
Y

In addition, we require the definition for the roots of a set of functional depen-
dencies. Roots are all nodes of the tree graph which have an outgoing arrow but
no incoming arrows and can be defined as follows:

2.4. Relational Lenses 11

roots(F) = {X | ∃Y.X → Y and X ∩right(F) = ∅}

Sort Function:

The sort function, which takes a table/view R and returns a tuple (U,P,F), where
dom(R) = U , pred(R) = P and fd(R) = F [11]. The dom(R) function returns the
domain of the table/view R. The pred(R) returns the predicate used to query
the table/view R. The fd(R) returns the functional dependencies of R. This sort
structure contains sufficient information to perform a query on a database.

Single Dependency Record Revision: The single dependency record revision
operation takes a functional dependency X→ Y , a record m, and a set of records
N . If m and an n ∈ N have the same value for X, then it returns m′, which is
calculated by m by replacing all values for Y with those from n[Y]. Otherwise
m is returned unchanged. Both m and n are required to have the same domain
(specified as m : U and n : U). X→ Y : U says that X and Y also have to be part
of the domain U . N �X→ Y says that the set of records N needs to be modelled
by the functional dependency X → Y . The additional judgement m[X] = n[X]
states that the records m and n have identical values for all columns in X. Finally
m←+n[Y] takes all values for columns Y and adds them to the record m.

m : U n : U X → Y : U
N �X → Y n ∈N

m[X] = n[X] m′ =m←+n[Y]

m
X→Y−−−−−→
N

m′
(C-Match)

m : U n : U X → Y : U
N �X → Y m /∈N [X]

m
X→Y−−−−−→
N

m
(C-NoMatch)

General Record Revision: The general record revision operation takes a row
m and a set of records L and applies all the given functional dependencies to
m. If the set of functional dependencies is empty, then m is returned unchanged
as it means that all functional dependencies have been applied. Otherwise the
functional dependencies are split into a set of functional dependencies F and a

12 Chapter 2. Background

functional dependency X → Y , where X is in the roots of all functional depen-
dencies. The set of functional dependencies F needs to be in tree form. Single
dependency revision is applied to m to produce m′, and then general record re-
vision is applied using F and L on m′ to produce n, which is the result of the
general record revision. General record revision is defined using two inductive
rules:

m : U L : U
m

∅==⇒
L

m
(FC-Empty)

L � F,X → Y X → Y /∈ F
F in tree form X ∈ roots(F,X → Y)

m
X→Y−−−−→
L

m′ m′
F==⇒
L

n

m
F,X→Y======⇒

L
n

(FC-Step)

Relation Revision: The relation revision operation (←F) takes two sets of
records M and L, and applies general record revision to every record m∈M using
the given functional dependencies F . Relation revision is defined as follows:

M ←F L
4=
{
m′ |m F==⇒

L
m′ for some m ∈M

}
.

Relational Merge: The relational merge operation (∪←−F) applies relation revi-
sion and then merges the set N into the result of the relational revision operation.
Relational merge is defined as follows:

M
∪←−F N

4= (M →F N)∪N.

2.4.2 Selection Lens

The selection lens is defined as shown in Figure 2.3. R refers to the table in the
input I which should be filtered, while S refers to the filtered version of R in the
output J . The selection lens the set P as a parameter, which defines which records
are filtered. Since P is defined as a set, the filter must be able to be definable by
looking at a single row, ruling out aggregations and similar operations that may

2.4. Relational Lenses 13

depend on other rows. The put direction makes use of record revision in order
to apply all functional dependencies of the updated version of J(S) to all records
in I(R) that are not in the set P . In addition it merges in all records of J(S).
Any records that are in the set P but are not in J(S) are captured in N# and
then removed in order to ensure PutGet. The fd function returns the functional
dependencies of the table R.

get(I) = I\R[S 7→ P ∩ I(R)]

put(J,I) = J\S [R 7→M1\N#]

where

M1 = (¬P ∩ I(R)) ∪←−F J(S)

N# = (P ∩M1)\J(S)

F = fd(R)

Figure 2.3: The selection lens definition in set notation.

Figure 2.4 shows an example of how the put operation behaves on a selection lens.
In this example the get direction of the lens filters out the last row (A = 4,B =
2,C = 2,D = 6). This output is then modified by changing the row (A = 3,B =
2,C = 2,D = 6) so that C = 6. The functional dependencies require all rows with
B = 2 to change C = 6 and so the last row in the original table would be updated
to (A= 4,B = 2,C = 2,D = 6). This would make the row satisfy the predicate P
though, because C = 6 > 3. If σP (T) were recalculated, all three rows would be
included in the output. Since this does not satisfy PutGet, the last row needs to
be deleted entirely.

The typing rule for the select lens is given as (T-Select). The rule states that the
predicate in the output lens is equal to the intersection between the existing lens
predicate and the new predicate. There is an additional requirement that says
that the predicate for the underlying table needs to ignore the outputs of the func-
tional dependencies. This is required, because otherwise a functional dependency
update could cause the underlying tables predicate to not hold anymore.

14 Chapter 2. Background

T :=Ron S

P := C > 3∨A≤ 3

put

T A B C D

2 1 1 5
3 2 2 6
4 2 2 6

,

σP (T) A B C D

2 1 1 5
3 2 6 6

 7→
T A B C D

2 1 1 5
3 2 6 6

Figure 2.4: An example of a selection lens put operation, assuming the functional
dependencies A→B and B→ CD.

sort(R) = (U,Q,F) sort(S) = (U,P ∩Q,F)
F is in tree form Q ignores outputs(F)

select from R where P as S ∈∑]{R}⇔∑]{S} (T-Select)

2.4.3 Join Lens

The join lens takes two tables R and S from the input I and performs a natural
join to form the table T in the output J . The definitions for its put and get

operations are shown in Figure 2.5. An important requirement is that the right
table S is completely defined by the left table R. In addition, the join lens also
takes two sets Pd and Qd, which define from which table a row has to be deleted,
if it could be deleted from either. Every row has to either be in Pd or in Qd:
∀x. x ∈ Pd∨x ∈ Qd. The put direction makes use of record revision in order to
apply all functional dependencies from the output in order to apply to both input
tables I(R) and I(S) and also merges in the output while doing so to produce
M0 and N0. After this it finds all entries that would appear in the output after
joining again that need to be deleted as L, by calculating M0 onN0 and removing
all entries already in the output J(T). Using L it determines which of the entries
have to be deleted from the left table as Ll by removing all entries for which
another entry in the output exists that contains the right table. Then all records
that could be deleted from either of the tables are determined by subtracting
all entries in Ll from L. Finally, the resulting new table R is determined as all
entries in M0 without all entries in La that are also in Pd and without all entries

2.4. Relational Lenses 15

in Ll projected onto the columns of the left table R. Similarly the resulting new
table S is calculated by taking all entries in N0 and removing all entries in La

that are also in Qd and projecting it onto the columns of the right table S.

v = join template (R,Pd) (S,Qd) as T

get(I) = I\R,S [T 7→ I(R) on I(S)]

put(J,I) = J\T [R 7→M][S 7→N]

where

(U,P,F) = sort(R)

(V,Q,G) = sort(S)

M0 = I(R) ∪?←−F J(T)[U]

N0 = I(S) ∪?←−G J(T)[V]

L=M0 onN0\J(T)

Ll = Lon (J(T)[U ∩V])

La = L\Ll
M = (M0\(La∩Pd)[U])\Ll[U]

N =N0\(La∩Qd)[V]

Figure 2.5: The join lens definition in set notation.

The typing rule for the join lens is given as (T-Join). The columns of the two
lenses are combined and the predicate in the sort structure is taken as the join
of the two predicates, while the union of the both functional dependency sets
is taken. It also requires that the join key fully defines the right table and the
join key is required to be the intersection of the two columns. We assume the
case where the relational merge ∪←−F operator is used, along with Φ(U,P,F) =
F is in tree form and P ignores outputs(F).

sort(R) = (U,P,F) sort(S) = (V,Q,G)
sort(T) = (UV,P onQ,F ∪G) G � U ∩V → V

Pd∪Qd =>UV Φ(U,P,F) Φ(V,Q,D)
join template (R,Pd),(S,Qd) as T ∈∑]{R,S}⇔∑]{T} (T-Join)

16 Chapter 2. Background

Bohannon et al. also define an additional operator which can be used instead of
the relational merge operator called the squash operator where Φ(U,P,V) = true.
The squash operator removes records that conflict with functional dependencies
instead of trying to modify them to conform with other functional dependencies.
We do not consider the squash operator in the work presented here.

2.4.4 Projection Lens

The projection lens is defined as shown in Figure 2.6. It can be used to drop a
column A, which is defined by another column X and has a default value a. In
the unchanged database the table R refers to the table on which the projection is
defined, while the table S refers to the changed table in the changed database J .
The put direction works by finding all unchanged rows by performing a natural
join on I(R) and J(S), and then adds all rows that are in J(S) but not in the
input I(R) with the default value a. After this, it tries to find a row in I(R)
with the same value for the X column and uses the A columns value of that row
instead of the existing value.

get(I) = I\R[S 7→ I(R)[U −A]]

put(J,I) = J\S [R 7→M ←X→A I(R)] where

M = (I(R) on J(S))∪ (N+ on {{A= a}})

N+ = J(S)\I(R)[U −A]

U = dom(R)

Figure 2.6: The drop column definition in set notation.

The typing rule for the projection is given as (T-Drop). It says that the functional
dependencies of the left table should include X → A, which is removed from the
functional dependencies of the right table. It also ensures that A is in the columns
of the left table and is removed from the right table, while any references to A in
P should be removed. P also requires that it should be able to partition it into
a part that depends on everything except A and a part depending on A, which
can then be joined. This allows references to A to be removed from P . Finally if
it is partitioned into the two parts, the default value a should be in the set P [A].

2.4. Relational Lenses 17

sort(R) = (U,P,F) A ∈ U F ≡ F ′∪{X → A}
sort(S) = (U −A,P [U −A],F ′)

P = P [U −A] on P [A] {A= a} ∈ P [A]
drop A determined by (X,a) from R as S ∈∑]{R}⇔ {S} (T-Drop)

2.4.5 Composition Lens

The composition lens takes two lenses v and w and composes them into a single
lens. The formal definiton is shown in Figure 2.7. The get functions of the two
lenses are simply composed. The put direction requires the unchanged view of w
for v’s put, and so it is calculated using getw(I). Once the updated view of lens
w is determined, it can be put into putw along with the unchanged I.

getv,w(I) = getv(getw(I))

putv,w(J,I) = putw(putv(J,getw(I)), I)

Figure 2.7: The composition lens that takes two lenses w and v and combines them.

The typing rule for composition states that the domains of the two lenses must
coincide (⇔) with each other.

v ∈ Σ⇔ Σ′ w ∈ Σ′⇔∆
v;w ∈ Σ⇔∆ (T-Compose)

In our incremental lenses we define a put which recursively calls itself and so no
composition lens is required.

Chapter 3

Incremental Relational Lenses

3.1 Overview

Relational lenses allow an editable view of an underlying relational database to
be created. The incrementalized version of relational lenses allows changes to
these views to be converted into changes to the underlying database while not
requiring the entire database to be loaded in memory, but instead querying the
smaller amount of data required to perform a valid update.

The get operation can of a lens can easily be translated into a single database
query. For example assuming we have two tables R : (A,B,C) and S : (C,D,E) we
could define the lens T : (A,B,C,D,E) :=R ./ S. In order to propagate changes
made to this view in an incremental fashion, a few more steps are necessary. The
first task is to determine what changes have been made to the view, by comparing
the changed view to the original view. This allows us to determine which rows
have been inserted or removed. The process of generating such a change set is
described in Section 3.2.

