
A Predictive Processing Theory

of Autism: A Neural Network

Modelling Approach with

Applications to Autistic

Savantism

Beren Millidge

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2017



Abstract

This dissertation presents a novel framework for understanding autistic spectrum dis-

orders (ASD) within the predictive processing paradigm. It argues that the observed

pattern of long-range underconnectivity and local overconnectivity observed in ASD,

when instantiated in a predictive processing framework, will lead to impoverished high

level regions and lower-level regions which down-weight prior information coming

from above and prioritise incoming immediate sensory information. This pattern is

hypothesised to result in many behaviours recognised in autism such as sensory hy-

persensitivity, a local, detailed-oriented processing style, and a preference towards

predictable behaviours and routines. Neural network models were constructed to in-

vestigate several aspects of this theory. We showed that the autistic networks were

superior at discriminative tasks and inferior at integrative tasks, which matches find-

ings in the autism literature. We also investigated the effect of this connectivity pat-

tern on hemisphericity and found that networks with a hemispheric split with lesser

cross-connectivity exhibited more autistic behaviours and some also showed signs of

developing autistic savantism. These results, then, offer a novel theory of autism from

within the predictive processing paradigm and modelling evidence in favour of the

theory which may expand our understanding of the disorder.
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Chapter 1

Introduction

Autism is a neurodevelopmental disorder characterised by a triad of impairments in so-

cial interaction, impairments in communication, and repetitive and obsesssive interests.

It is also associated with a number of perceptual and motor abnormalities. A number

of theories of autism have been proposed, including the Theory of Mind Theory [1],

the Weak Central Coherence Theory [2], and the Cortical Underconnectivity theory.

In this dissertation we propose and develop a theory of autism within the predictive

processing paradigm and construct several different models to provide an empirical

grounding for our theory.

Predictive processing is a general cognitive paradigm proposed by Friston et al [3]. In

brief, it states that the brain functions by continuously attempting to predict incoming

sensorimotor contingencies, and then adapts its internal structure to improve its abil-

ity to make accurate predictions. The brain, according to Friston, is composed of a

hierarchical series of multi-level generative probabilistic models which are capable of

modelling various aspects of the external world and also using the models to sample

predictions of how the world will be. It is these predictions that are compared to the in-

coming sensory information at every step, and the models are adjusted to minimise the

prediction error. Information flows up and down the hierarchy. The generative model

at each level receives sensory information flowing up and predictions flowing down

the hierarchy, integrates them into a united posterior belief, and then minimises the

difference between this posterior and the next set of sensorimotor information flowing

up from the hierarchy. In this way the brain as a whole becomes able to predict, and

thus understand, its environment.

In this paper we propose a novel predictive processing theory of autism which is based

on neurophysiological data. Many recent fMRI and other brain imaging techniques
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Chapter 1. Introduction 2

have revealed that neural connectivity in autism differs systematically from the neu-

rotypical type. In short, individuals with autism appear to have systemic long range

under-connectivity, and may have short range over-connectivity. We propose that this

connectivity pattern, when instantiated in a predictive processing model will naturally

result in many of the deficits observed in autism. This pattern of long-range under-

connectivity and short range over-connectivity may also generalise to a hemispheric

pattern of lesser interhemispheric connectivity in autism. We hypothesise that this

hemispheric pattern may lead to a greater variance in the cognitive skills of those with

autism, and may also aid the development of savant skills in some individuals.

We construct neural network models to test these hypotheses. We find that predictive

processing models with impaired long range connectivity perform slightly better at a

sensory discrimination task, and are significantly more sensitive to small peturbations

of stimuli, which matches the psychophysical findings in autism. We also show that

such networks are poorer at integrating stimuli from different modalities together, a

key finding in autism and a cornerstone of many theories of autism such as the Tem-

poral Binding Deficit theory [4]. We also show that networks with a hemispheric split

obtain more variance in training when they possess less inter-hemispheric connectivity

and also sometimes develop savant skills, although the exact mechanism behind this

remains somewhat mysterious.

The dissertation is structured as follows: In chapter 2, we present the historical and

intellectual background of the theoretical and neurophysiological work on autism. We

explore theories of autism as well as what recent decades of fMRI and other data tell

us about the neural underpinnings of the disorder. We also present our own predictive

processing approach. In the third chapter, we construct models which implement our

predictive processing model of autism and conduct experiments to confirm, albeit in a

simplified and abstract model, the predictions made by the theory. We also construct a

hemispheric model of autism and conduct experiments on the variance and emergence

of savant like skills in such a model. In the fourth chapter, we analyse these results,

and discuss their limitations, and future work that could be done in this area.



Chapter 2

Background

2.1 Autism

Autism is a pervasive developmental neurological condition that manifests as an array

of deficits in areas such as social cognition and communication [1], rigid and obses-

sive interests, insistence on sameness and routine [5], and a detail-oriented processing

style [6]. Autism is often defined through the triad of impaired social interaction,

impaired communication, and repetitive and obsessive interests [7]. However, many

individuals with autism also possess a wide range of perceptual and motor abnormal-

ities including both hypo and hyper sensitivity, and a relative lack of susceptibility to

many common sensory illusions [8], [9].

First identified by Kanner (1943) [10] and Asperger (1944) [11], it is thought to af-

fect about 6 in 1000 children [12] and incidence has been increasing in recent times in

developed countries. [13]. This increase is likely due to changing diagnostic criteria

and better mental health screening in the developed world rather than an increase in

the true frequency [14]. The symptoms and behaviours characteristic of autism have

remained remarkably stable since the initial child case-studies of Kanner and Asperger

in the early 20th century. Autism ranges in its degree of severity, from relatively high

functioning conditions such as Asperger’s syndrome, to low functioning autism and

Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS). Because of

this the DSM V reclassified the cluster of similar conditions as simply being autistic-

spectrum disorders (ASD).

Autism has a substantial genetic component. The heritability of autism have been es-
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Chapter 2. Background 4

timated to be as high as 90% due to monozygotic twin concordance rates between

73-95% [15]. Other studies have found a lower, but still substantial heritability of

about 50% [16] with a significant effect of shared environment. The sibling risk stands

at about 20% for males and 10% for females. The risk for a broader, non-diagnosable

autistic phenotype, manifesting as aloof or tactless speech, obsessive interests, need for

routine, and a difficulty forming friendships may be significantly higher [17]. Given

such high heritability, it is unsurprising that many possible genetic loci for autism have

been found. More than 100 candidate genes have been analysed for possible linkages

with autistic spectrum disorders [18]. Some of the most promising are the serotonin

transporter gene 5-HTT, although evidence here is mixed, with contrary studies such

as Ramoz et al (2006) claiming no such linkage [19]. The neuroligin gene [20] has

also been considered. Other possible pathways involve the mTOR/PI3K pathway, mu-

tations to which might cause abnormal synaptic growth rate in autism [21], [22] and

may interact with various mutations in pathways involving serotonergic system [23].

Mutations in the NLGN3/4 or NRXN1 have also been hypothesised to alter synaptic

function in a way that might induce autism or mental retardation [24].

