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Abstract
This Master’s thesis introduces the computational modelling of neural data ana-
lyzed using a novel choice of mathematical model: the population-tracking model
[1]. The main purpose of the model is to capture the neuronal dynamics of large
populations of neurons (N > 25). We modelled three different types of spikes datasets:
synthetic data, multielectrode array data, and calcium imaging data collected in the
context of a neurobiological experiment investigating the effect of SynGap knock-
outs (heterozygous genotype) on neural firing behaviours. Autistic Spectrum Dis-
order (ASD) is a range of intellectual disorders which involves genetic mutations as
well as changes in neuronal networks dynamics. How can mathematical modelling
be used in order to make sense of this neurobiological disorder? This is what we
attempted to understand further through the implementation of the population-
tracking model. Multielectrode array modelling analyses results mainly supported
the findings from past research [2]. As for calcium imaging data analyses, we were
only able to gather preliminary results which supported early experimental findings
[3] and suggested that there may indeed be a difference in the degree of neuronal re-
modelling between wild type mice and heterozygous mice.
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Chapter 1

Introduction

1The main goal of this Master’s project was to implement a mathematical model
of neuronal population activity on calcium imaging data collected with two-photon
calcium imaging in the Integrative Physiology laboratory at the University of Edin-
burgh. One of the latest breakthroughs in the field of Neuroscience is the develop-
ment of large-scale recordings for neural activity in the brain [5]. It is now possible
to record from up to thousands of neurons simultaneously. According to Hertz et
al. (2013) [6], learning more about the precise computational and physiological dy-
namics of networks of neurons requires one to first estimate the parameters of a
statistical model. Indeed, for many years, statistical physicists have attempted to
capture more of the functional behaviour of neuronal networks through the laws of
statistical mechanics, fitting models to experimental data collected in Neuroscience
laboratories [7].

Schneidman et al. (2006) [8] published an influential paper which reported that
the pairwise maximum entropy model was a very good choice of statistical model
which could capture more than 90% of the neuronal networks’ correlations (spikes
and silences) using an energy function constrained solely on correlations in the data
and firing rates of individual neurons. Importantly, the main reason which explains
why the pairwise maximum entropy model became successful was that it didn’t re-
quire any specification of higher-order interactions in order to describe most of the
correlations of the neuronal network [8].

Another paper from Roudi et al. (2015) [9] compared two types of statistical
models that were used to model neurophysiological data: generalized linear mod-
els (GLM) and maximum entropy models. In the case of GLM’s, the model considers
the likelihood of the recorded history rather than the set of observed spike patterns.
A function Ji j (τ) of a time lag τ models the influence of spikes on the probability of
firing of pairs of neurons (pre- and postsynaptic neurons i and j). The idea of GLM’s
is to predict a neuron’s future spikes based on both its past spikes and the activity
of neighbouring neurons (only when included in the model through couplings). On
the other hand, maximum entropy models only predict neuronal spiking based on
the firing behaviour of other neurons in the network, but cannot model the time
history [9].

In the context of large-scale recordings, research has shown that it was often

1Most of this Chapter is highly inspired from my Informatics Research Proposal [4]
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2 Chapter 1. Introduction

better to record neural activity with electrode arrays rather than other neuroimaging
methods. Indeed, electrode arrays can record simultaneously from thousands of
channels with single neuron resolution, and they can also benefit from sampling
rates over 20 kHz/channel, unlike most other neuroimaging techniques [10], [11].
However, in the context of in vivo neurobiological experiments, other neuroimaging
techniques may be preferable to microelectrode arrays, such as two-photon calcium
imaging.

Two-photon calcium imaging affords a certain number of advantages which are
worth mentioning. First, traditional neuroimaging techniques such as optical imag-
ing based on intrinsic signals afford a spatial resolution of around 250-500 µm [12]
whereas two-photon calcium imaging affords a spatial resolution of 10µm [13]. Sec-
ond, through the use of a fluorescent genetically-encoded calcium indicator (GCaMP6f)
and two-photon laser-scanning microscopy [14], [15], it is possible to record the
precise calcium levels of neurons with single-cell resolution through fluorescence
measurements, meaning that every single neuron can be recorded simultaneously
[16], [17]. Finally, it is also possible to record the same neurons over several days,
which is crucial for the study of a process with a strong temporal component like
synaptic plasticity. However, some limitations must be considered as well. One lim-
itation is that the calcium sensors used in two-photon calcium imaging are known
to be slow sensors [18] with a low sampling rate around 50 Hz, as opposed to mul-
tielectrode arrays. In order to see spikes in real time, one would require a sampling
rate of 10 kHz [18].

The main problem that we were trying to address in this research is the follow-
ing: how can one statistically analyze large neuronal populations? One potential
solution is to use statistical modelling, which gives access to the full distribution,
such that it becomes possible to compute quantities of interest, such as the relative
entropies between two recordings from the same preparation. In the context of this
Master’s project, we mostly investigated the population tracking-model using the
MATLAB programming language. The main motivation for using this technique is
that other statistical models such as the pairwise maximum entropy model can only
be fit to populations of about 10 neurons, and quickly becomes computationally too
expensive [19].

A recent study from O’Donnell et al. (2016) [1] showed that the population-
tracking model offered significant advantages over other models for the descrip-
tion of spiking neurons based on calcium imaging data. The main advantages of
the population-tracking model over other other models were as follows: first, the
model could fit large numbers of neurons approximating around 1000 neurons; sec-
ond, the model used N 2 parameters (where N is the number of neurons) which were
computationally cheap to fit for large N’s; third, parameter estimates converged
within a reasonable number of time steps; fourth, the model could yield direct esti-
mates of pattern probabilities; fifth, the model was the only low-dimensional model
that could fit the whole pattern probability distribution using a computationally
tractable approximation method (see Chapter 3 for more details on this method)
[1].

One of the goals of this dissertation was to implement and test the population-
tracking model, both on synthetic data and real experimental data. The first part
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of the Master’s project focuses on baseline tests performed on data generated by a
Dichotomized Gaussian (DG) model [20]. Tests were carried out across synthetic
datasets and across time steps. The second part of the Master’s project attempted to
model already existing rat hippocampal multielectrode array data which was mod-
elled in past research [2]. This stage of the project represents an experimental con-
trol, since we already have information about that data. Finally, in the last part of the
project, we modelled novel calcium imaging spikes data from a new neurobiological
experiment. Although calcium imaging data seems to have become a new standard
method for the study of large populations of neurons, it is nevertheless hard to pre-
process. Pre-processing usually involves denoising, deconvolution, demixing and
spike train estimation using physiological models [21], [22].

A major theme in this dissertation is long-term plasticity, and its role in intel-
lectual disorders such as Autistic Spectrum Disorder or/and the Fragile X Syndrome
(FXS). The Fragile X Syndrome is an example of an intellectual disability nested in a
range of mental disorders referred to as “Autism Spectrum Disorder” (ASD). FXS is
particularly interesting from a Neuroscience perspective because it leads to issues
at the level of the synapses, as well as impairments in synaptic and homeostatic
plasticity [23], [24]. It is caused by mutations in the Fmr1 gene. The Fmr1 gene is
responsible for the synthesis of the FMRP protein, which targets important mRNAs
and inhibits protein synthesis. Its absence leads to excess long-term depression
and a lack of regulation of key biological compounds [25]. Mutations in the Fmr1
gene usually originate from CGG repeat expansions [26]. Because FXS involves neu-
ronal networks and homeostatic plasticity dysregulation, it is still difficult to fully
understand and describe how the genetic mutation leads to disruptions in synaptic
plasticity [24]. Originally, the goal was to investigate Fmr1 mutations responsible
for FXS phenotypes. However, due to logistic constraints, we were not able to use
experimental data related to the Fmr1 gene and had to use SynGap data instead.
The SynGap data was extracted from a study from the Integrative Physiology & Neu-
roscience laboratory, which investigated a heterozygous genotype (gene knock-out)
in another gene: the SynGap gene.

The main purpose of the neurobiological experiment was to analyze potential
changes in the neuronal circuitry of wild-type mice and heterozygous SynGap knock-
out (KO) mice. A second goal was to compare neuronal activity before and after
Monocular Deprivation (MD). The experiment was exploratory in essence, which
means that we did not have any formal hypotheses that we attempted to validate
using statistics. Calcium imaging data was recorded in the visual cortex (V1) of both
types of mice. The experiment itself was inspired from previous research [27] which
sought to understand how MD could modify ocular dominance and changes in neu-
ronal networks’ firing activity. The idea of the monocular deprivation experiment
was inspired from Wiesel & Hubel’s (1963) experiments on cats [3] in which they
measured single-unit recordings from the striate cortex of cats. In the context of
their experiment, one of the cats’ eye was blind-folded from birth for different pe-
riods of time. The main result from the experiment was that there was a shift in
ocular dominance, only in the cats with visual deprivation. Importantly, this ocu-
lar dominance shift effect was stronger in the cats that were visually deprived for
longer periods of time since birth. Although we did not have any specific hypothe-
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ses in our experiment, we still expected heterozygous genotypes to prevent natural
neuronal remodelling mechanisms from happening spontaneously as they would in
wild-type animals, which would support past research on long-term synaptic plas-
ticity [3].

Last but not least, an important paper from Barnes et al. (2015) [28] showed that
SynGap haploinsufficiency caused neurobiological modifications related to long-
term synaptic plasticity processes which were also involved in the deletion of the
Fmr1 gene and lead to the onset of Autism Spectrum Disorder (ASD) symptoms.
The next section provides a thorough background on long-term synaptic plasticity,
homeostatic plasticity dysregulation, and Fmr1 mutations, which, despite not being
the object of study of our calcium imaging experiment, are still related to SynGap
mutations to a great extent.



Chapter 2

Neurobiological background on
Autistic Spectrum Disorder and the

Fragile X Syndrome

1 The purpose of this Chapter is to introduce some key neurobiological aspects
of long-term synaptic plasticity, Austistic Spectrum Disorder (ASD) and the Fragile
X Syndrome (FXS). Autistic Spectrum Disorder (ASD) mostly consists of intellectual
disorders which lie at the intersection between genetic mutation and changes in
neuronal network dynamics [24]. Its study requires both a thorough understand-
ing of the neurobiological mechanisms at play, and a good computational descrip-
tion of neuronal networks dynamics which can be achieved through mathematical
modelling. In this Chapter, we will mostly focus on the neurobiological background
causing the expression of the Fragile X Syndrome (FXS), in the hopes of better un-
derstanding how mathematical modelling can tell us more about synaptic plasticity
disruptions in ASD.

2.1 Overview of long-term synaptic plasticity and home-
ostatic plasticity

One of the most important properties of the brain is its ability to shape itself
over time through a complex interaction between gene expression and synaptic re-
inforcement through experience. Synapses, which connect neurons to one another,
play a major role in this dynamic process. One striking feature of synapses is their
remarkable flexibility and ability to weaken and/or strengthen over time. Two types
of synaptic plasticity have been well-established over time: short-term plasticity
and long-term plasticity [29], [30].

During neural development and learning, critical neurobiological events cause
physiological changes at the synapses, which in turn permanently alter brain func-
tion. Two instances of long-term synaptic plasticity mechanisms are Long-term Po-
tentiation (LTP) and Long-term Depression (LTD) [31], [32]. Both of these processes
consist of complex neurobiological chain reactions. While LTP leads to synaptic

1This Chapter is mostly extracted from my Informatics Research Proposal [4]
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6Chapter 2. Neurobiological background on Autistic Spectrum Disorder and the Fragile X Syndrome

(a) long-term potentiation (LTP) (b) long-term depression (LTD)

Figure 2.1: Long-term synaptic plasticity neurobiological mechanisms in a glutamate
synapse. Figures are extracted from [32]

strengthening and activity-dependent increase in the efficacy of the synaptic trans-
mission of electrochemical messages (as known as action potentials), LTD leads to
synaptic weakening and activity-dependent decrease in the efficacy of the synaptic
transmission of action potentials [32].

In the LTP neurobiological chain reaction, the glutamate neurotransmitter is
first released through exocytosis into the synaptic cleft of a glutamate synapse. If
the postsynaptic cell is depolarized enough, the NMDA receptor opens after gluta-
mate binding and calcium ions enter the postsynaptic terminal. Through the acti-
vation of calcium Calmodulin Kinase II (CaMKII) and protein kinase C (PKC), new
AMPA receptors are inserted into the postsynaptic spine and the synapse becomes
more sensitive to glutamate neurotransmitters. This sensitization of the glutamate
synapse is what leads to the more effective transmission of action potentials [32]
(see Figure 2.1a).

Conversely, in the LTD neurobiological chain reaction, when glutamate is bound
to the NMDA receptor and the postsynaptic terminal is depolarized, the rise of Ca2+

activates protein phosphatases, which results in both the internalization of post-
synaptic AMPA receptors and the decrease of the glutamate synapse’s sensitivity
to glutamate neurotransmitters (see Figure 2.1b). It is this desensitization of the
glutamate synapse that leads to the less effective transmission of action potentials.
Importantly, it is the nature of the Ca2+ signal in the postsynaptic cell which deter-
mines whether LTP or LTD is triggered. Slow and small rises in Ca2+ lead to LTD
whereas large and fast rises in Ca2+ lead to LTP [32].

One fundamental aspect of synaptic plasticity and Hebbian learning is what has
been called neuronal homeostasis [34]. The main idea is that neurons modulate
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levels of excitation and inhibition through regulatory mechanisms. A key concept
in neuronal homeostasis is synaptic scaling: the measurement of a large number of
neuronal synapses’ strength through miniature Excitatory Post-Synaptic Currents
(or “mEPSC”) related to the spontaneous release of presynaptic vesicles. The in-
crease of average mEPSC amplitude is called mEPSC upscaling while the decrease
of average mEPSC amplitude is called mEPSC downscaling [34], [35].