This change set can then be taken and adapted, so that it reflects the changes
to the underlying data. In order to do this, each lens primitive is adapted to
propagate changes to the underlying lens or table. The changes go through each
lens, one after another, until the change set can be applied to the underlying
relational tables.

After propagating the change set through all the lenses, the change set is con-

19

20 Chapter 3. Incremental Relational Lenses

verted into a set of SQL commands on the underlying database tables. These
SQL commands are executed in order to push the changes to the database.

3.2 Change Set Generation

Incremental relational lenses work by taking a change set which describes the
rows that have been added, changed or deleted and maintaining this change set
through the different lenses. The user hands the lenses a modified version of
the view which describes what the view should look like. As such the first step
required for using incremental relational lenses is to generate a set of changes
compared to the unmodified view.

The change set is stored in tuples (t,m), where t is the record and m is the
multiplicity. The multiplicity signifies if a record has been added (m = +1),
deleted (m=−1) or if it is unchanged (m= 0). This work makes the assumption
that tables / views are not multi sets and that records can only exist once, which
is why −1≤m≤ 1. This is the case if all tables have keys. The change set can
be generated by finding all record tuples t which only exist in the modified view
and marking them with m= +1. Then all record tuples t which only exist in the
unmodified view are taken with m=−1 and the rest are taken with m= 0.

The unmodified rows are kept since they can aid and simplify computations at a
later stage. They are not necessarily required however, and it would be possible
to remove them.

Definition change set (T : row set) (T ′ : row set) :={
(t,−1) | t ∈ T\T ′

}
∪
{

(t,0) | t ∈ T ∩T ′
}
∪
{

(t,+1) | t ∈ T ′\T
}

An example of a change set being generated is shown in Figure 3.1. T is the view
calculated by the get direction, and T ′ is the modified view. The change set ∆T
is generated using T and T ′.

The multiplicity type is defined as follows:

Type mult :=−1 | 0 |+1.

3.3. Invariant Properties 21

T A B C D

2 1 1 5
3 2 2 6

T ′ A B C D

2 1 1 5
3 2 6 6

⇒

∆T A B C D

0 2 1 1 5
−1 3 2 2 6
+1 3 2 6 6

Figure 3.1: Change set of the input set T ′ using the unchanged view T .

The type of a change set entry is defined as:

Type change entry := row∗mult.

The type of a change set is formally defined as:

Type change set := change entry set.

3.3 Invariant Properties

3.3.1 No conflicting output

It is necessary to ensure that the output satisfies all functional dependencies.
As such all rows that appear in the output (which are all rows with m = 0 and
m = +1) need to satisfy all functional dependencies. Examples of conflicting
output are shown in (3.1), (3.2) and (3.3).

∆S A B C

+1 2 2 1
+1 2 1 1 err

(3.1)

∆S A B C

+1 1 2 1
+1 2 2 2 err

(3.2)

∆S A B C

0 2 2 1
+1 2 1 1 err

(3.3)

22 Chapter 3. Incremental Relational Lenses

3.3.2 Validity of changes

While propagating changes through each lens, we need to ensure that no impor-
tant information is lost. We cannot assume that change sets are complete, and
so we cannot calculate the correct output by simply adding rows with m = +1
and removing rows with m=−1. Instead, we assume that we always have suffi-
cient information, such that it is possible to determine the correct output given
functional dependency constraints and explicit row deletions.

We define an operation which takes a change set and produces the correct output
even if the lens change set is not complete. It is possible to determine the correct
output by removing all records from the unchanged view which are marked with
m=−1 in the change set and to then apply relational merge with all records in
the change set ∆N where m= +1. This operation will be referred to as relational
delta merge and is defined as follows:

M
∆∪←−−F ∆N 4= (M−{t | (t,m) ∈∆N ∧m=−1}) ∪←−F {t | (t,m) ∈∆N ∧m= +1} .

Given the relational delta merge operation, we define the property which all
lenses must satisify for the delta put operation, to ensure that no information
is lost during propagation. It is assumed that calling get on X using a lens l
calculates Y, where both are assumed to be a set of tables where all operations
are applied componentwise. The property says that if get on X produces Y, then
the relational delta merge of ∆Y to Y must be the same as calling get on X
after applying the changes in ∆Y to them after passing through the incremental
lens in the put direction. The property is formally defined as follows:

get l X = Y→ get l
(
X ∆∪←−−F delta put l ∆Y

)
= Y ∆∪←−−F ∆Y.

3.3.3 Changes contain complements

We assume that if we have an entry with m= +1, and there already exists a row
in the underlying table, then we need to have that entry marked with m=−1 in
the change set.

3.4. Notation 23

S A B C

2 2 1
(3.4)

∆S A B C

−1 2 2 1
+1 2 2 2

(3.5)

3.4 Notation

3.4.1 Phrase Quasiquotation

In order to better explain how queries are formed, quasiquotation type notation
is used. While we use relational algebra instead of SQL to query the database, we
still use quasiquotation to generate predicates and database modification state-
ments. In this case the symbols � and � are used to start defining a query
which is to be executed on the database server. In addition to the quasiquo-
tation, statements can be unquoted and thus diverted to local execution using
J and K. Assuming the following statement was executed in the environment
t= ”myTable”;k = ”myId”;a= 5;b= 6:

� SELECT ∗ FROM JtK WHERE JkK = Ja+ bK� .

This would result in the following actual query, without considering correct es-
caping:

SELECT ∗ FROM myTable WHERE myId= 11.

We assume that quasiquotation produces values of type phrase, which are ac-
tually abstract syntax trees. These expressions can be SQL queries as well as
boolean expressions used for predicates. In the case of SQL queries, we assume
that quasiquotation automatically handles escaping queries and ensuring that no
SQL injection attacks happen.

24 Chapter 3. Incremental Relational Lenses

3.5 Helper Definitions

3.5.1 Common Functions

The function dom(l) returns the domain of the view l, which is the set of all
columns in the view. Next, function pred(l) returns the predicate P , which is
required to query the view l. Additionally, we have the function fd which returns
the functional dependencies of a lens l.

We also define the function key(l), which returns the minimal key that uniquely
identifies a row. This key is assumed to be unique, since the functional depen-
dencies are expected to be in tree form, and thus no functional dependency cycles
can exist.

3.5.2 Sort Function

We reuse the definition of the sort function, which takes a lens / view l and
returns a tuple (U,P,F), where dom(l) = U , pred(l) = P and fd(l) = F [11]. This
sort structure contains sufficient information to perform a query on a database.

3.5.3 Record Functions

We first define a function match on, which takes two rows t and t′ and compares
all columns in cols.

Definition match on (t : row) (t′ : row) (cols : colset) :=∧{
t[c] = t′[c] | c ∈ cols

}
In addition, we define a function match on expr which produces a predicate ex-
pression usable in a query to compare all columns in cols to a record t. This
function returns a value of type phrase.

Definition match on expr (t : row) (cols : colset) :=

�
∧

J{� JcK = Jt[c]K�| c ∈ cols}K�

3.5. Helper Definitions 25

We also define a function compl rows, which takes a change entry (t,m), a change
set ∆R and a set of columns key, and finds all rows with a negated multiplicity
and the same values for the given key.

Definition compl rows ((t,m) : change entry) (∆R : change set) (key : colset) :={
(t′,m′) | (t′,m′) ∈∆R,match on t t′ cols,m′ =−m

}

3.5.4 Update Set

The invariant property for validity of changes (see Section 3.3.2) insures that
the essential information is retained between each delta put step. This essential
information can be applied using the relational delta merge operation and consists
of rows to remove and containing all necessary functional updates. Another way
to describe the functional updates is through an update set. An update set
contains the mappings of values for each functional dependency f in a set of
functional dependencies F . Example (3.6) shows the update set of a given change
set ∆R.

∆R A B C

−1 1 2 3
+1 1 3 2
−1 2 1 3
+1 2 1 4
0 3 4 5

+1 4 5 6
−1 5 6 7

⇒

A→B :
1→ 3
2→ 1
4→ 5

B→ C :
3→ 2
1→ 4
5→ 6

(3.6)

The definition of get fd updates is used, which takes a change set ∆R as well
as a functional dependency f and determines all new mappings from left(f) to
right(f). It does this by finding all changes in the change set ∆R where the
multiplicity is +1 and then projects them onto left(f) and right(f).

26 Chapter 3. Incremental Relational Lenses

Definition get fd updates (∆R : change set) (f : fundep) :=(
f,
{
πleft(fd)(t),πright(fd)(t) | (t,+1) ∈∆R

})

Using get fd updates, get updateset is defined which takes a change set ∆R as
well as the set of functional dependencies F and calculates the set of get fd updates

for each functional dependency f in F .

Definition get updateset (∆R : change set) (F : fundepset) :=

{get fd updates ∆R f | f ∈ F}

3.6 Select Lens

The select lens takes a table R, e.g. R : (A,B,C), and filters out rows that do not
satisfy a given predicate P . Since the select lens only filters entries, the output
table type T has the same type as the input table R, so for the current example
it would be T : (A,B,C). The output of a select lens is required to satisfy the
predicate P , as it would otherwise not satisfy get(put(X,Y)).

Most changes from the select lens can propagate without much change. There
are two special cases which need to be considered, though.

The first is where additional records have to be deleted. An example of this
is shown in Figure (3.2). If the user alters the result of the selection lens with
the predicate P = C > 3∨A ≤ 3, then it is necessary to delete the additional
row (A = 4,B = 2,C = 2,D = 6). This is because the functional dependency
B→ C holds, and given the changes (A = 4,B = 2,C = 2,D = 6) would change
to (A = 4,B = 2,C = 6,D = 6). This update would cause the row to satisfy P

and get would cause the row to appear in the output, which would not satisfy
PutGet.

The solution is to find all rows on the underlying table that do not satisfy P , but
do after some updated functional dependencies. For this it is necessary to be able
to determine what P would be after all functional dependencies. This is done

3.6. Select Lens 27

R A B

2 1
3 2
4 2

S B C D

1 1 5
2 2 6
3 2 7

σC>3∨A≤3(R ./ S) A B C D

2 1 1 5
3 2 2/6 6

⇒

∆(σC>3∨A≤3(R ./ S)) A B C D

0 2 1 1 5
−1 3 2 2 6
+1 3 2 6 6
−1 4 2 2 6

Figure 3.2: The correct change set that needs to be produced given the changes in
the view on the left, assuming the underlying tables R and S.

by replacing each occurance of a variable in P with an expression that would
calculate its updated value. We make use of the functional dependency update
set as described in Section 3.5.4. The example in Figure (3.3) shows the SQL
expression for the updated value of the column C, defined by the given update
set.

Update Set:
A→B :

1→ 3
2→ 1
4→ 5

B→ C :
3→ 2
1→ 4
5→ 6

⇒

Updated expression for C:
CASE

WHEN A= 1 THEN 2
WHEN A= 2 THEN 4
WHEN A= 4 THEN 6
ELSE

CASE
WHEN B = 3 THEN 2
WHEN B = 1 THEN 4
WHEN B = 5 THEN 6
ELSE C

END
END

Figure 3.3: An example of how to determine the SQL expression for the column C

given an update set.

28 Chapter 3. Incremental Relational Lenses

We build these case expressions by using the helper definition var case expr

which produces a case statement in the form CASE (WHEN left fd is satisfied

THEN value)* ELSE other END, where the when part of the statement appears
for each possible updated value for the functional dependency fd and other con-
tains a further phrase. The definition of var case expr is as follows:

Definition var case expr (map : row * phrase) (or : phrase) (fd : fundep) :=

�CASE J

{�WHEN Jmatch on expr t left (fd)K THEN JvK�| (t,v) ∈map}

K ELSE JorK END�

Using the definition for case expressions, the definition updated var expr is intro-
duced, which takes an update set upl, the key of the current table entry key and a
column col for which the expression should be produced and creates an entire case
match expression as shown in Figure 3.3. The definition of updated var expr re-
lies on an additional function calc updated var expr, which determines a CASE
expression which covers the key of the row until col and falls back to the phrase
given by or. The singleton function takes a set with one element and returns
its single element. Because the functional dependencies are assumed to be in tree
form and we are traversing up the tree, there will always only be one element in
the list.

