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Abstract

This project explores several probabilistic models for forecasting the outcomes of pro-

fessional tennis matches. These models focus on addressing the effects of surface type

and the variation of player skills through time. The models are trained and evaluated

on an historical data set of approximately 45,000 tennis matches between 2000 and

2017. Within the models, free parameters are used to represent the skills of players

and the characteristics of court surfaces. These parameters are fitted based upon the

historical data using both maximum likelihood and variational approximate inference.

The performance of the models is shown to be superior when compared against exist-

ing tennis prediction models from the literature. The results show that surface effects

and the variation of player skills through time can be modelled more accurately using

new approaches which have previously not been applied to tennis.
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Chapter 1

Introduction

In recent years, applying statistical analysis to sport has been rapidly growing to meet

demand from coaches, media and gambling. The ability to accurately predict the out-

come of a sporting event is something which many within the sporting world are fasci-

nated by. For example, predictions can allow a media channel to provide more insight-

ful coverage of a sporting tournament or allow tournament organisers to better match

the skills of players giving closer and more exciting matches. Alternatively, the pre-

diction models themselves can reveal something interesting about the characteristics

of different playing styles, making them useful for coaching purposes. In recent years,

the growth of online betting exchanges, such as Betfair, also provides a further and

increasingly relevant motivator for research into prediction models. The large amount

of historical data freely available, makes the sport of Tennis makes an appealing can-

didate for research.

The majority of existing research into tennis modelling focuses on pre-match predic-

tion, where the goal is to predict the probability of either player winning prior to the

match commencing. This is in contrast to in-play prediction, where the goal is to pre-

dict how the winning probabilities evolve during a match. The work presented in this

paper focuses solely on the former of these two goals.

One of the most popular approaches to tennis modelling is hierarchical match mod-

els, such as those described by Knottenbelt et al. (2012) or Barnett and Clarke (2005).

These models make use of the structure of the scoring system in tennis and model a

match as a Markov chain with transition probabilities derived from historical player

service statistics. Other research has explored the question of whether player ATP

1



Chapter 1. Introduction 2

ranking points (the official tennis ranking system) are an effective basis for making

predictions (Clarke and Dyte, 2000). Further work has demonstrated how alternative

rating based models can be applied to tennis which give superior predictive perfor-

mance in comparison to the ATP rankings (McHale and Morton, 2011). There is also

wider research in the area of rating systems in other fields much of which could be

applied to Tennis, for example Herbrich et al. (2007) or Glickman (2001). Other ap-

proaches to tennis prediction aim to utilise machine learning by creating sets of player

related features and then fitting neural network or regression models. Sipko and Knot-

tenbelt (2015) develop such a model, comparing it to hierarchical match models and

claiming superior performance.

The goal of this project is to develop a series of models which will improve upon

current state of the art models in tennis prediction. The models will aim to explicitly

address two key factors within tennis modelling. Firstly, the effect of different court

surface types and secondly, the variation of players skills through time. The paper be-

gins with a review of current prediction models from literature in order to understand

the strengths and weakness of the different approaches (Chapter 3). Following this, a

description of the models trained during this project is provided, along with any rel-

evant theoretical material and details of their implementation (Chapter 4 & 5). The

results and findings of the project are detailed in Chapter 6, before conclusions and

suggestions for future work are presented in Chapter 7.



Chapter 2

Background

2.1 The Game of Tennis

Tennis is a racquet sport which can be played both as singles (one vs one) and doubles

(two vs two). Due to time constraints and inline with the majority of existing research,

the scope of this project is restricted to modelling men’s singles tennis. Tennis has a

hierarchical structure: At the lowest level players compete for points which they ac-

cumulate in order to win games. Games are then accumulated in order to win sets

and finally sets are accumulated in order to win the overall match. A point in tennis

consists of one player (known as the server) serving to the opposing player (known

as the receiver) in order to start a rally. The winner of the rally is then awarded the

point, or in cases where the server fails to produce a valid serve in two attempts, it is

awarded by default to the receiving player. To win a game a player must accumulate

at least 4 points and at least two more than their opponent. Points in tennis are bi-

ased in favour of the server who has an attacking advantage. Typically the server, will

win more than 60% of all points. As serving is rotated on a game by game basis this

means that players are also strongly favoured to win games in which they are the serv-

ing player. There are no draws in tennis and matches are played as either best of 3 or

best of 5 sets depending upon the tournament. Full information on the official rules of

Tennis are published by the International Tennis Federation and can be found on-line 1.

Throughout the year, tennis players compete in a range of knock out format tourna-

ments and are awarded ranking points for placing in these tournaments. These ranking

1http://www.itftennis.com/officiating/rulebooks/rules-of-tennis.aspx

3
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points are then used to generate the official tennis rankings and determine qualification

for future tournaments. The top tier of men’s tennis is the ATP tour, which currently

consists of 68 tournaments per year of varying degrees of prestige. Tournaments are

typically played over the space of one or two weeks and several tournaments may hap-

pen simultaneously. The second tier of men’s tennis is the Challenger tour which is of

similar format to the ATP tour but at a lower level. The pool of players is continuous

between the Challenger and ATP circuits. For example, a player may be competing in

a mix of the top Challenger tournaments and low level ATP tournaments.

2.1.1 Court Surfaces

One important factor in tennis is that matches are played on a variety of different

surfaces types: clay, carpet, hard court or grass. Each of these surface types affects

the bounce of the ball slightly differently, which in turn influences the type of playing

styles that are most successful on that surface. For example, clay due to its slower

bounce typically results in points with long baseline rallies thus favouring players who

are strong in that style. Accounting for surface type is therefore a critical aspect of

tennis modelling.

2.2 The Data Set

The data set used for this project consists of approximately 45,000 men’s singles ATP

tour matches between the years 2000 and 2017. This data is freely available under a

non commercial licence 1 and is obtained from GitHub 2 (Credited to Jeff Sackmann).

Table 2.1 (page 5) summarises the key information which is contained about each

match in the data. The data set also contains further side information such as player

handedness, tournament seeding, tournament round, player age and length of match.

The full list is omitted as none of this additional information is used by the models

in this project. It is also possible to obtain more detailed historical information about

each match. For example, point by point data is available showing the sequence in

which points were won or lost within a match rather than just the overall totals. Data

of this sort is available on-line 3 however modelling ordered sequences of points is not

1Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License -
https://creativecommons.org/licenses/by-nc-sa/4.0/

2Jeff Sackman/ Tennis Abstract - http://www.tennisabstract.com, https://github.com/JeffSackmann
3For example, https://www.tennisbetsite.com/results.html
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Table 2.1: Match Information

Description of Information

Date of the match

Name of the winning and losing player

The match score

Name of tournament

The surface type

Number of aces served in the match by each player

Number of double faults made by each player

Number of points served by each player

Number of valid 1st serves by each player

Number of 1st serve points by each player

Number of 2nd serve points won by each player

Number of games served by each player

Number of break points faced on serve by each player

Number of break points saved by each player

The ATP ranking points of each player



Chapter 2. Background 6

addressed within this project.

2.3 Betting in Tennis

Bets in tennis can primarily be placed in two types of markets: bookmakers or betting

exchanges. The former is where a bookmaker offers odds and accepting customers

place money directly against the bookmaker at these odds. In a betting exchange, cus-

tomers instead offer odds and place bets against each other, with the exchange simply

taking a small commission for each paired bet. Typically, more favourable odds can be

found on exchange markets, however as there is limited historical data on these odds

the models in this project will be compared against traditional bookmakers odds.

It is possible to place bets on a wide variety of events relating to different aspects of

a tennis match, both before it commences and while it is being played. However, this

project focuses only on bets placed on the overall outcome prior to the match starting.

2.3.1 Betting Odds and Implied Probability

Betting odds can be represented in either decimal or fractional format. Only decimal

format is used in this research, however it is straightforward to convert between the

two. Decimal format odds are simply a single number greater than 1 (for example

1.87). For a successful bet, the money received is given by stake× odds. This is

inclusive of the stake meaning profit is given by stake× (odds−1). Odds can be used

to infer an implied probability of the outcome in question happening:

p =
1

odds
(2.1)

This represents the underlying probability that should exist in order for the odds to be

completely fair. In an unbiased scenario, the implied probabilities from the odds of

all possible outcomes of an event should sum to 1. However, for bookmaker odds the

implied probabilities will almost always sum to over 1 as the bookmaker’s have a built

in margin that allows them to make long term profit. This discrepancy is known as

over-round. For several of the performance metrics used in this project, the over-round

is corrected by normalising the probabilities when comparing against the bookmaker

odds.
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2.3.2 Betting Strategies

Betting strategies aim to exploit cases where odds are undervalued. This is cases where

the implied probability from the odds is less than the actual probability of the event in

question happening. If one has a predictive model, a simple betting strategy is to

place a unit bet whenever the model indicates that the offered odds are undervalued.

Alternatively, one can use a more complex strategy, such as the Kelly criterion (Kelly,

1956). In this strategy the quantity of the bet is varied according to some function of

the difference between the implied and actual probabilities. Of course, the success of

any such strategy depends upon the accuracy of the models predictions in comparison

to the accuracy of the implied probabilities from the odds themselves.

2.4 Making and Scoring Predictions

This project focuses on making probabilistic predictions on the overall outcome of

each match. The predictions therefore take the form of a single value Pw, which is the

probability assigned by a given model to the winning player. Since there are no draws

and the probability of the losing player can be inferred as Pl = 1−Pw, then a single

value suffices for all predictions.

2.4.1 Confidence of Predictions

Probabilistic predictions, by their nature, account for uncertainty in classification tasks.

However, in this case, it is essential to also consider the confidence of the probability

value itself. To demonstrate why this is important consider a model predicting a win-

ning probability of close to 0.5: In one case this could be due to the fact the model is

confident about the skills of both players and expects an extremely tight match. In an-

other case, the model may have almost no information about the skills of both players

and simply output a probability to reflect this. Clearly there is big difference between

these two cases since the later is likely to perform poorly if used in a betting strategy

where the bookmakers have access to information that the model did not. It is therefore

desirable to have a means to access the confidence of the probability values predicted

by the models.
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2.4.2 Scoring Rules

Scoring rules are metrics which measure the accuracy of probabilistic predictions. The

performance of models in this project are measured according to the following four

scoring rules:

Classification Accuracy m1

The percentage of matches where the winning player is assigned a probability of

greater than 0.5. This metric is useful for providing an overall gauge of performance

but doesn’t address the quality of the probabilities themselves.

Average Probability m2

The average probability assigned to the the winning player, given by:

m2 =
1
N

N

∑
i=1

Pw
i, (2.2)

where Pw
i is the probability assigned by the model to the winning player of the ith

prediction and N is the total number of predictions.

Average Log Probability m3

The average natural logarithm of the probability assigned to the winning player, given

by:

m3 =
1
N

N

∑
i=1

log(Pw
i). (2.3)

This metric is common in machine learning and probabilistic modelling and relates

directly to a logistic loss cost function. This metric is important because it is the

only one here which satisfies the mathematical criteria required to make it a proper

scoring rule. Essentially, this means that the maximum score can be achieved only by

predicting the true underlying probabilities. Proper scoring rules and their implications

are addressed in detail by Gneiting and Raftery (2007).