Tracing the mechanism by which alterations at these genetic loci can lead to the macro-

level deficits and abnormal neural development observed in autism is a difficult task,

as there is vast number of possible genetic pathways as more than one third of the hu-

man genome is expressed at some point in the developing brain [25], and interactions

between these pathways as well as environmental influences may have a significant

impact. Moreover, many initial studies positing linkages fail to replicate [13].

In this paper we shall primarily focus on higher level theories of autism and ASD,

which attempt to explain the disorder at a computational, algorithmic, or functional

level. The precise mechanisms by which genetic abnormalities generate such macro-

scale differences remain to be elucidated.
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2.2 Theories of Autism

2.2.1 Theory of Mind

Early theories of autism focused primarily on explaining the social deficits. One

paradigm is the Theory of Mind theory, proposed by Baron-Cohen (1985) [1]. He

posits that autistic children lack a consistent Theory of Mind - a metarepresentational

capacity [26] to understand that other agents have beliefs and desires and intentions

just as they do, and to be able to understand their behaviours in terms of those mental

states and to be able to use that knowledge to make inferences about the mental states

of others [27]. Evidence for this lack includes the failure of autistic children on the

Sally-Anne test [1], [28] even when compared to IQ-matched controls and develop-

mentally delayed children with Downs syndrome. Further evidence comes from the

lack of pretend play in autistic children [29].

However, as more evidence came to light of the large and seemingly disparate num-

ber of non-social impairments and deficits in ASD, then such social theories slowly

became untenable. While it might be possible to describe difficulties in communica-

tion and interaction as being caused by a lack of theory of mind, increased perceptual

sensitivity and lesser habituation to simple visual stimuli [30] are much more difficult

to explain in such a framework. It is thus becoming increasingly clear that autism is a

systemic disorder rather than one constrained to a single module of the brain. If autistic

patients lack a theory of mind, then it is an effect of a broader systemic deficit.

Many new theories have emerged seeking to explain the patterns of dysfunction and

altered-function in ASD as the result of some systemic deficit. Rather than focusing

on a single dysfunctional subsystem or module such Theory of Mind or Executive

Dysfunction [31] these theories instead postulate an abstract dysfunction on a general

computational or algorithmic level which, when instantiated in the brain, can explain

the pattern of seemingly unrelated deficits as are observed in ASD.

2.2.2 Weak Central Coherence

Perhaps the most important and widespread of these theories is the Weak Central Co-

herence Theory of Frith and Happe [2] [32]. This theory argues that instead of being
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caused by a specific impairment, ASD is characterised by a certain processing style

called Weak Central Coherence. Neurotypical individuals generally try to bind to-

gether the information they receive and search for gestalts and abstract concepts to

explain away the detail. Autistic individuals, on the other hand, tend not to utilise

more abstract integrative processing styles, but instead tend to focus more purely on

the intricacies of the input without feeling such a need to tie it all together. Whereas the

processing style in normal subjects can be thought of as centralised and hierarchical,

the style in ASD is much more local and distributed; it lacks central coherence to a

much greater extent than normal.

Weak Central Coherence Theory can explain why individuals with autism often outper-

form normal controls in many perceptual tasks which require detailed attention to local

features such as the Embedded Figures Task [33]. Moreover, autistic individuals often

tend to preferentially process parts of stimuli as shown by Plaisted et al (1999) [34],

who presented them with hierarchical stimuli - such as a big letter composed of many

smaller letters. They found that the ASD group performed better at rapid judgements

of the identity of the low-level letters than the controls, while the controls did better at

integrating the global percept to determine the identity of the high-level letter.

Similarly, individuals with ASD have been found to be helped less by global organisa-

tion of information as shown in Jarrold and Russell (1997) [35] who presented subjects

with patterns of dots to count. The dots were shown either in a random pattern or a

’canonical’ pattern which matched that found on the faces of a die. Autistic subjects

showed little improvement from the canonical presentation whereas controls showed

a significant improvement, implying that individuals with ASD either are unable to

utilise, or do not require, the aid given by the globally coherent organisation of in-

formation. Subjects with ASD also often perform poorly on tasks which require the

global integration of information such as integrating fragments of images [36].

Although the weak central coherence theory can be used to explain a wide range of

disparate deficits in ASD, the core construct of the theory ’central coherence’ is vague

and underdefined. It is not clear whether the deficit lies in a single coordinating coher-

ence module, or arises organically as the result of a broader, systemic abnormality. In

their original paper, Frith and Happe (1994) appear to suggest the former. On the other

hand, the temporal binding deficit theory states that individuals with ASD are impaired
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at binding together and integrating percepts from different parts of the brain [4], and

that this causes the general pattern of behaviour characterised by weak central coher-

ence. This theory suffers from the same problem as weak central coherence theory

in that both theories focus primarily on the computational and representational levels

of Marr’s hierarchy of explanation [37]. They postulate abstract deficits in central co-

herence or temporal binding, but leave the underlying mechanism which causes such

a deficit mostly unspecified. Ideally a complete theory of autism would possess both

a computational component (what deficits exist and what effects they have in abstract

terms) and an implementational component (what exactly is physically wrong or dif-

ferent about the neural hardware so as to cause such deficits). There are a number of

theories which propose explanations for ASD situated at the neurobiological level.

2.2.3 Neurobiological Explanations

One of the most promising of these is the theory of cortical underconnectivity which

has emerged from recent fMRI data. In the past decade, many findings of cortical and

functional underconnectivity between different brain regions have been observed in

autism. For instance, underconnectivity has been reported between brain regions in so-

cial and emotional tasks [38], [39], global processing and cognitive control [40], [41],

working memory [42], theory of mind [43], and visuospatial attention [44].

Functional underconnectivity has also been reported in the resting state [45], [46],

where subjects are instructed to lie in the fMRI scanner, but not to think of anything

in particular. In these tasks underconnectivity was typically found between the task-

specific posterior areas and the pre-frontal cortex, which is where the inputs of these

different inputs are thought to be integrated and synthesised.

Underconnectivity has also been found in direct region to region connections outside

of the fronto-posterior network, such as between the primary and supplementary motor

areas and the cerebellum and thalamus [47], between the fusiform gyurs and the amyg-

dala [48], between the visual cortex and the thalamus [49], and between the anterior

cingulate and the frontal eye fields [50].

In addition to information about functional connectivity obtained through fMRI, con-

verging evidence comes from diffusion tensor imaging indicates that children with
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ASD possess abnormal white matter distributions indicative of a disrupted pattern of

structural connectivity [51], [52].

Moreover, there is circumstantial evidence that this functional underconnectivity might

be causal. Several studies have investigated whether there is a relationship between the

degree of underconnectivity and the severity of ASD. Just et al (2007) [42] found a pos-

itive correlation between functional underconnectivity and scores on the Autism Diag-

nostic Observation Schedule (ADOS), a set of semi-structured psychiatric tests used to

asses severity of ASD. Similarly, Monk et al (2009) [53] has found that poorer social

functioning (as measured by the Autism Diagnostic Interview-Revised) is correlated

with weaker functional connectivity between the superior frontal gyrus and posterior

cingulate cortex.