3.6. Select Lens 29

Definition calc updated var expr (chl : change set) (key : colset) (col : colset)

(or : phrase) (map : (row * row) list option) :=

let f,changes= singleton({f,changes | (f,changes) ∈ chl,col ⊂ right(f)})

let map′ = match map with

| None→ changes

| Some map→
{

(k,v) | (k,k′) ∈ changes,(k′,v) ∈map
}

if key ⊂ left(f) then

var case expr map′ or f

else

calc update var expr chl key left(f) (var case expr map′ or f) (Some map′)

Definition updated var expr (chl : change set) (key : colset) (col : colset) :=

calc updated var expr chl key col � JcolK� None

Next, we define a function updated pred, which takes a phrase P and replaces
all occurrences of a variable node within P with a case expression calculated by
updated var expr. We assume the function phrase map exists, which takes a
phrase and function f : phrase→ phrase which maps each phrase node n onto
the phrase node f(n). The phrase map returns a value of type phrase and so
does the updated pred function.

Definition updated pred (∆R : change set) (l : lens) (P : phrase) :=

let chl := get updateset ∆R fd(l)

phrase map P (fun node→

match node with

Var n→ updated var expr chl key(l) n

→ node)

The required rows can then be queried using the following definition for query deleted rows.
We assume there is a function query, which takes a lens l and then queries the
database using SQL.

30 Chapter 3. Incremental Relational Lenses

Definition query deleted rows (∆R : change set) (l : lens) (P : phrase) :=

query
(
σ�J¬P K∧Jupdated pred ∆R S P K�(l)

)

Finally, we define the function delta put select, which takes a lens l and a
predicate P as a phrase and a change set ∆R and calculates the change set for
the underlying lens. It takes all changes in ∆R and then adds all rows which
need to be deleted.

Definition delta put select (l : lens) (P : phrase) (∆R : change set) :=

∆R∪{(t,−1) | t ∈ query deleted rows ∆R l P}

3.7 Projection Lens

The projection lens takes a table S and removes a columnA. In order to determine
this A column’s value in the put direction, the user needs to specify which column
defines its value as X. It is required that the functional dependency X→A exists.
When performing the put, the value for A is attempted to be found by looking
for a row with an identical X value in the underlying lens. If no such row is
found, then the column receives the default value a, which must also be specified
by the user in the lens definition. The output table R contains all columns of S
except for the column A.

One efficient way of determining the correct output is to query the database for
a lookup table that describes the value of all occurring X → A pairs. This can
be done by selecting all distinct values of X and A for the underlying view where
X is equal to any of the values occurring in the new view. An example of how to
lookup the values is shown in Figure 3.4.

We first define a function any match expr to generate a phrase, which finds all
rows with an X value matching any X in the change set. This function can be
defined as follows:

3.7. Projection Lens 31

S B C D

1 1 5
2 2 6
3 2 7

∆
(
πB,C(S)

)
B C

0 1 1
0 2 2
−1 3 2
+1 4 3

⇒
L B D

1 5
2 6

⇒

∆S B C D

0 1 1 5
0 2 2 6
−1 3 2 7
+1 4 3 4

with L := σB=1∨B=2∨B=4
(
πB,D(S)

)

Figure 3.4: An example of calculating the lookup table for the change set ∆
(
πB,C(S)

)
with default value 4 and the defining column set to B.

Definition any match expr (∆R : change set) (X : colset) :=

�
∨

J{match on expr t X | (t,m) ∈∆R}K�

We then define a function query lookup table which generates the lookup ta-
ble using the expression from any match expr. We assume the function called
query distinct exists, which explicitly does not return a multi set and removes
any duplicates. This is achieved by adding the keyword DISTINCT to a SQL
query. Removing duplicates ensures that the lookup table cannot be larger than
the size of the change set, since it can only be as large as the distinct number of
X values occurring in the change set. For the example shown in Figure 3.4, this
would be achieved using the following query:

SELECT DISTINCT B,D FROM S WHERE B= 1 OR B= 2 OR B= 4

The function query lookup table can formally be defined as follows:

32 Chapter 3. Incremental Relational Lenses

Definition query lookup table (∆R : change set) (l : lens) (X : colset)

(A : colset) :=

query distinct
(
σany match expr ∆R X

(
πX,A(l)

))
Next we define a helper function lookup col, which takes a row t and finds the
correct value for A using the lookup table L. It does so by trying to find an entry
in L with a matching X value, and if it does find one it uses the A value from
that entry. If no such entry is found, the default value a is taken. The function
lookup col is defined as follows:

Definition lookup col (t : row) (A : colset) (X : colset)

(a : τA) (L : row set) :=

let C =
{
t′ | t′ ∈ L,match on t t′ X

}
match C with

| []→ t∪A= a

| t′ :: T → t∪ t′[A]

We combine all the previous helper functions to define delta put project. The
lookup table L is determined using query lookup table and then each row t in
∆R is extended with the value for A which is determined by lookup col. The
function is defined as follows:

Definition delta put project (l : lens) (A : colset) (X : colset) (a : τA)

(∆R : change set) :=

let L= query lookup table ∆R l X A

{(lookup col t A X a L,m) | (t,m) ∈∆R}

3.8 Join Lens

The join lens takes two tables S and T , e.g. S : (A,B,C) and T : (C,D,E),
and performs a join in order to produce the table R, in the given example R :

3.8. Join Lens 33

(A,B,C,D,E), where each row is a combination of a row in S and a row in T

with the same value for join columns, which in the example this would be C.
In the following we use Pl to be the set of columns which transitively define the
left table. We define J as the join key. We always assume that the right table
is fully defined by join column of the left table (hence J → dom(R)), and thus
Pl→ dom(R) , since Pl→ J .

In the get direction it is easy to determine the output, since all that is necessary
is to perform the cross product on the two tables R and S, and filter those with
identical J values.

The put direction of join lenses is not uniquely defined and Bohannon et al. define
a join template which specifies two predicates Pd and Qd. The two predicates
define if the lens should attempt to delete from the left table or the right table
in an ambiguous case, and require that Pd∨Qd = true. Bohannon et al. define
three example join lenses using this template:

join dl Attempt to delete from the left table first. Pd = true and Qd = false

join dr Attempt to delete from the right table. Pd = false and Qd = true

join both Attempt to delete from both tables. Pd = true and Qd = true

Similarly, we define a template which takes two predicates Pd and Qd which works
for all three examples and additionally any further more complicated predicates
that the user may have.

We first introduce some helper definitions required by the join lens in Section
3.8.2.1 and following sections. The join lens is defined as a collection of different
cases, where we try to reason about each case individually and then ensure that
all cases are covered. The different cases are covered in the sections following
Section 3.8.3.

3.8.1 Notation and Assumptions

Given a lens or view T , the domain dom(T) is defined as all columns of T .

We use the example table R= S ./ T : (A,B,C,D,E) which is defined as the join

34 Chapter 3. Incremental Relational Lenses

of tables S : (A,B,C) and T : (C,D,E) joined on J = {C}. The defining columns
of S are PS = {A}, while the defining columns of T are PT = {C}.

The projection of a row t to the columns of left is defined as πU (t) while a
projection onto the columns of the right table is defined as πV (t).

3.8.2 Helper Definitions

3.8.2.1 Row Neutrality

In order to determine how a change entry should be handled by the join function,
we need to define some helping definitions.

The first helper function determines if a row is neutral. Neutral rows have a
multiplicity of m= 0 and indicate that the row has not been modified in any way.

An example of a neutral entry is shown in (3.7).

∆R A B C D E

0 2 1 1 2 1
(3.7)

The condition can be defined as:

Definition is neutral ((t,m) : change entry) :=m= 0

3.8.2.2 Similar Neutral Entries

The next helper function determines if there is a change entry which contains
identical values for the right side, which is also neutral.

Assuming the left table is defined as S = (A,B,C) and the right table is T =
(C,D,E), an example of where ntrl exists right = true for the change entry
({A= 2,B = 2,C = 1,D = 3,E = 2} ,−1) is shown in (3.8).

3.8. Join Lens 35

∆R A B C D E

−1 1 2 1 3 2
0 2 2 1 3 2

(3.8)

There is no complementary ntrl exists left, as this could never be true, since
the right part of a row must be fully defined by the left. The definition for
ntrl exists right is defined in such a way that it is only valid for non neutral
elements:

Definition ntrl exists right ((t,m) : change entry) (∆R : change set) (l2 : lens) :=

¬is neutral (t,m)∧∃(t′,m′) ∈∆R. m′ = 0∧match on t t′ key(l2)

3.8.2.3 Complementary Entries

Similar to determining if there is a neutral change entry, there is also a method
to determine if there is a complementary update row. The existence of a com-
plementary entry tells us that there are either updates, or if the complementary
entries are identical, that it has not been updated and is neutral. An example of
complementary rows is shown in (3.9).

∆R A B C D E

−1 1 2 1 3 5
+1 1 2 1 3 2

(3.9)

The complementary entries are divided into definitions for the left and the right
table. The only rows that can have complements are non neutral rows. The
property compl exists left is true if there exists a row with a negated m value
with the same values for the left tables key, while the property compl exists right
is true if there exists a row with a negated m value and the same values for the
right tables key. For our example both compl exists left and compl exists right
are true. We define the two properties as follows:

36 Chapter 3. Incremental Relational Lenses

Definition compl exists left ((t,m) : change entry) (∆R : change set) (l1 : lens) :=

¬is neutral (t,m)∧∃(t′,m′) ∈∆R. m′ =−m∧match on t t′ key(l1)

Definition compl exists right ((t,m) : change entry) (∆R : change set) (l2 : lens) :=

¬is neutral (t,m)∧∃(t′,m′) ∈∆R. m′ =−m∧match on t t′ key(l2)

3.8.2.4 Update Entries

We now define a property that tells us if a row which satisfies compl exists left
is also an update row for either the left table S or right table T . Looking at
the previous example (3.9) it can be seen that these rows are an update entry
for the right table T but not for the left table S. In order to determine if an
entry contains an update or is a complement without updates, we can compare
all values of dom(S) for the left table, or dom(T) for the right table and determine
if they are identical or not.

Definition upd left ((t,m) : change entry) (∆R : change set) (l1 : lens) :=

compl exists left (t,m) ∆R l1∧∃(t′,m′) ∈∆R. match on t t′ key(l1)∧

¬match on t t′ dom(l1)

Definition upd right ((t,m) : change entry) (∆R : change set) (l2 : lens) :=

compl exists right (t,m) ∆R l2∧∃(t′,m′) ∈∆R. match on t t′key(l2)∧

¬match on t t′ dom(l2)

Additionally, we defined to determine when a row has a complementary row, but
where the complementary row does not contain any differences. These properties
are defined as follows:

Definition non upd left ((t,m) : change entry) (∆R : change set) (l1 : lens) :=

compl exists left (t,m) ∆R l1∧¬upd left (t,m) ∆R l1

Definition non upd right ((t,m) : change entry) (∆R : change set) (l2 : lens) :=

compl exists right (t,m) ∆R l2∧¬upd right (t,m) ∆R l2

3.8. Join Lens 37

3.8.2.5 Find existing Entries

In some cases it is necessary to find out if there are any existing entries in the
view of the parent lens. This process is not always required, and when it is
necessary is explained in the next section. Existing entries have the same key
and are queries that are performed on the lenses of the underlying view l2. The
property found any right determines if there is a record in the right view l2

with the exact same join columns J . There is no corresponding version for the
left hand side, since this is not necessary, the reason for this is explained in the
next section.