Return on investment m4

The return on investment evaluated against historical bookmaker odds. Based on a

simple gambling strategy of placing a unit bet whenever the model predicts a prob-

ability greater than the implied probability from the bookmaker odds. This metric
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Figure 2.1: Example calibration plot. The horizontal axis shows relates to the models

predictions. The vertical axis shows the percentage of time predictions of that probabil-

ity were correct.

provides a comparison against the bookmaker predictions and is also entertaining to

consider. However, more emphasis is placed on the other metrics as they have stronger

theoretical basis.

2.4.3 Calibration

Calibration is the idea that a probabilistic prediction of 0.7 should be correct approx-

imately 70% of the time. If, for example, a model makes thousands of predictions

between 0.6 and 0.7 but only 50% of these were actually correct then clearly the

model is poorly calibrated. Furthermore, these predictions can be described as over

confident since they turned out to be successful a lower percentage of the time than

their probabilities implied. A reverse scenario would describe under confident predic-

tions. Examining calibration can be useful in order to better understand the behaviour

and biases of different models. A calibration graph is a graph which shows a mod-

els predictions against the percentage of time they were actually correct. Figure 2.1

demonstrates some example calibration plots.



Chapter 3

Review of Previous Work

The majority of approaches to tennis match prediction fall into three categories: hierar-

chical/point models, paired comparison models, or regression/neural network models.

3.1 Point models

Point or hierarchical models focus on estimating the probability of players winning an

individual point within a tennis match. Match winning probabilities are then derived

using the assumption that points are independent and identically distributed (IID). This

assumption has been shown to be incorrect but is argued to be a good approximation

(Klaassen and Magnus, 2001). Historical player service statistics can be used to cal-

culate point winning probabilities using simple equations (Barnett and Clarke, 2005).

A short-coming of this approach is that the calculations suffer from bias because play-

ers face different opponents of varying skill levels. Knottenbelt et al. (2012) develop

a common opponent averaging method in their point model aimed at addressing this

issue. In this method, service probabilities are calculated using a specific subset of his-

torical data, containing only matches where both players being modelled have played

against the same opposing player.

3.2 Regression and Neural Network Models

Models in this category use sets of features to describe the characteristics of each

player. A function is then used which takes the features of two players as an input and

outputs the probability of one player winning. The function in question is a regres-

sion or neural network model with parameters learned through training on historical

10
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data. Early work in this area used regression models with ranking points or seeding as

the main feature describing each player (Boulier and Stekler, 1999) (Clarke and Dyte,

2000). Additional features being side information such as player handedness, height,

age and head to head wins. Recent work by Sipko and Knottenbelt (2015), has shown

it is effective to incorporate features focusing on past playing statistics such as per-

centages of serves won, aces and double faults. These percentages can be calculated

using the methods applied in point models, for example using the common opponent

averaging approach.

3.3 Pairwise Comparison Models

Pairwise comparison refers to a process of comparing entities in pairs to determine

which entity is preferred. A Bradley-Terry model (Bradley and Terry, 1952) is a popu-

lar method for pairwise comparison which has been applied to Tennis by McHale and

Morton (2011). In this approach, each player is assigned a single positive free parame-

ter representing their overall skill. The probability that one player beats another is then

given by the simple relationship:

Pi j(r = 1) =
si

si + s j

Where Pi j(r = 1) is the probability the player i wins against player j and si and s j are

the respective skill parameters of both players. Optimisation can be used to jointly

solve for skills parameters of all players based on a fixed period of historical results.

Although a Bradley-Terry model can be applied directly to the outcome of matches

in Tennis, it has been shown to be more effective to instead model game outcomes

(McHale and Morton, 2011). Match winning probabilities can then be derived based

on the same IID assumption used in point models.

Rating systems such as ELO are also based on a similar underlying relationship to

that of a Bradley-Terry model. However, these systems typically apply updates to

players skills after every match making the skills dynamic through time. This is dis-

tinctly different to what is described above where skills are jointly optimised within a

fixed period of time and assuming the skills to be constant within that period. Wider

research in the area of rating systems has mostly been outside the domain of Tennis

but could equally be applied here. For example, work on Microsoft’s True Skill rating

system (Herbrich et al., 2007).
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3.4 Discussion on Approaches

Current neural network and hierarchical based models use input features such as player

serve and ace probabilities. These features are not known, but are estimated by av-

eraging various historical statistics. This contrasts with the process involved in the

Bradley-Terry model implemented by McHale and Morton (2011), whereby player re-

lated free parameters are learned by the model. McHale and Morton only apply their

model to game level data and thus unlike other models do not utilise lower level point

information. However, the ideas behind their model could easily be extended to point

level information. This would provide an alternative way to estimate many features

used as inputs to other models. For example, different Bradley-Terry models could

be trained to predict features such player ace, double fault and service percentages.

One weakness of a Bradley-Terry model is that it does not allow for non-transitive re-

lationships between players. This issue can be addressed by modelling players using

multiple free parameters and has been explored in work outside of Tennis (Stern et al.,

2009) (Stanescu, 2011).

Almost all of the tennis prediction models described so far share the same strategy

in dealing with two important factors: The variation of players skills through time and

surface effects. That strategy being to weight or filter matches in the input data accord-

ing to their relevance. Matches that have been played most recently and on the same

surface being classed as most relevant. Weighting or filtering by surface has been

shown to provide improved performance compared to treating all surfaces the same

(Sipko and Knottenbelt, 2015). However, it doesn’t allow the model to learn charac-

teristics of the surfaces themselves which may limit its ability to generalise between

surface types. For example, in cases where the majority of the data for a given player

is on one particular surface.



Chapter 4

Models

This chapter provides part of the technical description for models trained during this

project and is structured as follows:

• Section 4.1 explains how a single tennis match can be modelled using a Markov

chain. This is a component of models and is used to convert predictions of point

or game winning probabilities into match winning probabilities.

• Section 4.2 describes a model from the literature which is used as a baseline

for the project. This model estimates point winning probabilities by averaging

some simple statistics from historical tennis matches. These are then converted

to match winning probabilities using the Markov chain.

• Section 4.3 provides general discussion on probabilistic models. Its purpose is

to provide clarity for the information presented in Sections 4.4 to 4.7.

• Section 4.4 describes the Bradley-Terry model, the simplest probabilistic model

of match outcomes. We also apply it to model point and game outcomes and

then use the Markov chain to convert the point or game predictions into match

predictions.

• Sections 4.5 and 4.6 describe two models which extend the ideas of a Bradley-

Terry model in order to model surface effects and distinct service probabilities.

This is achieved by incorporating additional surface and player related parame-

ters.

• Section 4.7 describes a method to model changes in players abilities over time.

This is also based on the Bradley-Terry model, but considers the parameters of

the model as changing over time rather than fixed.

13
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4.1 Modelling a Tennis Match using a Markov Chain

A tennis match can be modelled using a Markov chain where the states correspond to

the score and transition probabilities to the probability of a point being won or lost.

Closed form equations can then be derived, which provide a way to convert point,

game or set outcome probabilities into match outcome probabilities. This idea has

been used heavily in previous work on Tennis modelling (e.g. Newton and Keller

(2005)) and is also used within many of the models in this project. Figure 4.1 shows

an explicit example of a Markov chain for a single game. This corresponds to the

following closed form equation which relates the probability of winning a point to the

probability of winning a game:

Pgame = p4
s +4p4

s (1− ps)+10p4
s (1− ps)

2 +20
p5

s (1− ps)
3

1−2ps(1− ps)

Where Pgame is the probability of the server winning the game and ps is the probability

of the server winning a point. Similar equations can be derived for set, tie break and

match outcomes.
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Figure 4.1: Markov Chain model of a Tennis Game. Adapted from Sipko and Knotten-

belt (2015).
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4.2 Baseline Point Model

The point model described by Barnett and Clarke (2005) is implemented as a baseline

for comparing the performance of later models. This model predicts match winning

probabilities by converting service probabilities using the Markov chain described in

the previous section. Barnett and Clarke provide equations for estimating the service

probabilities based on combining simple averages from historical data:

fi j = ft +( fi− fav)− (g j−gav)

fi = aibi +(1−ai)ci

gi = aavdi +(1−aav)ei

Where fi j is the probability of player i winning a point on their serve against player j

and:

ai percentage of first serves in play for player i

bi percentage of points won on first serve given that first serve is in for player i

ci percentage of points won on second serve for player i

di percentage of points won on return of first serve for player i

ei percentage of points won on return of second serve for player i

fi percentage of points won on serve for player i

gi percentage of points won on return for player i

aav tour average first serve percentage across all players

fav tour average percentage of points won on serve across all players

gav tour average percentage of points won on return across all players

fav tournament average percentage of points won on serve

All of these percentages (a-g) are set based on observed fractions from previous matches.

Barnett and Clarke use percentages provided by the ATP which are based on the 70

most recent previous matches. However, in this project the percentages are calculated

as a weighted average from 3 years of previous data. The weighting given to each

data point in the calculation is determined by an exponential recency function which is

discussed in Section 5.2.

4.3 Probabilistic Models

The models that we will discuss in Sections 4.4 to 4.7 can all be classed as probabilistic

models. These models share a common methodology and structure which is reviewed
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in this section. The models can be broken down as consisting of:

• Observed variables. These are the outcomes of points, games or matches. A

single outcome will be given the notation r and a set of outcomes D.

• Unobserved variables. These are the parameters of the model itself which are

chosen as part of the model design. These will be represented generally by the

notation w.

• A relationship defining the probability of observing an outcome given the pa-

rameters of the model P(r|w). This is also chosen as part of the model design.

• A prior probability distribution on the parameters of the model P(w). A Gaussian

or uniform prior is used in all of the models in this project.

Given the parameters of the model, predictions can be made for future outcomes based

upon the relationship P(r|w). However, as the parameters are unknown, the goal of the

process is to infer them based upon a set of observed results. Predictions can then be

made based upon their inferred settings. For some data D, on a set of n outcomes, the

posterior probability of the model parameters can be expressed as:

P(w|D) =
P(D|w)P(w)

P(D)
.

P(D|w) is the likelihood of the model given the data and P(D) is marginal likelihood

of the model found through normalisation. Under the assumption that outcomes are

independent, the likelihood can be expressed as:

P(D|w) =
N

∏
i=1

P(ri|w).

A prediction for a new match rn+1 can be made by taking the expectation of P(rn+1|w)
with respect to the posterior distribution P(w|D). However, for the models in this

project determining this expectation and the normalisation constant of the posterior

distribution P(w|D) requires doing integrals which are not tractable. Instead, two sep-

arate methods will be used in order to obtain approximate results. The first method

is to use a point estimate of model parameters at their most probable settings. This

method is referred to as penalised maximum likelihood fitting. The second method

is to approximate the full posterior distribution using an approximate inference tech-

nique. This is referred to as the Bayesian approach.
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In this paper, the probabilistic models are discussed in two parts. The first part, which

is discussed in this chapter, covers the model design, its parameters and how predic-

tions can be made given the parameters. The second part covers how the parameters

of the model are fitted from the data using the two different methods mentioned above.

This is covered in Chapter 5.