Figure 2.2: Illustration of neuronal homeostatic mechanisms. To the left, the synapse
undergoes synaptic homeostasis (a to b). To the right, the synapse undergoes intrinsic
homeostasis (a to c). Figure extracted from [33].

Two possible regulatory mechanisms which are believed to modulate the level of
excitation of a neuron are synaptic homeostasis [36] and intrinsic homeostasis [37],
[38]. On the one hand, in synaptic homeostasis, inhibitory synapses from feedback
neurons are inhibited and excitatory synapses from feedback neurons are strength-
ened in order to scale up the excitation level of the presynaptic terminal (see Figure
2.2 a → b). On the other hand, intrinsic homeostasis refers to changes in the neu-
ron’s intrinsic excitability. In other terms, the probability of the neuron to spike is
modified by the re-balancing of ion channel densities [33]. On Figure 2.2 (a → c),
intrinsic homeostatic mechanisms cause the rebalancing of inward and outward
voltage-dependent Na+ and K+ currents. Although these mechanisms may differ,
their purpose remains the same: that is, to maintain a balance between excitation
and inhibition, and ensure that neuronal circuits function normally [33].

2.2 The Fragile X Syndrome: From a genetic mutation
to homeostatic dysregulation

Autistic Spectrum Disorders (ASD) are a range of intellectual disorders which
cause issues at the level of the synapses [39], [40]. In particular, the Fragile X Syn-
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drome is a genetic pattern which has been shown to lead to “autism” [24]. The Frag-
ile X Syndrome (FXS) has been linked to phenotypic differences (a long, narrow face,
prominent ears and flat feet), intellectual problems (mental retardation and low IQ)
as well as social and communication problems (social anxiety, avoidance, language
delays) [23].

FXS appears to be the result of a genetic mutation in the protein-coding Frag-
ile X Mental Retardation 1 (Fmr1) gene on the X chromosome (cytogenetic position
Xq27.3) with CGG repeat disorder [26], [41], [25]. FXS mutations most often involve
an expansion of the CGG repeat located in the 5’ untranslated region (UTR) of the
Fmr1 gene. CGG repeats can be of different lengths. Mutations ranging from 55 to
200 CGG repeats fall into what has been called “Premutation alleles”. These do not
directly lead to the expression of the Fragile X Syndrome. Nevertheless, these muta-
tions are more prone to further CGG repeat expansions than disorders involving less
than 55 CGG repeats, and they also involve a higher risk of fragile X-related primary
ovarian insufficiency (FXPOI) and fragile X-associated tremor/ataxia syndrome (FX-
TAS). When the mutation involves more than 200 CGG repeats, it is referred to as
“full mutation”, and directly leads to DNA methylation, chromatin condensation,
histone hypoacetylation and transcriptional silencing of the Fmr1 gene [25].

One interesting property of the Fmr1 gene is that it is highly preserved across
species [25]. This means that one can study an orthologue version of the human
Fmr1 gene in an animal model, and expect with reasonable confidence to find the
same mechanisms of Fmr1 gene expression as in the human. The most common an-
imal models of the Fmr1 gene include the mouse and the fruit fly [25]. In the mouse,
the protein-coding Fmr1 orthologue has 97% homology to the human protein-coding
Fmr1 gene. Mutations in the mouse Fmr1 gene lead to phenotypes that are similar
to the ones witnessed in the homo sapiens (i.e: disrupted learning and memory,
higher chance of seizure onset, presence of dense and immature dendritic spines)
[25]. In the fruit fly, mutations in the Fmr1 gene lead to abnormal neuronal architec-
ture, impairments in long-term memory and issues in synaptic function and synap-
tic plasticity.

The Fmr1 gene is responsible for the synthesis of a protein called Fragile X Men-
tal Retardation Protein (or FMRP). FMRP is a selective RNA-binding protein primar-
ily expressed in neurons which plays a major role in synapses [42]. Indeed, FMRP
is usually localized on postsynaptic dendritic spines and leads to translation inhibi-
tion of dendritic mRNA. It is involved in dendritic development and function, and
allows the onset of key synaptic plasticity mechanisms. [25]. In the case of a mu-
tation in the Fmr1 gene, Fmr1 transcription is silenced, which in turn prevents the
translation of the gene into FMRP synthesis [43].

Because FMRP is involved in the inhibition of protein synthesis in FXS, the ab-
sence of FMRP leads to excessive protein synthesis and triggers excess AMPA recep-
tor internalization (long-term depression or LTD) [43]. To this day, it is still unclear
how FMRP precisely regulates protein synthesis in the brain at the level of neuronal
networks. The neurobiological pathway that is believed to play a key role in pro-
tein synthesis regulation is the mGluR pathway (metabotropic Glutamate recep-
tor), which activates a cascade of second messengers during LTD [23], [43]. Two
such second messengers which have been hypothesized to contribute to FXS are
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mTOR (mammalian target of rapamycin) and ERK (extracellular signal-related ki-
nase). Last but not least, other biological factors ought to be considered when inves-
tigating the effect of FMRP on neuronal networks. These include phosphorylation
levels of key biological components such as FMRP and ERK, as well as alternative
neurobiological pathways such as the RNA interference (RNAi) pathway [25].

One important feature of intellectual disorders is that they result in disruptions
at the level of networks of neurons rather than isolated genes or individual neurons.
In the case of FXS, such disruptions involve impaired neuroplasticity and abnormal-
ities in the development and function of synapses and neuronal circuits through the
combination of genetic, epigenetic and environmental factors [24]. Consequently,
in order to reach further insights with respect to the precise neurobiological mecha-
nisms involved in intellectual disabilities such as the Fragile X Syndrome, one needs
to think about the dynamics of neuronal networks and synaptic feedback regulation
(or homeostasic plasticity), and use appropriate computational neuroscience tech-
niques in order to capture more of the complexity of such dynamics [24].

One instance of a critical issue occurring at the level of neuronal networks is the
imbalance between excitation and inhibition. In the review from Nelson & Valakh
(2015) [44], the authors integrate results from a wide range of studies investigating
the potential consequences of ASD’s genetic mutations at the level of the synapses.
Although many studies claim that ASD may be linked to an increase in the ratio be-
tween excitation and inhibition (hyper-excitability), as suggests results from elec-
troencephalography (EEG) studies revealing epileptic seizures in patients with autism,
other studies have cast doubt on this conclusion and have argued instead that these
disorders were the result of a decrease in the ratio between excitation and inhibition.
Results from current research remain inconclusive with respect to the precise nature
of homeostatic plasticity dysregulation mechanisms in autistic spectrum disorders
[44].

2.3 Experimental investigation of the Fragile X Syndrome

In their study, Osterweil et al. (2013) [45] disrupted the Ras-ERK pathway by in-
troducing a molecule called Lovastatin, along with farnesyl thiosalicylic acid (FTS).
The injection of Lovastatin is believed to inhibit the phosphorylation of Ras-GDP,
which makes the ERK1/2 levelsgo down. As a result, protein synthesis can be re-
duced and regulated at the synapses. The authors injected different doses of lovas-
tatin into the hippocampus and the visual cortex of both wild type and knockout
mice in order to assess potential effects of lovastatin on protein synthesis levels.
The researchers reported statistics on potential seizures and measured the overall
excitability of the synapses, the duration of action potentials, and the levels of pro-
tein synthesis after injection. After experimental investigation, results suggested
that lovastatin could indeed inhibit Ras-ERK1/2 signaling in hippocampal neurons
and decrease both epileptogenesis and hyperexcitability. However, more research
is needed to determine whether the beneficial effects are really due to lovastatin
decreasing the Ras-ERK1/2 signalling pathway [45]. It may be the case that other
proteins or modulators also play a role in this specific pathway.

One key element in the Osterweil et al. (2013) study [45] is the use of a mouse
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model for the investigation of the Fmr1 gene and its effects. The use of a mouse
model has indeed been supported by past research, which suggests that mice repre-
sent an adequate animal model for the study of FXS. Specifically, Huber et al. (2002)
claimed that “the Fmr1 null mutant (knockout) (Fmr1-KO) mouse [...] has a be-
havioural phenotype consistent with fragile X syndrome” [45].

In another study from Gonçalves, Anstey, Golshani and Portera-Cailliau (2013)
[46], researchers used a mouse model to understand how disruptions in neuronal
networks could lead to mental disorders such as FXS. In order to do so, they used
whole-cell recordings, in-vivo patch clamp recordings as well as a combination of
two-photon calcium imaging and electroencephalography (EEG) to assess levels
of neural activity in different behavioural states in both wild-type mice and Fmr1-
Knockout mice.

Results from Gonçalves et al. (2013) [46] lead to four conclusions. First, the
Fmr1 mutation may indeed cause hyper-excitability of networks of cortical neurons
in a state-dependent fashion. Second, neural activity may be altered by top-down
modulation effects influenced by behavioural states (such as deep sleep or wake-
fulness). Third, too much synchronization and unusual/very high levels of neural
activity may lead to impairments and miswirings in the neural circuits, which may
cause mental disorders such as FXS. This could be explained by the fact that spon-
taneous neural activity during brain development in critical periods is crucial for
the good formation of neuronal networks. Indeed, in healthy animals, desynchro-
nization in neural activity has been shown to give rise to sparse coding, which is
computationally efficient, reinforces memory storage capacity, simplifies the pro-
cessing of complex information and saves energy [47]. Finally, neuronal networks’
hyper-excitability phenomenon in mutant mice was hypothesized to be caused by
too much inhibition of the GABA A receptors (responsible for inhibition of neural
activity), and/or by the fact that dendritic spines were already abnormally unstable
during the second postnatal week [46].



Chapter 3

Neurobiological experiments and
modelling methodology

3.1 Brief overview of the project’s methodology

This Master’s project was divided into three parts: synthetic data modelling anal-
ysis, multielectrode array data modelling analysis and calcium imaging data mod-
elling analysis. We mainly attempted to answer the three following questions: 1)
How well can our choice of mathematical model capture the data that we were
given? 2) Did the connectivity change between pairs of neuronal networks? 3) What
can our choice of model say about real spikes data collected in the context of neu-
robiological experiments?

With respect to the first question, we used a selection of four different synthetic
datasets in order to test the reliability and accuracy of our model: the population-
tracking model [1]. The synthetic data analysis was divided into two main stages:
baseline tests and timesteps analysis. In the first stage, we described and com-
pared the four synthetic datasets of interest, and investigated how the population-
tracking model could fit its parameters to the synthetic data. The methodology that
we used to generate spikes made use of the Dichotomized Gaussian (DG) model in-
spired from past machine learning literature [20]. The main idea is that we turned
a N-dimensional gaussian random variable into a multivariate binary distribution
(which is the spikes data that we want to model). Specific details regarding the
synthetically-generated datasets can be found in Chapter 4.

With regards to the second question, one usually investigates the parameters of
a given model, which often involve the mean firing rates and correlation properties
of spikes datasets. The idea is to understand how those change from one spikes ma-
trix to the other. Baseline pairwise comparison tests were performed across all syn-
thetic datasets, and over time (timestep analysis). In addition, spikes data extracted
from real neurobiological experiments were also analyzed and compared. The two
experiments that were our object of study were the multielectrode array experiment
and the synaptic plasticity experiment. All spikes data from all stages followed the
same format: namely, they were all binarized matrices (only 0’s and 1’s) with T rows
and N columns, where T referred to the different time steps, and N referred to the
different neurons in the network.

11
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Finally, the third question is the main question that we are attempting to answer
in this dissertation. The population-tracking model [1] is a fairly novel statistical
model (published in 2016) which could be quite useful in our attempt to make sense
of binarized spikes data extracted from calcium imaging signals. We will mostly
attempt to address this question in Chapter 5.

3.2 Description of the neurobiological experiments

The two main experiments that were investigated in this project were the mul-
tielectrode array experiment and the synaptic plasticity experiment. These experi-
ments enabled us to work with and model real spikes data.

3.2.1 The multielectrode array (MEA) experiment

Figure 3.1: Illustration of the multielectrode array (MEA) device (this one includes 60
electrodes). Figure extracted from [48].

One of the main advantages of the multielectrode array technique is that it al-
lows the simultaneous recording of thousands of channels. As mentioned in Potter
(2001) [48], MEAs can be used for electrophysiological recordings on neural disso-
ciated cell cultures. Figure 3.1 displays an illustration of the multielectrode array
device. With regards to the MEA experiment, researchers were specifically inter-
ested in the electrophysiological recordings of dissociated hippocampal neurons
from brain tissue of embryonic rats. Neural hippocampal cultures were used as the
basis of the multielectrode array recordings (4,096 channel array), which measured
the activity of 1,024 electrodes at a sampling rate of 7 kHz/electrode with a resolu-
tion of 12 bit per electrode. In the case of our project, it was necessary to ensure that
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intercellular connections between neurons were preserved, as we were mostly inter-
ested in investigating the level of neuronal networks. The MEA experiment investi-
gated spikes from the neural hippocampal culture over the course of a few minutes
at different points in time. The collected data was presented in Panas et al. (2015)
[2].

Once the electrophysiological recordings were completed, the data needed to be
pre-processed in order to be turned into spike trains. Spike detection followed the
methods from Muthmann et al. (2015) [49]. Weighted interpolated signals were gen-
erated in order to capture the spikes which could be recorded close to or between
electrodes. All signals were further processed in order to minimize noise bias, and a
support vector machine model was trained and used to classify events as true spikes
or noise.