Definition found any right ((t,m) : change entry) (l2 : lens) :=

query exists(σmatch on expr t key(l2)(l2))

A similar property called found same right is defined which tries to find an record
in l2 with the exact same values for V = dom(l2). This additional property is
defined so that it is possible to determine if the value has changed and needs to
be updated, or if it can simply be assumed to be a neutral entry.

Definition found same right ((t,m) : change entry) (l2 : lens) :=

query exists(σmatch on expr t dom(l2)(l2))

Finally, we define a property that indicates that it is an update to the underlying
table. This is the case if a record with the same key but which is not identical is
found.

Definition found upd right ((t,m) : change entry) (l2 : lens) :=

found any right (t,m) l2∧¬found same right (t,m) l2

3.8.2.6 Removed Entries

We define another property is defined which determines if part of a row has been
removed from the output completely. Note that this does not necessarily mean

38 Chapter 3. Incremental Relational Lenses

that the row has to be deleted, as a join removes entries without a matching entry
on the right table. Instead it merely states that either the left or the right part
would not appear in the output of the lens and thus may be deleted.

In the case of a change to the left table, we assume that any complementary
or neutral entries would be included in the table, since the key of the left row
uniquely identifies the row. For the right underlying table, there could be entries
that refer to the specific row which are not mentioned in the change set at all. In
order to determine if such rows exist, the database needs to be queried for any
rows with the same join key value. This query is not entirely trivial, since we
need to also consider the changes in our change set, which requires us to ignore
certain rows in the underlying database.

An example of a change set is shown in Figure 3.5. The table T is assumed to
have the functional dependencies A→ B, B→ C and C → D and the last join
operation was performed with the two tables R : (A,B,C) and S : (C,D), making
the join key C.

∆T A B C D

−1 2 1 1 5
+1 3 2 2 6
+1 4 2 2 6
−1 4 1 1 5
−1 5 3 1 5
+1 5 3 2 6

⇒

A→B :
3→ 2
4→ 2
5→ 3

B→ C :
2→ 2
3→ 2

C→D :
2→ 6

Figure 3.5: An example of a change set and its update set.

The underlying table T could have an entry (A = 6,B = 1,C = 1,D = 5) which
would prevent the deletion of the right entry (C = 1,D= 5). There can not be any
change entry with m= +1 and C = 1 since it would show up as a complementary
row in that case. This means that if there is any change to some column which
defines C, then it must be ignored since all changes cannot result in a row with

3.8. Join Lens 39

C = 1. For the given example in Figure 3.5 any rows with (A = 4) must be
ignored, since the functional dependency update says that any row with A = 4
will have B = 2,C = 2 and will thus not be relevant. This also applies for (A= 3)
and (A = 5). In addition any row with (B = 2) or (B = 3) can be ignored since
they will either have changed their B value to one in the update set and therefore
must have C 6= 1 or they will only have a new C value and have C 6= 1.

The query can be generated by determining all functional dependencies which
define the join key J as F . We then calculate the update set using the change
set, and create an expression which ignores any record which matches the key
of any update of a functional dependency in F . Next we generate an expression
for all removed rows which are being deleted and not updated, which are rows
that do not have a complementary row. We then take the two expressions and
combine them into one expression, along with an additional expression that finds
rows with the join key matching the row to be removed.

For the given example, the query would be:

C = 1∧¬(A= 2)∧¬(A= 3)∧¬(A= 4)∧¬(A= 5)∧¬(B = 2)∧¬(B = 3) .
(3.10)

The underlying SQL server could then be queried to determine if any such row
exists, which prevents having to load potentially very many rows into memory.
The above query could be turned into the following SQL query, which returns a
single scalar value indicating if such a row exists or not:

40 Chapter 3. Incremental Relational Lenses

SELECT EXISTS (

SELECT ∗ FROM R,S

WHERE R.C = S.C AND C = 1

AND NOT (A= 2)

AND NOT (A= 3)

AND NOT (A= 4)

AND NOT (A= 5)

AND NOT (B = 2)

AND NOT (B = 3)

) AS t

We first define a function removed row expr which creates a phrase that finds all
rows which have been deleted. The function takes all change entries for which no
complementary rows exist and which have the multiplicity m = −1, and creates
an expression which compares the values of the key set. These expressions are
combined into a single expression using a conjunction.

Definition removed row expr (∆R : change set) (key : colset) :=

�
∨

J{match on exprt key | (t,m) ∈∆R,m=−1,compl rows (t,m) ∆R key = ∅}K�

Next we define the function find changed rows, which finds all pairs of rows
(t, t′), where t has been removed and t′ is a complementary row in ∆R. We use
the previously defined compl rows that finds all complementary entries in ∆R
for a given change entry (t,m).

Definition find changed rows (∆R : change set) (key : colset) :={
(t, t′) | (t,m) ∈∆R,(t′,m′) ∈ compl rows (t,m) ∆R key,m=−1

}

We also define a function match changes expr, which takes a complementary
row pair (t, t′) and a set of functional dependencies fds and determines if any of
the functional dependencies match on the left but do not match on the right.

3.8. Join Lens 41

Definition match changes expr ((t, t′) : row∗ row) (fds : fundepset) :=

�
∨

J{match on expr t left(fd) | fd ∈ fds,match on t t′ left(fd),

¬match on t t′ right(fd)}K�

The function defining fds takes a set of columns key and a set of functional
dependencies and finds all functional dependencies that define the given key. This
can be done by taking all functional dependencies for which the transitive clo-
sure contains key. We assume the function closure(fd,fds) is defined, which
calculates the closure of the functional dependency fd given the functional de-
pendencies fds as a set of columns.

Definition defining fds (key : colset) (fds : fundepset) :=

{fd | fd ∈ fd,key ⊂ closure(fd,fds)}

We define a function changes expr, which takes a change set ∆R, a set of func-
tional dependencies F , and a set of columns J and then creates an expression
which matches all records which transitively define J of any entry in the change
set of ∆R. The * refers to the product type. We make use of the helper function
fd changes expr, which takes a set of changes as row * row tuples, where the
columns in the left row define the columns in the right row and a functional depen-
dency f . The helper function creates an expression matching any row which has
the same values for the columns in left(f). The columns in left(f) correspond
to the columns in the first entry of each pair tuple in the update set.

Definition fd changes expr (changes : (row * row) set) (f : fundep) :=

�
∨

J{match on expr chl left(f) | (chl,chr) ∈ rows}K�

Definition changes expr (∆R : change set) (F : fundepset) (J : colset) :=

�
∨

J{fd changes expr chl f | f ∈ defining fds J F,

(f,changes) ∈ get updateset ∆R F}K�

42 Chapter 3. Incremental Relational Lenses

We combine these helper functions to make the function create query expr,
which creates an expression that matches all entries that are not removed. This
is done by creating a conjunction out of three terms. The first term checks for
rows that match the column J for the given record. The second term removes
rows which have been marked for deletion in the change set and is constructed
using removed rows expr. The third term removes rows that have been changed
in such a way that would affect the column J , since these rows can safely be
ignored.

Definition create query expr (t : row) (∆R : change set) (Pd : colset)

(J : colset) (F : fundepset) :=

� Jmatch on expr t JK∧¬Jremoved row expr∆R PdK

∧¬Jchanges expr ∆R F JK�

Finally, we can define the properties remove entry left and remove entry right.
In the case of determining if an entry was removed from the left, we only need to
check if the entry is a deletion (m = −1) and that there are no complementary
rows using compl exists left. For the right table, we also check for neutral
rows since this is an indication we do not need to query the database server and
we then query the database server to determine if any rows with the same join key
would exist after removal of the row. We assume the function query exists(l)
is defined, which converts l into a SQL query and returns a boolean indicating
if l contains any records. We use create query expr to generate the expression
which we use to filter rows when we query the database for rows that would exist
after the join with the same join key J using query exists. The onJ operator
joins the two lenses l1 and l2 for use with the query exists function.

3.8. Join Lens 43

Definition remove entry left ((t,m) : change entry) (∆R : change set)

(l1 : lens) :=

m=−1∧¬compl exists left (t,m) ∆R l1

Definition remove entry right ((t,m) : change entry) (∆R : change set)

(l1 : lens) (l2 : lens) (J : colset) (fds : fundepset) :=

m=−1∧¬compl exists right (t,m) ∆R l2∧¬ntrl exists right (t,m) ∆R

∧¬query exists(σcreate query expr t ∆R key(l1) J fds(l1 onJ l2))

3.8.3 Case Analysis

The complication in processing the change set ∆R is determining how a change
in the change set affects each of the individual tables. We define two inductive
properties join left row and join right row in the following sections and as-
sume that if we call join left row on all records and flatten the result it will
produce a change set that can be used to perform delta put on the left table.
Similarly all the outputs of join right row can be used to produce a change set
to be used for the right table. We can define delta put join as follows:

Definition delta put join (l1 : lens) (l2 : lens) (J : colset) (Pd : phrase)

(Qd : phrase) (F : fundepset) (∆R : change set) := ⋃
(t,m)∈∆R

join left row (t,m) ∆R l1 l2 J F Pd,

⋃
(t,m)∈∆R

join right row (t,m) ∆R l1 l2 J F Qd

Instead of trying to define join left row and join right row as a single func-
tion, we try to break it down into individual cases in which we can easily reason
about the correct behaviour. These cases are defined as individual inductive prop-
erties, where assuming certain preconditions hold, the output can be calculated
in a specific way. These cases are then combined into a coverage tree as shown
in Section 3.8.4 in order to ensure that all inputs are covered.

44 Chapter 3. Incremental Relational Lenses

In all the examples rows are marked with the symbols ∗, X and err. The example
always only shows the output produced by the row marked with a ∗, not of any
other rows. Rows with an err are rows where one can reason that the row cannot
exist, and can thus be ignored. Rows with an X are assumed to also be in the
change set, but their output is not shown in the result of the example.

In all cases πU is the projection onto the domain of the left table and πV is the
projection onto the domain of the right table.

3.8.3.1 Neutral

The first case we consider is the case of a neutral entry as shown in (3.11). In this
example the row marked with a * is considered. Because the m = 0 multiplicity
implies that the row may not be changed in any way, there cannot be any other
rows with m = +1 or m = −1 with conflicting definitions for the left or right
column. There could however be a row with a completely different row on the
left, yet an identical row on the right. Such a potential row is shown and marked
with a X. The resulting entries which should be included by the entry marked
with * is shown in the outputs ∆S and ∆T .

∆R A B C D E

0 2 1 1 2 1 ∗
+1 2 2 1 2 1 err
+1 2 1 1 2 2 err
−1 2 2 3 2 1 err
+1 3 2 1 2 1 X

put−−→
join

∆S A B C

0 2 1 1
.

∆T C D E

0 1 2 1
.

(3.11)

Thus we can derive the rules:

is neutral (t,m)
join left row (t,m) ∆R l1 l2 J fds Pd = {(πU (t),0)}

is neutral (t,m)
join right row (t,m) ∆R l1 l2 J fds Qd = {(πV (t),0)}

ntrl exists right (t,m) ∆R l2
join right row (t,m) ∆R l1 l2 J fds Qd = {}

3.8. Join Lens 45

3.8.3.2 Updates

The next possible case is that there is an update for the current entry. Update
entries are a pair of entries with the same key (Pl for the left table or J for the
right table) but with non-zero negated multiplicities and differing values for any
of the non-key attributes. An example of an update to the right table is (3.12). A
complementary example of the left table is (3.13). Note that the output produced
is only defined by the entry marked by a ∗, the other row would then produce
the complementary entry required.