Although these studies are correlational, so that the observed correlation between

degree of autism severity and functional under-connectivity can theoretically be ex-

plained by a third latent factor underpinning them both, it nevertheless gives some

stronger evidence towards the hypothesis that functional under-connectivity and ASD

are causally related than the previous studies which simply reported the co-occurrence

of the two effects.

Functional overconnectivity has also been reported in ASD, for instance in the extras-

triate (visual) cortex [54], the amygdala [55], and the parahippocampal gyri [56]. Nair

et al (2013) [57] found overconnectivity in temporo-thalamic regions while Monk et

al (2009) [53] reported higher connectivity in the posterior cingulate cortex. Bailey et

al (1998) [58] also found overconnectivity in the cerebello-thalamo cortical pathway,

which they attribute to reduced numbers of inhibitory Purkinje cells. There have also

been a few studies done on the relationship between degree of overconnectivity and the

severity of ASD symptoms. Gusnard et al (2009) [53] found that in adolescents with

ASD, overconnectivity in the medial prefrontal cortex and parahippocampal gyrus cor-

related with poorer verbal and nonverbal skills. Moreoever, Agam et al (2010) [50],

found that higher connectivity within the anterior singulate and frontal eye fields was

correlated with restricted, stereotyped behavioural patterns reminiscent of autism. The

same caveats apply to these correlational studies as apply to the underconnectivity ones

discussed previously.
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Although there are several contrary studies, including ones which report mixtures of

over and underconnectivity within the same regions [59], [60], the general pattern ap-

pears to be one of widespread cortical underconnectivity with the underconnectivity

especially pronounced between relatively distant brain regions - and local overconnec-

tivity [61], and that the autistic brain may rely primarily on local connectivity rather

than long-range connectivity for the transmission of information [62].

2.2.4 Synaptic Pruning

To understand what effects this pattern of aberrant connectivity might have on brain

function, we need to consider the brain in terms of functional specialisation and func-

tional integration [3]. To accomplish the multitude of functions that the brain must

complete in normal operation, it requires specialised brain regions to deal with vari-

ous tasks such as sensory processing of different modalities, planning, memory, and

so forth (functional specialisation). However, for the brain to function as a whole

and behave in a cohesive manner, different functional regions need inputs from other

regions and information must be combined effectively and integrated throughout the

brain. Thus the brain needs a significant degree of functional integration as well as

specialisation [63]. The theory of cortical under-connectivity argues that in ASD this

complex equilibrium is distorted so that overall functioning is impaired. Specifically,

it hypothesises that the deficits in long range connectivity between regions damages

the functional integration of the brain. This would explain the local-processing bias

observed in ASD and explained by theories such as Weak Central Coherence as well

as serve as a neurobiological underpinning for impaired temporal binding between re-

gions, as proposed by the Temporal Binding Deficit theory.

Although the mechanism by which this abnormal pattern of connectivity arises in

autism is not well understood, one plausible hypothesis is that it is the result of the

abnormal developmental trajectory observed in the first few years of life of autistic

infants. This trajectory begins with a significant neural overgrowth, and perhaps ends

with excessive synaptic pruning. Early brain development in neurotypical infants com-

prises a period of rapid brain growth and increase in white matter, followed by a period

of plateauing and synaptic pruning where, it is thought, the weaker and unused con-

nections are pruned back [64] [65]. Both of these phases seem more extreme in autistic
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infants. At birth they have larger heads, on average, than neurotypical infants, and a

significantly greater incidence of macrocephaly (head size in the 99th percentile) - be-

tween 10-30% of autistic infants are macrocephalic at birth [66], [67]. For the first few

years of life, there is also evidence of brain overgrowth in autism [68], [69], of which a

significant component is white matter. This suggests that the autistic infants brain may

be significantly overconnected compared to that of a neurotypical infant.

There is also evidence that the synaptic pruning following brain overgrowth may be

more aggressive in individuals with ASD, and that the pruning might disproportion-

ately affect the long-range cross-region synapses [70]. If this is the case, then the

observed developmental trajectory of overgrowth followed by overaggressive prun-

ing would explain the abnormal connectivity patterns of long range underconnectivity

and short range overconnectivity found in ASD, as the aggressive pruning would have

eliminated most of the long-range connections, but the short range connections are less

effected, so a shadow of the initial overgrowth remains.

2.2.5 Predictive Processing

In recent times, several Bayesian or predictive processing treatments of neurodevel-

opmental disorders like autism have been proposed [71], [72]. Predictive processing

posits that instead of passively receiving and extracting statistical information from

the sensory signal, the brain is constantly engaged in a process of trying to predict and

infer the immediate future states of the world. In this way it solves what is known as

the inverse problem which is that the brain must infer what is out there in the world

merely from the sensory stimulations that it creates. This is an underconstrained prob-

lem so there are many equally valid solutions. To solve it, therefore, the brain must

also incorporate some kind of prior knowledge or expectations about the world into its

predictions and representations about the world state.

From a computational perspective, the predictive processing hypothesis is that the brain

is organised into a series of hierarchical layers of probabilistic generative models [73].

Each generative model receives a set of inputs from the layer below it, and predic-

tions propagate downwards from the layer above. The model then integrates these two

sources of information to form a posterior belief about the world, which it can then
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translate into predictions of expected future states. It then propagates these predictions

down to the layer below. In such an arrangement, increasingly abstract and processed

sensory information is propagated up the hierarchy while increasingly more specific

and detailed predictions are propagated down to the lower levels [74]. At each level

a process akin to Bayesian reasoning takes place as each layer receives upwards input

(the likelihood), top-down predictions (the prior), and combines them to form its own

model of the world (the posterior). After every set of inputs, the generative model is

adjusted so as to iteratively update the generated predictions with respect to the true

reality of what occurred. This update is done through the minimisation of the predic-

tion error of that level which is simply the divergence between the prediction and the

observed reality. In this way the brain encodes a set of dynamic causal models at every

level of abstraction which can be expected to reflect the structure of the world, and

which it can utilise to make predictions or effective action [75].

Due to the minimization of prediction error at every level, the brain can be considered

a system which acts and perceives in such a way to minimise its surprisal, the gap be-

tween what it expects and what it perceives. Mathematically it does this by minimising

the free energy functional [76], which means that from the space of all functions from

sensory data to predictions (i.e. models), it will attempt find the function that min-

imises the Kullback-Leibler divergence between the distributions over sensory inputs

and the distribution over predictions [77].

The models at the lowest level are the least abstract and are concerned almost en-

tirely with trying to predict the low level sensory inputs at every time step. However,

higher level models become increasingly wide-ranging and abstract, and are able to

take into account prior knowledge, contextual information, or information obtained

through other modalities and propagate this knowledge back down the hierarchy as

priors and predictions to help modulate processing there. In this way extra-receptive

field modulation effects, - such as boundary effects in V1 cells - can be explained. [78].

Several models have been proposed to try to explain autism spectrum disorders within

the predictive processing framework. Perhaps the first was Pellicano et al (2012) [72]

who argued that many behavioural symptoms of ASD such as sensitivity to tiny varia-

tions in stimulus, poor generalisation ability, and difficulty with complex tasks requir-

ing the integration of contextual or temporally distant information might be the result
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of attenuated priors. These hypo-priors mean that each layer is much less affected by

the predictions of higher layers than expected, which implies that it is more difficult

for the generative model to incorporate the top down information it needs to make ac-

curate predictions.