4.4 Vanilla Bradley-Terry Model

The second model implemented is the Bradley-Terry model described by McHale and

Morton (2011). This is used as a further baseline, but is also extended to predict point

level outcomes. Additionally, McHale and Morton only explore fitting the parameters

of their model using maximum likelihood, whereas in this project the parameters are

also fitted using a Bayesian approach. The model is based on the previously given

relationship:

P(ri j = 1|si,s j) =
si

si + s j
. (4.1)

Where ri j = 1 indicates a win for player i against player j and si and s j are the player

skills which are the parameters of the model. Equation 4.1 can be re-parametrised as

follows in order to constrain the skills to only have positive values:

P(ri j = 1|si,s j) =
esi

esi + es j
=

1
1+ e−(si−s j)

= σ(si− s j), (4.2)

where σ is the logistic sigmoid function σ(x)= 1
1+e−x . For some data consisting of a set

of results D = {r1, ...rn} for a set of players M = {1, ...,m} with skills S = {s1, ...,sm}
the likelihood of the model given the data can be expressed as:

P(D |S) =
n

∏
k=1

σ(s k
w − s k

l ), (4.3)

where s k
w and s k

l are the respective skills of the winning and losing player of the kth

outcomes. For a given set of the player skills, predictions can be made using Equation

4.2. Details on the methods used to fit the parameters from the data are provided in

Chapter 5.

4.5 Free Parameter Point Model

Although the Bradley-Terry model described above can be applied to point level out-

comes, it requires treating points generally with no distinction between the service
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points of each player. The model in this section extends the ideas of a Bradley-Terry

model in order to predict distinct service probabilities for each player. This means that

we split the points into two classes, one for points where a player is serving and one

for points where a player is receiving.

In this model, each player is represented by two parameters: one which represents

their attacking skill and one which represents their defensive skill. The parameters of

the model are therefore a set of attacking skills S = {s1, ...,sm} and a set of defensive

skills B = {b1, ...,bm}. In tennis, serving and receiving serves can be considered at-

tacking and defensive parts of the game respectively. Based on this, a players chance

of winning a point on their serve in this model is assumed to depend only upon their

own attacking strength and their opponents defensive strength. It is recognised that

this assumption is an idealisation since a receiving player may use attacking elements

of their game in returning or where a rally develops. However, the assumption is used

in order to reduce the complexity of the model. The probability of player i winning a

point against player j on their serve is defined as:

P(ri j = 1|si,b j) = σ(si−b j). (4.4)

With ri j now referring specifically to the probability of player i winning a point on

serve against player j rather than winning a point generally. Note that ri j 6= 1− r ji

which would otherwise be true in the general case. The likelihood of the data can now

be represented as:

P(D|S) =
n

∏
k=1

[
P(ri j

k|s k
i ,b

k
j ) P(r ji

k|b k
i ,s

k
j )

]
. (4.5)

Where:

P(ri j
k|s k

i ,s
k

b ) = σ(s k
i −b k

j )
ri j

k(
1−σ(s k

i −b k
j )
)(1−ri j

k)
.

Given the attacking and defensive skills of two players, Equation 4.4 can be used to

predict the probability of either player winning a point on their serve. The Markov

chain described in Section 4.1 can then be used convert these probabilities into match

winning probabilities. As with the previous model, the fitting of the parameters is

discussed in Chapter 5.
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4.6 Surface Factor Model

This model focuses on developing an approach to explicitly model the effects of sur-

face. Inspiration is taken from work on rating systems with multiple factors (Stanescu,

2011). Each player is defined as having a vector of k different positive skills s =

[s1, ...,sk]. These skills are arbitrary, but could for example represent a players strength

in different areas such as serving, baseline rallies or net play. Each surface is defined

as having a vector of k positive weights w = [w1, ...,wk]. These weights describe the

characteristics of the surface and indicate how important different aspects of a players

game are for playing on it. The overall skill exhibited by a player on a particular sur-

face is given by wT s. The probability of a player i winning against player j on surface

s is then defined as:

P(ri js = 1|si,s j,ws) = σ(siwT
s − s jwT

s ). (4.6)

The likelihood for a set of matches can then be expressed as: (using notation previously

defined)

P(D |S,W ) =
n

∏
k=1

σ(si
kwT

s
k− s j

kwT
s

k
), (4.7)

where W is a set of weight vectors for all surfaces. Both the set of player skill vectors S

and the set of surface weight vectors W constitute the parameters of the model and are

both learned as part of the fitting process. Given a set of fitted parameters, Equation

4.6 can be used to make predictions for future outcomes.

4.7 Time Series Model

The models previously described are aimed at a scenario where one jointly optimises

the model parameters assuming them to be constant within a fixed period of matches.

In this time series model, the aim is to explicitly model the parameters as varying over

time. Skill models of this nature have been developed by both Herbrich et al. (2007)

and Glickman (2001). The model described in this section relies closely on ideas and

equations from both of these papers.

This model is based directly upon the Bradley-Terry model described in Section 4.4.

However, the model is extended by considering each player as having distinct skills

at different points in time and by defining how these distinct skills are related. The
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probability of player i beating player j at time t is defined using the relationship from

a simple Bradley-Terry model:

P(ri jt = 1|sit ,s jt) = σ(sit− s jt), (4.8)

where sit is now the skill of player i specifically at time t. A prior skill is also defined

for all players of s0 = N(s0;0,σ0
2). We now wish to consider that the skill of a player

at time t is dependant upon their skill at adjacent points in time (st+1 and st−1). This is

modelled by assuming a Gaussian drift between the skills at time t and t +1:

st+1 = αst +(
√

1−α2)v, (4.9)

where α = [0,1] and v is a Gaussian which is equal to the prior s0:

v = s0 = N(v;0,σ0
2).

Equation 4.9 describes how the skill parameters are expected to change over time. The

effect of this relationship is that if no data is seen, the beliefs about the parameters

gradually drift back towards the prior. This can be argued to be a realistic assump-

tion, because the players being modelled are top level athletes and their skills can be

expected to decrease if they do not regularly compete in tournaments. Equation 4.9

is similar to that used by Herbrich et al. (2007) and Glickman (2001). However, they

both apply a slightly different relationship such that only the variance and not the mean

of players skills drifts over time.

The parameter α in Equation 4.9 controls the rate at which the drift occurs and ef-

fects the flexibility of the skills through time. If α is close to 1, then the skills of

players are presumed to change only very slowly. At the other extreme, if α is 0, then

skills at adjacent time points are independent. The value of α is set as part of the fitting

process.
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Implementation

This chapter discusses the implementation of the models and is structured as follows:

• Section 5.1 discusses the overall process used to evaluate the performance of the

models on the historical data set.

• Section 5.2 discusses surface and recency weighting and how these are incorpo-

rated into the models.

• Section 5.3 provides details on the two methods used to fit the parameters of the

probabilistic models described in the previous chapter.

• Section 5.6 details relating to the implementation of the time series model. This

model is implemented using two different approaches, one based on jointly op-

timising player skills for multiple points in time and one based on applying fil-

tering updates.

• Section 5.7 discusses how we define a confidence measure for the predictions

made by the models in this project.

5.1 Evaluation Approach

In this project, an online iterative process is used to generate historical predictions for

each model. These predictions are then scored based upon the metrics discussed in

Chapter 2. This approach is similar to that used in previous work on tennis prediction

(McHale and Morton, 2011).

The process itself consists of moving through the data making predictions for one

22
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tournament round of matches at a time. For each batch of predictions, the model is

completely refitted based upon the 3 years of data directly previous. This ensures that

predictions for all matches are only made based upon information that would have

been available at the time they were played. A down side to this approach, is that

the overall evaluation process is expensive due to the number of optimisations that

need to be performed. To evaluate the full set of data (predictions from 2005 to 2017)

requires approximately 3,800 optimisations using this approach. It is possible to per-

form the optimisations in parallel and this has been implemented for some models in

this project. We train all of the models in less than 8 hours, but some are split over as

many as 20 cores. There is scope for further improvement by initialising the parame-

ters of each optimisation based on the fitted parameters from the optimisation previous

in sequence. However, this was not applied due to it not integrating easily with the

parallel implementation.

The filtered time series model which is discussed in Section 5.6.2 is the only model

which differs slightly from what is described above. In this model, player skills are

continuously updated so that they are always based upon the full history of matches

rather than just 3 years. The updates also have to be performed sequentially and there-

fore cannot be performed in parallel.

5.1.1 Training and Test Set

The data is split into two sets: A training set consisting of matches from years 2005

to 2015 and a test set consisting of matches from years 2016 to 2017. The training set

is used for the majority of the model evaluations and is the basis for making model

choices. The test set is reserved until the end and is only evaluated once for each

model. Its purpose is to show how well the performance of each model generalises to

data outside the training set.

It is common in machine learning to also use a third validation set for cross validating

model choices. However, this is not necessary in this project due to the nature of the

on line fitting process described above.
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Clay Hard Carpet Grass

Clay 1

Hard 0.1 1

Carpet 0.1 1 1

Grass 0.01 0.5 0.5 1

Table 5.1: Surface Weightings

5.2 Weighting Matches

Weighting provides a straightforward method to account for the effects of time and

surface type in models which do not otherwise explicitly address these factors. For

models in this project, weightings are applied according to match recency and surface

type following the method used by McHale and Morton (2011). This section discusses

how these weightings are determined and how they are applied to the different models.

5.2.1 Recency Weighting

For each match, a recency weighting wr is calculated according to an exponential decay

function of the following form:

wr =

(
1
2

) t
λ ,

where t is the difference in days between the match and those to be predicted and

λ is the half life of the decay. In this project, the half life is determined by using a

grid search of values to optimise the online predictive performance measured on the

training set.

5.2.2 Surface Weighting

For each match, a surface weighting is applied according to Table 5.1. The values

in this table are selected based upon those used by both McHale and Morton (2011)

and Sipko and Knottenbelt (2015). An alternative approach to this would be simply

splitting the data by surface. The model for each surface would then have less data,

but only data for the correct surface. This would correspond to setting the weights for

other surfaces to zero. For the models in project, we find that a non-zero weighting for

other surfaces results in the superior performance.
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5.2.3 Weighting in Probabilistic Models

Weighting in a probabilistic model translates to raising the factor in the likelihood

expression to the power of the weighted value. For a set of results R, this changes the

general form of the likelihood to:

P(R|w) =
N

∏
i=1

P(ri|w)wi
,

where wi is the weight associated with the ith match and other notation is as previously

defined. When fitting model parameters by maximum likelihood discussed in Section

5.4, the overall effect of applying weightings in this manner is that the contribution of

each data point to the cost function is scaled by its respective weight. When fitting the

models parameters using a Bayesian approach discussed in Section 5.5, the weighting

effects the quantity of evidence associated with each match.