∆R A B C D E

−1 2 1 1 2 1 ∗
+1 2 1 1 2 2 X

put−−→
join

∆T C D E

−1 1 2 1
· · · · · ·

(3.12)

∆R A B C D E

+1 2 2 1 2 1 ∗
−1 2 1 1 2 1 X

put−−→
join

∆S A B C

+1 2 2 1
· · · · · ·

(3.13)

This suggests the following rules:

upd left (t,m) ∆R l1
join left row (t,m) ∆R l1 l2 J fds Pd = {(πU (t),m)}

upd right (t,m) ∆R l2
join right row (t,m) ∆R l1 l2 J fds Qd = {(πV (t),m)}

3.8.3.3 Non-updates

As can be seen in the example (3.14) it is also possible that a pair of complemen-
tary rows do not result in an update. This implies that there cannot be a further
entry which contradicts this and it is the equivalent of a neutral row in the out-
put. In order to prevent both the row and complementing row from producing
the same output, only the row with a negative multiplicity causes the inclusion
of a neutral row in the output. Note that this could still lead to the same neutral
entry appearing multiple times in the output, and the additional entries have to
be filtered out.

46 Chapter 3. Incremental Relational Lenses

∆R A B C D E

−1 2 1 1 2 1 ∗
+1 2 1 1 2 2 X

put−−→
join

∆S C D E

0 2 1 1
· · · · · ·

(3.14)

We can define the following further rules:

non upd left (t,m) ∆R l1 m=−1
join left row (t,m) ∆R l1 l2 J fds Pd = {(πU (t),0)}

non upd left (t,m) ∆R l1 m= +1
join left row (t,m) ∆R l1 l2 J fds Pd = {}

non upd right (t,m) ∆R l2 m=−1
join right row (t,m) ∆R l1 l2 J fds Qd = {(πV (t),0)}

non upd right (t,m) ∆R l2 m= +1
join right row (t,m) ∆R l1 l2 J fds Qd = {}

3.8.3.4 Deletions

Deletions, as defined by Bohannon et al., perform the join and then remove all
rows which are there but should not have been. An important consideration is
that the right table has to be fully defined by the join key. Given two tables with
cars and their owners, the owners would have to be the right table, as the join
column would uniquely identify an owner while an owner could have many cars.

In our case we first determine if the entry needs to be removed in either the left or
the right part. This is done using the remove entry left or remove entry right

properties. If an entry has to be removed from the left but not from the right, it
would mean that in the given example a car has been removed from the owner,
while the owner should not be deleted. As such, the only way to remove the
joined row is to remove the entry in the left table completely (which would be
the car). An example of this is shown in (3.15).

If on the other hand it has been removed from both the left and the right, then it
could be removed from either the left, the right or both tables. In this case, the

3.8. Join Lens 47

decision is deferred to the programmer who specifies two predicates Pd and Qd,
where for each row either the one or the other entry has to evaluate to true. If
Pd is true, it is deleted from the left table, while Qd causes it to be deleted from
the right.

Additionally, there is a slightly more special case if it is removed from the right
but not from the left. Consider a table of cars and a table of its owners being
joined, where the cars table is the left table and the owners table is the right
table. It would be the equivalent of a car not being removed while the owner is
being removed. This implies that the owner of the car has been changed, and the
previous car owner is not listed in any other entries in the database. In this case
the owner is never deleted as this is how the existing relational lenses are defined.
Deleting the owner would hypothetically still produce the same output however.

∆R A B C D E

−1 2 1 1 2 1 ∗
0 3 2 1 2 1 X

+1 4 2 1 2 1 X

put−−→
join

∆S A B C

−1 2 1 1
· · · · · ·

∆T C D E

0 1 2 1
· · · · · ·

(3.15)

∆R A B C D E

−1 2 1 1 2 1 ∗
+1 2 1 2 2 1 X

put−−→
join

∆S A B C

−1 2 1 1
· · · · · ·

∆T C D E

0 1 2 1
· · · · · ·

(3.16)

The rules can formally be defined as follows:

remove entry left (t,m) ∆R l1 remove entry right (t,m) ∆R l1 l2 J fds

Pd (t,m)
join left row (t,m) ∆R l1 l2 J fds Pd = {(πU (t),−1)}

remove entry left (t,m) ∆R l1 remove entry right (t,m) ∆R l1 l2 J fds

¬Pd (t,m)
join left row (t,m) ∆R l1 l2 J fds Pd = {}

48 Chapter 3. Incremental Relational Lenses

remove entry left (t,m) ∆R l1 ¬remove entry right (t,m) ∆R l1 l2 J fds

join left row (t,m) ∆R l1 l2 J fds Pd = {(πU (t),−1)}

remove entry right (t,m) ∆R l1 l2 J fds remove entry left (t,m) ∆R l1

Qd (t,m)
join right row (t,m) ∆R l1 l2 J fds Qd = {(πV (t),−1)}

remove entry right (t,m) ∆R l1 l2 J fds remove entry left (t,m) ∆R
¬Qd (t,m)

join right row (t,m) ∆R l1 l2 J fds Qd = {}

remove entry right (t,m) ∆R l1 l2 J fds ¬remove entry left (t,m) ∆R l1
join right row (t,m) ∆R l1 l2 J fds Qd = {}

3.8.3.5 Neutral Add

If the user inserts a record, and there no other entries in the change set that
refer to the same record, then it is necessary to query the database in order to
determine if such a record exists in the unchanged view. The first case that
can occur is that a record is added which already exists in the underlying tables.
This can be checked by using the found same right property. If the row is found
unchanged in the underlying database, then a neutral entry is added to the change
set. An example of this is shown in (3.17).

This can only be the case for a row in the right table, as if there was an entry
in the left table, then it would have to be in the output, since it has a foreign
key constraint. As such additions without any complements for the right side are
always included.

T A B C

1 2 1
· · ·

∆R A B C D E

+1 2 1 1 2 1 ∗

put−−→
join

∆T A B C

0 2 1 1
· · · · · ·

(3.17)

This can be formally expressed using the following rules:

3.8. Join Lens 49

¬compl exists left (t,m) ∆R l1 m= +1
join left row (t,m) ∆R l1 l2 J fds Pd = {(πU (t),+1)}

¬compl exists right (t,m) ∆R l2 m= +1 found same right (t,m) l2
join right row (t,m) ∆R l1 l2 J fds Qd = {(πV (t),0)}

3.8.3.6 New Add

The next possibility is that an entry is added when there is no existing record
with a similar key. In this case the record should simply be added to the update
list. An example is shown in (3.18).

T A B C

¬ 1 2 1
· · ·

∆R A B C D E

+1 2 1 1 2 1 ∗

put−−→
join

∆T A B C

+1 1 2 1
· · · · · ·

(3.18)

The following rule covers the case of inserting a record if there are no existing
underlying records:

¬compl exists right (t,m) ∆R l2 m= +1 ¬found any right (t,m) l2
join right row (t,m) ∆R l1 l2 J fds Qd = {(πV (t),+1)}

3.8.3.7 Update Add

The final case to consider is where an existing record exists in the underlying
table, which has the same key but is not identical. This implies that the row
needs to be updated in some form or another. Assuming that the record t′ exists
in the table T , (3.19) shows what the valid output would be for ∆T .

50 Chapter 3. Incremental Relational Lenses

T A B C

1 2 2
· · ·

∆R A B C D E

+1 2 1 1 2 2 ∗

put−−→
join

∆T A B C

−1 1 2 2
+1 1 2 1
· · · · · ·

(3.19)

¬compl exists right (t,m) ∆R l2 m= +1 found upd right (t,m) l2
t′ = singleton(query distinct(σmatch on expr tkey(l2)(l2)))

join right row (t,m) ∆R l1 l2 J fds Qd = {(πV (t),+1);(t′,−1)}

3.8. Join Lens 51

3.8.4 Coverage

One method to give us more confidence in its correctness is to show coverage of all
cases. This ensures that if all cases were correct, there are none that are missing.
In order to show coverage we depict the path as a tree, where green nodes are
termination nodes. For the entire tree to be covered, all leaf nodes need to be
termination nodes.

left row

is neutral ¬is neutral

compl exists left

upd left non upd left

¬compl exists left

m=−1

remove entry right

Pd ¬Pd

¬remove entry right

m= +1

Figure 3.6: Left row coverage tree.

right row

is neutral ¬is neutral

compl exists right

upd right non upd right

¬compl exists right

m=−1

remove entry left

Qd ¬Qd

¬remove entry left

m= +1

¬found any right found same right found upd right

Figure 3.7: Right row coverage tree.

52 Chapter 3. Incremental Relational Lenses

3.9 Put Function

3.9.1 Table Put

In order to commit changes back to the database it is necessary to convert the
change set into a set of SQL commands which can be executed on the database.
We make the assumption that the table only contains a single functional depen-
dency in the form K→ V , where K is the set of key attributes and V is the set
of all other attributes.

We first want to define a function in order to create SQL insert statements. An
example of an insert statement would be:

INSERT INTO myTable (A,B,C)

VALUES (1,2,3), (2,4,5), (3,6,7)

We first define some helper functions in order to create some of the phrase ele-
ments required. The comma separated function takes a list of phrases and flat-
tens them into a single phrase, where each phrase is separated by commas, e.g.
[� 1�,� 2�,� 3�] gets converted into � 1,2,3�.

Definition comma separated (P : phrase list) :=

� Jhd(P)K{�,p�| p ∈ tl(P)}�

The insert tuple expr takes a row r and a list of columns D and converts them
into a bracketed tuple as required by an insert statement. For example it converts
the row (A= 1,B = 2,C = 3) with D = [B,C] into � (B = 2,C = 3)�.

Definition insert tuple expr (D : col list) (r : row) :=

� (Jcomma separated {� Jr[d]K�| d ∈D}K)�

Given these two helper functions it is possible to define the function insert expr,
which takes a lens l and a set of rows R and creates a single INSERT statement
that inserts multiple values.

3.9. Put Function 53

Definition insert expr (l : lens) (R : row set)

let D = list(dom(R))

� INSERT INTO JlK (Jcomma separated {� C�| C ∈D}K)

VALUES Jcomma separated {insert tuple expr D t | t ∈R}K�

Next we define a function in order to create SQL update statements. An example
of an update statement we would like to generate is:

UPDATE my table

SET B = 2,C = 3

WHERE A= 1

We first define a helper function which allows us to generate the comma seperated
key value expressions as used after the SET keyword. The function key value expr

takes a row r and a column D and creates the required expression. An example
would be the row (A = 5,B = 6,C = 7) along with the column set [B,C] which
would produce the phrase �B = 6, C = 7�.

Definition key value expr (r : row) (D : colset) :=

� Jcomma separated {� JdK = Jr[d]K�| d ∈D}K�

We can use the previously defined match on expr function in order to produce
the predicate after the WHERE keyword along with the key value expr function
to define the update expr as follows:

Definition update expr (l : lens) (t : row) :=

�UPDATE JlK SET Jkey value expr t (dom(l)−key(l))K

WHERE Jmatch on expr t key(l)K�

Next we define an expression for producing delete statements, which can be done
using the match on expr. We define the delete expr function which takes a set

54 Chapter 3. Incremental Relational Lenses

of rows R and a lens l and produces a statement that deletes multiple rows at
once, as follows:

Definition delete expr (l : lens) (R : row set) :=

�DELETE FROM JlK WHERE
∨

J{match on expr t key(l) | t ∈R}K�

Finally we define the function table put, which takes a change set ∆R and a
lens l and generates and executes the required SQL statements. All rows with a
positive multiplicity are used to produce a SQL update statement, while all rows
without a complementary row are used to produce an insert or a delete statement,
depending on the multiplicity. We assume the function execute exists, which
executes a SQL command on the target database server.