Sinha et al 2014 [79] argue that autism can be explained as a disorder of prediction in

which the high level generative models are unable to suitably model the world, thus

leading the autistic individual to experience a fundamentally chaotic and confusing

world with constant sensory overload due. Similarly, Van der Cruys et al (2014 [80]

propose that the deficit in autism is in learning to suppress or ignore errors. Since the

autistic individual is unable to do this effectively, they are thus overwhelmed with the

number of small prediction errors they have made about the world, leading to feelings

of sensory overload.

Another related hypothesis is that of Lawson et al (2014) [71] who argue that the cause

of autism is that ASD individuals have an aberrant precision in the predictive pro-

cessing model in that they tend to weight their incoming sensory evidence much more

strongly than optimal which leads them to discount prior information coming from

above. In a predictive processing model, this has essentially the same effect as the

attenuated priors proposed by Pellicano et al, since the precisions of the prior and the

sensory evidence are in direct competition such that increasing one must decrease the

other.

2.3 Integrated Framework

In this paper we propose a novel framework which integrates insights from the Weak

Central Coherence theory and the well-established aberrant patterns of functional and

structural connectivity in ASD with the predictive processing paradigm.

Consider the effect of the disturbed pattern of connectivity found in autism - long range

underconnectivity and short-range overconnectivity - on a predictive processing model

consisting of a hierarchical sequence of probabilistic generative models. Each step in

the hierarchy will generally involve a long range connection between different brain

regions except, perhaps, at the lower levels which involve more tightly integrated sen-
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sory regions. Because of the long-range underconnectivity, the bandwidth for such

long range communication is much smaller than expected. This impairs the ability of

sensory information to propagate up the hierarchy, and prior predictions to propagate

down.

Because communication is somewhat impaired between regions, this means that the

predictions (priors) propagated from each layer to the one below it are less impactful,

more noisy, and possibly incomplete. This has the effect of attenutating the strength

of the prior on the processing occurring at that level thus providing a solid neurophys-

iological mechanism for the attenuated priors postulated in Pellicano et al 2012 [72].

Moreover, as the priors are noisy and probably incomplete, this means that they are

less predictive and useful than they should be in helping the layer generate correct pre-

dictions in the future. Thus, if the system is adaptive, it will learn to downgrade the

importance of the priors compared to the sensory information since they are less infor-

mative than in neurotypicals. This explains Lawsons 2014 [71] argument in favour of

a down-weighted precision on the priors.

The next thing to consider is the effect of the underconnectivity on the information

flowing up the system. Since, at many steps, the connectivity between the adjacent

regions in the hierarchy will be poor, information will have difficulty flowing up the

hierarchy as well. This may have the effect of impoverishing the high-level abstract

generative models at the top of the system to such an extent that they might become un-

able to predict the rapidly changing dynamic world of social interactions or face to face

communications, leading to difficulties there. Moreover, such impoverished models,

especially when beset by troubled communications, may also be unable to successfully

integrate information converging there from multiple regions successfully, leading to

a weak executive function and central coherence. In addition, if the higher levels are

relatively unsuccessful, this means that the prior predictions deriving from these mod-

els which do propagate down to lower levels will be a fairly poor predictor of future

sensory information coming up, and thus each layer will have an additional incentive

to down-weight the precision of the prior predictions compared to the sensory stimuli,

thus further biasing the overall characteristics of the network towards local processing.

The fact that the higher-level regions may become relatively impoverished and unable

to respond successfully to complex situations may explain why many autistic indi-
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viduals experience uncomfortable sensory overload in complex situations. It may also

explain why they find social interaction and communication challenging social interac-

tions require dealing with a rapidly changing dynamic situation, as well as integrating

many subtle and ambiguous cues in real time to try to infer the internal mental states of

others - a challenging task even for neurotypicals. Moreover, the common preference

of individuals with ASD for simple, rigid rigid routines, as well as interests in mechan-

ical systems which obey understandable rule sets may be a reflection of the relatively

impoverished nature of the high level models. Since they are unable to model complex

environments, but can successfully predict the behaviour of simpler mechanical ob-

jects and routinised behaviours, interacting obsessively with these simpler, and easier

to understand systems, and undertaking only stereotyped and routinised behaviour may

provide individuals with ASD with some relief compared to the cacophany of predic-

tion errors they experience in more complex situations. In addition, many individuals

with ASD may be drawn to stimming behaviours [81] which are simple, repetitive,

predictable movements for similar reasons.

The effect of this connectivity pattern on the predictive processing model can also be

considered through the lens of over and underfitting. In short, we argue that such a

connectivity pattern would cause the lower levels of the hierarchy, close to the sensory

input, to overfit, while the higher levels would underfit the data. This is because the

lower levels are in immediate contact with the sensory region so their input is not dis-

rupted by the abnormal connectivity pattern. Moreoever, the effect of the top-down

priors on these regions is attenuated. The imposition of priors on a system has been

shown to generally have a regularising effect and thus reduces overfitting. For in-

stance, it has been shown that the effect of assuming a Gaussian noise prior on the

weights of an artificial neural network is mathematically equivalent to that of L2 reg-

ularisation, a common and effective regularisation method in the Machine Learning

community [82]. Since there is also an overabundance of local connectivity, this will

also have the effect of increasing the degree of overfitting, since the expressive power

of the region will increase without any concomitant increase of regularisation.

The fact that under this model it seems likely that low level regions overfit is interest-

ing since many authors have commented on the similarity of several symptoms of ASD

such as the sensitivity to minute differences in the input, the relative lack of general-

isation ability and confusion when presented with similar but subtly different stimuli,
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and the lack of habituation to repeated exposures to overfitting in neural networks.

Indeed, one of the first neural network models of autism Cohen et al (1994) [83]

modelled autism as overfitting in an associator network. Additional evidence comes

from Plaisted et al (2015) [84] who argues, completely independently of any work on

predictive processing, that there is reduced generalisation ability in ASD. It is also

hypothesised that due to the relatively impoverished and incomplete data the higher

levels receive due to the poor long-range connectivity, the higher levels are substan-

tially under-fit, which renders them insufficient to model rapidly changing and complex

environmental dynamics and integrate many sources of information together at once to

guide behaviour and perception.

2.4 Autistic Savantism

A related question relates the functional pattern of long range underconnectivity and

overconnectivity to hemispheric differences in autistic individuals. There have been

multiple findings of reduced corpus callosal (the corpus callosum is the white matter

tract which connects the two hemispheres of the brain) size in autism [85], [86]. This

is in line with the more general pattern of long range underconnectivity. It is hypoth-

esised that this weakened connectivity between hemispheres might lead to a greater

variance in intelligence and skill acquisition in those with autism, and might even aid

in the development of savant skills in some individuals with ASD.