Once all spikes were detected, they needed to be clustered into chunks which
represented our “neurons” of interest. Clustering was implemented using the mean
shift algorithm as well as methods from the scikit-learn Python machine-learning
library. In this project, we made use of the “herding spikes” methods [50] in or-
der to carry out the spikes clustering process. We then computed the Fano factor
for the spike train in each cluster. Noisy units were removed by excluding clusters
with small Fano factors, and we also ignored clusters with very few spikes. The data
was then binarized and binned using 10 ms time bins. In this project, we used pre-
processed and clustered spikes data recorded at the following times: basal (base-
line), 2 hours (H2) and 20 hours (H20).

3.2.2 The synaptic plasticity experiment

The choice of design for the synaptic plasticity experiment followed previous re-
search from Wiesel & Hubel (1963) [3] and Rose et al. (2016) [27], which sought to
better understand how monocular deprivation could lead to a change of neuronal
responses, as well as modifications in functional and structural synaptic plasticity.
In the context of this project, we wanted to investigate the neural activity from pop-
ulations of V1 neurons (visual cortex) in two phases: the pre-monocular depriva-
tion phase and the post-monocular deprivation phase. All subjects were adult mice.
The first phase represented our baseline condition in which no monocular depriva-
tion had occurred, and the second phase represented our experimental condition
in which monocular deprivation had already happened.

Figure 3.2 A. shows an illustration of the synaptic plasticity experimental paradigm.
The mouse was moving freely on a wheel while a two-photon calcium imaging de-
vice was recording a calcium signal. In the meantime, some stimuli were presented
through the use of a Virtual Reality screen. Stimuli were bars tilted in four different
directions: 0°, 45°, 90° and 135°. The head of the mouse was fixed in order to pre-
vent any head movements. Figure 3.2 B shows a z-projection of the imaging stack
in the visual cortex (V1) which could be visualized using a laser microscopy device.
For each neuron, the fluorescence level of single neurons was recorded. A resonant
scanner recorded signals with a rate of 12 kHz, and image acquisition had a rate of
40 Hz for a resolution of 600x600 pixels. At the bottom, we see the calcium signal
∆F (t )/F0 for two different neurons. Spikes in the calcium signal indicate the pres-
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ence of a firing event.

Figure 3.2: A) Illustration of the synaptic plasticity experiment. B) Recording of the
two-photon calcium imaging signal and spikes estimation. Unpublished Figure.1

Figure 3.3: Overview of the conditions at different stages in the synaptic plasticity ex-
periment. Unpublished Figure.1

One important question is the following: How does one turn the fluorescence
calcium signal into a binary spikes train (with 0’s and 1’s)? This question was the ob-
ject of study of Deneux et al. (2016) [22], in which researchers developed a maximum-
likelihood method called “MLspike”. The “MLspike” method was implemented as a
pre-processing step in order to get the binary matrices that we used in this project.
The goal of the method is mainly to find the most likely spike train underlying the
recorded fluorescence signal. In order to do so, “MLspike” uses a physiological
model of intracellular Calcium dynamics and baseline fluorescence (F0) along with
a filtering technique which runs in linear time. The maximum likelihood method
used a version of the Viterbi algorithm in order to estimate the optimal spike train
by maximizing the maximum a posteriori (MAP) distribution probability [22]. Using
this approach, it is possible to get a reliable estimate of the firing of single neurons
over time. Note that one key design choice (and potentially caveat) is the choice of

1This figure was provided by Dr. Rochefort from the Integrative Physiology department at the
University of Edinburgh.
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time bins in the extraction of spike trains. How often do we want to record binary
spikes for each neuron?

Finally, Figure 3.3 shows the different conditions and the order in which the con-
ditions followed one another. The two main genotypes that were being compared
are the Wild-Type genotype and the Knock-Out genotype. Mice from the Knock-Out
genotype group had one copy of the SynGap gene knocked out in the whole animal
(heterozygous knockout). Measurements were recorded in the “Stimulus” condition
in which the gratings were presented to the mice, and in the “Darkness” condition
in which mice were immersed in darkness. The monocular deprivation experiment
worked as follows. In each of the two main stages (Pre- and Post-monocular de-
privation stages), measurements were recorded four times: 1) with both eyes open
(Binocular pre), 2) with only the left eye open, 3) with only the right eye open, 4) with
both eyes open again (Binocular post). Between the two stages, a blindfold was put
on the right eye during seven days, so that the mouse could only see with the left
eye.

3.3 Overview of the mathematical modelling methods

3.3.1 The population-tracking model

One of the main problems of the pairwise maximum-entropy model is that it
cannot be used for large populations of neurons (populations above about 25 neu-
rons) [19]. With the new technological developments in the field of Neuroscience,
it is now possible to have access to large-scale recordings, such as multielectrode
arrays, which can record the electrical activity from up to thousands of channels si-
multaneously. The implication of such breakthrough is that we now need to develop
new mathematical models which can capture more of the dynamics of the neuronal
networks.

According to O’Donnell et al. (2016) [1], the ideal statistical model for neural
populations balances accuracy, tractability as well as usefulness. In this section,
we introduce the innovative mathematical model that [1] put forward. An overview
of the model is introduced on Figure 3.4. The idea is as follows: the data that is
recorded in TxN matrices is assumed to behave according to an underlying prob-
ability distribution Ptr ue . The goal of the mathematical model is to identify the
probability distribution Ptr ue . However, it is not possible to use a histogramming
method with smoothing as one would usually do because the number of neurons
grows exponentially. Indeed, one would expect a total number of 2N firing patterns,
as each of the N neurons can either be in the ON or OFF state. The idea of the sta-
tistical model is to estimate the parameters of a tractable model in order to get a
good estimate of the probability distribution Pmodel . The model that is introduced
in [1] is named the “population-tracking model” (see Figure 3.4) precisely because
it is designed to be fit to data with large numbers of neurons.

The population-tracking model namely consists of 3 main parameters that are
estimated from the firing matrix samples:

• p(k), a vector of N+1 entries which indicates the probability of 0 to N active
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Figure 3.4: Overview of the population-tracking model. Figure extracted from [1]

neurons being active simultaneously at a timestep T. This can also be referred
to as the population rate, or “high-level component” of the model.

• ppp(((xxxi ))), a vector of N entries which indicates the mean probability of indepen-
dent firing of each of the N neurons in the neuronal network.

• ppp(((xxxi |||kkk))), a matrix of N x (N+1) entries which indicates the conditional proba-
bilities of single neurons being active given that there are k active neurons in
the neuronal network. This is also referred to as the “low-level component” of
the model in [1].

We now wish to explain the implementation procedure for the parameter esti-
mation of each of the three above probabilities. First, ppp(((xxxi ))) is simply obtained by
taking the mean firing rate of each neuron (each column of the TxN binary spikes
matrix). Second, p(k) is obtained by counting the number of total active neurons
for each time step and by histogramming these counts over all values of k’s. Impor-
tantly, a Dirichlet prior (conjugate to the multinomial distribution) was used as a
smoothing method (in this case, alpha-smoothing) in order to account for cases in
which some values of k’s were never observed. The goal is to ensure that even those
unobserved k’s are assigned some probability rather than p(k) = 0. In mathematical
terms, we can write:

p̂(k,α) = ck +α

T +N .α
(3.1)

where ck refers to the total count of words with k active neurons, T refers to the
number of timesteps (rows) in the binary spikes matrix, N refers to the number of
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neurons (columns) in the binary spikes matrix and α is the smoothing parameter
(pseudocount α> 0).

Finally, estimation of the ppp(((xxxi |||kkk))) parameter was performed by cycling through
every value of k, finding the subset of words whose sum of active neurons matched
k and counting the number of times each individual neuron was active at those
timesteps. Assuming that we are referring to the words subset corresponding to
a given value of k as di ,k , then the conditional probability of independent neurons
being active given k active neurons in the network corresponds to the Maximum
Likelihood estimate p̂(xi |k) = di ,k /Tk . However, since we want to prevent the case
in which some values of k might be assigned a 0 probability for not having been ob-
served in the spikes matrix, we add a regularizer in the estimation of the probability.
Since xi can be considered as a Bernoulli variable (it is either active or inactive),
standard Bayesian modelling regularization techniques state that it is best to set a
Beta prior distribution over each p(xi |K ) (conjugate to the binomial distribution).
Therefore, the posterior probability can now be written as:

p̂(xi |k,β0,β1) = di ,k +β1

β0 +β1 +Tk
(3.2)

where di ,k refers to the subset of words corresponding to a neuron xi and to ‘k’ active
neurons, Tk refers to the total number of timesteps associated to a given value of
k active neurons and β0 and β1 refer to two beta hyperparameters. β2 constrains
the prior’s mean to be equal to k/N and β1 describes the variance of the prior by
giving an indication of how much the conditional probability reflects the data (a
wider variance indicates a more naive estimation). These conditions yielded a mean
µ= k/N and a variance σ2 = 0.5µ(1−µ) such that:

β1 = µ

σ2
(µ−µ2 −σ2) (3.3)

β2 =β1.
[ 1

µ
−1

]
(3.4)

Note that the computational implementation of all parameter estimation methods
were available on the GitHub directory which was uploaded by Cian O’Donnell (first
author of [1]). A visualization of the estimation of those parameters is available in
Chapter 4 (See section 4.1 for an example involving synthetic data and 4.2 for an
example involving multielectrode array data).

Once all probability parameters have been successfully estimated, the model
is complete. This means that we have all the necessary ingredients to compute the
probability of specific words of interest (sometimes referred to as “patterns” as well).
O’Donnell et al. (2016) [1] defines the probability of a pattern as:

p({x}) = p(k)

ak

[ N∏
i=1

p(xi |k)xi [1−p(xi |k)]1−xi

]
(3.5)

where k =
N∑

i=1
xi (which is effectively the mathematical definition of “k active neu-

rons”), xi defines a given neuron being either active (xi = 1) or inactive (xi = 0), N
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refers to the number of neurons in the neuronal network and ak refers to a normal-
ization constant. The normalization constant ak refers to the sum of probabilities
of all

(N
k

)
patterns in a set S(k) with k active neurons such that:

ak = ∑
{x}∈S(k)

[ N∏
i=1

p(xi |k)xi [1−p(xi |k)]1−xi

]
(3.6)

which is effectively the sum of the probabilities of all patterns matching a specific
value of k active neurons (part of the set S(k)). Therefore, in the concrete imple-
mentation of the model, the computation of the normalization constant ak actually
requires the computation of a whole vector of constants~aaa which correspond to all
possible values of k active neurons in the network. Importantly, one needs to com-
pute the normalization constant prior to computing the probability of any given
pattern of interest.

Normalization constant estimation methods include brute force enumeration
(which means literally summing over all possible probabilities with k active neu-
rons), drawing Bernoulli samples and estimating the constant based on these sam-
ples, using importance sampling, and using the sum-of-log-normals method (see
below for a description). For small numbers of neurons (N < 20), it is best to use the
brute force estimation as it is the most accurate. For 20 < N < 50, it is reasonable to
use the importance sampling method, and larger populations of neurons usually re-
quire turning the patterns into a continuous random variable, as is described below
in section 3.3.2. Finally, note that the probability of patterns p({x}) can lead to the
estimation of the full probability distribution over patterns of any given TxN spikes
matrix and can also be used to compute other quantities such as the entropy of the
spikes data (see section 3.3.2 for more information).

One last feature of the population-tracking model (as suggests Figure 3.4) is the
ability of the model to sample new spikes datasets based on the three main proba-
bility estimates p(k), p(xi ) and p(xi |k). The main trick from O’Donnell’s sampling
method is to use a cumulative sum computational method in order to generate a
value of k (k active neurons) at each time step using the “high-level component”
p(k), and then use the “low-level component” p(xi |k) in order to determine which
specific neurons are active at that time step given that there are k neurons active
simultaneously. An example of samples comparison in the case of multielectrode
array modelling can be found in Chapter 4, section 4.2.

3.3.2 Entropy computation and the sum-of-log-normals method

The Shannon entropy of a probability distribution is usually defined as follows
[51]:

H =−∑
i

p(i ).l og2(p(i )) (3.7)

The entropy is continuous and it is expressed in bits (due to the use of the ‘log2’). It
can be related to the physical entropy, and one can think of it as the “richness” of a
given distribution [51], [52]. In the specific case of firing spikes binary matrices, one
can think of the entropy as having an inverse relation with the level of correlations
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in the data. This means that a lower entropy will usually be linked to higher levels
of correlations in the neuronal networks, whereas a higher entropy will usually be
linked to lower levels of correlations [20].

One design choice when investigating the entropy is the choice of probability
of interest. More specifically, in the context of our population-tracking model im-
plementation, we have estimated parameters corresponding to the number of ac-
tive neurons in the network (p(k)), number of independent active neurons (p(xi )),
conditional probability of firing (p(xi |k)) and pattern probabilities in the network
(p({x})). All represent potential choices of parameters for the computation of the
entropy. One may argue that the best choice is to compute the entropy using the
pattern probabilities p({x}) for all words in the neuronal network of N neurons, as
this would lead to a full entropy estimation which takes into account all possible
words that could ever be produced in the neuronal network, such that:

H =−
2N∑
i=1

p({x})log2p({x}) (3.8)

Although theoretically reasonable, this method cannot always be implemented
computationally because of size issues. As was mentioned earlier, the number of
possible words grows exponentially in the network (2N ). This makes it difficult to
compute all the pattern probabilities. For instance, for a network of only 100 neu-
rons, one would need to compute 1,267,650,600,228,229,401,496,703,205,376 (or-
der of magnitude of 1031) different pattern probabilities, which would surely take a
few weeks.