Definition table put (l : lens) (∆R : change set) :=

execute (delete expr l {t | (t,−1) ∈∆R,compl rows (t,−1) ∆R key(l) = ∅});

execute (insert expr l {t | (t,+1) ∈∆R,compl rows (t,+1) ∆R key(l) = ∅});

{execute (update expr l t) | (t,+1) ∈∆R,compl rows (t,+1) ∆R key(l) 6= ∅}

3.9.2 Combined Put

With all our lens delta put definitions, as well as the table put definition, it is
possible to combine them in order to define a single delta put function, taking a
lens l and a change set ∆R. The function determines what type of lens l is, and
calls the corresponding delta put function. If l is a primitive lens, then it calls the
table put function, giving it a change set and committing it to the underlying
SQL database.

3.10. Discussion on Correctness 55

Definition delta put (l : lens) (∆R : change set) :=

match l with

| lens l→ table put l ∆R

| lensdrop l A X a→ delta put l (delta put project l A X a ∆R)

| lensjoin l1 l2 J Pd Qd→

let ∆R′,∆R′′ = delta put join l1 l2 J Pd Qd fd(l) ∆R

delta put l1 ∆R′; delta put l2 ∆R′′

| lensselect l P → delta put l (delta put select l P ∆R)

3.10 Discussion on Correctness

While Section 3.8.4 ensures coverage for the join lens, we don’t formally proove
correctness. Proving correctness would require a few additional steps that are
out of the scope for the work presented here.

The usual way to prove that lenses are correct involves proving that the lenses are
well-behaved and satisfy GetPut and PutGet for all possible inputs. By incremen-
talizing the lenses this process becomes more complicated because there are three
steps involved. The put operation first generates a change set, then applies all
lenses to the change set and finally submits the change set to the database. The
proof could be slightly simplified by trying to make use of the invariant properties
we mention in Section 3.3.

If we know that the ∆∪←−−F operation is sufficient to reconstruct tables, it should
be possible to prove that the property in Section 3.3.2 applies. Knowing that
this invariant property holds may make it possible to prove GetPut and PutOp.
Alternatively it may be possible to prove equivalence with the relational lenses
by Bohannon et al. [11], as they have correctness proofs.

We leave this as future work.

Chapter 4

Language Integration

Section 3 explains how to incrementalize the existing work on relational lenses.
In addition to implementing delta lenses, this work also extends the Links pro-
gramming language with incremental relational lenses as a language feature. The
incremental relational lenses are implemented with similar syntax to the proposal
by Bohannon et al.

4.1 Types

We assume that the programming language already has built in syntax and se-
mantics for database access, including a table type. In addition to the table
type, we introduce a lens type, which contains the information returned by the
sort function which was defined in Section 3.5.2. We also assume that there is a
polymorphic type set and a type row which takes a domain. This includes which
columns the lens returns, which constraints the lens has, and which functional
dependencies the data must adhere to.

τ ::= · · · | domain row

| type set

| table . . .

| lens sort

57

58 Chapter 4. Language Integration

4.2 Values

In order to simplify the type system, we define a primitive lens wrapper called
lens which takes an underlying table value. We then define additional values for
each of the different lenses.

The projection lens lensdrop takes a lens to project onto, a column which it
should drop, the key which determines the column, and an additional default
value if no other value can be determined. The join lens lensjoin takes two
lenses l1 and l2, the join key and two predicates e1 and e2 which determine
if it should try to delete from the left or right table. Finally, the select lens
lensselect takes an underlying lens and a predicate it should use to filter rows.

v ::= · · · | lens v

| lensdrop v1 x1 x2 v2

| lensjoin v1 v2 J e1 e2

| lensselect v e

4.3 Syntax Rules

This section contains definitions for the syntax rules, which define lens related
expressions for the target language. There are two rules corresponding to the get

and put operations. They both take a lens value and perform the corresponding
operation on the respective lens. The put rule also takes an updated view which
should be applied to the database. Then there are expressions to define each of
the different lenses.

e ::= · · · | get e

| put e1 to e2

| lensdrop x1 determined by x2 default e2 from e1

| lensselect from e where e

| lensjoin e1 with e2 on e3 left e4 right e5

4.4. Context 59

4.4 Context

We assume there are two contexts which are used to model side effects in the
program.

The first is the database state, which is denoted by the symbol Θ. This is needed
because the lens put operation alters the database state into a Θ′.

The second is the program context Θ, which may contain variables in the current
scope. This is needed to evaluate unquasiquoted expressions within a phrase
which may refer to other variables or functions.

We assume that an expression e evaluates to a value v under the contexts Θ and Γ
which is written Θ,Γ, e ⇓Θ′,Γ′,v1, where Θ′ and Γ′ could be updated contexts. If
we don’t care about the new states an expression evaluates to within a judgement
we also write Θ,Γ, e ⇓ v.

4.5 Evaluation

We first define three rules, which take lens expressions and convert them into lens
values. In all cases it is necessary to evaluate the child lens expressions into a lens
value first, and to then construct the new lens value using the child lens values.

The lens expression takes an expression e which evaluates to a table v and con-
structs a lens with v. While it would potentially be possible to directly use tables,
introducing a lens primitive simplifies the type system, as we are able to have a
single type for all lenses.

Γ,Θ, e ⇓ v
Γ,Θ, lens e ⇓ Γ,Θ,lens v

The lens drop statement takes two identifiers x1 and x2 and a default value e2.
The identifiers are unchanged, but the expression e1 is evaluated to determine a
constant which is used to construct the lens.

Γ,Θ, e1 ⇓ v1 Γ,Θ, e2 ⇓ v2
Γ,Θ, lensdrop x1 determined by x2 default e2 from e1 ⇓ Γ,Θ,lensdrop v1 x1 x2 v2

60 Chapter 4. Language Integration

The select lens takes two expressions for the lens and as a filter predicate. The lens
expression is evaluated to the lens value. The filter expression is convertible to
SQL and contains references to variables which correspond to column values. We
use the JKΓ notation to allow unquasiquotated expressions in JK brackets within
a phrase to be evaluated using the context Γ to constant values and then placed
in the expression.

Γ,Θ, e1 ⇓ v1
Γ,Θ, lensselect from e1 where e2 ⇓ Γ,Θ,lensselect v1 Je′2KΓ

The join lens takes two expressions for child lenses which are both evaluated to
values. Then it takes an expression e3, which must be in the form of (x1, . . . ,xn),
which is converted into a set of columns, corresponding to the join key J . The
function colset parses the expression e3 into a set of columns and is assumed to
exist. Finally, the two predicates e4 and e5, which determine where to delete the
ambiguous rows, are evaluated using the ⇓JK as described above.

Γ,Θ, e1 ⇓ v1 Γ,Θ, e2 ⇓ v2 J = colset(e3)
Γ,Θ, lensjoin e1 with e2 on e3 left e4 right e5 ⇓ Γ,Θ,lensjoin v1 v2 J Je4KΓ Je5KΓ

Finally, we define two rules for the get and put operations. The get operation
evaluates an expression e1 as v1 for a lens and evaluates lens get with v1. We
assume the function lens get exists, which uses the database state Θ to calculate
the output.

Γ,Θ, e ⇓ v1 v2 = lens get v1 Θ
Γ,Θ,get e ⇓ Γ,Θ,v2

The put operation evaluates the expression e1 as v1 for the lens and e2 as v2 as
the changed view. It then executes lens put, which we assume is a computation
with global state side effects. The result of the computation is unit, but denoted
with an ∗ to indicate the side effects from the lens put operation.

Γ,Θ, e1 ⇓ v1 Γ,Θ, e2 ⇓ v2 Θ′ = lens put v1 v2 Θ
Γ,Θ,put e1 with e2 ⇓ Γ,Θ′,()

4.6. Typing Rules 61

4.6 Typing Rules

The get function takes a lens and returns a set of rows with the columns as
specified by U in the sort of the lens.

Γ ` e1 : lens (U,P,F)
Γ ` get e : U row set

Performing a put requires a lens and a set of records. The set of records needs
to match the sort type of the lens. The original definition by Bohannon et al.
also specifies that the records need to be satisfied by the predicate, but we defer
this to runtime evaluation. It may be possible to make use of this in combination
with refinement types or similar.

Γ ` e1 : lens (U,P,F) Γ ` e2 : U row set
Γ ` put e1 with e2 : ()

A lens expression takes a table and returns something of type lens. The sort for
the lens is determined by taking the columns U and a key from the input table
K. The sort columns are U and the table is assumed to have the single functional
dependency of the key K determining all other columns U\K. Bohannon et al.
use the top set > as the predicate since their work is in set notation. The > is
replaced with true as we use the boolean expression notation.

Due to how the functional dependencies are defined, we assume that all lens ex-
pressions can only result in a valid tree form and therefore this is not explicitly
checked in each expression as is the case in the original relational lenses paper.
This is because we make the assumption that base tables contain data with a sin-
gle dependency K→ V , where K is the key and V all other non prime attributes.
The only changes to functional dependencies can happen if we join tables, where
the right table must be fully defined by the left table, and a projection where a
functional dependency is removed. Since each table can only appear once, we as-
sume that functional dependencies always satisfy tree form, as long as the typing
rules are upheld.

Γ ` e : table (U,K)
Γ ` lens e : lens (U,true,{K→ U\K})

62 Chapter 4. Language Integration

The lens drop expression takes a lens and returns something of type lens again.
The input lens has a set of columns U and an additional column x1 of type τ ,
which should be dropped. In order for it to be valid to drop the column x1, it
needs to be defined by another column x2, which is specified by the user. We
check this by trying to split the functional dependencies F into a set F ′ and the
functional dependency x1⇒ x2. F ′ is then the new set of functional dependencies
for the lens sort value. The user additionally defines a default fallback value as
the expression e2, which should evaluate to type τ to match the column.

The original definition defines the predicates in a way that P [U −A] on P [A] =
P , where A= a ∈ P [A] and P [U −A] is the new sort type. While the exact
behaviour has not been studied in depth, it implies that there may not be any
interdependency between the two columns, since we can split the predicate P
into a conjunction of two predicates with the two different columns. Since this
has not been studied yet, we assume P does not refer to x1 and we do not change
its definition.

Γ ` e1 : lens (U ∪{x1 : τ},P,F) F ≡ F ′∪{x2→ x1} Γ ` e2 : τ
Γ ` lensdrop x1 determined by x2 default e2 from e1 : lens (U,P,F ′)

The select lens expression takes a lens e1 and a predicate e2. The select lens
only filters out lenses, and therefore does not make any changes to the functional
dependencies F or the columns U . The expression e2 is checked under the context
of Γ combined with the columns U and must type check to a boolean value.

The current type checking rules do not assume unquasiquoted expressions, and
this is left as future work. In this case the predicate would have to be determined
at runtime, where the unquasiquoted parts of the expression can be evaluated in
order to produce the final expression. The predicate of the output views sort is
set to be the conjunction of the old predicate P and the expression e2.

Γ ` e1 : lens (U,P,F) Γ,U ` e2 : bool
Γ ` lensselect from e1 where e2 : lens (U,P ∧ e2,F)

The join lens takes two lens expressions e1 and e2, a join key e3 expression and
two expressions e4 and e5 to determine where to delete rows from. The expression
e3 is expected to be a tuple of column names, which can be converted into the

4.7. Links Example 63

column set J . The expressions e4 and e5 are treated like the predicate of a select
lens and must evaluate to a boolean value under the contexts Γ and U . The
relational lenses require that the left lens defines the right lens in practice we
swap the two underlying lenses if they are given in the incorrect order.