This variance is thought to arise as a natural effect of the pattern of connectivity be-

tween hemispheres. Since the connectivity, and thus communication, between the

hemispheres is decreased, they should operate and learn more autonomously. This

autonomy may enable them to develop strategies and tools for processing the input

more independently than otherwise. When required to coordinate across hemispheres,

on some occasions, the tools that each hemisphere have learned will complement each

other, thus performing the task well. While on other occasions they will fail to com-

plement each other, and thus performance will be poor. Together, these effects create

a greater variance in performance than when the hemispheres can communicate more

closely. Mathematically, this can be modelled by the simple fact that the variance of

the composition of two independent - or less correlated variables - will be greater than

that of two highly correlated variables.
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A similar explanation has been proposed to explain differences in intelligence between

the sexes, as found in the Lothian Birth Cohort [87]. They found that while there is lit-

tle significant differences in the means of the two distribution, men are typically higher

in variance, leading to male over-representation at the tails of the distribution [88].

Ingalhalikar et al 2014 [89], argue that this might be due to neurophysiological sex

differences in functional connectivity. They find that male brains are more modu-

lar and more specialised for intra-hemispheric connectivity while female brains are,

on average, more widely connected and possess a greater degree of inter-hemispheric

connectivity.

Shillcock et al (2016) [90] argues that some of this greater variance might be ex-

plained by the neuroscientific fact that men typically have smaller corpus callosums

than women, relative to brain volume [91], although this is disputed [92], and that this

might cause the greater degree of variance of intelligence. Bolenz et al (2016) [93], a

previous masters student at the University of Edinburgh, model this phenomenon by

using a network split into two hemispheres with a variable degree of connectivity be-

tween them which they use to produce ”male” and ”female” networks which exhibit

the same pattern of variance of performance as real male-female distributions on IQ

test data.

Since a similar connectivity pattern has been observed in autism as well, we adapt the

model of Bolenz et al to our investigation of autism. We hypothesise that the increased

variance might also lead to the development of savant skills in some individuals. Sa-

vant skills are those in which the autistic individual performs at a high level relative

to their poor level of general functioning. Sometimes these skills can even surpass

those of neurotypicals and even experts in that skill. Only a small subset of autistic

individuals, estimated at around 10% of the autistic population appear to develop these

skills [94], [95]. The skills are typically of a mnemonic or mathematical bent. Mathe-

matical skills include calendrical calculations, prime number finding, and arithmetical

operations such as the multiplication and division of large numbers. Other skills rely

on an exceptional mnemonic ability and these include memorising railway timetables,

musical pieces, or aerial views of cities. Despite their prodigious skill in some narrow

domain, savants often have poor functioning in other areas, and thus contradict the

positive manifold found in studies of general intelligence in which all aspects of intel-

ligence correlate positively with each other [96]. Savant skills may develop because,
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since the two hemispheres are less connected, each may become more autonomously,

and can specialise more easily in a single skill. If one does choose to specialise, then it

will be able to achieve a high performance in that skill, while sacrificing performance

in the others, thus resulting in savant-like behaviour.

2.5 Related Work

Relatively little work has been done on neural network modelling of autism. This is

largely because most theoretical work has been at a high level, and most empirical

work has concentrated on finding neurobiological or phyisiological evidence support-

ing or refuting high level theses. Nevertheless, some work has been done.

Cohen 1994 [83] provides a neural network model which argues that children with

autism simply have too many neurons and too much connectivity, so that their brain

effectively overfits on the data they are exposed to, leading to excellent discrimination

in known domains, but poor generalisation. Cohen’s model varies the number of con-

nections in the neural network on a fairly simple learning task. Networks with too few

connections - which underfit- fare poorly on both the training and validation tests. Net-

works with too many connections - which overfit - do very well in the training phase

but poorly in the test phase. Cohen argues that this is a feature that might explain some

of the specific impairments and behavioural and perceptual abnormalities in autism.

This linkage of overfitting with symptoms of autism is very interesting, however the

neural network modelling actually undertaken here is mostly trivial, since it merely

recapitulates that neural networks which are overparametrised tend to overfit - a fact

already well known in the literature.

A similar mechanism is modelled by Vidal et al (2006) [97] who argue that the ex-

cessive brain-growth typically seen in early childhood of those with autism causes

problems with the general integration and coordination of different brain regions, thus

supporting the weak central coherence theory. This approach is also supported by

neurophysiological evidence such as Stoner et al (2014) [98] who find that there are

patches of disorganisation in the neocortex of people with autism which could be symp-

tomatic of a rapid and uncontrolled early brain growth.

Thomas et al (2011) [70] propose another model in which it is not the gross connec-
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tivity that causes problems in autism, but the much more severe synaptic pruning that

typically follows it. They have built a model in which performance regressions oc-

cur, as is sometimes seen in autism, and in the more severe childhood disintegrative

disorder (CDD) as a result of excessive pruning of connections which occurs after the

growth. They implement this through increasingly severe pruning - or setting to zero -

of weights within the model. As the amount of connections pruned increases, perfor-

mance decreases, on average in the population of weights trained in the model. Some

networks, in the population, moreover show the same pattern of regression as is ob-

served in Childhood Disintegrative Disorder. They choose which connections to prune

by setting a threshold weight below which the connection is pruned to zero. To model

more aggressive pruning, they increase the threshold weight. It is unknown to what

extent this relatively simple model of pruning can be generalised to synaptic pruning

in the brain.

There are also a number of predictive processing models of various phenomena. Spratling

et al (2015) provides an overview of various predictive processing algorithms. In ad-

dition, Rao and Ballard et al (1999) [78] build a predictive processing model of the

lower visual cortex which can generate such phenomena as endstopping and context

modulation in extrastriate visual neurons, while Pezzulo et al (2013) [99] provide a

predictive processing approach to model-based reinforcement leaning. However, as

far as we know, no work has been done on autism.

Our predictive processing model of autism, is thus, as far as we can tell, the first im-

plemented predictive processing model for this disorder. It is thus hoped that it brings

some small contribution to the available literature on autism and predictive process-

ing. Similarly, no models have focused on the effects of hemisphericity and inter-

hemispheric connectivity on autism and autistic savantism and thus, if successful, this

project could lead to a significant increase in knowledge about this possibility.
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Experiments

3.1 Artificial Neural Networks

The modelling paradigm used throughout this dissertation is that of artificial neural

networks. These arose early within the discipline of cognitive science, and still largely

implement the follow of the McCullough and Pitts Neuron [100]. They became widely

used in the connectionist paradigm of the 1980s and 1990s, and today form the basis

of many modern machine learning methods.

The basis of artificial neural networks is the artificial neuron. Unlike the biological

neuron, it implements a simple mathematical function. It receives a set of inputs. It

sums the inputs and then passes the result through a non-linear function. This result of

this process is the output, or ’activation’ of the neuron. Each of the inputs is composed

of the activation of another neuron in a previous layer, multiplied by a scalar weight

which signifies the connection strength between the two neurons.

A single neuron can be represented mathematically as:

y = f (∑
i

wixi +b)

Where y is the final output (activation) of the neuron. f() is a nonlinear function of the

input. ws signify weights and xs signify inputs from previous neurons. b is called the

bias term, since it enables the equivalent of a constant input or ’bias’ to the neuron.