Fortunately, it is possible to compute a low-dimensional approximation of the
pattern probability distribution, as mentions O’Donnell et al. (2016) [1]. Indeed,
one can show that the distribution of pattern probabilities approximates the sum
of log-normal distributions as k and N get larger. Such distribution makes use of
the logarithm (in this case, we use the log2 logarithm) of the pattern probability
previously introduced in equation (3.5), that is:

log p({x}) = log p(k)+
N∑
i

log [p(xi |k)xi (1−p(xi |k))(1−xi )]− log ak (3.9)

Note that xi can either be a 1 (active) or a 0 (inactive), which means that the second
term will be evaluated to log p(xi |k) for all active neurons, and to l og (1−p(xi |k))
for all inactive neurons. Effectively, since we have a total of k active neurons in the
neuronal network, we can rewrite equation (3.9) as the following:

l og p({x}) = l og p(k)+
k∑
i

log p(xi |k)+
N−k∑

j
log (1−p(x j |k))− log ak (3.10)

Now, the main idea of the sum of log-normals approximation is to estimate some
parameters which can fully account for the distribution of the two middle terms
of equation (3.10) log p(xi |k) (active neurons with k active neurons) and log (1−
p(xi |k)) (inactive neurons with k active neurons). According to the Central Limit
Theorem, these probability distributions tend towards a normal distribution as N
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(a) Frequency distribution of four k’s (b) Probability distributions with normal fit for all four k’s

Figure 3.5: Distributions of pattern probabilities for four different k’s (using MEA basal
data)

gets larger. This implies that it is possible to estimate the mean and variance, which
can then be used to determine the full distribution of log p({x}) since we have al-
ready computed p(k) and the normalization constant~aaa when fitting the initial pa-
rameters of the model (see section 3.3.2).

The sum-of-log normals method operates as follows. First and foremost, we
need to compute the initial parameter estimates as described in section 3.3.2. For
105 different randomly generated words (using the MATLAB function “randperm"),
we first compute the log probability of each word and store it in a vector. Then,
we make an initial “guess” regarding the mean and variance of the normal distri-
butions of log p(xi |k) (active or ‘ON’) and log (1−p(xi |k)) (inactive or ‘OFF’) using
the k-means algorithms. Then, one can fit a mixture of Gaussians model using the
initial “guess” of parameters, and loop through several rounds of parameter estima-
tion using the Expectation-Maximization (EM) algorithm. After convergence of the
EM algorithm, we obtain the final parameters (mean and variance) of both sum-of-
log-normals distributions, which we can renormalize so that the distribution sums
to 1. Finally, we can get an estimate of the probability distribution p({x}) by taking
2, raised to the power of log p({x}) (since our logarithm was of base 2). The MAT-
LAB code with the implementation of the sum-of-log-normals method was made
available by Cian O’Donnell.

On Figure 3.5, one can see the frequency distribution of all words on the left (see
Figure 3.5a). Four choices of k values are investigated here: k = 5, k = 10, k = 15
and k = 20. Note that the X-axis corresponds to the logarithm of every given word’s
probability (equation 3.10). To the right, one can see the probability distributions
of the pattern probabilities and the fitted normal distributions using the MATLAB
“hist" function and the standard normal distribution mathematical formula (equa-
tion (3.11)) evaluated at each ’hist’ x bin’s center (see Figure 3.5a). Interestingly, for
smaller values of k, we notice that the normal distribution has a narrower range than
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bigger values of k.

x ∼N (µ, σ2), p(x) = 1

σ
p

2π
e− 1

2
(x−µ)2

σ2 (3.11)
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Figure 3.6: Model fits of the normal distributions of p({x}) for the same four values of k.

Nevertheless, since the mean and variance of the normal distribution are solely
computed based on the range of the x bins, these do not represent reliable esti-
mates for our log-normal distributions. The method introduced in [1] attemps to fit
two different normal distributions instead, as described above. Figure 3.6 shows the
distribution of the pattern probabilities (p({x})) after fitting the two normal distribu-
tions of ON neurons (N (µON (k),σ2

ON (k))) and OFF neurons (N (µON (k),σ2
ON (k))).

For each value of k active neurons, the parameters of each distribution are given by:

µON (k) =k[log p(x|k)] (3.12)

σ2
ON (k) =k

(N −k −1

N −1

)
var [log p(x|k)] (3.13)

for the active (ON) neurons, and

µOF F (k) =(N −k)[log (1−p(x|k))] (3.14)

σ2
OF F =(N −k)

( k −1

N −1

)
var [l og (1−p(x|k))] (3.15)

for the inactive (OFF) neurons. Importantly, note that the variance terms make use
of corrections due to drawing without replacement from a finite population.

Figure 3.7 displays a comparison between the logarithmic version of the fre-
quency distribution from Figure 3.5b (see Figure 3.7a), against the model log-normal
distributions (plotted on a logarithmic scale) after the Mixture-of-Gaussians fitting
process (Figure 3.7b). As we can see, the Mixture-of-Gaussians process success-
fully approximates the probability distribution of pattern log probabilities. Do note,
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Figure 3.7: Logarithmic distributions (using MEA basal data)

however, the slight shift to the left on the X-axis (pattern probabilities) in the case
of the model probabilities (Figure 3.7b). This shift is probably due to the renormal-
ization process which turns the l og p({x}) parameters into a probability distribution
that describes p({x}). This shift tends to get bigger as the variance of the normal dis-
tribution increases (for greater values of k active neurons in the neuronal network).

As was mentioned previously, the computation of the sum-of-log normals is
mostly useful to compute other quantities such as the population entropy of a neu-
ronal network. O’Donnell et al. (2016) [1] decomposes the population entropy into
two components, as follows:

H = Hk +H(p({x}|k)) = Hk +H(θ)k (3.16)

where Hk = −
N∑

k=0
p(k).log2p(k) refers to the entropy of the population synchrony

distribution and H(θ)k =
N∑

k=0
p(k)H(θk ) is the conditional entropy of the pattern

probability distribution with k active neurons. Using the probability distribution
from Figure 3.6 and Figure 3.7b, we can turn the empirical probability of words given
k active neurons p({x}|k) into the probability over patterns with k active neurons
p(θ)k where θk has now become a continuous random variable. The conditional
entropy of patterns given k active neurons can thus be expressed using integration
rather than summation techniques, as is shown below:

H(θk ) =
(

N

k

)∫ 1

0
p(θ)k .

[
θk log2θk

]
dθ (3.17)

Equation (3.16) combined with equation (3.17) represent the basis for the compu-
tation of the population entropy, which will be used in Chapter 4 in the case of the
multielectrode array data and Calcium imaging data.

Last but not least, it is sometimes interesting to shuffle the rows of the TxN ma-
trix in order to investigate the effect of temporal correlations in the neuronal net-
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work using independent entropy measurements, which often represent a good con-
trol. For instance, one can compute the mean firing rate and assume homogeneity
in the network, such that all neurons are assumed to have a mean firing rate of p̄(xi ).
Alternatively, one can assume that there is heterogeneity in the neuronal network,
and that each neuron has its own probability of firing p(xi ). More on the matter will
be introduced in Chapter 4 in the context of calcium imaging data modelling.

3.3.3 The Kullback-Leibler divergence

A traditional measure of discrepancy between two probability distributions is
the Kullback-Leibler (KL) divergence [53], [54]. It is defined as follows:

DK L(p||q) =∑
i

p(i ).log2

[p(i )

q(i )

]
(3.18)

where p(i ) and q(i ) represent two distinct probability distributions. The KL diver-
gence is non-negative, DK L(p||q) Ê 0, and DK L(p||q) = 0 only when the two distribu-
tions are identical. In addition, the Kullback-Leibler divergence cannot be thought
of as a distance. More specifically, it does not satisfy the symmetry criterion such
that DK L(p||q) 6= DK L(q ||p). More on this will be introduced in section 4.1.

The KL divergence is usually closely related to the entropy computation. It can
sometimes be thought of as a quantification of the entropy difference between dif-
ferent distributions. Traditionally, for small neuronal populations, one would need
to perform point-by-point comparisons of probability distributions for all patterns
from the two conditions being compared. This becomes an issue when one inves-
tigates populations involving large numbers of neurons (for instance, hundreds of
neurons). Once again, it is possible to use another choice of probability distribution
as the basis of KL divergence comparisons. For instance, one can use the parame-
ter p(k) which was estimated by the population-tracking model, and use this as the
basis of the KL divergence. The discrepancy between two distributions would then
be rewritten as:

DK L(p||q) =
N∑

k=0
p(k).log2

[p(k)

q(k)

]
(3.19)

where p(k) and q(k) refer to two different probabilities of k active neurons and N
refers to the number of neurons in the neuronal network of interest.

Another choice of method involves a full distribution comparison. Instead of re-
lying on a parameter (here, p(k)), it is possible to use computational tricks to speed
up the divergence computation and get a reliable estimate of the point-by-point KL
divergence. One such algorithm is introduced below (see Algorithm 1). Importantly,
one should note that the use of for-loops often leads to very slow computational
times. Therefore, although Algorithm 1 shows the gist of the KL divergence heuris-
tic, one usually needs to use specific computational packages from Python (NumPy
library) or MATLAB such as the “unique" function or/and histogramming built-in
methods. More details regarding the implementation and analysis of Algorithm 1
can be found in Chapter 4.
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Algorithm 1: KL-DIVERGENCE computes the “full" Kullback-Leibler divergence
between two T×N spikes matrices*

Input: Two matrices of binary spikes S1 of size T1×N and S2 of size T2×N
Output: The KL divergence DK L(S1||S2)

1 ns ← mi n(T 1,T 2);
2 S ← St ack(S1[1 : ns,1 : N ],S2[1 : ns,1 : N ]);
3 W ← RemoveRowRepeti t i ons(S);
4 sort W in ascending order;
5 c1,c2, i ndi ces1, i ndi ces2 ← [];
6 W 1 ← S[1 : ns,1 : N ];
7 W 2 ← S[(ns +1) : (2ns),1 : N ];
8 for w ∈W do
9 if w ∈W 1 then

10 reference count of w from W 1 in the vector c1;
11 if w ∈W 2 then
12 put a 1 in i ndi ces2;

13 else
14 put a 0 in i ndi ces2;

15 if w ∈W 2 then
16 reference count of w from W 2 in the vector c2;
17 if w ∈W 1 then
18 put a 1 in i ndi ces1;

19 else
20 put a 0 in i ndi ces1;

21 p1 ← c1/Sum(c1);
22 p2 ← c2/Sum(c2);
23 K L ← DK L(p1[i ndi ces2]||p2[i ndi ces1]);
24 return K L

*Note: T refers to the total number of time steps and N refers to the total number of
neurons. The “full" KL divergence refers to a computation that doesn’t use parameters,
but rather uses the full spikes matrices



Chapter 4

Modelling tests, results and analysis

This chapter is divided into 3 sections: synthetic data analysis, multielectrode
array data analysis and calcium imaging data analysis.

4.1 Modelling tests on synthetic data

4.1.1 Description of the synthetically-generated spikes matrices

As was mentioned earlier in the dissertation, the purpose of the synthetic data
is to ensure that the mathematical model of interest, here, the population-tracking
model, works on datasets with specified mean firing rates and correlation coeffi-
cients (respectively the first and second moment). In this project, we followed the
methods from Macke et al. (2009) [20].

First and foremost, it is important to note that the data we analyzed was in
the format of binary TxN matrices, where rows refer to independent time steps,
columns refer to independent neurons, and for each time step, all neurons could
either be active (a ‘0’ is in the cell) or inactive (a ‘1’ is in the cell). In this sec-
tion, we used T=1,000,000 timesteps. The binary matrices from [20] followed a Di-
chotomized Gaussian (DG) distribution, and could be fully accounted for by the
data’s mean firing rate and covariance properties. Each row represents “words”,
which correspond to distinct combinations of neural activity in the network. As was
mentioned in Chapter 3, since each neuron can either be in the “ON” state (active)
or in the “OFF” state (inactive), there are a total of 2N possible words for a given
neuronal network. For the sake of simplicity at this stage, we are not considering
temporal correlations.

Sampling spikes data from a DG model operates in a two-step process. First, one
needs to draw samples from a N-dimensional Gaussian random variable U. Second,
a thresholding operation turns the Gaussian random variable U into a 0 or a 1, as is
shown below (process extracted from [20]).

Xi = 1 iff Ui > 0

Xi = 0 iff Ui É 0

}
where U ∼N (γ,Λ) (4.1)

Intuitively, we are trying to generate binary spikes data (big matrix of 0’s and 1’s)
from a multivariate Gaussian distribution (U). The DG model takes the input pa-

25
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rameters γ and Λ and turns them into a binary random variable X with firing rate r
and covariance Σ. More precisely, the relationship between the parameters of X and
the parameters of U are as follows, for any neurons i and j (i 6= j ):

ri =Φ(γi ) (4.2)

Σi i =Φ(γi )Φ(−γi ) (4.3)

Σi j =Ψ(γi ,γ j ,Λi j ) where Ψ(γi ,γ j ,Λi j ) =Φ2(γi ,γ j ,Λi j )−Φ(γi )Φ(γ j ) (4.4)

whereΦ refers to the univariate Gaussian cumulative distribution (mean 0 and vari-
ance 1) and Φ2 refers to the cumulative distribution of a bivariate Gaussian cumu-
lative distribution.