5.2.4 Normalising Point and Game Outcomes

In this project, models are trained based on different levels of match information:

Points, games or overall matches. When modelling games or points the totals of wins

and losses involved are much higher in comparison to when modelling matches. This

has a knock on effect on likelihood expression and the final confidence that the model

has about the skills of players. To illustrate, consider a match where player i lost to

player j and in that match player i won 40 points and player j won 60 points. If

modelling match outcomes then the likelihood would be expressed as:

P(r|si,s j) = σ(si− s j)
0
σ(s j− si)

1 (5.1)

However, if modelling point outcomes the likelihood relating to the same match would

be expressed as:

P(r|si,s j) = σ(si− s j)
40

σ(s j− si)
60 (5.2)

Comparing the two equations demonstrates the difference in the amount evidence the

model believes it has seen from just one match of data. In the later case, it is clear

that the model will become confident about the skills of players after seeing far fewer

matches. Furthermore, in tennis the number of points played in each match varies a

significant amount. This means that some matches will effectively contribute to the

models estimate of player skills more heavily than others. In order to avoid this effect,

we choose to apply a normalising weighting to every match of data when modelling
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point or game outcomes. This weighting is defined as one divided by the total number

of points or games won in the respective match. Applying this normalisation to the

example above changes the likelihood expression to the following:

P(r|si,s j) = σ(si− s j)
0.4

σ(s j− si)
0.6 (5.3)

It is possible that applying some alternative softening to the counts of point and games

in matches may provide better results. This was not something explored in this project

and is therefore highlighted as an area to be investigated in future work.

5.3 Fitting the Model Parameters

This section discusses the two different approaches which are used to fit the parameters

of the models presented in Sections 4.4 to 4.7.

5.4 Penalised Maximum Likelihood Fitting

Penalised maximum likelihood fitting is closely related to maximum a posteriori (MAP)

estimation. A MAP estimate is where the parameters of a model are estimated as a

point value at a mode of the posterior probability distribution. For a posterior proba-

bility distribution of the form:

P(w|D) ∝

N

∏
i=1

P(ri|w)P(w), (5.4)

The MAP estimate can be found by maximising this expression with respect to the

parameters w. Equivalently, we can minimise the negative log of this expression, which

is more stable. The log of Equation 5.4 is:

− log
(
P(w|D)

)
∝−

[ N

∑
i=1

log
(
P(ri|w)

)]
− log

(
P(w)

)
. (5.5)

When a uniform prior is used, MAP estimation is known as maximum likelihood fitting

since it is equivalent to maximising the likelihood term alone. When a non-uniform

prior is used, it can be referred to penalised maximum likelihood fitting, as the param-

eters are regularised in some way according to the prior. When the prior is a spherical

Gaussian, the effect of the prior is directly equivalent to what is known as L2 reg-

ularisation. This is where the log likelihood is maximised alone, but with an added
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regularisation term of the form:

β

K

∑
i=1

w2
i ,

where β is a regularisation constant equivalent to the precision of the Gaussian prior. In

this project, models are fitted using both L2 regularised and un-regularised maximum

likelihood. For the relevant models, Equation 5.5 is maximised by taking derivatives

with respect to the model parameters and optimising using a quasi-Newton optimiser

package from the scipy library (Jones et al., 2001–).

5.5 Approximate Inference Fitting

Approximate inference methods are a class of techniques which can be used to approx-

imate posterior distributions when exact learning and inference is intractable. Varia-

tional methods are a subclass of these techniques which provide an analytical approx-

imation by matching the true posterior to an alternative distribution of tractable form.

In this project, a variational method is used to fit approximate Gaussian posteriors

to the models in Sections 4.4 to 4.7. We derive this method based upon stochastic

variational inference (SVI) (Hoffman et al., 2013). However, due to the size of our

data set and our success using batch fitting when obtaining MAP estimates, we derive

a non-stochastic method. This allows us to use the same quasi-Newton optimiser pack-

age that we use in MAP fitting. The variational procedure is then reasonably fast when

coded in simple python.

Related work on fitting Bayesian based Bradley-Terry type models has prominently

used Assumed Density Filtering (ADF) or Expectation Propagation (EP) (e.g. Birlutiu

and Heskes (2007), Stanescu (2011) or Herbrich et al. (2007)). However, we chose a

method which is based upon SVI because it can be more easily applied to extended

models with additional parameters. We also ruled out MCMC Sampling methods, as

these would have been too slow due to the number fits that had to be performed in each

model evaluation.
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5.5.1 Variational Inference

For a model with parameters w the posterior distribution over the parameters given

some data (D) can be represented as:

P(w|D) =
P(D|w)P(w)

P(D)

P(D|w) is the likelihood of the model given the data, P(D) is marginal likelihood of

the model found through normalisation and P(w) is a prior distribution on the model

parameters. For the models described in Sections 4.4, 4.5 and 4.7, the likelihood is a

product of terms and each term is a sigmoid function containing some linear combi-

nation of the model parameters. The likelihood can therefore be represented generally

as:

P(D|w) =
N

∏
i=1

σ(wT xi) (5.6)

The goal of the variational procedure is to approximate P(w|D) with a multivariate

Gaussian of the form Q(w) = N(w;m,V ) and for a Gaussian prior P(w) = N(w;m0,Σ).

This is achieved by optimising the parameters of the approximate posterior (m and V )

in order to minimise the following objective function:

J =
〈

log(N(w; m,V ))︸ ︷︷ ︸
entropy

〉
N(w; m,V )

−
〈

log(P(D|w))︸ ︷︷ ︸
likelihood

〉
N(w; m,V )

−
〈

log(P(w))︸ ︷︷ ︸
cross−entropy

〉
N(w; m,V )

.

(5.7)

This objective function arises from taking the Kullback-Leibler divergence between

the approximate and true posterior distributions. Minimising J translates to maximis-

ing a lower bound on the logarithmic marginal likelihood of the model. Equation

5.7 can be minimised by taking gradients with respect to m and V and then using a

gradient method. Evaluating the cost and gradients of the entropy and cross-entropy

expectations can be performed analytically. However, it is not possible to evaluate the

likelihood expectation analytically, due to the nature of the sigmoid terms within it.

The procedure instead uses an estimate of the gradients and cost for this term. This is

discussed below along with the results for the entropy and cross-entropy terms. The

maths used in the derivation of the many of the equations presented relies upon results

on multivariate Gaussians (Petersen et al., 2008) and error function integrals (Ng and

Geller, 1969).
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5.5.2 Entropy

Cost: 〈
log(N(w; m,V ))

〉
N(w; m,V )

=−1
2

log(|V |)+ const

Gradients:

∇Ldiag =−
1

Ldiag
∇V =−1

2
V−1

∇m = 0

Where L is the cholesky factor V = LLT . Due the constraints on the covariance terms

it is more stable to optimise with respect to L when considering the full covariance

matrix. When only fitting a diagonal covariance, it is more convenient to consider

gradients with respect to V directly.

5.5.3 Cross-Entropy

Cost:

−
〈

log(N(w; m0,Σ))
〉

N(w; m,V )
=

1
2

Tr(Σ−1V )+
1
2
(m0−m)T

Σ
−1(m0−m)+ const

Gradients:

∇L = Σ
−1L ∇V =

1
2

Σ
−1

∇m =−Σ
−1(m0−m)

Where Tr is the trace operator.

5.5.4 Likelihood

For a likelihood of the form in Equation 5.6, the corresponding expectation term in

Equation 5.7 can be expressed as follows:

−
〈

log(P(D|w))
〉

N(w; m,V )
=−

N

∑
i=1

〈
log(σ(wT xi))

〉
N(w; m,V )

. (5.8)

In the original SVI procedure, an unbiased estimate of the cost and gradients is ob-

tained by using a sample from the current posterior N(w; m,V ). This is evaluated on

a random subset of the N likelihood terms at each iteration. This stochastic procedure

is efficient and extremely scalable allowing it to be applied to large data sets (Hoffman

et al., 2013). However, for this project we find it is more effective to use an alterna-

tive approach where the estimates of the cost and gradients are deterministic. These

estimates are more expensive at each iteration but allow a quasi-Newton method to be

used instead of gradient descent. This is more efficient overall since the number of

iterations required to converge to a solution is far smaller. Additionally, the process is

more stable and an arbitrary level of accuracy can be achieved.
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5.5.4.1 Deterministic Estimate of Likelihood Cost and Gradients

This section summarises how closed form estimates of the likelihood expectations in

Equation 5.8 and their gradients can be obtained. Each of the N terms in Equation 5.8

are of the form: 〈
log(σ(wT x))

〉
N(w; m,V )

.

By performing a change of variables this can be reduced to a one dimensional expec-

tation of the form: 〈
log(σ(µ+ τv))

〉
N(v;0,1)

,

where µ = mT x and τ =
√
(xTV x). The goal is now to obtain gradients of this expecta-

tion with respect to τ and µ, from which the desired gradients of m and V can be easily

obtained using the chain rule. The gradient with respect to µ can be shown as.

∇µ

〈
log(σ(µ+ τv))

〉
N(v;0,1)

=
〈

∇µ log(σ(µ+ τv))
〉

N(v;0,1)

=
〈

σ(µ+ τv)(1−σ(µ+ τv))
σ(µ+ τv)

〉
N(v;0,1)

=
〈

σ(−µ− τv)
〉

N(v;0,1)

=
∫

∞

−∞

σ(−µ− τv)N(v;0,1) dv (5.9)

Likewise the gradient with respect to τ can be shown as:

∇τ

〈
log(σ(µ+ τv))

〉
N(v;0,1)

=
〈

vσ(−µ− τv)
〉

N(v;0,1)

=
∫

∞

−∞

vσ(−µ− τv)N(v;0,1) dv (5.10)

The integrals in Equations 5.9 and 5.10 cannot be computed analytically. However,

an approximation can be found by using the fact that the sigmoid function can be

approximated by the following expression (Crooks, 2009):

σ(x)≈ 1
2

(
1+ erf

(√π

4
x
))

,

where erf is the error function erf(z) = 2√
π

∫ z
0 e−t2

dt. By substituting the sigmoid func-

tion in Equations 5.9 and 5.10 with this approximation, both the integrals can be com-

puted in closed form. Performing these integrals gives the following estimates for the
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gradients of τ and µ:

∇µ

〈
log(σ(µ+ τv))

〉
N(v;0,1)

= 0.5+0.5erf
[ −µ

√
π

4
√

1+ π

8 τ2

]
(5.11)

∇τ

〈
log(σ(µ+ τv))

〉
N(v;0,1)

=−
√

π

4 σ√
1+ π

16τ2
exp
[
− 0.5 π

16µ2

1+ π

16τ2

]
1√
2π

(5.12)

In principle, the optimisation could be performed based on the gradient information

alone. However, evaluating the cost was a requirement for the optimiser package used

in this project. A cost estimate can be obtained by integrating back upwards from the

approximation of the gradients. This gives what the terms inside the expectation would

have been if the approximate gradients were actually the true gradients. Performing

this integral leads to the following approximation:〈
log(σ(x))

〉
N(v; 0,1)

≈
〈
−aexp(−1

2
bx2)−0.5xerf(cx)+0.5x

〉
N(v; 0,1)

, (5.13)

where:

a =
2
π
, b =

π

8
, c =

√
π

4
, x = µ+ τv.

All of the terms inside expectation on the right hand side of Equation 5.13 can be com-

puted analytically, which gives a closed form estimation of the cost for each likelihood

term. The results are provided in the appendix.

Equation 5.13 arises from first approximating the gradients and then working back-

wards to estimate the cost. However, we find that once the form of the approximation

is known it can be improved by refitting the parameters a, b and c. This results in new

values of:

a = 0.692310, b = 0.358114, c = 0.443113. (5.14)

Which gives a closer fit for:

log(σ(x))≈ aexp(−1
2

bx2)−0.5xerf(cx)+0.5x. (5.15)

This fits for all x with maximum error of 0.0035. Note that the gradient estimates given

in Equations 5.11 and 5.12 relate to the original values of a, b and c.