These neurons are arranged into layers. Since in artificial neural networks each neuron

in the layer has no lateral connections with others in its layer, then each neuron is

independent of the others in its layer. This means that the neurons in the layer can be

concatenated into a single matrix, allowing the computation of the whole layer to be

19
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done in a single matrix operation:

Y = f (Wx+B)

The activation function f must be non-linear. This is because any composition of linear

functions is itself a linear function, and thus adding additional layers to the network

would not add expressive power since the composition of many linear layers can be

expressed identically in a single linear layer. As the function is non-linear, adding

additional layers allows the network to learn deep abstractions which are built up hier-

archically from the data. Intriguingly, this behaviour mimics that of the brain, where

increasingly abstract representations are typically found in the deeper levels.

A neural network learns by adjusting the weight matrices between layers so as to match

the output layer for any input with the desired output layer. There have been a number

of methods proposed to achieve this. One of the most powerful and most general is

that of gradient descent using backpropagation of error.

At each trial, the input is presented to the network and activations are propagated for-

ward through the network to the output layer. The resulting output is then compared

to the desired output in a way specified by a cost function. The gradient of the cost

function can then be calculated with respect to the weights of the output layer. To min-

imise the cost function, the weights are adjusted in the direction which will decrease

the cost function most rapidly. This direction is always perpendicular to the vector of

the gradients of the weights. This method of learning produces the gradient descent

learning rule, which can be expressed mathematically as:

∆w =−η∇w

where ∆w is the change in weight value. η is a scalar coefficient called the learning rate

and ∇w is the vector of partial derivatives of the weights which compose the gradient.

If every operation in the neural network architecture is differentiable, then the gradient

of the cost function with respect to every pair of weights in the network can be cal-

culated and updated in such a fashion, thus optimising the whole network to the cost

function simultaneously.

For all networks in this paper, a simple gradient descent optimiser was used for train-

ing. Unless specified otherwise, all layers used the sigmoid activation function.
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3.2 Predictive Processing Models

To test our hypotheses we implement several predictive processing models. Although

the work of Friston et al assumes a probabilistic setting, we find that maintaining full

probability distributions over the space of possible input and output distributions is not

mathematically tractable for large scale problems, so we collapse all distributions to

their maximum a-posterior (MAP) points, where the MAP is operationalised as the pat-

tern of activations in the output layer of the neural network representing the MAP point

of the N-dimensional posterior distribution. This approach trades off the theoretical

advantages of the fully Bayesian approach for an easily-implemented mathematically

tractable model.

Since instead of using the full prediction and input distributions we are instead using

MAP point estimates, then to minimise the prediction error we simply minimise the

difference between the two sets patterns, rather than the Kullback-Leibler divergence

between the two distributions, as is done in Friston et al.

Our cost function to minimise, then, is simply:

L = |y− p|

Where L is the cost function to be minimised, y is the posterior of the layer, and p is the

top down prediction. This cost function is minimised via gradient descent. A precision

weighting can also be set which weights the values of the inputs and predictions against

each other.

3.3 Discriminator Networks

3.3.1 Methodology

Many studies have shown that autistic individuals often demonstrate superior percep-

tual abilities than controls. These abilities are especially manifest in tasks such as the

Embedded Figures Task where local processing and attention to small, precise, details

are the main demands [101]. We hypothesise that this is due to the impaired ability

of top down predictions to be propagated down the sensory hierarchy, leading to low

level sensory regions acting more autonomously. While this provides an exceptional

sensitivity to fine detail, it also leads to impaired generalisation ability and a difficulty

cohering information into gestalts.
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To test this hypothesis we trained a predictive processing model to discriminate be-

tween similar stimuli. For these stimuli we used MNIST digits. MNIST is a dataset

of grayscale 28 by 28 pixel images of single, handwritten, numbers from 0 to 9. Each

number is centred in the image. Although long superseded by more difficult tasks, it

has long served as a benchmark for computer vision in the machine learning commu-

nity.

Although usually the MNIST dataset is utilised for classification, we designed a slightly

different task - discrimination. Given two MNIST digits, the network must learn to de-

termine whether they represent the same digit or different digits. Given that single

digits can be written in a number of ways, this is not a trivial task to solve. We utilised

this discrimination paradigm since we wanted to test the superior sensitivity - in effect

the ability to discriminate - to sensory stimuli in autistic subjects.

The input stimuli are the two digits the network must discriminate between. Each input

is presented to separate networks and processed independently for two layers. The lay-

ers are then combined in a difference layer that subtracts the activation of each of the

two layers. This difference layer then projects to a single output unit. The activations

of this unit are forced to lie between 0 and 1 through the use of a sigmoid activation

function, so that it can be interpreted as a probability. A simple diagram of the network

architecture is presented below:
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Figure 3.1: The network architecture of the discriminator network. Each of the two digits

to be compared are fed through two layers of independent processing, their activations

are then combined into a difference layer which is then used to compute the probability

of the two digits being the same.

To simulate the long range underconnectivity and short range overconnectivity ob-

served in autism, a weight mask was applied across all weight matrices in the autistic

case, which randomly zeroed out some of the weights. This reduced the effective con-

nectivity between the different layers of the network. The proportion of connections

zeroed out was set at 10%. The neurotypical network had no weight matrix applied.

Our main hypothesis is that the autistic networks will be able to successfully learn to

discriminate finer differences in the input stimuli than the control networks.

3.3.2 Results

The ability of the discriminative networks to discriminate between different digits was

tested first. The training curves are shown below:
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Figure 3.2: The error of the discriminative networks during training for both the autistic

and neurotypical network

Both the autistic and the control networks perform significantly above chance by the

end of training. Interestingly the autistic network performs slightly worse overall. Al-

though it rapidly decreases its cost initially, it then plateaus at a significant cost while

the non-autistic network improves beyond it. This goes against the initial hypothesis

that autistic networks ought to have better performance, in line with the sensory ad-

vantages studies have found autistic subjects to possess on certain perceptual tasks.

However, it is not a serious flaw since no study has claimed that subjects with ASD

have superior perception overall than controls, which is what is modelled here.

The training accuracy over time of the two discriminator networks was also compared.

A graph can be seen below:
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Figure 3.3: The accuracy of the discriminative networks during training for both the

autistic and neurotypical network

Here a similar pattern emerges. Although the autistic network performs better initially,

it later plateaus while the non autistic network goes on to achieve better performance

overall.

The networks were tested again on validation data to ensure that the observed perfor-

mance during training would also generalise to unseen data. The plot of the validation

accuracy of the autistic and neurotypical network is shown below:
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Figure 3.4: The accuracy of the discriminative networks during training for both the

autistic and neurotypical network

Unlike in training, the autistic network performs slightly better on the validation data.

Whether this is a significant effect, however, is uncertain, since the difference is minor.

Both networks perform significantly above chance, demonstrating that this task can

be successfully learnt by networks with both autistic and neurotypical connectivity

patterns.

We then tested the ability of the network to discriminate fine differences between stim-

uli of the same digit.