Γ ` e1 : lens (U,P1,F1) Γ ` e2 : lens (V,P2,F2)
Γ,U ` e4 : bool Γ,U ` e5 : bool

J = colset(e3) F2 � J → V

Γ ` lensjoin e1 with e2 on e3 left e4 right e5 : lens (U ∪V,(P1∧P2),F)

4.7 Links Example

In this section we show some examples of our actually implemented incremental
relational lenses code.

We make use of the existing methods for defining database and table handles. In
our running example we work with two tables. The first table is called categories
and the second table is called products. Figure 4.1 shows how a database connec-
tion and table definition can be expressed in existing syntax. These tables are
modified from the dellstore example database 1.

In Figure 4.2 we define lenses on our tables. We first define two lens wrappers
for the products and categories tables. Note that the implementation requires
the specification of table keys. This is because Links allows the specification of
multiple table keys in its native syntax. We then define a lens called productsLens,
which joins the two tables on the common column category. This lens is by
default a right delete lens, though there is syntax which allows the specification
of deletion predicates. After defining the join lens, we define a selection lens filters
all rows from the join lens with the predicate actor = “CHEVY FOSTER”. We call
this selection lens filterLens.

With the select lens filterLens we can now query the database using the get as
shown in Figure 4.3. The data can then be changed by the user using any methods
and then the put can be used to push those changes back to the database.

1https://wiki.postgresql.org/wiki/Sample_Databases

https://wiki.postgresql.org/wiki/Sample_Databases

64 Chapter 4. Language Integration

var db= database “database” “user” “host:port:user:pass”;

var categoriesTable= table “categories”

with (category : Int, categoryname : String)

tablekeys [[“category”]]

from db;

var productsTable=

table “products”

with (prod id : Int, category : Int, title : String,actor : String,

price : Float, special : Int, common prod id : Int)

tablekeys [[“prod id”]]

from db;

Figure 4.1: Defining a database connection and table handles in Links.

var productsLens=

lens productsTable tablekeys (prod id);

var categoriesLens=

lens categoriesTable tablekeys (category);

var prodCategoriesLens=

lensjoin productsLens with categoriesLens on category;

var filterLens=

lensselect from prodCategoriesLens where actor == “CHEVY FOSTER”;

Figure 4.2: Defining lenses using our incremental relational lenses extension.

4.7. Links Example 65

var data= get filterLens;

modify data to newData

put filterLens with newData

Figure 4.3: Defining lenses using our incremental relational lenses extension.

Chapter 5

Evaluation

Existing work by Bohannon et al. show that it is possible to define relational
lenses which allow updates to a view to be translated into updates to the un-
derlying relational database. These relational lenses suffer from being inefficient
on larger databases in traditional web server configurations, because the entire
database needs to be pulled and processed from the database server. The pro-
posed solution is to incrementalize relational lenses, so that changes to a view can
be tracked as a change set, which is translated into an easily applicable change
set to the underlying database. The previous chapter describes how incremental
lenses can be implemented. In this section, we evaluate the execution performance
of the defined lenses in order to determine if they can be efficiently used.

All experiments were run on an Intel Core i7-4600U with 8GB RAM. The remote
database server has 16GB RAM and an Intel Core i5-6500 CPU.

5.1 Number of Input Rows

5.1.1 Setup

We compare our implementation of incremental relational lenses to a naive im-
plementation of relational lenses. In order to measure the performance difference,
we create two tables and populate them with random data, the first containing n
rows and the second containing n/15 rows. We then perform a change by taking
a column and incrementing its value in the output view, and measure the time

67

68 Chapter 5. Evaluation

it takes to calculate the updated tables in the case of the naive version, and the
change set for the underlying tables in the incremental version. The performance
is measured in two values. The first is the total execution time, which is the
difference in timestamps before and after calling the put operation. The second
is the total query execution time, which is the sum of differences in timestamps
before and after each query execution on the database server. The naive version
queries each intermediate lens value in order to calculate the output, while the
incremental version has to query certain information depending no the lens and
the change set. The experiments were performed 5 times and the median of all
execution times was chosen. These measurements were performed on a database
server which was located on the same machine.

5.1.2 Analysis

Figure 5.1 shows the total execution performance depending on the number of
rows for both the naive implementation as well of the incremental version. The
y-axis is logarithmically scaled, as the naive version is an order of magnitude
larger than the incremental version. While the naive version takes over 8 seconds
for 10000 rows, the incremental version only needs 26 ms.

●

●

●

●

●

0 2000 4000 6000 8000 10000

1
10

10
0

10
00

10
00

0

Total Execution Time

Input Data Row Count

E
xe

cu
tio

n
T

im
e

[m
s]

● naive
incremental

Figure 5.1: The total time it takes for the put operation to complete depending on
the number of rows. The y-axis is logarithmically scaled.

5.1. Number of Input Rows 69

Figure 5.2 shows the query execution performance depending on the number of
rows. It can be seen that while the naive version takes up to 28ms for query-
ing the database, while the incremental version only spends 2ms querying the
database server. This shows that most of the total execution time of the naive
version is spent performing local computations. The reason the naive version is
so inefficient, is that most operations are implemented as an algorithm with com-
plexity O(n2). While it is possible to implement these more efficiently, part of
the problem with the naive version is that one cannot reuse the already efficient
database server implementation. In addition the query execution can only be im-
proved by making the database server more efficient, and the query time can be
viewed as a lower bound for the performance value. Not only is the incremental
version’s query execution time lower than the naive query execution time, but
the incremental total execution time is also lower than the query execution time
of the naive implementation. This shows that incrementalized relational lenses
will be more efficient than a heavily optimized naive version.

●

● ●

●

●

0 2000 4000 6000 8000 10000

0
5

10
15

20
25

30

Query Execution Time

Input Data Row Count

Q
ue

ry
 T

im
e

[m
s]

● naive
incremental

Figure 5.2: The total time spent querying the database to determine the result of
put depending on the number of rows.

70 Chapter 5. Evaluation

5.2 Number of Tables

5.2.1 Setup

In addition to determining how the number of rows affects the output of the
lens we also test how the number of input tables affects the performance. We
automatically generate n tables, each with 10000 rows. All n tables contain three
columns, p n as the primary key, p (n+ 1) as the foreign key to the next table
and a column c n which contains a random value. All foreign keys are initialized
to a value in the range of 1≤ i≤ 10000

15 . After performing a natural join on all the
lenses, the output is filtered using a select lens, to filter out for p 2 = 10. Then
for each setup we measure both the total execution time as well as the query
execution time for removing the first entry as well as for adding a new entry with
p 1 = 10001. Note that for n tables we have n− 1 joins. All benchmarks were
performed using a database server running on a remote machine.

5.2.2 Analysis

Figure 5.3 shows the total execution time depending on the number of lenses for
both the addition and the removal of an entry. In the case of the addition, we
always have n+ 1 queries which are executed on the database server. The put
operation for an added row takes 6ms for a single table, and 40ms for the same
operation with 10 tables. It shows that performance is roughly linear for both
operations, with some fluctuation most likely related to background computa-
tions. This shows that the performance is acceptable even with a large number
of tables.

The removal of a row only requires 2 queries in this example, regardless of the
number of underlying tables. As such it can be executed slightly faster than the
addition of a row, but it is still only roughly 25% faster, despite using 2 queries
instead of 11 queries in the case of 10 tables.

Figure 5.4 shows the query execution time of the same operations. It can be
seen that roughly 70% of the total execution time is spent querying the database
server. The query time ranges from 5ms to 30ms for the range of 1 to 10 tables.
The efficiency is mainly dependent on the database server instead of the local

5.2. Number of Tables 71

●

●
●

●
●

●

●

●

●

●

2 4 6 8 10

0
10

20
30

40
50

Total Execution Time

Input Table Count

E
xe

cu
tio

n
T

im
e

[m
s]

● add
remove

Figure 5.3: The total execution time of a put operation depending on the number of
input tables.

machine, and improving the efficiency of the local code will only slightly help the
overall performance.

●
●

●

●

●

● ●

●

●

●

2 4 6 8 10

0
10

20
30

40

Query Execution Time

Input Table Count

Q
ue

ry
 T

im
e

[m
s]

● add
remove

Figure 5.4: The query execution time of a put operation depending on the number
of input tables.

This experiment was also run with the naive implementation. The total execution

72 Chapter 5. Evaluation

time for the naive implementation ranged from roughly 35ms to 5min for the
different table counts, and the total query time ranged from roughly 14ms to
414ms. This shows that the incremental lenses are more efficient than it would
most likely by possible to improve the naive versions efficiency.

Chapter 6

Related Work

6.1 Edit Lenses

The work presented here tries to solve a problem similar to the one solved by
edit lenses [12]. Lenses are typically bidirectional transformations that contain
two functions for each direction. The get function maps a source data structure
x ∈X to a target data structure y ∈ Y . In the other direction, the put function
maps a y ∈ Y together with the x ∈X in order to produce an updated x′ ∈X.

Edit lenses differ from regular lenses by mapping changes in a data structure
x ∈ X to changes in a data structure y ∈ Y , instead of directly mapping the
data structures to each other. Edit lenses try to solve the issue of alignment
[13], where lenses can have difficulties matching up information between the two
data structures. Edit lenses can also be symmetric bidirectional transformations,
where each of the data structures may contain information that the other does
not include and so neither of the data structures can be used to fully compute
the other one.

The assumption is that edit lenses receive changes in the form of insertions, mod-
ifications, deletions and potentially further changes such as reorders and similar.
Since these changes are primitive it is easier to map them to changes in a corre-
sponding data structure, since one assumes that between each command the two
are kept in sync. An example is a list, where inserting a new record immediately
results in the insertion of a record in the right list at the same position.

73

74 Chapter 6. Related Work

The incremental lenses as described here also try to keep track of changes, except
that the changes are computed by comparing the two views, instead of primitive
commands which are applied to the data structure. This means that the changes
are much more primitive and essentially limited to insertions and deletions, but
this is not necessarily problematic as we assume we are working with unordered
relational data. Relational data assumes functional dependencies which have to
be kept track of and ensured. Specifically this means that changes to one row
can cause changes to another row, and additional steps are necessary to ensure
that PutGet and GetPut are not violated.

6.2 Incremental View Maintenance

The priority set in the work presented here is to make it feasible to propagate
updates in the put direction. The application for this is when the user makes
changes to a view and wishes to have his changes applied to the database. This
problem also exists in the get direction, where it may be desirable to update
materialized views when the underlying database has been changed. Maintaining
views is generally desirable for performance reasons, since recalculating an entire
view may be expensive, while only changing a few rows may be more efficient.

Like the view update problem incrementally updating views has been a long stud-
ied problem. There have been many different formalizations for updating views
[14, 15]. A nice modern approach to this problem, has been to view databases
from a mathematical perspective, and to consider views as a function for which
a delta can be computed [16]. In this approach a view can be described as a
function f which takes a set from A which is to be changed, and a further set of
sets from Θ which are also used to compute the view. Given the function f it is
possible to determine the delta function ∆f , which takes a set from A, a set of
further sets from Θ and a set of changes U .

f :A×Θ→ A′

∆f :A×Θ×U → A′

We assume the operator + exists, which takes a set of changes u ∈ U and applies

6.3. Language Integrated Query 75

it to the set a ∈ A. Similar to a derivative, it then allows us to calculate an
updated view using the previous view result as follows:

f(x+u,θ) = f(x,θ) + (∆f)(x,θ,u)

This is similar to how, given the definition of a regular derivative f ′(x), it is
possible to calculate f(x+h) as follows:

f ′(x) = limµ→0,µ>0
f(x+µ)−f(x)

µ

f(x+h)≈ f(x) +h ·f ′(x)

This method can be extended in order to calculate higher order deltas. In addition
it can be shown that with each further gradient, the expression becomes simpler
and less expensive to compute. This technique makes it possible to show that it
is less complicated to update the view using incremental view maintenance than
it is to recalculate the entire view.