5.5.5 Making Predictions using the Approximate Posterior

To make predictions in a Bayesian model we take the expectation of P(r = 1|w) (the

prediction given the parameters) with respect to the posterior distribution P(w|D). For
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the models in this project P(r = 1|w) can be represented in the form σ(wT x) and

P(w|D) is the fitted approximate Gaussian posterior of the form N(w; m,V ). The

expectation can therefore be expressed as:〈
σ(wT x)

〉
N(w; m,V )

=
∫

∞

−∞

σ(wT x)N(w; m,V )dw. (5.16)

By performing a change of variables this can be reduced to a one dimensional integral

of the form: ∫
∞

−∞

σ(µ+ τv)N(v;0,1)dv, (5.17)

where µ = mT x and τ =
√
(xTV x). This integral cannot be computed analytically but

it can approximated by the following expression (Crooks, 2009):∫
∞

−∞

σ(µ+ τv)N(v;0,1)dv = σ

(
µ√

1+ π

8 τ2

)
(5.18)

5.5.6 Parameter Initialisation

With the exception of the surface factor model, there is a unique solution when fittings

the parameters of all of the models. This means that the solution reached is the same

regardless of the initialisation used at the start of the optimisation. For these models

we therefore simply initialise the skills to zero at the start of every optimisation. In the

Bayesian case we initialise the posterior covariance and mean to be equal to the prior

covariance and mean.

In the surface factor model there is an issue with symmetry because the ordering of

the parameters within the player and surface vectors is arbitrary. This creates a prob-

lem that the gradients of the parameters within the vectors are always equal if they are

initialised to zero. To avoid this problem, we initialise the parameters of this model

randomly at the start of each optimisation by drawing from a standard normal distribu-

tion.

5.6 Fitting the Time Series Model

In this project, the time series model described in Section 4.7 is implemented in two

different ways. Both of these approaches are discussed as follows:
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5.6.1 Joint Optimisation Model

In this approach, a fixed 3 year window of historical data is split into n time periods

and all matches within a time period are treated as if they happened at the same time.

Each player is therefore considered as having a distinct skill for each of these time

periods. The skills of all players at all time periods are then jointly fitted as part of one

optimisation. The dependencies between player skills at neighbouring time steps are

captured by adding the appropriate correlation terms within the prior precision matrix.

These terms can be derived based upon the relationship of how the skills are expected

to drift over time (equation 4.9, page 21). For constant time steps, the prior precision

matrix on the skills of the same player at different points in time has the following

form.



c a 0

a b a

a b . . .
. . . . . . a

a b a

0 a c


Where:

a =
1−α

σ02(1−α2)
, b =

1+α2

σ02(1−α2)
, c =

1
σ02(1−α2)

Once the prior precision matrix is derived, the fitting of the parameters can be done

using the variational procedure described above.

5.6.2 Filtering Model

This approach is similar to that used in traditional rating systems and described by

Glickman (2001): We move through the historical data sequentially and successively

update the skills of players based on short time periods of matches. For each time

period, the posterior distribution of player skills is approximated based on the matches

in that period, which are treated as if they all happen at the same time. A drift is then

applied to the skills according to Equation 4.9 (page 21) and the result used as the

prior for the next time period. This process is repeated sequentially through all of the

data. At each step, the fitting is performed using the variational procedure described in

Section 5.5. Predictions can be made based upon the skill parameters of the playTers
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at the most recent time period.

A key difference between this approach and the joint optimisation approach is that

the fitting itself never involves skills of the same player from different points in time.

Instead, the skills between time steps are only linked through the fact that the posterior

at one time step becomes the prior for the next time step. This approach has the advan-

tage that it is easy to update the skills of players as matches happen. Additionally, the

optimisations involved in this approach are far cheaper which allows much finer peri-

ods of time to be considered. We update the skills after every round of a tournament.

By contrast, in the joint optimisation approach, due to the cost of the optimisation we

only consider breaking a 3 year span into a maximum of 4 time periods.

5.7 Confidence of Predictions

The confidence of a prediction is the uncertainty associated with the predicted proba-

bility value and is discussed in Section 2.4.1. One way this can be defined is to assign a

measure of the quantity of information which the data used to train the model contains

about both players in a predicted match. If recency weighting is used in the model then

this can be achieved by considering the combined weight of matches for each player

in the historical data (Sipko and Knottenbelt, 2015). However, in this project, as we fit

our models using a Bayesian approach, we can define a measure of confidence which

is based on the uncertainty present in the fitted parameters. Predictions in the Bayesian

models are made based upon the previously given expectation:

P(r = 1|D,x) =
〈

σ(wT x)
〉

N(w; m,V )
, (5.19)

where µ = mT x and τ =
√

(xTV x). We can perform a further change of variables with

respect to the distribution P(w) = N(w; m,V ) in order to obtain a distribution with

respect to P(p = σ(wT x)). This results in a Logit-normal distribution P(p) with a

mean corresponding to the prediction and variance which provides a measure of the

uncertainty of the predicted probability value. Typically this variance will be larger

if τ2 is greater and vice versa. Therefore in this project we define an approximate

measure of confidence for each prediction as:

1
τ2 . (5.20)
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Results and Discussion

This chapter presents the project results and findings. The chapter is structured as

follows:

• Section 6.1 discusses the performance of the model baselines.

• Sections 6.2 to 6.6 present the respective results for each of the models described

Sections 4.4 to 4.7 in Chapter 4.

• Section 6.7 presents the results from evaluating the final model on the previously

unseen test set.

• Section 6.8 discusses how return of investment can be maximised by considering

the confidence of predictions.

For the results which are presented in Sections 6.1 to 6.6, all of the models are evalu-

ated on the training set of data. Unless otherwise specified, the scores across all models

in these sections are based on predictions for the same subset of matches. This subset

contains all matches for ATP tournaments between the start of 2005 to the end of 2015

where both players have played a minimum of 5 matches in the previous 12 months of

data. Approximately 26,700 matches.

All of the models are evaluated using the online process described in Section 5.1. In

this process, all predictions are made based on the model only having seen data which

is older than the match itself. This means that if the model parameters are over fitted,

it will simply be reflected directly in the performance scores. It is possible that hyper-

parameters may be over fitted. However, a final comparison is performed on a held out

test set in Section 6.7 to confirm this is not the case.

35
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Model Accuracy
Average

Probability

Average Log

Probability
ROI

Naive Predictions 50.00% 0.500 −0.690 −12.56%

Using ATP Rankings 65.72% 0.557 −0.618 −14.93%

Point Model 67.15% 0.588 −0.605 −10.38%

Bookmakers 70.28% 0.607 −0.565 −

Table 6.1: Baseline performance on the training set consisting of approximately 26,700

predictions from 2005 to 2015. For all metrics higher is better.

6.1 Baseline Results

In this project, models are compared against four baselines: The first is predictions

derived from bookmakers odds. The second is predictions made based upon player

ATP ranking points. The third is predictions from a point model from the literature

described in Section 4.2. The last is naive predictions which are made given no infor-

mation about the matches or players. The performance of each of these baselines is

shown in Table 6.1.

6.1.1 Naive Predictions

The scores for the Naive predictions are based on predicting random probabilities

drawn from a uniform distribution. This is with the exception of the third metric, which

is based upon a constant prediction of 0.5. The purpose of this baseline is simply to

provide a sense check for the performance of other models.

6.1.2 Predictions using ATP rankings

ATP ranking points can predict the winner of a match but can’t be used to make prob-

abilistic predictions directly. Instead the scores for predictions made using the ATP

rankings in Table 6.1 are based on a logistic regression model fitted to player rank-

ing points. This approach is implemented by following previous work by McHale and

Morton (2011) and the results obtained are consistent with those in that paper.
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6.1.3 Bookmakers

The bookmaker results are based on averaged historical odds from 5 different book-

makers. For metrics 2 and 3, the scores relate to normalised implied probabilities. The

odds are not adjusted when calculating the return on investment for other models.

If someone chose to only bet on the bookmakers favourite then the ROI would be

−3.62%. In contrast, betting only on the bookmakers underdog gives a ROI of−15.20%.

This bias poses an issue when using return on investment as a metric for comparing

models. A model that favours making over confident predictions will tend to bet more

often on the favourite and thus may appear to score better in this category.

6.1.4 Point Model Results

The results for the point model in Table 6.1 relate to the model described in Section

4.2. In this model, service probabilities are estimated by combining observed fractions

from previous matches. A half-life of 400 days was used in the decay function for

weighting each match of data within these estimations. This half-life was selected

based on a grid search of values and optimising with respect to accuracy. Results from

literature for the same model give 67.27% and 0.605 for metrics 1 and 2 respectively,

based on using 12 months of back data and no recency weighting (Spanias, 2014).

This appears better than the results obtained here, however the time span of data used

is smaller. Our model evaluated on the same time span produces 67.89% and 0.595 for

the same metrics.

6.1.5 Comparison of Baseline Calibration

Figure 6.1 shows a plot of the calibration for 3 of the baseline models. The bookmaker

model appears the best calibrated out of the 3, although its predictions are slightly

under confident for larger probabilities. The point model displays the opposite trend

and tends to give over confident predictions. The ATP ranking points model is the

worst calibrated of the 3 and is both over and under confident in different regions.
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Figure 6.1: Calibration of baseline models. Evaluated as a moving average in bins of

0.07. The x-axis relates to the models predictions and the y-axis to the percentage of

time predictions of that probability were correct

6.2 Bradley Terry Model Results

This section presents the results for the Bradley-Terry model described in Section 4.4.

The experiments relating to this model had three primary aims:

• Firstly, to compare the performance of models trained based on point level and

game level data.

• Secondly, to explore whether regularisation provided an improvement in models

fitted with maximum likelihood.

• Thirdly, to compare the predictive performance of models fitted using maximum

likelihood and the same models fitted using approximate inference.

6.2.1 Maximum Likelihood Fitting

All of the results in this sub-section are for Bradley-Terry models fitted using maxi-

mum likelihood as described in Section 5.4.
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6.2.1.1 Determining Optimal Half Life

Prior to carrying out the main experiments, a grid search was performed in order to

determine the most suitable half life for the weight decay function. Table 6.2 provides

a summary of the model performance for some of the values tested.

Half Life (days) Accuracy
Average

Probability

Average Log

Probability
ROI

30 63.62% 0.623 −1.012 −06.67%

60 65.20% 0.609 −0.741 −08.61%

150 66.96% 0.604 −0.638 −10.49%

360 67.52% 0.602 −0.621 −10.32%

600 67.28% 0.606 −0.619 −10.09%

inf 67.08% 0.607 −0.621 −09.62%

Table 6.2: Performance of Match Bradley-Terry Model for a selection of different half life

values. The actual search was performed in steps of 30 in a range of 30 to 1000 days.

Based on the results a half-life of 360 days was chosen to be used in all applicable

models. It is observed in Table 6.2 that the different performance metrics are not all

maximised by the same half life value. Most notably, return on investment improves

for short half life values, in spite of the clearly poorer model accuracy. An explanation

for this is that a short model half life puts the focus on the most recent information,

which better captures the current form of players. This means that some predictions

will be more accurate but at the expensive of the predictions as a whole being more

noisy. For return of investment, this is likely to be a more favourable trade off since

poor predictions are not penalised as heavily compared to other metrics. For example,

log probability can have penalisations of potentially unlimited size. By contrast, for

return on investment, poor predictions simply receive a score equivalent to random

predictions.