The output of the network is a single scalar value - between 0 and 1 - which is inter-

preted as the probability that the two inputs are different. We set a threshold of 0.5,

meaning that if the output was greater than 0.5, it was assumed that the network meant

that the images were of different numbers, and less than 0.5 indicating that the im-

ages were of the same numbers. To create slightly different images we applied either a

translation or a rotation to the original image. Examples of a translated and two rotated

images compared to a standard are shown below:



Chapter 3. Experiments 27

Figure 3.5: The accuracy of the discriminative networks during training for both the

autistic and neurotypical network

It was hypothesised that the autistic networks would exhibit poorer generalisation and

appreciation of gestalts than the control networks. This is instantiated as having greater

discriminative ability so that an autistic network is significantly more likely to rate the

slightly altered digit as different to the baseline digit than the control network. This

was tested for different degrees of translation such as a pixel shift of between one and

six pixels, and with rotation angles between -20 and +20 degrees.

The results below for the effect of translation of the original image are plotted below:
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Figure 3.6: The proportion of correct responses identifying a translated digit with a

non-translated digit, by the degree of translation, for the autistic and neurotypical dis-

criminative networks

And for the rotation:

Figure 3.7: The proportion of correct responses identifying a rotated digit with a non-

translated digit, by the angle of rotation, for the autistic and neurotypical discriminative

networks

Since the identity of the digits are the same, just transformed, the percent correct on

the y axis indicates how often the networks (corectly) claimed they were the same.
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Although the accuracy of both networks declined with increasing degree of shift, the

autistic networks were significantly poorer at this task which implies that they are more

sensitive to small peturbations in the input stimuli, as predicted by the hypothesis.

This means that the autistic networks are significantly more sensitive to small shifts

in the input stimuli, supporting a more local processing style as opposed to an inte-

grated processing style allowing for abstraction, generalisation, and gestalts. This is

broadly in line with empirical results showing that subjects with ASD exhibit superior

discrimination results on tasks requiring primarily local information, as well as poorer

generalisation. Moreover, it demonstrates that the hypothesised aberrant pattern of

long range underconnectivity can lead to networks which exhibit such ”autistic” be-

haviour when instantiated in the predictive processing framework.

In this section, we implemented and trained predictive processing models to discrim-

inate between MNIST digits. We trained an ’autistic’ and a neurotypical network.

The autistic network had about ten percent of it’s connections between layers zeroed

out to simulate the poorer long distance connectivity thought to exist in autism. The

layers of the neurotypical network were all fully connected with no weight mask ap-

plied. We showed that although the autistic networks performed slightly poorer during

training than the neurotypical networks, they performed better at the validation task.

Moreover, the autistic network was significantly more sensitive to identity-preserving

rotation and translation transformations of the images than the neurotypical network

was, which confirms our main hypothesis. We have thus constructed a predictive pro-

cessing neural network model which can mimic some aspects of autistic functioning,

and this therefore provides empirical support for the under-connectivity hypothesis as

well as our predictive processing account of autism

3.4 Integrative networks

3.4.1 Methodology

The second aspect of our hypothesis is integration. We argue that, due to the impaired

long range connectivity, autistic brains have a lesser ability to integrate information

across multiple modalities. We set out to test this assumption via a predictive pro-

cessing model. This neural network model had to integrate two different modalities of
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information - colour and MNIST digits. A simple diagram of the network architecture

is shown below:

Figure 3.8: A simple diagram of the network architecture of the intregrator network.

Each modality had its own two separate layers of base network, simulating the lower

sensory cortices. Their information was then combined into a combination layer which

then had to predict the colour and digit again. The combination layer represented a

higher, multimodal, sensory region.

Each of the separate modalities - the colour and the MNIST digit - had it’s own base

network for the first two layers. These networks simulated the sensory cortices. The

activations in these layers was then combined into a single combination layer which

took inputs from both base networks simultaneously. This layer represents an integra-

tory higher level region of the brain - as both stimuli are visual in nature this would

represent the high level visual area IT.

The combination layer must then integrate its two sets of sensory inputs to predict the

form of its inputs. We adapted this to a classification task as follows: the Euclidian

distance between the predicted output and the actual output was calculated. If this dis-

tance was smaller than that between the output and any other class, then the network

was said to have classified the inputs correctly. The prediction error was calculated

also as the Euclidian distance between the predicted and desired output, and these pre-

diction errors were backpropagated through the system.

The deficit in long range over short range connectivity was achieved by applying a
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mask over the weight matrices connecting the layers of the autistic network. This

mask zeroed out a certain degree of connections randomly. Since we did not suspect

that the connectivity impairment in autism is particularly drastic, we chose a value such

that approximately 10% of all connections in the autistic network were zeroed out. As

we predict that integration in closely coupled sensory regions is not as impaired as that

in longer range connections, we applied no masking matrices to the lower two layers

of the network. To simulate local overconnectivity in sensory regions of the networks

with autism, we increased the number of hidden units in the lower regions from 500 to

1000 in the networks with autism.

3.4.2 Results

Our first hypothesis is that due to poorer long range connectivity, the autistic networks

will perform worse than controls at the task, which requires a successful integration of

both stimuli.

The training plots of the two networks are shown below:

Figure 3.9: The accuracy of the integratory network during training for both the autistic

and neurotypical network
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Figure 3.10: The error of the integratory network during training for both the autistic and

neurotypical network

Empirically the autistic networks do train slower, and there is significantly more vari-

ance in the training path of the network with autism. We hypothesise that this might

be a result of the under-connectivity between high and low areas which may impair

the correct transmission of predictions. This would have the effect that the predictions

as they are experienced by the lower levels have significantly more variance than the

”true” predictions would, thus leading to greater variation during training as the lower

levels adjust to try to match the corrupted predictions.

A plot of the validation accuracy overall obtained from both the autistic and control

network is plotted below:
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Figure 3.11: The validation accuracy of the integratory network for both the autistic and

neurotypical network

It appears that, even on the validation data, the autistic network performs slightly worse

than the control, thus validating the hypothesis that the pattern of impaired long range

connectivity between regions can negatively affect the ability of the network to inte-

grate multiple sources of information together effectively.

A further prediction generated from our predictive processing model is that of a de-

creased precision value for the prior predictions in autism. This is because the predic-

tions propagating down the hierarchy are impaired due to the poor long-range connec-

tivity. As the predictions are less accurate and useful in predicting the sequence of in-

puts flowing up to that layer of the hierarchy, then each layer will naturally downweight

the importance of the predictions, thus causing the ”precision” of the predictions to

decrease. This provides a solid neurophysiological mechanism for the decrease in pre-

cision as postulated by Lawson et al 2014 [71] as an explanation for autism. To test

this hypothesis we added precision variables to the model which were operationalised

as weights on the cost function to determine the relative importance of the prior pre-

dictions or the sensory evidence. These weights, being simple scalar variables, and

interacting with the rest of the cost function by simple elementwise multiplication, are

differentiable, and thus themselves can be optimised by gradient descent. The evolving

precision weights during training are plotted below for both the autistic and neurotyp-

ical network:
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Figure 3.12: The evolving value of the precision weights for both neurotypical and autis-

tic networks over the course of training

The graph shows that although both precisions initially decrease, the precision of the

neurotypical network rapidly plateaus while that of the autistic network continues to

decrease. This is exactly as predicted by the hypothesis which states that we expect

the precision of the predictions in autism to be substantially lower in neurotypical net-

works. This thus provides a solid vindication of the modelling approach pursued here

as the approach can not only replicate some of the external behaviour seen in autism,

but also some of the internal mechanisms independently proposed to account for such

behaviour.