The choice of mean firing rate and correlation strength between neurons was
inspired from the O’Donnell et al. (2016) [1] paper (section 2.5). The synthetically
generated DG-distributed binary spikes matrices were as follows (see Table 4.1):

Table 4.1: Synthetically-generated DG spikes data properties (N=10)

# Homogeneity Firing rate Mean rate Correlation* Covariance*

1 Homogeneous High 0.15 0.10 0.0128
2 Homogeneous Low 0.05 0.10 0.0048
3 Heterogeneous Uniform 0.20 [0.05,0.10] [0.01,0.02]
4 Heterogeneous Non-uniform [0.20,0.30] [0.04,0.10] [0.01,0.02]

*Note: These values only apply to non-diagonal entries of the correlation and covari-
ance matrices

The four DG-generated datasets of binary spikes referred to in Table 4.1 will
later be referred to as the Homogeneous-High, Homogeneous-Low, Heterogeneous-
Uniform and Heterogeneous-Non-uniform datasets. All had 10 neurons (N=10) and
1,000,000 timesteps (T=1,000,000). Assuming that each time bin had a duration of
10ms, we could infer that the Homogeneous High dataset had an overall firing fre-
quency of 15 Hz, the Homogeneous Low dataset had a firing frequency of 5 Hz, the
Heterogeneous Uniform dataset had a firing frequency of 20 Hz and the Heteroge-
neous Non-uniform dataset had a firing frequency of 24 Hz. All neurons from the
homogeneous datasets had the same mean firing rate (0.15 and 0.05 respectively),
and all pairs of neurons had a correlation coefficient p = 0.1. As for the heteroge-
neous datasets, neurons from the uniform dataset had a mean firing rate of 0.20,
whereas neurons from the non-uniform dataset had a mean firing rate which was
uniformly distributed on the interval [0.20,0.30]. Both heterogeneous datasets had
symmetric covariances between pairs of neurons (Σi j =Σ j i ), which were uniformly
distributed on the interval [0.01,0.02]. The variance of each neuron was given by
V ari = ri (1− ri ) for a neuron i, and the covariance between pairs of neurons fol-
lowed the equation: Covi j = pi j .

√
V ari V ar j where i and j are any given pair of

neurons. In the case of the datasets 1-3 in which all neurons shared the same mean
firing rate, we could use Covi j = pi j .V ari since V ari = V ar j . Following the above
procedure, one could obtain the mean firing rates vector rrr and covariance matrix
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(a) Homogeneous High spikes raster plot
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(b) Homogeneous Low spikes raster plot

Figure 4.1: Homogeneous spikes raster plots
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(a) Heterogeneous Uniform spikes raster plot
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(b) Heterogeneous Non-uniform spikes data

Figure 4.2: Heterogeneous spikes raster plots

Σ for each of the 4 datasets. For all sets of parameters, we generated TxN matrices
with T = 1,000,000 and N = 10.

Figure 4.1a shows a raster plot of the Homogeneous High spikes dataset, and
Figure 4.1b shows a raster plot of the Homogeneous Low spikes dataset. Each blue
dot represents a spike corresponding to neuron i (row on graph) and time step T
(column column on graph). As we can see, Figure 4.1b shows sparser spikes for
each neuron, which is what we would have expected. More on the properties of the
Homogeneous datasets can be found in the Appendix on Figure A.1, in which we
explicitly show that the two datasets have the features that we claimed they have in
Table 4.1.

Figure 4.2a shows a raster plot of the Heterogeneous Uniform spikes dataset, and
Figure 4.2b shows a raster plot of the Heterogeneous Non-uniform spikes dataset.
As we can see, Figure 4.2b has slightly more irregularities in its firing behaviour than
Figure 4.2a which is what we would have expected. Once again, more of the prop-
erties of the Heterogeneous datasets can be found in the Appendix on Figure A.2,
in which we explicitly show that the two datasets have the features that we claimed
they have in Table 4.1.

Now that the four different synthetic datasets have been introduced, we are ready
to test our mathematical model. As mentioned in Chapter 3, there are three main
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parameters that the population-tracking model method [1] outputs: the probability
of k active neurons p(k), the probability of independent neurons xi being active in
the neuronal network p(xi ), and the conditional probability of independent neu-
rons being active in the network given that there are k neurons active p(xi |k).

Baseline plots of p(k) and p(xi ) can be found in the Appendix (see Figure A.3
and Figure A.4). They mainly show that the model has learned the right properties
of the four datasets, and that the probability of k active neurons decreases for larger
numbers of simultaneous k active neurons.

Figure 4.3: Conditional probabilities of neurons being active given k active neurons

With respect to the parameter p(xi |k), we are investigating matrices of size Nx(N+1)
for each dataset on Figure 4.3. The X-axis indicates each value of k active neurons,
and the Y-axis indicates the conditional probabilities of each independent neurons.
As a result, we get probability values for all combinations of neurons and k active
neurons. Although some slight differences exist between each dataset, we can see
that the results are fairly similar across datasets. Namely, as the number of k ac-
tive neurons increases, the probability of every independent neuron being active
increases as well (it goes from blue to yellow). This result makes sense as we would
expect neurons to be more likely to fire if there are more neurons active in the net-
work.

4.1.2 Synthetic data modelling over time steps

As was mentioned before, the baseline synthetic data tests were all performed
on a total of T=1,000,000 timesteps. However, we haven’t yet described how the pa-
rameters of the model tend towards their “true” value over time steps. Figure 4.4
shows the predicted pattern probabilities as a function of true pattern probabilities
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Figure 4.4: Evolution of time steps in the Homogeneous High dataset

for a population of 10 neurons in the Homogeneous High dataset. The true proba-
bility was computed empirically using a histogramming function. Since we have 10
neurons, there are 210 = 1024 different words (combinations of active/inactive neu-
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rons) that are possible. For all 1024 patterns, we computed the individual empirical
probability of each word using frequency counts, and we computed the model prob-
ability in order to compare the true probability against the model probability (see
Chapter 3 for the specific description of the methods). T’s ranged from T= 102 to
T= 106. Note that we used a logarithmic scale (natural logarithm).
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Figure 4.5: Homogeneous Low Model profile at T = 106

We included the full evolution of the model probability in the Homogeneous
High case only on Figure 4.4. A time step analysis of the model probabilities of the
three other datasets can be found in the appendix (see A.5, A.6 and A.7). Figures 4.5,
4.6a and 4.6b show the model pattern probability profile at T = 106 for the Homo-
geneous Low, Heterogeneous Uniform and Heterogeneous Non-uniform datasets
respectively. Our main observation was that the model probability got closer and
closer to the empirical true probability as the number of time steps increased. For
T= 100, most of the predicted probability values were off the line. The more T in-
creased in the powers of ten’s, the more we could observe a clustering effect of the
model probability around the identity line (y = x). This result suggests that having
more firing spikes data (more timesteps in our matrices) does yield a better estima-
tion of our model probability distribution. Therefore, when using the population-
tracking model, one would hope to get spikes matrices that would last as long as
possible in order to collect more words and get better estimates.

It is interesting to compare the spread of the model probability distribution on
the identity line from each dataset type. In the case of the Homogeneous datasets
(Figures 4.4 and 4.5), we observe a discretization of the model probabilities into
chunks. As was mentioned earlier, these datasets have neurons which share the
same mean firing rate and they also have the same covariance between each pair of
neurons. On the other hand, for a dataset such as the heterogeneous dataset with
non-uniform mean firing rates and pairwise covariances, we notice that the model
probabilities are much more spread out over the identity line (see Figure 4.6b). As
to the heterogeous data set with heterogenous pairwise covariances and uniform
mean firing rates across neurons of the neuronal network, we notice that the model
probabilities lie in between a fully discretized version such as the Homogeneous
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(a) Heterogeneous Uniform probability at T = 106
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(b) Heterogeneous Non-uniform probability at T = 106

Figure 4.6: Investigation of the heterogeneous model properties at T = 106

High or Low dataset and a more fluid version like the Heterogeneous Non-Uniform
dataset.

We now turn to an investigation of the entropy over the timesteps for each of the
different datasets. As was mentioned earlier, the entropy is a reliable measure of the
“richness” of the spikes data. [55]. We first investigate the full empirical entropy in
each of our synthetic datasets. We computed the empirical entropy in agreement
with the methods referenced in [1]. The empirical entropy was divided into the en-
tropy of the population synchrony distribution (using the parameter p(k)) and the
conditional entropy of the pattern probability distribution given K, as shown below:

H = Hk +H(p({x}|k)) (4.5)

H =−
N∑

k=0
p(k).log2 p(k)−

N∑
k=0

p(k)
[ ∑

i
p({x}i |k).log2 p({x}i |k)

]
(4.6)

where p(k) indicates the probability of k active neurons at a time step in the neu-
ronal network, and p(x) indicates the probability of a given word, or combination
of active/inactive neurons denoted as x. According to O’Donnell et al. (2016) [1],
since all neurons from homogeneous synthetic datasets have the same mean firing
rates, all

(N
k

)
patterns have the same probability of occurring for any given value of

k, p({x}|K = k) = p(k)/
(N

k

)
, which leads to the maximization of the theoretical ho-

mogeneous entropy term as follows:

Htheor. =
N∑

k=0
p(k).log2

(N
k

)
p(k)

(4.7)

Nevertheless, these statistical estimations based on the spikes matrices are not
sufficient in and of themselves to get a reliable estimate of the underlying “True”
entropy.
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Table 4.2: Interpolation results in the four synthetic datasets and final entropy values

# Homogeneity Firing rate type Entropy/N* Linear fit Polynomial fit*

1 Homogeneous High 0.5901 0.5769 0.5892
2 Homogeneous Low 0.2717 0.2615 0.2667
3 Heterogeneous Uniform 0.7034 0.6874 0.6981
4 Heterogeneous Non-uniform 0.7632 0.7391 0.7564

*Note: N=10. The polynomial fit was of degree 2. The enropy per neuron was com-
puted at T= 106

Figure 4.7: Entropy interpolation of each synthetic dataset as a function of 1/T

Unfortunately, it is difficult to know what the true entropy might be if we only base
our estimates on the data that we have collected. However, it is possible to apply an
interpolation method to fit our data over the time steps, and use this to extrapolate
when T→∞. In order to do so, we plotted the entropy per neuron (Y-axis) against
the inverse of our timesteps (1/T on the X-axis). We then fit a line and a polynomial
of degree 2 to the data. Note that in order to get better fits, we recorded entropy
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values at the following time steps: T = {100,250,500,1500,5000,104,105,106}. The
Entropy/N value that corresponds to T →∞ and that we want to extrapolate is the
intercept of the linear and polynomial fits at X=0. Table 4.2 shows our best estimate
of the Entropy per neuron and the intercept at X=0 for both linear and polynomial
fits. Figure 4.7 shows a visualization of the interpolation process with both a linear
and polynomial fit for each of the four synthetic datasets.

As we can see on Figure 4.7, the polynomical curves (in orange) fit the data better
than the linear fits (in yellow). When looking at the results from Table 4.2, we also see
that the intercepts from the polynomial fits are closer to the final value of Entropy/N
at T = 106 than the intercepts from the linear fits. Therefore, the main conclusion
from these interpolation tests is that the polynomial fits yield a better estimate of
the “True” Entropy than the linear fits.
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Figure 4.8: Evolution of the empirical Entropy per neuron over time steps and com-
parison between theoretical and empirical entropy per neuron in the Homogeneous
datasets.

We first investigated the empirical entropy per neuron for all synthetic datasets.
Figure 4.8 summarizes the entropy results. The dashed lines indicate the true en-
tropy values (as introduced previously), and the circled-lines show the empirical
evolution of the entropy per neuron as a function of the number of time steps.
The Homogeneous High entropy results are shown in red, the Homogeneous Low
entropy results are shown in blue, the Heterogeneous Uniform entropy results are
shown in green and the Heterogeneous Non-uniform entropy resuls are shown in
pink. The main result was that the empirical entropy per neuron converges towards
its true value as a function of the time steps. A good turning point for the estima-
tion of the entropy was T= 5,000 since the bias was inferior or equal to 0.025 for
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all datasets. This means that it is usually preferable to collect about 5,000 words in
order to get a reliable estimate of the entropy per neuron.

We now want to compare the empirical entropy (line with circles) with the the-
oretical entropy (line with crosses) in the case of our homogeneous datasets. Since
the theoretical computation of the entropy per neuron could only be processed for
homogeneous datasets in which the mean firing rates were the same, we only in-
cluded the Homogeneous High and Homogeneous Low datasets in our comparison.
Results are also shown on Figure 4.8. We saw that the theoretical approximation of
the entropy value got closer to the true entropy value faster than the empirical en-
tropy value for both the Homogeneous High dataset (in red) and the Homogeneous
Low dataset (in blue). This result can be explained by the fact that the theoretical
computation of the entropy per neuron (equation (4.7)) doesn’t sum over all p({x}|k)
values, but rather only considers the p(k) estimate.

4.1.3 Statistical comparison of multi-neuron activity

In the context of neurobiological experiments, one is often interested in compar-
ing different spikes datasets. One way of doing so is to compute the mathematical
difference measure DK L(p||q) which compares the probability distribtions p(x) and
q(x) from two datasets of interest. To reiterate, the Kullback-Leibler (KL) divergence
is computed as follows:

DK L(p||q) =∑
i

p(i ).log2

[p(i )

q(i )

]
(4.8)

In this section, we are comparing two different methods which compute the KL
divergence: a p(K) (population rate) KL approximation, and a KL heuristic method.
With respect to the first method, we simply assume that the probability distribution
that we are interested in is the probability of k active neurons p(k) that is output by
the population-tracking model, such that:

DK L(p||q) =∑
k

p(k).log2

[p(k)

q(k)

]
(4.9)

As for the second method (heuristic method), we use a function that leads to a
KL divergence measure by combining the two spikes matrices of interest, sorting
them in increasing order, computing probability distributions of the two halves and
using these probability distributions as a way to compute the KL divergence. One
important point to make about this method is that it uses a pointwise comparison of
the two full probability distributions of interest, and evaluates the divergence mea-
sure with relatively low time complexity due to the computational tricks it makes
use of. For a more detailed description of the implementation of the heuristic KL
divergence method, please see section 3.3.3.