6.2.1.2 Regularisation

L2 regularisation was explored for point, game and match level Bradley-Terry Models.

Figure 6.2 shows plots of the model performance for each of the different Bradley-

Terry models according to a range of regularisation values. With the exception of

metric 2, a very small amount of regularisation seems to improve performance.
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Figure 6.2: Regularised Bradley Terry Models. Left to right Accuracy (m1), Average

Probability (m2), Average Log Probability (m3). For all metrics higher is better.

6.2.1.3 Comparing Point, Game and Match Models

From Figure 6.2, both the point and game based models appear superior to the match

model across all metrics. However, the difference between the game and point models

is inconclusive as the metrics disagree on which model is the best performing. Fur-

thermore, the differences in the scores themselves are small. In order to show whether

the differences shown in Figure 6.2 are consistent over time, we plot both accuracy

and log probability as a 12 month moving average for predictions between 2005 and

2015 (Figure 6.3). It can be seen that the performance of all of the models over time

is extremely varied. However, a large part of this variation can be attributed to random

trends in the number of upsets throughout different years. This explanation is sup-

ported by the fact that the performances fluctuations seen in the Bradley-Terry models

are also mirrored in the bookmakers baseline. The curves for the point and game mod-

els frequently intersect throughout the 11 year period. This shows that neither model
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Figure 6.3: Model Accuracy (top) and Average Log Probability (bottom) over time based

on a 12 month moving window. For both metrics higher is better. Each model is regu-

larised according to the optimal regularisation constant for that model.

is consistently better than the other, suggesting that the overall performance of both

models is essentially the same. However, examining the discrimination between the
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two models (Figure 6.3) shows they still disagree on approximately 6% of matches.

Game Model Correct Game Model Incorrect

Point Model Correct 65.0% 3.0%

Point Model Incorrect 2.9% 29.1%

Table 6.3: Discrimination between Point and Game Models. Both with regularisation of

0.0001. The matrix shows the percentage of matches which were correctly predicted

by both models, incorrectly predicted by both models or correctly predicted by one and

incorrectly predicted by the other.

6.2.1.4 Calibration of Bradley-Terry Models

Figure 6.4 shows calibration plots for regularised and unregularised Bradley-Terry

models. It can be seen that all of the unregularised models are over confident. How-

ever, this bias is corrected with regularisation, at which point all of the models become

similarly well calibrated. For each of the models, the regularisation value that produces

the best calibration, coincides with the value which is optimal for the third performance

metric (average log probability).
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Figure 6.4: Calibration of point, game and match Bradley-Terry models. Left is for

unregularised models and right is regularised. The regularisation is chosen specific to

each model according to what is optimal in each case.
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6.2.1.5 Aggregating Point, Game and Match Models

Each of the point, game and match models capture different information relevant to

prediction. Aggregating the predictions from these models can provide superior per-

formance compared to the individual counterparts. Aggregating is achieved by simply

averaging the predictions from separately trained point, game and match models. The

performance of this aggregated model is summarised in Table 6.4. It can be seen that

the aggregated model does improve upon the performance of any of the individual

models. Figure 6.5 shows log probability as a moving average over time. The im-

provement is reasonably consistent over time, giving confidence that it would also be

present in future data. However, the size of the improvement itself is small.

Model Accuracy
Average

Probability

Average Log

Probability
ROI

Match 67.64% 0.584 −0.597 −13.93%

Game 67.91% 0.601 −0.594 −09.26%

Point 67.99% 0.613 −0.605 −06.05%

Aggregated 68.09% 0.599 −0.591 −10.08%

Table 6.4: Summary of performance of for different Bradley Terry Models including

aggregated model. All with regularisation of 0.0001.
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Figure 6.5: Average Log Probability over-time for aggregated model

6.2.2 Bayesian Fitting

This section discusses results from applying a Bayesian approach to fitting the pa-

rameters in point and match based Bradley-Terry models. For each model, the varia-

tional procedure described in Section 5.5 was used to approximate posterior densities

of player skills. Predictions were then made based upon the posterior densities us-

ing the method described in Section 5.5.5. Figure 6.6 provides a demonstration of

marginal posterior skill densities obtained in the match level model. It can be seen that

the model is able to learn the skills of some players better than others. This is expected

as some players have a greater number of matches in the data than others. A further

observation is that the uncertainty present in all of the skills is high.
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Figure 6.6: Example marginal posterior skill densities for a random subset of players in

the Match level Bradley-Terry model. Based on a prior variance of 2.

6.2.2.1 Determining Optimal Prior Variance

A grid search was performed in order to determine the optimal value of prior variance.

Figure 6.7 shows the model performance in terms of accuracy and average log proba-

bility for a range of prior variance values. It can be seen that a prior variance of around

2 produces the highest accuracy in both models. The variance values that produce

optimal performance in terms of average log probability are smaller than those which

are optimal for accuracy. This trend is more extreme for the point level Bradley-Terry

model. The differences observed between the point and match level models can be

attributed to the fact that we expect less extreme differences in skills within the point

level model and therefore a tighter prior. This is because low skilled players win a

much larger percentage of points against high skilled players than they do matches.

However, even though there is smaller differences between the fitted skills in the point

level model the final predictions may still be equally confident. This is because in the

point level model the fitted skills are used to predict point winning probabilities which

are then converted to match winning probabilities using the Markov chain described

in Section 4.1. In the Markov chain, small differences in point winning probabilities

result in much larger differences in match winning probabilities. By contrast, in the

match level model, the fitted skills are used to predict the match winning probabilities

directly.
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Figure 6.7: Model performance vs prior variance for point and match level Bayesian

Bradley-Terry models. Accuracy left and average log probability right. The posteriors

are fitted for both

6.2.2.2 Comparison of Correlated vs Diagonal Covariance

From Figure 6.7 it can be seen that the predictive performance of models where the

skills are fitted using a full covariance is almost identical to when the skills are fitted

using a diagonal covariance. In order to further investigate, we plot a histogram of

the differences in predictions between a model where a full covariance is used and a

model where a diagonal covariance is used (Figure 6.8). Additionally, we also plot

a histogram of the values of the off diagonal terms in an example full covariance fit

(Figure 6.8). From these plots it can be seen that: Firstly, although there are non-

zero covariance terms, the magnitude of these terms is extremely small in comparison

the marginal variances (diagonal terms) which can be seen in Figure 6.6. Secondly,

the predictions between full and diagonal covariance models typically differ by less

than 0.1%. Both these points suggest that the approximate posterior fitted when a full

covariance matrix is used is almost identical to that fitted in the diagonal case. This

could be because the true posterior simply isn’t shaped in a manner that can be fitted

any better with a full covariance than a diagonal covariance. It is not clear why this

would be the case, since intuitively one would expect the skills of players that have

played against each other to be correlated in some way. It should be noted that during

the optimisation, a lower cost is achieved when fitting the full covariance compared

to the diagonal covariance but the difference is extremely small. There is scope for

further work to better understand how the shape of the true posterior differs from that

of the approximate posterior. This would provide further insight into why using the
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full covariance matrix has almost no effect on the final predictions in this model.
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Figure 6.8: Histogram of off diagonal terms in a fitted full covariance matrix (left). His-

togram of the probability differences in predictions between full and diagonal covariance

fitted models (right). Both for match level model with a prior of 2.

6.2.2.3 Comparison Bayesian vs Maximum Likelihood

Table 6.5 provides a summary of the predictive performance of point and match level

Bradley-Terry models fitted using both a Bayesian approach and penalised maximum

likelihood. The respective regularisation constants and prior variances are chosen in

order to maximum accuracy in each case.

Model Accuracy
Average

Probability

Average Log

Probability
ROI

Match ML 67.64% 0.584 −0.597 −13.16%

Match Bayesian 67.66% 0.587 −0.596 −13.93%

Point ML 67.99% 0.613 −0.606 −6.05%

Point Bayesian 68.05% 0.616 −0.607 −6.01%

Table 6.5: Performance summary of Bayesian and Maximum Likelihood (ML) fitted point

and match level Bradley-Terry models.

It can be seen that the Bayesian fitted models appear very slightly superior to the pe-

nalised maximum likelihood models. However, the difference is extremely small and

is therefore unlikely to justify the additional cost and complexity associated with im-

plementing the Bayesian case. As a further comparison we plot histograms of the dif-
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ferences in predictions between a the maximum likelihood and Bayesian based mod-

els (Figure 6.9). This shows that the probabilities predicted by the respective models

typically differ by less than 2%. This further highlights the similarity of the final pre-

dictions produced by both methods.
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Figure 6.9: Histogram of probability differences between Bradley-Terry models fitted

using maximum likelihood and approximate inference. Point level model left and match

level model right. A prior variance of 2 and diagonal covariance is used in both Bayesian

models and regularisation constant of 0.0001 in the maximum likelihood models.

6.3 Free Parameter Point Model Results

This section discusses the results for the Free Parameter Point model described in

Section 4.5. The model parameters were fitted using both a Bayesian approach and

penalised maximum likelihood. As with the previous model, the optimal settings for

the prior variance and L2 regularisation constant were determined based on a grid

search. The aim of experiments relating to this model was to show whether it improved

upon the performance of point level Bradley-Terry model.

6.3.1 Maximum Likelihood Fitting

Figure 6.10 shows a plot of the performance of the Free Parameter Point model across

a range of regularisation constants in the first 3 performance metrics. For comparison

the point based Bradley-Terry model is also shown. The Free Parameter Point model

has the maximum score in all 3 metrics, however is not consistently better than the
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Bradley-Terry model across all regularisation values. Overall the performance of both

models is similar.
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Figure 6.10: Performance of regularised Free Parameter Point model and point level

Bradley-Terry model. Accuracy (top left), average probability (top right) and average log

probability (bottom). For all metrics higher is better.

6.3.2 Bayesian Fitting

Figure 6.11 shows the results of the prior variance grid search for the Bayesian fitted

model. Again, the point based Bradley-Terry model is also shown for comparison. Due

to the similarity in performance of models fitted using full and diagonal covariance ma-

trices, the results for diagonal covariance are omitted. The differences in performance

between the two models are consistent with those observed in the maximum likelihood

case. However, here the Free Parameter Point model is consistently superior across

almost all prior variance values tested.
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Figure 6.11: Performance of Bayesian Free Parameter Point model and point level

Bayesian Bradley-Terry model. Accuracy (left) and average log probability (right). For

all metrics higher is better.

6.3.3 Comparison to Bradley-Terry Point Level Model

Both the point level Bradley-Terry model and free parameter point model predict point

winning probabilities which are converted to match winning probabilities using the

Markov chain. However, the free parameter point model has two free parameters per

player and predicts distinct probabilities for a player winning a point on their own

serve and on their opponents serve. In contrast, the point level Bradley-Terry model

only has one free parameter per player and simply predicts the probability of a player

winning any point rather than splitting the points into two classes. Of the two models,

we would expect the point level Bradley-Terry model to have inferior performance.