6.3 Language Integrated Query

One important concept related to the practical use of databases is language in-
tegrated query [17]. There are different forms of language integrated query, but
in general language integrated query extends a programming language with the
ability to express queries in the host language, which can be converted into an
expression for a target language, e.g. SQL for relational databases, so that the
expression can be executed efficiently on the target system. This is usually ac-
companied by the ability to execute an expression on the local system with the
same syntax, meaning that by learning the host language the user already learns
how to interact with other systems. An example of a LINQ statement is shown
in Figure 6.1.

There are different implementations of language integrated query, the most no-
table and widespread of which is Microsoft LINQ, which supports querying databases
using LINQ to SQL as well as further extensions for parallel computations and

76 Chapter 6. Related Work

var res= from x in l

where x.Name=′ bob′

select x.Age

Figure 6.1: An example query in the syntax of Microsoft LINQ.

XML views [18]. Kleisli is another example of a collection programming language
for biological databases using language integrated query [19]. Furthermore Links
itself already supports a form of language integrated query [7].

One important aspect of language integrated query is meta-programming [20].
Meta-programming includes features like quasiquotation which allow language
expressions to be parsed as syntax trees which can then be read and modified
during execution. Furthermore, these expressions can be compiled back into
executable code if required. This is used to take the expression which is used to
query the database and to convert it to the target language (e.g. SQL).

Most existing work on language integrated query is more focused on the forward
direction and generally only supports a primitive put back system. Microsoft
makes use of the Microsoft Entity Framework, which allows table columns to be
mapped to class objects [21]. The objects then keep track of any changes made to
them, so that when all changes are committed, the changes can be converted to
SQL code which is sent to the database server. Newly created objects or deleted
objects can be marked for insertion or for deletion.

Links has been extended with syntax similar to SQL for insert, update and delete
expressions. Figure 6.2 shows the syntax of how to perform modifications to the
database as taken from the developer manual. While both of these approaches
are useful, both of them require require some understanding of how the changes
need to be applied.

6.3. Language Integrated Query 77

insert t values (f1, . . . ,fk) rs

update (var r← t)

where condition

set (f1 = v1, . . . ,fn = vn)

delete (var r← t)

where condition

Figure 6.2: The language syntax for insertions, deletions and updates for database
entries.

Chapter 7

Conclusion

7.1 Problem Summary

Existing work by Bohannon et al. introduce the concept of relational lenses,
which define bidirectional transformations for relational data [11]. Relational
lenses define a set of operations which allow a view to be calculated, and give a
correct and well-behaved method of applying an updated view to the underlying
data source.

These relational lenses are defined as relational algebra operations however, and
cannot easily and efficiently be applied to traditional web server setups, which re-
quire communication via SQL. Instead they would require the client to download
entire tables and perform costly operations, which quickly become inefficient on
larger datasets.

A common method for making interfacing databases easier and safer is LINQ.
LINQ which allows database queries to be formulated in native language con-
structs. The native language constructs can then be converted into efficiently
executable SQL [7, 17, 19, 20]. These approaches mainly focus on the aspect of
querying databases, and either require the user to formulate changes similar to
queries [7] or track the underlying tables as entities and do not allow changes to
views [21].

79

80 Chapter 7. Conclusion

7.2 Proposed Solution

The proposed solution is extending the existing work on relational lenses by
Bohannon et al. and incrementalizing it so that it keeps track of changes instead
of working on the entire set of data, similar to edit lenses [12] or existing work on
incremental view maintenance [16]. This allows changes to be handled much more
efficiently, since it is only necessary to process smaller amounts of data and any
further required data can be queried from the database server. This solution also
allows the efficiency of the database server to be reused, without requiring highly
optimized relational operations to be implemented by the local application.

These operations are also implemented as language integrated features, which
allow the user to define lenses which are typechecked and prevent SQL injection
attacks. They are also easier to learn, because the programmer doesn’t have to
be familiar with SQL and instead only has to learn the host language syntax. In
addition, the user can write an application that manipulates the view, without
having to worry about how the changes to the view are propagated back to the
database. This makes the lenses intuitive and easy to use.

7.3 Results

In addition to formalizing incremental relational lenses, they were also imple-
mented as a Links language extension. Using the implementation performance
experiments were run and they were compared to naive lenses which queried the
entire database from the server and then recalculated the entire underlying table.

The performance experiments show that the naive implementation quickly be-
comes inefficient, and not only does querying entire views quickly become ex-
pensive, but performing the local calculations with naive implementations can
quickly require execution times in the magnitude of minutes instead of millisec-
onds. The incremental version on the other hand, is able to perform updates
within tens of milliseconds even in complicated cases of up to 10 joins, requiring
only little computation on the local machine.

7.4. Future Work 81

7.4 Future Work

The work presented here is not formally verified and one important step required
for practical use would be to ensure that the implementation described here con-
forms to the existing work on relational lenses. This includes the language inte-
gration side, for which progress and preservation could be proven. It would also
be good to analyze further complications such as conflicts between updates and
how performance could be improved. Additionally a more precise performance
model of the current implementation would be helpful to determine how feasible
it would be in practical environments. It would also be good to determine how
the performance of the queries run on the database behaves.

The work presented by Bohannon also allows different merge operators for the
join template, and suggests an additional squash operator which allows for more
generic tables, since they do not have the requirement of being in tree form
anymore. This operator has not been considered in the work here and has been
left as future work.

The language integration syntax is still modelled on the version by Bohannon
et al., which is relational lens specific and requires the user to learn the syntax.
Links’ language integrated query currently makes use of list comprehensions and
using similar syntax for defining relational lenses would be more intuitive and less
work to learn. Links models joins as nested comprehensions and supports a more
powerful syntax, which may not easily be translatable to individual lenses. It
would be interesting to combine relational lenses with existing syntax for manip-
ulating tables, where instead of performing the insert / update / delete operation
on a table it is performed on the lens. This could be done by converting the
changes to a change set and then propagating it through the lens.

Bibliography

[1] U. Dayal and P. A. Bernstein, “On the correct translation of update opera-
tions on relational views,” ACM Transactions on Database Systems (TODS),
vol. 7, no. 3, pp. 381–416, 1982.

[2] F. Bancilhon and N. Spyratos, “Update semantics of relational views,” ACM
Transactions on Database Systems (TODS), vol. 6, no. 4, pp. 557–575, 1981.

[3] J. N. Foster, B. C. Pierce, and S. Zdancewic, “Updatable security views,”
in Computer Security Foundations Symposium, 2009. CSF’09. 22nd IEEE.
IEEE, 2009, pp. 60–74.

[4] P. Stevens, “A landscape of bidirectional model transformations.” GTTSE,
vol. 5235, pp. 408–424, 2007.

[5] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and A. Schmitt,
“Combinators for bidirectional tree transformations: A linguistic approach to
the view-update problem,” ACM Transactions on Programming Languages
and Systems (TOPLAS), vol. 29, no. 3, p. 17, 2007.

[6] M. Hofmann, B. Pierce, and D. Wagner, “Symmetric lenses,” in ACM
SIGPLAN Notices, vol. 46, no. 1. ACM, 2011, pp. 371–384.

[7] E. Cooper, S. Lindley, P. Wadler, and J. Yallop, “Links: Web programming
without tiers,” in Formal Methods for Components and Objects. Springer,
2007, pp. 266–296.

[8] J. Cheney, S. Lindley, G. Radanne, and P. Wadler, “Effective quotation,”
2014.

[9] J. Cheney, S. Lindley, and P. Wadler, “Query shredding: efficient relational
evaluation of queries over nested multisets,” in Proceedings of the 2014 ACM

83

84 Bibliography

SIGMOD international conference on Management of data. ACM, 2014, pp.
1027–1038.

[10] S. Abiteboul, R. Hull, and V. Vianu, Foundations of databases: the logical
level. Addison-Wesley Longman Publishing Co., Inc., 1995.

[11] A. Bohannon, B. C. Pierce, and J. A. Vaughan, “Relational lenses: a
language for updatable views,” in Proceedings of the twenty-fifth ACM
SIGMOD-SIGACT-SIGART symposium on Principles of database systems.
ACM, 2006, pp. 338–347.

[12] M. Hofmann, B. Pierce, and D. Wagner, “Edit lenses,” in ACM SIGPLAN
Notices, vol. 47, no. 1. ACM, 2012, pp. 495–508.

[13] D. M. Barbosa, J. Cretin, N. Foster, M. Greenberg, and B. C. Pierce, “Match-
ing lenses: alignment and view update,” in ACM Sigplan Notices, vol. 45,
no. 9. ACM, 2010, pp. 193–204.

[14] X. Qian and G. Wiederhold, “Incremental recomputation of active relational
expressions,” IEEE transactions on knowledge and data engineering, vol. 3,
no. 3, pp. 337–341, 1991.

[15] T. Griffin, L. Libkin, and H. Trickey, “An improved algorithm for the incre-
mental recomputation of active relational expressions,” IEEE Transactions
on Knowledge and Data Engineering, vol. 9, no. 3, pp. 508–511, 1997.

[16] C. Koch, “Incremental query evaluation in a ring of databases,”
in Proceedings of the twenty-ninth ACM SIGMOD-SIGACT-SIGART
symposium on Principles of database systems. ACM, 2010, pp. 87–98.

[17] J. Cheney, S. Lindley, and P. Wadler, “A practical theory of language-
integrated query,” ACM SIGPLAN Notices, vol. 48, no. 9, pp. 403–416,
2013.

[18] D. Kulkarni, L. Bolognese, M. Warren, A. Hejlsberg, and K. George,
“Linq to sql: .net language-integrated query for relational data,”
MSDN .NET Framework Developer Center (http://msdn. microsoft.
com/enus/library/bb425822. aspx), 2007.

[19] L. Wong, “Kleisli, a functional query system,” Journal of Functional
Programming, vol. 10, no. 1, pp. 19–56, 2000.

Bibliography 85

[20] D. Syme, “Leveraging .net meta-programming components from f#: inte-
grated queries and interoperable heterogeneous execution,” in Proceedings
of the 2006 workshop on ML. ACM, 2006, pp. 43–54.

[21] A. Adya, J. A. Blakeley, S. Melnik, and S. Muralidhar, “Anatomy of the
ado. net entity framework,” in Proceedings of the 2007 ACM SIGMOD
international conference on Management of data. ACM, 2007, pp. 877–
888.

	Introduction
	Motivation
	Contributions
	Structure of Thesis

	Background
	Lenses
	Relational Databases
	Links Programming language
	Relational Lenses
	Helper Definitions
	Selection Lens
	Join Lens
	Projection Lens
	Composition Lens

	Incremental Relational Lenses
	Overview
	Change Set Generation
	Invariant Properties
	No conflicting output
	Validity of changes
	Changes contain complements

	Notation
	Phrase Quasiquotation

	Helper Definitions
	Common Functions
	Sort Function
	Record Functions
	Update Set

	Select Lens
	Projection Lens
	Join Lens
	Notation and Assumptions
	Helper Definitions
	Case Analysis
	Coverage

	Put Function
	Table Put
	Combined Put

	Discussion on Correctness

	Language Integration
	Types
	Values
	Syntax Rules
	Context
	Evaluation
	Typing Rules
	Links Example

	Evaluation
	Number of Input Rows
	Setup
	Analysis

	Number of Tables
	Setup
	Analysis

	Related Work
	Edit Lenses
	Incremental View Maintenance
	Language Integrated Query

	Conclusion
	Problem Summary
	Proposed Solution
	Results
	Future Work

	Bibliography