The first point to make prior to comparing the two different KL divergence meth-
ods is that the DK L(p||q) divergence measure between two distributions is not sym-
metric by definition. This means that we usually don’t get DK L(p||q) = DK L(q ||p).
An illustration of unsymmetrized DK L(p||q) and DK L(q ||p) differences is shown on
Figure 4.9. As we can see on this histogram, the KL divergences DK L(p||q) and
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Figure 4.9: Unsymmetrized KL divergence in the P(K) approximation method
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Figure 4.10: Baseline Kullback-leibler comparison

DK L(q||p) are often different in the pairwise comparisons of the different synthetic
datasets. The difference between each KL divergence varies from 0.0003 to 0.16,
which means that in some cases the divergence will be similar, and in some others
it won’t be. The main conclusion from these preliminary results is that we need to
investigate the symmetrized version of our KL divergence of interest in order to get
more reliable results.

In this section of the analysis, we wish to argue that the P(K) approximation
method of the Kullback-Leibler divergence is a better estimate than the heuristic
KL divergence. We first plot the symmetrized KL divergences using both the P(K) KL
approximation and the heuristic KL method on Figure 4.10a. We then make a base-
line comparison by randomly shuffling the rows of our synthetic datasets, splitting
them into two halves, and measuring the KL divergence between the halves one-way
(1,2,3 and 4) and the other-way (1r ev ,2r ev ,3r ev and 4r ev ) with the P(K) approxima-
tion method and the heuristic method (see Figure 4.10b).

With respect to the results from Figure 4.10a, we see that the KL divergence esti-
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mates for all pairwise synthetic datasets comparisons are quite similar for the P(K)
KL divergence and the Heuristic KL divergence methd. This suggests that the pa-
rameter p(k) seems to carry enough information in itself (it meets the sufficiency
criterion as a statistic) to be used as the basis of probability distribution compar-
isons, since it yields the same results as another method which compares proba-
bility distributions based on the full spikes datasets. As to the results from Figure
4.10b, we notice that the baseline KL divergences between the randomly sampled
half datasets halves are much smaller in the P(K) approximation KL divergence case.
Indeed, baseline KL divergences that use the P(K) approximation method lie in the
interval [2.0×10−5,5.8×10−5] whereas baseline KL divergences that use the heuristic
method lie in the interval [2.9×10−3,3.0×10−3]. As we can see, there is a difference
of 2 orders of magnitude between the two baseline KL divergences, which suggests
that the P(K) approximation KL divergence may indeed be a more reliable method
than the heuristic method.
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Figure 4.11: P(K) and Heuristic KL divergence comparison in the Homogeneous High
dataset

We then wish to compare the two KL divergence methods in a timestep compar-
ison. For the sake of concision, we only introduce the Homogeneous High dataset to
support our point. Figure 4.11 displays all pairwise comparisons between the syn-
thetic Homogeneous High datasets computed at the following time steps: T =[102,103,104,105,106].
As we can see, results differ greatly between the P(K) approximation method and
the heuristic KL divergence method. On the one hand, the P(K) KL divergence (to
the left in blue) is bigger for divergences including the first dataset (T = 100) than
KL divergences including datasets with more timesteps (more rows, therefore, more
accuracy in the estimation). On the other hand, the heuristic KL divergence (to the
right in black) displays opposite results with a smaller divergence for divergences in-
cluding the first spikes matrices with fewer time steps, than divergences including
the last spikes matrices with T = 106. In addition, do notice the difference in the scale
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of the Y-axis with a max divergence of 0.68 in the P(K) approximation case, and a
max divergence of 1.63 in the heuristic case. These results are due to the fact that the
heuristic method needs to combine matrices of the same size before sorting them
by rows. If we compare matrices of different size (say T = 103 and T = 106), then we
leave out 999,000 rows of spikes data, which represents more than 99% of the spikes
data of the second dataset, and our KL divergence cannot be reliable anymore (see
Algorithm 1). This problem does not happen with the P(K) approximation method
because we have the same number of entries in the P(K) vector (that is: N+1) since
the number of neurons in the network does not change, regardless of the number
of timesteps that we are investigating. As we have seen with the entropy measure-
ments earlier, we would expect the KL divergences to be smaller and smaller over
the timesteps since we are getting more and more accurate that tend towards their
true value (for instance, we expect the difference between T = 105 and T = 106 to
be much smaller than the difference between T = 102 and T = 103). Therefore, the
main conclusion from these results is that the symmetrized P(K) approximation KL
divergence is indeed a better choice of methods.

Figure 4.12: P(K) symmetrized KL divergence between spikes generated at different
time steps for each synthetic dataset

Finally, using our P(K) approximation symmetrized KL divergence method, we
investigated the KL divergence between spikes computed at each time step for each
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synthetic dataset. Results are displayed on Figure 4.12. As we can see, results are
consistent across all types of datasets. The KL divergence between datasets be-
comes smaller for spikes matrices with more time steps (more words included in
the matrix).

4.2 Multielectrode array (MEA) data modelling

We now wish to investigate the modelling of real data extracted from a multi-
electrode array experiment, as described in Chapter 3. The three sets of data that
we analyzed in this section were as follows (see Table 4.3).

Table 4.3: Multielectrode array (MEA) spikes data

# Name Description Preprocessing N T Recording

1 Basal Baseline spikes clustered 253 90000 900 s.
2 H2 Spikes after 2 hours clustered 253 89998 900 s.
3 H20 Spikes after 20 hours clustered 253 89999 900 s.

To reiterate, this data represented an experimental control to ensure that the population-
tracking model behaved as it should on real data. Neural activity was recorded with
4,096 channels MEA from dissociated hippocampal neurons and was clustered into
a neuronal network of 253 “neurons” from which we are investigating spikes be-
haviours. The 15 minutes long recording were divided into time bins of 10 ms (see
the Methods from Chapter 3 for more information).
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Figure 4.13: Baseline KL divergence measurements

Similarly to the methodology used in the synthetic data section of the analysis,
we wished to carry out some baseline tests on the MEA datasets. Figure 4.13 reports
the results from two of our MEA baseline tests. After estimation of the parameters
p(k), p(xi ) and p(xi |k) based on the MEA spikes data matrices, one could use these
probabilities to generate new samples of spikes (see Chapter 3, section 3.1 for more
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Figure 4.14: Raster plots and frequency distributions for each MEA dataset

details regarding the estimation method and sampling process). Figure 4.13a inves-
tigates the KL divergence between 3 generated samples based on the parameters
from the basal MEA dataset. All samples had 105 timesteps (rows). The idea was
that a successful parametrization of the spikes data should lead to spikes samples
with a low KL divergence between them. On Figure 4.13a, we are plotting the KL-
divergence in the two unsymmetrized ways (DK L(p||q) as well as DK L(q||p)). The
divergence measure ranged from 0.0017 to 0.0028 (10−3 orders of magnitude).

As to Figure 4.13b, we shuffled all the rows from the initial MEA datasets and
compared the raw MEA datasets to the shuffled MEA datasets using the KL diver-
gence method. Results from the comparison yielded a mean of 1.77 and a standard
deviation of 0.09 across all pairwise comparisons. Overall, we observe a noticeable
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difference between the raw MEA data and the shuffled MEA data, which suggests
the presence of important temporal correlations in the data. Also note the increase
in KL divergence from the basal dataset to the H20 dataset. This effect may sug-
gest increasing levels of correlations between timesteps, since the shuffling lead to
increasing KL divergences.

We now evaluate some properties from each MEA dataset. Figure 4.14 inves-
tigates the raster plot profiles (first 500 time steps), spike means, spike count his-
tograms and full frequency distribution (on a logarithmic-scale) for each of our MEA
spikes datasets. With regards to the spikes frequency distributions (plotted to the
right on Figure 4.14), we computed the logarithm of each word (log2(p({x}))) and
plotted them in the form of a histogram. The first main observation from the raster
plots was that neurons tended to fire together rather than individually in the neu-
ronal network. This suggests that there may be some inter-dependencies and high
correlations between neurons. The second observation was that the mean firing
rate for all neurons seemed to be around 0.01 which is a very low firing rate. We also
notice that some of the neurons’ mean firing rate tended to increase slightly as time
passed by (see bottom of the spike means graphs in each condition). With respect
to the histograms of the sum of spikes per word, we observe a similar profile overall,
and we can see on the frequency distributions that there is a new peak in the pattern
probabilities around -170 on the log scale that seems to emerge as time passes by.
This potentially suggests a slow remodelling of the neuronal network over time.
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Figure 4.15: Baseline KL divergence measurements

We then want to get the parameters from the population tracking model and plot
them. For the sake of concision, we only display the probability of k active neurons
P (K ) (see Figure 4.15a) and the probability of independent active neurons P (X i )
(see Figure 4.15b). Results from Figure 4.15a suggest that each MEA spikes dataset
behaved in a similar fashion: that is, as the number of k active neurons increases
(X-axis), the probability of k active neurons P(k) decreases. We also see a drop in the
probability of k active neurons around [4.8-5.0] on the log-scale, which corresponds
to [120-148] active neurons. Similarly to the synthetic data set results, this suggests
that fewer active neurons are much more likely to occur than higher combinations
of neurons together. Combinations of 150 and/or more active neurons don’t seem
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to occur in the neuronal network of interest. As to the results from Figure 4.15b, we
sorted all neurons in a descending order according to the mean firing rates from the
basal MEA dataset. Results from the two other MEA datasets (H2 and H20) are plot-
ted in agreement with the initial basal firing rates, meaning that the order of neu-
rons did not change from the basal dataset to the two other datasets (in orange and
yellow). The first observation to make from Figure 4.15b is that all neurons’ mean
firing rates seemed to range between -6 and -3 on the log-scale, which corresponds
to a probability range of [0.0025,0.0498]. A second observation to make is that neu-
rons’ independent probability of firing p(xi )’s behaviour gets spikier and spikier as
a function of time (i.e: there is the most spiking in the H20 dataset, followed by the
H2 dataset). This suggests that some neurons changed their rate over time, and po-
tentially that neurons with a low rate changed more than neurons with a high rate.
Overall, these results represent preliminary evidence to support the hypothesis that
remodelling of the neuronal network happened over time.
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Figure 4.16: KL divergence and Population entropy comparisons across MEA datasets

We now turn to the KL divergence between MEA spikes matrices (see Figure
4.16a) and population entropy per neuron (see Figure 4.16b). First, with respect to
the KL divergence graph, we used the symmetrized P(K) approximation version of
the KL divergence in order to compare pairs of MEA spikes datasets, as argued previ-
ously in the case of the synthetic datasets. Results show that the KL divergence was
bigger when comparing the Basal and the H20 datasets than other pairwise com-
parisons. This result makes sense, since we expect more remodelling to occur in the
neuronal network between the baseline dataset and H20 (which is the last record-
ing that was performed) than between the baseline and H2, or between H2 and H20.
These results strongly suggest that neurons’ behaviour in the dissociated embryonic
hippocampal culture does change over time.

Second, with regards to the population entropy results from Figure 4.16b, we
used the sum-of-log normals method in order to get the full distribution of patterns
of the MEA datasets. To do so, we turned the logarithmic probability of words into a
continuous random variable, and used mathematical integration techniques in or-
der to compute the population entropy of each MEA spikes data. More information
about this technique can be found in Chapter 3. As we can see, the population en-
tropy per neuron increased as a function of time, with most of the change in entropy
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happening between the basal stage and 2 hours after the start of the neurobiological
experiment. The entropy of a distribution (see equation (4.5)) is closely related to
the level of correlations in the neuronal networks. Therefore, this means that lower
levels of population entropy imply that there are more correlations in the network,
and higher levels of population entropy imply that there are less correlations in the
network. The increase in the population entropy per neuron which is shown on Fig-
ure 4.16b suggests that there is a decorrelating process over time in the hippocampal
embryonic cells. These decorrelations may imply that each cultured neuron’s firing
behaviour gets more and more independent as a function of time. That being said,
one should keep in mind that some of these decorrelating effects may also be due
to the recording itself. After completion of the first recording, the culture was taken
out of the incubator and placed into the recording setup, where the temperature
was different, which may have disturbed the network a little.

4.3 Calcium Imaging data modelling

Finally, we examine the calcium imaging spikes data. As mentioned in Chap-
ter 3, we were interested in comparing the spikes matrices before (Day 1 or “D1”)
and after (Day 7 or “D7”) monocular deprivation across genotypes (Wild-Type and
Knock-Out). The spikes data were recorded with and without stimuli. The stimulus
condition was referred to as the “stim” condition, and the darkness condition was
referred to as the “dark” condition. Table 4.4 summarizes this information.