This is because it is based on more simplistic assumptions and also has less parameters

so should be less flexible in general. The results, which can be seen in Figures 6.10

and 6.11, support this hypothesis as the performance of the free parameter point model

does appear slightly superior. Table 6.6 also provides a summary of the performance

of both models for Bayesian and maximum likelihood fitted cases. However, the dif-

ference in performance is very small which suggests that there is minimal gains from

modelling points in two classes as opposed to generally. Alternatively, the free param-

eter point model is too simplistic to properly exploit the potential performance gains

from modelling points in two classes.
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Model Accuracy
Average

Probability

Average Log

Probability
ROI

ML Bradley Terry 67.99% 0.613 −0.605 −6.05%

Bayesian Bradley Terry 68.03% 0.617 −0.610 −6.00%

ML Free Parameter Point 68.05% 0.615 −0.605 −5.78%

Bayesian Free Parameter

Point
68.16% 0.618 −0.608 −5.60%

Table 6.6: Performance summary of Free Parameter Point model and point level Bradley

Terry model. For all metrics higher is better. Maximum likelihood (ML) models are for a

regularisation constant of 0.0001 and Bayesian models for a prior variance of 2.5.

6.4 Surface Factor Model Results

This section discusses the results for the surface factor model described in Section 4.6.

Within this model, each player and also each surface is represented by a vector of pos-

itive parameters. Player’s then exhibit an overall skill on each surface based on their

own parameters and the parameters of that surface. This is a new approach to address-

ing the effects of surface type in tennis. Surface weighting, described in Section 5.2, is

the dominant approach used in previous work. The aim of the results presented in this

section is to compare the performance of the two different approaches.

We explored fitting models with different numbers of player and surface parameters

and compared the performance of these models against a standard surface weighted

Bradley-Terry model. A summary of the performance of each of these model is given

in Table 6.7. It can be seen that the model with only a single factor is the worst perform-

ing of all the models, including the surface weighted model. This is expected since this

model is equivalent to a standard Bradley-Terry model without any surface weighting.

The model accuracy improves with the addition of a second factor but larger numbers

of factors appear to make little difference.

The results presented in Table 6.7 are all based on a regularisation constant of 0.0001.

This was chosen with consideration to the results in the previous section and kept con-

stant across all models in order to provide a fair comparison. However, because models

differ in the number of parameters the effect of the same regularisation constant may
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Model Accuracy
Average

Probability

Average Log

Probability
ROI

Surface Weighted 67.99% 0.613 −0.605 −6.05%

1 factor 67.67% 0.613 −0.612 −6.93%

2 factors 68.16% 0.620 −0.613 −5.87%

3 factor 68.19% 0.621 −0.614 −5.85%

4 factors 68.19% 0.618 −0.614 −5.47%

Table 6.7: Performance of surface factor models for different numbers of factors. The

surface weighted model relates to a standard Bradley-Terry model with surface weight-

ing. All models are based on point level information and are fitted using penalised

maximum likelihood with a regularisation constant of 0.0001. Predictions for the sur-

face factor models are averaged from 10 repeated optimisations with different random

initialisations.

not be equivalent. We therefore consider the performance of several of the models

across a full range of regularisation values. This can be seen in Figure 6.12. The sur-

face factor models appear to provide a slight improvement in accuracy in comparison

to the surface weighted Bradley-Terry model. However, the maximum scores achieved

by all of the models in average log probability is approximately equal. Additionally,

the surface factor models require larger regularisation constants to reach the maximum

score in this category.

The surface factor models rely on random initialisation which is discussed in Sec-

tion 5.5.6. A consequence of this is that the solution of any optimisation depends upon

the initialisation which is used. This means that predictions and therefore performance

scores may be change if the is model retrained. An important consideration is what

level of uncertainty this creates in the performance scores shown in Table 6.7. In order

to quantify this uncertainty, we re-run the 3 factor surface model 20 times and exam-

ine the standard deviation in each of the performance scores. We find that the scores

are consistent with a standard deviation of ±0.04%, ±0.0001, ±0.0008, ±0.14% in

each of the respective metrics shown in Table 6.7. This could suggest that: Although

the parameter space in each optimisation has multiple maxima, each of these maxima

are equivalently good and therefore the predictions differ little depending upon which

maxima is reached. The uncertainty is large enough to account for the small differ-
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Figure 6.12: Performance of weighted Bradley-Terry model and surface factor models

with 2 and 3 parameters for a range of regularisation constants. Accuracy left and

Average log probability right. Predictions for the surface factor models are averaged

from 10 repeated optimisations with different random initialisations.

ences in scores between the models with 2, 3 and 4 factors. It is therefore concluded

that any performance difference between these models is not significant.

6.5 Joint Optimisation Time Series Model Results

The results in this section relate to the time series model described in Section 4.7,

applied to a point level Bradley-Terry model using the joint optimisation approach de-

scribed in Section 5.6.1. In this model, 3 years of previous historical data is broken

into n time periods. Each player is then treated as having a distinct skills which are

constant for all matches in a period. These skills are then jointly optimised using the

variational procedure described in Section 5.5. Due to computational constraints, we

only consider breaking the 3 year history into a maximum of 4 time periods. Table 6.8

provides a summary of the performance of models for different values of n, up to 4. A

single time period means that each player is treated as having one constant skill for the

full 3 years. This is equivalent to a standard Bradley-Terry model but without any re-

cency weighting applied to matches. The performance of the weighted Bradley-Terry

model is also shown in Table 6.8 for comparison. From Table 6.8 it can be seen that the

performance of the time series model improves when the history of matches is broken

into more time periods. This is expected since it means the variation in player skills

is being modelled in greater resolution. Notability the performance of the time series
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Model Accuracy
Average

Probability

Average Log

Probability
ROI

Recency Weighted 67.98% 0.609 −0.599 −6.05%

1 Period 67.76% 0.607 −0.604 −7.25%

2 Periods 68.06% 0.617 −0.608 −6.10%

3 Periods 68.15% 0.617 −0.604 −5.85%

4 Periods 68.25% 0.616 −0.603 −6.32%

4 Periods Refined 68.33% 0.617 −0.601 −5.79%

Table 6.8: Performance of the jointly optimised time series model for different n. The

’Recency Weighted’ model is a simple Bradley-Terry model in which matches are

weighted according to their recency. All models are based on point level information

and are fitted using a Bayesian approach described in Section 5.5 with a prior variance

of 1 and Diagonal covariance matrix. A drift parameter of 0.9 (α in equation 4.9) is used

in all of the time series models. For all metrics higher is better.

model with only 2 time periods is similar to that of the recency weighted model. This

shows that the recency weighting method described in Section 5.2.1 is not a particu-

larly effective way to account for the variation of player skills since its performance

can be matched by even a simple time series model.

The final entry in Table 6.8 relates to a time series model where the 3 year history

is broken up into unequal chunks of time rather than equal chunks. These chunks

consist of two 12 month periods followed by an 8 month period and then a 4 month

period. The effect of this is that the player skills are modelled in greater resolution

towards then end of the 3 years at the expense of lower resolution at the start. This is a

favourable trade off as the predictions are always made based upon the player skills at

the end of the 3 years. If computation time wasn’t a problem then it wouldn’t be neces-

sary to consider this strategy at all since the full 3 years could be broken into 4 month

(or finer) chunks. However, we employ the strategy since it allows us to achieve finer

resolution where it matters but at the same cost of the standard 4 time period model. It

can be observed that this approach results in improved performance.

An example of the fitted skills for 3 players through time based on the refined 4 time

period model is provided in Figure 6.13. This confirms that the players skills do vary
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a meaningful amount within the 3 year span considered.
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Figure 6.13: Plots of fitted skills for 3 players through time for the 4 step refined series

model. Each player is one colour. The error bars are the standard deviation of the

marginal skill posteriors at different points in time. The model treats all matches that

happen in between two error bars as if they happen at the time of the error bar ahead.

6.5.0.1 Exploring Different Drift Values

We explore how changing the drift parameter (α) in equation 4.9 effects the perfor-

mance of the time series model by testing a range of different values. The results are

shown in Table 6.9. It can be seen that the model performance is reasonably insensitive

to the exact value of drift which is used. Generally all values in the range of 0.75 - 0.95

provide good performance.

It should be noted that we consider α as standardised to the drift for a 12 month pe-

riod of time. This value is then rescaled to suit the actual lengths of the different time

periods. If we didn’t consider drift in this manner then a parameter of 0.9 would have

different overall effect depending upon length of the time period. This standardisation

also applies to the results given in Table 6.8 which are all based on a α value of 0.9.
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α Accuracy
Average

Probability

Average Log

Probability
ROI

0.75 68.24% 0.615 −0.601 −6.41%

0.8 68.22% 0.615 −0.600 −6.22%

0.85 68.28% 0.616 −0.601 −5.93%

0.875 68.29% 0.617 −0.601 −5.71%

0.9 68.33% 0.617 −0.601 −5.79%

0.925 68.24% 0.617 −0.602 −5.93%

0.95 68.20% 0.618 −0.603 −5.84%

Table 6.9: Performance of the 4 step refined time series model for different drift param-

eters. For all metrics higher is better. Lower drift values allow for greater variation in

skills whilst higher values encourage the skills to change more slowly.

6.6 Filtered Time Series Model Results

The results in this section relate to the time series model described in Section 4.7

which is applied using the filtered approach described in Section 5.6.2. In this model,

the skills of all players are jointly updated after each round of every tournament using

the variational procedure described in Section 5.5. The updated skills at each step are

used as prior for the update at the next step. In between updates a drift is applied to the

skills according to the length of time between the tournament rounds, measured from

the start of one round to the start of the next. We explore applying the filtered time

series model to point, game and match level data and also fitting posteriors with both

full and diagonal covariance matrices at each step. Table 6.10 provides a summary of

the results and Figure 6.14 shows an example plot of the progression of the skills over

time for several players. From Figure 6.14, it can be seen that the skills of players do

vary considerably over time. It can also be seen that the uncertainty in the skills in this

model are smaller than those observed in the joint optimisation model (Figure 6.13). A

possible reason for this is that in the joint optimisation model, the skills are only based

on the previous 3 years of data, whilst in this model, they are based on the full history

of matches.

It can be seen from Table 6.10 that the correlated covariance matrix models have supe-

rior performance to the diagonal covariance matrix models. This is in notable contrast
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Model Accuracy
Average

Probability

Average Log

Probability
ROI

Point Level Diagonal 68.21% 0.615 −0.598 −6.75%

Point Level Correlated 68.48% 0.618 −0.599 −6.12%

Game Level Diagonal 68.08% 0.600 −0.591 −10.07%

Game Level Correlated 68.26% 0.604 −0.591 −9.57%

Match Level Diagonal 67.87% 0.584 −0.594 −14.69%

Match Level Correlated 68.04% 0.589 −0.592 −14.97%

Table 6.10: Performance of point, game and match level filtered time series models. All

models are based on a drift parameter of 0.9 and prior variance of 1. For all metrics

higher is better.
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Figure 6.14: Example progression of player skills through time in Match level model.