Table 4.4: Synaptic plasticity experiment conditions

Day Description Stimulus condition Description

Day 1 (’D1’)
Pre-Monocular

Deprivation
Stimulus (’stim’)

a tilted bar was
shown to the animal

Day 7 (’D7’)
Post-Monocular

Deprivation
Darkness (’dark’)

the animal was
immersed in darkness

Table 4.5: Calcium imaging spikes matrices recording types and order of recording

Condition Left Eye Right Eye Order

BinocPre X X 1
LeftE X - 2

RightE - X 3
BinocPost X X 4

As suggests the methodology introduced in Chapter 3, for each pair of condi-
tions “Day”-“Stimulus”, spikes data were recorded with both eyes open before (“Binoc-
ular anterior” or “BinocPre”)and after stimulation (“Binocular posterior” or “Binoc-
Post”), with the left eye open only (“LeftE”) and with the right eye open only (“RightE”).
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Table 4.6: Syngap datasets information

Syngap dataset (SG) Genotype min. recorded N max. recorded N

SG 259 Wild-Type 97 97
SG 288 Wild-Type 95 95
SG 252 Knock-Out 93 93
SG 291 Knock-Out 101 101
SG 63 Knock-Out 10 134

Figure 4.17: Population entropy across all conditions and Syngaps. Each condition
refers to those defined in Table 4.4 and Table 4.5

Table 4.5 summarizes this information and the order in which the spikes were recorded.
In the context of this Master’s project, we were provided with spikes data recorded
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from five different animals. Each animal was embedded in the “Wild-Type” or the
“Knock-out” condition. More information about each dataset is shown in Table 4.6
For each Syngap dataset, spikes from the four conditions introduced in Table 4.5
were recorded for each pair “Day”-“Stimulus”, which lead to a total of 16 recorded
spikes matrices per Syngap. The population entropy of each spikes matrix was com-
puted using the sum-of-log normals method, as introduced in Chapter 3. For the
sake of completeness, we included the full list of entropy results on Figure 4.17.

As we can see, there is a great deal of variability in the entropy data. Also note
the fact that the entropy per neuron of Syngap 63 BinocPost was always remarkably
lower than the population entropies computed at other conditions and in other Syn-
gap datasets. The population per entropy at all condition pairs “Day”-“Stimulus”
was evaluated at 8.0725×10−4 bits, which is about two orders of magnitude smaller
than the usual entropy per neuron. This difference can partially be explained by
the fact that the Syngap 63 dataset did not use the same number of neurons for all
its spike recordings (see Table 4.6). Indeed, all conditions recorded spikes at more
than 100 neurons except the BinocPost condition, which only recorded 10 neurons.
Because of this difference and due to the fact that we only had 2 wild-type Syngap
datasets (against 3 knock-out Syngap datasets), we decided to reject SG63 from all
further analyses.
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Figure 4.18: Mean entropies (crosses) across genotypes in the Stimulus condition with
individual data (circles)

We now wish to group entropy results together in order to compare the two
genotypes of interest: the “Knock-Out” genotype and the “Wild-Type” genotype. As
suggests Table 4.6, we averaged SG 259 and SG 288 from the Wild-Type genotype,
and we averaged SG 252 and SG 291 from the Knock-Out genotype. As was men-
tioned before, SG 63 was not included in our analyses. Figure 4.18 displays mean
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Figure 4.19: Mean entropies (crosses) across genotypes in the Darkness condition with
individual data (circles)

entropies in the D1-stim and D7-stim conditions across genotypes, and Figure 4.19
displays mean entropies in the D1-dark and D7-dark conditions across genotypes.
Crosses indicate the mean population entropies, and circles indicate individual an-
imals.

The first observation was that the Wild-Type genotype had a higher entropy than
the Knock-Out genotype at D1, both in the stim and the dark conditions. The sec-
ond observation was that entropies at D7 (stim and dark) were overall higher than
entropies at D1. This result is consistent across genotypes, both for mean entropies
and for individual animals. Another result was that the Binoc Pre condition had
entropies that were consistently higher than entropies from other conditions, both
in the stim and the dark conditions. This suggests that at any point in time, the
entropy was higher prior to the independent stimulation of either eye (see Chap-
ter 3 for the specific methodology used). Finally, one last result was that the mean
entropies seemed to uniformly shift upwards in the Wild-Type genotype, whereas
mean entropies from the Knock-out genotype tend to cluster around 0.030 in the
stim condition, and around 0.033 in the dark condition.

Figure 4.20 displays delta entropy results in the stim (Figure 4.20a) and dark con-
dition (Figure 4.20b). Each delta computed the increase (positive value) or decrease
(negative value) in entropy from D1 to D7. Once again, crosses indicate mean en-
tropies and circles indicate individual animals. Overall, we see that most entropy
deltas across all conditions were positive, which clearly shows that there was indeed
an entropy increase from Day 1 to Day 7, consistent across the dark and stim con-
ditions. The second result was that the variability in entropy increase was greater
for the Wild-Type genotype than it was in the Knock-Out condition (individual data
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Figure 4.20: Entropy delta comparison across stimulus conditions. Positive values indi-
cate an entropy increase from D1 to D7, whereas negative values indicate an entropy
decrease.

were much more spread in the Wild-Type condition than they were in the Knock-
Out condition). This suggests that the entropy tended to get fixed at a single value
in the Knock-Out condition, whereas neurons from the Wild-Type condition tended
to show more flexibility in their firing behaviour.
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Figure 4.21: Absolute entropies with range across genotypes at Day 1. The entropy per
neuron was averaged across stimulus and darkness conditions.

Figures 4.21 and 4.22 display the absolute entropy means (with range) across
genotypes at Day 1 and Day 7. The idea here was to compare the population en-
tropy per neuron computed using the sum-of-log normals method from [1] with
two alternative types of entropies computed on a shuffled version of the raw binary
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Figure 4.22: Absolute entropies with range across genotypes at Day 7. The entropy per
neuron was averaged across stimulus and darkness conditions.

spikes. The first entropy type, the “identical firing rate entropy” refers to an entropy
which only takes into account the mean of the vector of independent firing rates
p(xi ), and assumes homogeneity across all neurons. In mathematical terms, it can
be rewritten as follows:

Hi f r =−N ×
[

p̄(x).log2(p̄(x))+ (1− p̄(x)).l og2(1− p̄(x))
]

(4.10)

where Hi f r refers to the “identical firing rate” entropy, N refers to the total num-
ber of neurons in the network, and p̄(xi ) refers to the mean of the vector of neu-
rons’ independent firing rates p(xi ) (computed by estimating parameters with the
population-tracking model).

The second type of alternative entropy can be referred to as the “independent
entropy” type. It quite simply computes the entropy of the neuronal network by
using the parameter p(xi ) and assuming full independence between all neurons.
Mathematically, it can be rewritten as:

Hi nd =−∑
i

[
p(xi ).log2(p(xi ))+ (1−p(xi )).log2(1−p(xi ))

]
(4.11)

Note that the two entropy types take into account p(xi ), as well as (1−p(xi )) which
corresponds to the probability of a neuron xi being inactive. The idea is that the
entropy of the neuronal network needs to take account the probabilities of inde-
pendent neurons being both active and inactive. Importantly, we computed the two
alternative types of entropies on shuffled versions of the initial Calcium binary ma-
trices that we were given. Shuffling the rows of the matrices is usually helpful in
order to break many of the temporal correlations in the network. This method is
often a good way of testing the effect of correlations in the raw data.

Results from Figures 4.21 and 4.22 mainly suggest that the identical firing rate
entropy Hi f r is the highest out of the three types of entropy, followed by the in-
dependent entropy Hi nd . We see that the population entropy computed using the
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population-tracking model is always estimated as being the smallest of all. This ob-
servation is valid across all conditions, for both Day 1 and Day 7. This result can
be explained by the fact that higher entropies usually indicate more independence
between neurons. A key aspect of information theory is that the highest entropy is
always reached in the case of a uniform distribution. Therefore, when all the neu-
rons have the same mean firing rate, we expect them to yield the highest entropy
value. This is indeed what we get on Figures 4.21 and 4.22.

As regards the independent entropy term: Hi nd , we see that its value is always
higher than the population entropy, but lower than the identical firing rate entropy
Hi f r . This result can be explained by the fact that this entropy term only takes into
account the mean firing rate of each independent neuron (represented as the vector
p(xi ), but does not care about the full underlying probability distribution which
computes the probability of independent words {x}, which the population entropy
does. Since the two other types of entropies were computed on the shuffled dataset,
and were both consistently higher than the population entropy, it is safe to assume
that there is an effect of correlation in the raw data.
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Figure 4.23: Delta entropy (increase or decrease in entropy) per neuron from Day 1 to
Day 7 averaged across the stimulus and darkness conditions

A few other observations can also be made. First, we see that the absolute en-
tropies are overall higher in the Wild-Type genotype than they are in the Knock-out
genotype. This result suggests that there are more correlations in the data in the
Knock-Out genotype than in the Wild-Type genotype. Second, the “BinocPre” con-
dition, which was one of our experimental control, seems to consistently have a
higher entropy than the other conditions. This result was there both at D1 and at
D7. Finally, another interesting result is that the left eye condition appeared to have
a lower entropy than the right eye condition at D1 (see Figure 4.21), but had a higher
entropy than the right eye condition at D7 (see Figure 4.22).

Figure 4.23 investigates the delta entropy (increase or decrease) from D1 to D7
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averaged across the stim and dark conditions. Both Knock-Out genotype (to the
left) and Wild-Type genotype (to the right) are investigated here. Results were as
follows. First, we see again that the entropy mostly increased from D1 to D7 in both
genotypes, except for the “Right Eye" condition in the Wild-Type genotype, in which
we see a mean decrease of entropy from D1 to D7, which suggests that there was
a correlating effect in the data from D1 to D7. Another result was the variability
difference across genotypes. The range information clearly shows that there was
a similar entropy increase across Syngap datasets in the Knock-Out genotype, but
strong variability in the entropy change in the Wild-Type genotype. Overall, there
was the most entropy increase in the Left Eye condition, followed by the BinocPost
condition. There was a very slight increase in entropy in the Knock-Out BinocPre
condition, whereas there were much more extreme changes in entropy in the Wild-
Type BinocPre condition.
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Figure 4.24: P(K) symmetrized KL divergence between Day 1 and Day 7 across geno-
types

We now turn to the KL divergence results in the Calcium imaging datasets. Fig-
ure 4.24 displays the KL divergence between D1 and D7 across genotypes for each
condition in the stimulus, darkness and averaged conditions. As argued previously,
we decided to use the symmetrized P(K) approximation as our KL-divergence esti-
mate (see section 4.1). The first observation was that the BinocPre and RightEye KL
divergence were greater in the Wild-Type genotype than they were in the Knock-Out
genotype. which suggests that there may not have been a significant neuronal re-
modelling in the network as one may have expected in the Right Eye. The second
observation was that once again, the variability of KL divergences was much higher
in the Wild-Type genotype than it was in the Knock-Out genotype (see range error
bars on the graph). Finally, we see that the KL estimate was consistently higher in
the darkness condition only in the BinocPost condition. Other results were not con-
sistent enough to be reported here.
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Figure 4.25: Delta KL-divergence D1-D7 across genotypes and stimulus conditions.
Arrows indicate in which genotype the KL divergence was greater.

Last but not least, we investigated the delta genotype of the KL divergences in
order to see how the two genotypes differed from one another. The most salient
result was that KL divergences differed the most in the stimulus condition (as op-
posed to the darkness condition). This means that the presence of the stimulus
yielded a bigger KL divergence difference across genotypes. Overall, the KL diver-
gence was greater from D1 to D7 in the Wild-type than in the Knock-Out except
for the BinocPost condition, in which the difference was greater in the Knock-Out
genotype. Once again, we can see that the KL divergence was the greatest in the
Wild-Type than in the Knock-Out genotype in both the BinocPre and RightEye con-
ditions.



Chapter 5

Discussion and Limitations

The goal of the Master’s project was to implement a mathematical model of
neuronal population activity on calcium imaging data collected in the context of
a neurobiological experiment. Our choice of model was the population-tracking
model [1]. Data modelling was divided into three main stages. The two first stages
represented controls and the third stage was more exploratory in nature, since we
attempted to model new experimental data. In the first stage, we modelled data
that was synthetically-generated by a Dichotomized Gaussian (DG) model [20] in
order to carry out baseline tests. In the second stage, we modelled controlled ex-
perimental data from a multielectrode array experiment conducted using cultures
of rat hippocampal neurons. Finally, in the third stage, we modelled calcium imag-
ing data which were recorded in the context of a new monocular deprivation (MD)
experiment performed on mice.

Results pertaining to the synthetic data baseline tests were as follows. First, re-
garding the main parameters of the population-tracking model, we saw that p(k)
tended to decrease as the number of k active neurons in the network increased.
p(xi ) successfully estimated the probability of firing of each neuron in the network,
and p(xi |k) results suggested that there was an overall tendency for neurons to have
a higher probability of firing as the number of k active neurons increased. Second,
our time steps analysis revealed that as T increased, the pattern probability p({x})
estimated by the model approached the empirical “true” probability Ptr ue (com-
puted using exhaustive histogramming methods). In addition, the empirically com-
puted entropy also approached its “true” value (computed using an extrapolation
method) as T increased. A good entropy estimate was found for T= 5,000 timesteps.
Finally, in the case of homogeneous synthetic datasets, the theoretically-computed
entropy was shown to get closer to the “true” entropy value faster (i.e: with a lower
number of time steps) than the estimated empirical entropy.

In this dissertation, we also compared two choices of methods which estimated
the Kullback-Leibler divergence between any two spikes datasets. Results from our
tests indicated that the KL divergence based on the model estimate p(k) was better
than the full distribution heuristic computation introduced in Chapter 3 (see Al-
gorithm 1). Three main reasons to choose the p(k) approximation KL divergence
method are the following. First, when estimating the divergence of two baseline
synthetic datasets, the p(k) method showed that it could be considered a sufficient
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estimate without having to iterate over the full distributions of both datasets’ words
probabilities. Second, the baseline KL divergence between half-half randomly sam-
pled synthetic datasets was lower by 2 orders of magnitude with respect to the heuris-
tic DK L . Third, the heuristic DK L was not able to correctly estimate the divergence
between spikes datasets with significantly different numbers of timesteps, whereas
the p(k) could do so, as the latter method relied on p(k) which had the same dimen-
sion across datasets regardless of the number of time steps of the binary matrices
being compared.

As regards multielectrode array data results, we found that there was a decorre-
lating effect over time, as suggested population entropy results. This suggests that
the rat hippocampal neurons underwent neuronal remodelling as time went by in
the experiment, and became more independent with respect to their firing behavior
(there was more “richness” in the spikes behaviour over time). In addition, KL diver-
gence estimates also supported this result and showed that the difference between
the basal dataset (baseline) and the H20 dataset (after 20 hours) was greater than dif-
ferences between other pairs of spikes datasets. This result could also be seen more
explicitly on Figure 4.14, where we saw an emerging peak in the log frequency distri-
bution for patterns with lower log2 probability. These results are in agreement with
Panas et al. (2015) [2], which showed that small subnetworks of highly active neu-
rons accounted for the stability of neuronal networks while influencing the synaptic
remodelling of most other “sloppy” neurons in the network, eventually leading to
further neuronal connectivity and firing dynamics changes.

Finally, results from the modelling of calcium imaging data were as follows. We
first found a higher mean entropy in the Wild-Type genotype than in the heterozy-
gous Knock-Out genotype (with one of the SynGap genes knocked-out), which would
imply higher levels of correlations between neurons in the Knock-out genotype.
This suggests that neuronal remodelling in Knock-Out mice might have failed to
happen as it normally would, perhaps due to the fact that one copy of the SynGap
gene was knocked out (heterozygous genotype). We also noticed that there was
more entropy variability (when looking at individual data) in the Wild-Type geno-
type than in the Knock-Out genotype, and entropy means were more clustered in
the Knock-Out genotype as well.

In the context of the calcium imaging experiment, we investigated neuronal dy-
namics before (at day 1) and after monocular deprivation (at day 7), both with visual
stimulation and in darkness. Entropy results showed that there was an overall in-
crease in entropy from day 1 to day 7 suggesting a decorrelating effect over time
after monocular deprivation. This suggests that neuronal remodelling lead to more
independence in the neuronal network following MD. Interestingly, the right eye,
which was blindfolded, demonstrated an overall decrease in entropy in the Wild-
Type genotype, but not in the Knock-Out genotype. This is in agreement with ex-
periments from Wiesel & Hubel (1963) [3] who showed that synapses from neu-
ronal networks related to the blindfolded eye were weakened, whereas synapses
from neuronal networks related to the other eye tended to get strengthened over
time in a healthy animal. This effect seems to have been weaker in the animals with
one of the SynGap gene knocked out, as one would have expected, which supports
the experimental data analysis results (see Figure 5.1). Indeed, we notice that the
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ocular dominance index decreases more in the Wild-Type genotype than it does in
the Knock-Out genotype (there is a steeper decreasing slope in the Wild-Type geno-
type). Combined together, these results represent preliminary evidence to support
our initial expectation that the heterozygous genotype may prevent spontaneous
synaptic plasticity mechanisms to induce natural neuronal remodelling in networks
of neurons of Knock-Out animals.

Figure 5.1: Ocular dominance index (ODI) results across genotypes in the monocular
deprivation experiment. Unpublished figure.1

With respect to the KL divergence computations, we saw that more changes hap-
pened from Day 1 to Day 7 in the Wild-Type genotype overall. These results pro-
vide further evidence to support the claim that there was less neuronal remodelling
in the Knock-Out genotype than there was in the Wild-Type genotype. As to the
comparison of entropy computations (population entropy on raw data, and both
identical firing rate entropy and independent entropy on shuffled data), our analy-
sis showed that the identical firing rate entropy and the independent entropy were
consistently higher than the population entropy. This result suggests that there was
an effect of correlations in the experimental spikes datasets of interest, as shuffling
the datasets seemed to be enough to increase the entropy.

As regards the comparison of the stimulus conditions, we noticed that KL diver-
gences were greater from Day 1 to Day 7 when there was visual stimulation (as op-
posed to darkness), which suggests that visual stimulation induced more neuronal
dynamics changes than darkness did. This result supports past findings from Pakan
et al. (2016) [56], which showed that excitatory neurons from rats were more active
in visual stimulation than in darkness during locomotion. Interestingly, we noticed
that there were smaller DK L differences between pre- and post-monocular depriva-
tion in the right eye of the Knock Out animals than in the right eye of the Wild-Type
animals. Once again, this result supports our initial hypothesis that the heterozy-
gous genotype may prevent natural neuronal remodelling mechanisms from hap-
pening spontaneously as they would in Wild-Type animals.

1This figure was provided by Dr. Rochefort from the Integrative Physiology department at the
University of Edinburgh.
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However, the above results and interpretations should be taken with caution and
a number of limitations should be considered. First, as suggests results displayed on
Figure 5.2, a neurobiological data analysis of the experimental data distinguished
between two different behavioural conditions: the “locomotion” condition, and the
“stationary” condition. These two conditions were not differentiated in the data that
we analyzed, as mice were moving freely. More specifically, the comparison between
the “locomotion” and the “stationary” conditions was the main object of Pakan et
al. (2016) [56], and their results showed that the behavioural state (the mouse is
running versus the mouse is standing) does modulate cortical responses to sensory
stimuli, particularly in the “visual stimulation” condition (see Figure 5.2).

Figure 5.2: Means from experimental calcium imaging data recordings across locomo-
tion and stationary. Unpublished figure.2

Second, one should note that our main limitation was the fact that we were only
able to analyze the data from four animals (two of them were nested in the Knock-
Out genotype, and the two others were nested in the Wild-Type genotype as was
introduced in Table 4.6). This choice of sample size is certainly not enough to infer
any statistical significance and may lead to biased estimations and interpretations.
Moreover, we could not have a clear idea of what the true mean and standard de-
viation were for each genotype , since having n = 2 could only enable us to get a
range and median estimates for the Wild-Type and the Knock-Out genotype. More
data points should be collected in order to make statistically significant claims with
regards to the interpretation of our results. However, the current work can still pro-
vide preliminary results which can give us an idea of the overall trend in entropy
and Kullback-Leibler divergence comparisons.

Third, other experimental limitations ought to be taken into account as well.
One is that there may have been confounding variables which biased some of our
results. For example, it may be the case that fatigue impacted the firing behaviour
of the V1 mice neurons, particularly in the BinocPost condition (which was the last
recorded one, as explicitly referenced in Table 4.5). Another experimental limitation
is that biomedically-speaking, it would be necessary to compare our experimental

2This figure was provided by Dr. Rochefort from the Integrative Physiology department at the
University of Edinburgh.
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mice to a surrogate model in order to get baseline estimations and have more reli-
able Kullback-Leibler divergence estimates. Finally, one last experimental concern
is that we did not control for potential contamination in the calcium imaging data,
which could imply significant neuronal firing behaviour differences and would lead
to problematic biases in our data analysis.

Fourth, with regards to our calcium imaging data analysis, it is not clear to which
degree the observed entropy changes are due to firing rates alone. It is worth reiter-
ating some of the limitations of calcium imaging as a neuroimaging recording tech-
nique. Mainly, calcium sensors used in two-photon calcium imaging are known
to be slow sensors with a low sampling rate around 50 Hz [18]. In addition, calcium
imaging data pre-processing involves denoising, deconvolution, demixing and spike
train estimation through the use of physiological models, as described in Chapter 3
[21], [22]. This causes a number of issues, among which the most concerning one is
the fact that spike inference represents a major source of error and variability since
recording conditions may vary. This implies that the spikes inference quality may
differ substantially, even for the same animal.

Fifth, many pre-processing assumptions should be born in mind when inferring
from binary spikes data (in the form of TxN binary spikes matrices). The most im-
portant one is the issue of time-binning. For instance, in our multielectrode array
recordings, we used time bins of 10 ms. Ideally, one should investigate the role of
time-binning in the estimation of population entropies and Kullback-Leibler diver-
gences, as different choices of time bin durations may lead to significant changes
in the analysis. Furthermore, with respect to the multielectrode array recordings, it
is worth mentioning that the data that we analyzed in Chapter 4 was clustered data
(see Table 4.3). Clustering was performed using herding spikes methods [49], as de-
scribed in Chapter 3. Although useful in the investigation of populations of neurons
because it significantly reduces the number of neurons, which in turn leads to faster
computational times and easier interpretations, it also represents a potential danger
since clusters of channels are assumed to describe the firing behaviours of indepen-
dent neurons, which may not actually be true biologically-speaking (i.e: there may
be more than one single neuron in each cluster).

We now turn to the evaluation of our choice of mathematical model. As men-
tioned in the introduction, the population-tracking model [1] was advantageous
for many reasons. Most importantly, it could fit large populations of neurons (of
many hundreds) whereas other traditional models from the Computational Neu-
roscience literature, such as the pairwise maximum entropy model, could only be
fit to populations of about 10 neurons. Another main advantage was that parame-
ters could be estimated with low computational time complexity (the model used
N 2 parameters) and parameter estimation converged with a reasonable number of
time steps. One third main advantage was that it was possible to get an approxi-
mation of the full pattern probability distribution using the low-dimensional sum-
of-log-normals approximation method while being computationally tractable. Ac-
cording to O’Donnell et al. (2016) [1], reasons for choosing the population-tracking
model over similar models such as the population-coupling model [57], [58] were
that it could estimate pattern probabilities of single words of neural activity, it could
estimate functions of the entire pattern probability distribution, such as the Shan-
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non entropy or the Kullback-Leibler divergence, and it assumed a non-linear rela-
tionship between individual neurons’ firing rate and population rate. According to
the author, these advantages made the population-tracking model a more suitable
choice of model in the context of neurobiological experiments.

Nevertheless, despite offering many desirable features, the model also had a few
limitations, which should be addressed as well. The first and most important one
was that it was often outperformed by other mathematical models for small num-
bers of neurons [1]. A second limitation was that it did not account for the full pair-
wise correlation structure, as opposed to the maximum pairwise entropy model,
which could capture more than 90% of the neuronal networks’ correlations [8]. Fi-
nally, three other limitations were that temporal correlations were being ignored
(correlations between time steps) in the estimation of the parameters, parameters
were hard to interpret from a biological perspective, and the low-dimensional sum-
of-log-normals estimation of the full pattern probability distribution may have been
skewed for increasing numbers of k active neurons in the network, as suggests the
shift in log pattern probability displayed on Figure 3.7b.

Finally, with respect to the implementation of the Kullback-Leibler divergence in
the context of cognitive neuroscience experiments, researchers have debated and
often disagreed on the right use and interpretation of the KL divergence. For in-
stance, Berkes et al. (2011) [54] made use of the KL divergence to compare stimulus-
evoked (naturalistic visual stimuli) and spontaneous neural activity in the context
of a visual task experiment performed on ferrets. The aim of the experiment was
mainly to investigate a Bayesian statistical model of sensory cortical processing,
by studying the degree of mismatch (defined as “divergence”) between the aver-
age posterior (P (features|input,model)) and the prior (P (features|model)). Their
main interpretation of the results was that internal cognitive models progressively
adapted to the statistics of natural stimuli at the neural level. In the context of a
research publication, Okun et al. (2012) [57] disagreed with this claim, and argued
that their results did not represent evidence that a probabilistic model of the envi-
ronment was learned. According to them, the results suggested instead that the two
visual conditions being studied had similar statistical properties of multi-neuron
firing patterns, specifically related to overall population firing rates. More research
is needed to disentangle between the different uses and appropriate interpretations
of Kullback-Leibler divergence estimates in the context of neurobiological experi-
ments.



Chapter 6

Conclusion

This Master’s project investigated the modelling of synthetically-generated spikes
data, multielectrode array data and calcium imaging data using a novel mathemati-
cal model: the population-tracking model [1]. Synthetic data baseline tests revealed
that it was a reliable and fairly accurate choice of model with a number of desir-
able features. KL divergence methods comparisons showed that the population-
rate (p(k)) approximation method was better than the heuristic divergence method
for the modelling of large populations of neurons. Multielectrode array data anal-
yses were in agreement with results from past research [2], and preliminary results
from the calcium imaging experiment also supported past research on long-term
synaptic plasticity [3], [27].

Nevertheless, with respect to the multielectrode array experiment, future re-
search could investigate how time binning may impact the analysis of spikes datasets.
It would also be of interest to compare clustered and unclustered spikes data in or-
der to understand how clustering effects may impact data analysis in MEA exper-
iments. As for the synaptic plasticity experiment, more animals are needed to in-
fer about the statistical significance of neuronal remodelling effects in the context
of our long-term synaptic plasticity experiment. Future research could include a
surrogate model, examine potential differences between the “locomotion” and the
“stationary” behavioural conditions, and study the effects of fatigue and calcium
imaging data contamination, in the hope of further understanding the neuronal dy-
namics of Autistic Spectrum Disorder (ASD) and other fascinating genetic intellec-
tual disabilities.
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Complementary results

A.1 Complementary synthetic data baseline plots
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(a) Homogeneous High spikes data
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(b) Homogeneous Low spikes data

Figure A.1: Homogeneous data sets properties
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(a) Heterogeneous Uniform spikes data
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Figure A.2: Investigation of the heterogeneous data sets properties
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A.2 Complementary synthetic data time steps results

Figure A.5: Full evolution of the Homogeneous Low model probability when compared
to the true probability over time steps.
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Figure A.6: Full evolution of the Heterogeneous Uniform model probability when com-
pared to the true probability over time steps.



A.2. Complementary synthetic data time steps results 63

Figure A.7: Full evolution of the Heterogeneous Non-Uniform model probability when
compared to the true probability over time steps.
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