The solid lines are the means of the skills and the dotted lines are 1 standard deviation

on either side of the mean.

to the results in Section 6.2.2 which showed virtually no difference in performance

between using the correlated and diagonal covariance matrices. However, there are

reasons why we would expect using a correlated covariance to be beneficial in this

case which do not apply to the model in Section 6.2.2: This model uses filtering to se-

quentially update the skills of players as match outcomes are observed. In this process

information is propagated forward in time. If the filtering updates were exact, then

the estimates of all player skills at the current point in time would always be correct.

However, in our model we only approximately update the skills at each step using the
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variational procedure in Section 5.5. Due to these approximations some information

is lost during the forward propagation process, resulting in inaccurate estimation of

the skills at the current point in time. This problem can be illustrated by considering

a model where the skills of each player are approximately updated immediately after

every match. If several matches are played on the same day then it’s clear the order-

ing of the matches will effect the final estimates of the skills. We reduce this issue in

our models by jointly updating all of the matches within one round of a tournament at

the same time, so that the result is independent of the match ordering within that round.

By using a correlated covariance matrix instead of a diagonal covariance the problem

described above is reduced further because less information is lost between updates.

For example, consider a player who gets knocked out at some point in the first half of

a tournament. If a diagonal covariance matrix was being used then their skill would

not change in the updates for rounds in the second half of the tournament. However, if

a full covariance matrix was used then their skill could change in the updates for later

rounds even though they played no matches in those rounds. This is because correla-

tions between them and other players would be present in the prior covariance at each

update, so their skill would be adjusted as more information is revealed about players

that they recently played against. A consequence of this is that at every update the

optimisation contains the full set of players. This is considerably more expensive than

the diagonal case where each optimisation need only contain the subset of players who

played matches in that tournament round. It would be possible to also fit correlations

based on updates with subsets of players. However, due to time constraints, this has

not been explored in this project and it is unknown whether it would result in the same

performance improvements shown in Table 6.10.

6.6.0.1 Comparison to Joint Optimisation Time Series Model

Both the filtered and joint optimisation time series models are based on the same un-

derlying model (Section 4.7) where each player is treated as having distinct skills at

different points in time. Comparatively the chunks of time considered in the joint op-

timisation model a far coarser than in the filtered model. However, despite this it still

achieves almost the same performance as the correlated filtered model. It is possible

that if the joint optimisation model was fitted at a finer resolution then its performance

would surpass the filtered model. The reason we would expect the performance of the

joint optimisation model to be better, is the information loss issue in the filtered model
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which is described previously. This issue is completely avoided in the joint optimisa-

tion case since the skills for all points in time are fitted together. It should be noted that

only a diagonal covariance matrix was used in all of the results for the joint optimisa-

tion model in Section 6.8.

The cost associated with evaluating the joint optimisation model is much higher than

the filtered model. However, the filtered model requires the updates to be performed

sequentially. This means that evaluating the model can only be performed on a single

core. In contrast, the evaluation of the joint optimisation model can be spread over

multiple cores, making it more scalable. Additionally, the performance of the filtered

model is only superior for the correlated covariance matrix case which is likely to scale

poorly if the number of players in the data set was increased.

6.7 Final Model and Test Set Results

As a final model, we aggregate predictions from the point, game and match filtered

times series models in the previous section. These are fitted with a correlated co-

variance matrix and with a drift parameter of 0.9. We evaluate the final models per-

formance on both the training and test set of data. Tables 6.11 and 6.12 provide a

summary of the scores achieved by the aggregated model, along with the point model

baselines, on the training and test sets respectively. Also shown is the score for a max-

imum likelihood fitted (unregularised) game level Bradley-Terry model which is also

a model from the literature (McHale and Morton, 2011). It can be seen that the aggre-

gated time series model is superior to both models from the literature. Additionally,

the improvement is consistent across both the training and test set. This confirms that

the model has not been over fitted to the training set through hyper-parameter selection

and model choices.
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Model Accuracy
Average

Probability

Average Log

Probability
ROI

Bookmakers Baseline 70.28% 0.607 −0.565 −
Point Model Baseline 67.15% 0.588 −0.605 −10.38%

ML Game Bradley-Terry 67.83% 0.612 −0.611 −7.02%

Aggregated Time Series 68.62% 0.606 −0.586 −5.24%

Table 6.11: Final model training set performance. Approximately 26,700 predictions for

matches between 2005 to 2015. For all metrics higher is better.

Model Accuracy
Average

Probability

Average Log

Probability
ROI

Bookmakers Baseline 70.87% 0.610 −0.566 −
Point Model Baseline 67.59% 0.587 −0.608 −10.43%

ML Game Bradley-Terry 67.98% 0.610 −0.605 −6.00%

Aggregated Time Series 69.27% 0.607 −0.585 −6.54%

Table 6.12: Final model test set performance. Approximately 3,000 predictions for

matches from 2016 to 2017. For all metrics higher is better.

In order to show whether the performance difference between the final model and

models from the literature is consistent over time, we plot performance as a 12 month

moving average (Figure 6.15). This confirms that the difference is consistent over time

and therefore we conclude that the aggregated time series model is overall a superior

model. However, it should be noted that the size of the performance difference is

only moderate (0.75-1% greater accuracy) whilst the additional complexity involved

in implementing the aggregated time series model is relatively high. It can be seen that

the performance of the final model is still considerably below the bookmaker baseline.
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Figure 6.15: Model Accuracy (top) and Average Log Probability (bottom) over time

based on a 12 month moving window. For both metrics higher is better.

Finally, we examine the calibration of the aggregated time series model shown in Fig-

ure 6.16. It can be seen that the model is fairly well calibrated but is slightly over

confident at higher probabilities.
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Figure 6.16: Calibration of the aggregated Time Series model based on test and training

sets. Evaluated as a moving average in bins of 0.07. The x-axis relates to the models

predictions and the y-axis to the percentage of time predictions of that probability were

correct.

6.8 Improving Profit

In all of the results presented in the previous sections we have largely ignored profit.

This section will access whether our final model described in the previous section can

be made profitable. In order to do this, we consider creating a confidence threshold

such that no bets are placed on any predictions with a confidence below this threshold.

Confidence is defined as described in Section 5.7. Figure 6.17 shows a curve of the

number of predictions against profit based on varying the confidence threshold. It is

observed that profit improves gradually as more of the least confident matches are dis-

carded. The model appears profitable if only around 2000 of the predictions are used.

However, this is a very low percentage of the total predictions and the curve also ap-

pears unstable in that region. Therefore, it is considered unlikely that the model would

actually be successful if used on future odds from the same distribution.

Throughout the project, we selected hyper-parameters and made model choices based

primarily upon improving the score of the other performance metrics. It is possible

that the model profitability would be improved if these choices were instead made

with respect to maximising profit.
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Figure 6.17: Profit vs number of predictions for the aggregated times series model. A

lower number of predictions relates to stricter confidence threshold. Results are based

on the training set of data consisting of matches from 2005 to 2015.
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Conclusion

The goal of this project was to improve upon the performance of leading tennis predic-

tion models from the literature by exploring new ways to model the effects of surface

type and the variation of player skills through time. Previous work in tennis mod-

elling had predominately addressed these two areas by applying weightings to histori-

cal matches.

We implemented a time series model which assumes a Gaussian drift on player skills

over time. Models of the nature have been explored in other fields but had previously

not been applied to tennis prediction. We apply updates in our time series model by

using a variational method which we derived based on stochastic variational infer-

ence. We also use this method in an additional time series model where we jointly fit

the skills of players at multiple points in time, rather than applying filtering updates.

We show that the performance of both time series models is superior to an equiva-

lent recency weighted model. Furthermore, we find that the performance of filtering

based time series models can be improved by tracking correlations between players

through time. Both the joint optimisation and filtering time series models give simi-

lar overall performance. The joint optimisation model may offer better performance

if implemented in higher resolution, but the additional computational expense makes

this challenging.

We develop a new surface factor model where both players and surfaces are mod-

elled using multiple free parameters and show that this produces better accuracy than

an equivalent surface weighted mode. We find that using more than 2 factors gives no

meaningful improvement. It is likely more complex interactions between the model

64
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parameters are required in order to better capture surface effects.

We explored fitting a range of standard Bradley-Terry models based on point, game

and match level information using both penalised maximum likelihood and our de-

rived variational procedure. We find that fitting the models with a Bayesian approach

results in performance which is only marginally better than the same models fitted

using regularised maximum likelihood. Additionally, using a correlated covariance

matrix in these models makes almost no difference to the predictions. We develop an

extended Bradley-Terry model with an additional free parameter per player in order to

model distinct service probabilities of each player. However, this model only gives a

very slight improvement in performance compared to a standard point level Bradley-

Terry model.

Finally, we show that aggregating predictions from separately trained point, game and

match models can provide a small performance improvement. We train a final aggre-

gated times series model and demonstrate its superior predictive performance to two

prediction models from the literature. Our final model is not profitable when com-

pared against historical bookmaker odds. However, we do show that it can become

close to profitable by taking into account the confidence of predictions by considering

the variances of the player skills used in the predictions.

7.1 Future Work

The following key areas are identified as meriting further research:

7.1.1 Expanding the Data Set

In this project, we trained models using only data from ATP tour level matches. How-

ever, for some players this meant that there was only a small amount of data available

because they play the majority of their matches at a lower level. This is highlighted

by the fact that the uncertainty present in the many of the skills in the Bayesian fitted

models is high (Figure 6.6). We carried out a preliminary experiment where we eval-

uated a standard maximum likelihood game level Bradley-Terry model but included

data from both ATP and Challenger level matches. Note that predictions were only

made for the same subset of matches as the equivalent ATP only model. Our results
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suggest that there is improvements to be made from including the additional data. We

therefore recommend that this is explored in future work.

7.1.2 Combing the Surface Factor and Time Series Models

In separate models, we demonstrated that both surface effects and the variation of

player skills through time could be successfully addressed using alternative approaches

to match weighting. Future work could implement a time series version of the surface

factor model. The variational procedure that we derive in Section 5.5 would be suitable

for performing the updates in this model if it was assumed that the surface weighting

parameters were constant scalar values. This should be a reasonable assumption since

the physical properties of the surfaces do not change over time. Additionally, we would

expect the posteriors of the surface parameters to be extremely peaked anyway, due to

the large amount of data for them.

7.1.3 Additional Factors

Although our surface factor model represents players with multiple parameters, it still

does not allow for non-transitive relationships between players on a single surface.

This can be achieved by including non-linear interactions between the parameters of

players (Stanescu, 2011). Expanding the models in this project to include additional

player parameters with non-linear interactions presents a further opportunity for future

work.
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Appendix

A.1 Variational Inference Likelihood Approximation

For following expectation:〈
log(σ(x))

〉
N(v; 0,1)

≈
〈
−aexp(−1

2
bx2)−0.5xerf(cx)+0.5x

〉
N(v; 0,1)

Performing the expectations on the right hand side per term results in:〈
−aexp(−1

2
b(µ+ τv)2

〉
N(v; 0,1)

= − a√
bτ2 +1

exp(− bµ2

2(bτ2 +1)
)

〈
−0.5(µ+ τv)erf(c(µ+ τv))

〉
N(v; 0,1)

= −0.5µerf
( cµ√

1+2c2τ2

)
− 1√

2π
exp
(
− c2µ2

2c2τ2 +1

) cτ2
√

c2τ2 +0.5〈
0.5(µ+ τv)

〉
N(v; 0,1)

= 0.5µ
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