In this section, we implemented and trained an integrative predictive processing neural

network which had to integrate information from two different modalities - greyscale

image and colour - in order to complete its task. The autistic network, as before, had

a mask applied to its weight matrices which zeroed out a fraction of the connections

between the combination layer and the lower level sensory layers. For the neurotypical

network no mask was applied. The results show that, as predicted by the hypothesis,

the autistic network is poorer at the integratory task in both the training and validation

phases. This agrees with a wide body of empirical evidence showing that individuals

with ASD often perform worse at psychophysical tasks requiring the integration of

information from different modalities, and thus our model can be successfully used to

capture a facet of an autistic deficit. Moreover, when precision variables were added to
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the model, they followed the pattern predicted both by our novel predictive processing

hypothesis of autism but also that of Lawson et al (2012).

3.5 Autistic Savantism

3.5.1 Methodology

There are three main hypotheses relating to the hemispheric model of autism. The

first is that the autistic models with low hemispheric connectivity should have greater

variance in performance. The second is that the mean of the autistic models should be

slightly lower than control models, and the third is that some networks should exhibit

savant-like behaviour due to the more autonomous specialisation of the hemispheres.

We designed a network architecture to test these hypotheses. The network was set up

such that there was a split between the hemispheres. Each hemisphere was given half

of the input and from that half, had to predict what the other half of the input was.

Thus, the broad setup of the network was similar to that of the split-brain autoencoder

of Zhang et al 2016 [102]. However we also adjusted the degree of interhemispheric

connectivity. This connectivity was implemented through recurrent connections be-

tween the hemispheres. The degree of connectivity was operationalised by the number

of allowed connections.

The network was composed of a single hidden layer projections to the input and output

layers, as well as recurrent connections to the other hemisphere. The default parame-

ters for this network were 16 hidden units, a learning rate of 0.005, and training with

gradient descent using the Adagrad optimser [103]. To obtain robust statistical infor-

mation about the effect of the hemispheric split, a population of 100 networks were

trained in each experiment. Each network was trained for 500 epochs.

A diagram of the network architecture is shown below:



Chapter 3. Experiments 36

Figure 3.13: A diagram of the network architecture. The network is split into two halves,

or hemispheres, with some degree of connection between them. This connectivity will

be the crucial hyperparameter investigated.

The inputs to the network were abstract bit patterns, each 20 bits long. These were

arranged into skills, in which the patterns for each skill were generated in a systematic

way, thus producing a statistical grouping where patterns within one skill were gener-

ally much more similar to each other than patterns outside of the skill. For instance one

set of skills used correlated bit patterns - each skill corresponded to a set of patterns

generated with a specific correlation coefficient.

To ensure valid statistical generalisation of our results, instead of merely training a sin-

gle network, a population of 100 networks was trained and evaluated for all tests. Each

network received a unique uniform initialisation of weights according to a Gaussian

distribution centred at 0 with a standard deviation of 0.05. Apart from their random

initialisation, all the networks in the population were identical.

The hypothesis is that having impaired connectivity between hemispheres allows each

hemisphere to specialise more than each could otherwise. We expect this effect to

manifest in a number of ways. The first is the variance of output of the networks with

impaired connectivity should be greater. This is because, since each hemisphere is in-

dependent, their contributions to the final output are more independent, thus leading to

more variance by the simple mathematical argument that the variance of the composi-

tion of two independent variables is larger than that of two correlated variables.
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The second is that we expect the autistic networks to perform slightly worse, on av-

erage, than the control networks. Conversely we expect that the autistic networks

to perhaps show some evidence of savant-like behaviour - significantly better perfor-

mance on one skill than the average. This is because the greater specialisation allowed

by the impaired interhemispheric connectivity can lead to a hemisphere specialising in

a single skill, while this specialisation must cause the other skills to be degraded in rel-

ative terms since the number of neurons and connections, and thus the representational

capacity of each hemisphere, is limited.

3.5.2 Results

For each skill 100 networks were trained for 100 epochs. The number of inter-hemispheric

connections in each network were varied from only 1 connection to a full 7 connec-

tions. As the number of inter-hemispheric connections was varied, the number of

intra-hemispheric connections was kept constant at 6. The training curves of each in-

ter network averaged over all skills and all networks were plotted. These are shown

below:

Figure 3.14: The variance of the training curves averaged over all networks and skills

for each degree of interhemispheric connectivity. The intrahemispheric connectivity was

5.
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Although the variance rises dramatically and then declines over the course of training, a

clear correlation can be observed between the number of interconnections and the vari-

ance of the output network towards the end of the training scheme. This agrees with

the hypothesis which states that networks with fewer cross-connections, and therefore

lesser connectivity to have increased variance compared to networks with significantly

greater cross connectivity.

The second hypothesis is that networks with impaired connectivity between hemi-

spheres are expected to perform worse at the task in general than the control networks.

This is because the recurrent cross-hemispheric connections allow them to utilise in-

formation seen by the other hemisphere. A bar chart of the averaged MSE error across

networks and epochs for each skill is shown below:

Figure 3.15: The average MSE achieved by an average of the population of networks

across each skill. The ”autistic” network is that with 2 cross-connected units. The

”neurotypical” network has 6

From this we observe that our hypothesis is falsified. The autistic networks actually

appear to perform better at the task, as measured in MSE error, than the non-autistic

networks. We hypothesise that this is due to the fact that the skills were generated in

such a way that there is no temporal dependence between each skill in the batch, while

the cross-hemispheric connections were recurrent, meaning that they only applied to

the network in the next time step. Since there were no effective temporal dependencies

between each successive input to the network, this would have the effect of simply
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injecting noise into the network in proportion to the degree of cross-connectivity, thus

impairing performance. We tested this hypothesis by designing temporally successive

skills in which each bit of the input was correlated with the same bit in the previous

input. This meant that the recurrent interhemispheric connections could convey use-

ful information about the skill at the next timestep. The averaged MSE error of an

”autistic” network with 2 cross-connections and a neurotypical network with 6 cross-

connections, averaged across the final 100 epochs and all the network in the population

are presented below:

Figure 3.16: The average MSE achieved by an average of the population of networks

across each skill. The ”autistic” network is that with 2 cross-connected units. The

”neurotypical” network has 6

These results show that with when these skills which include temporally sequential

information are tested, the average of the autistic and the neurotypical networks are

approximately identical. Thus it appears that using data containing sequential infor-

mation has eliminated the superior performance of the autistic networks. However,

it is interesting that despite needing some degree of interhemispheric connectivity to

predict the data, the autistic networks still perform approximately equal to the neu-

rotypical networks which contained many more cross-connections. One possibility is

that the two cross-connections in the autistic network proved sufficient for the transfer

of enough temporal information to allow the development of a good model of the in-

put data. We tested this hypothesis by comparing the control network as above with a

network with only a single cross-connection between the hemispheres.
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Figure 3.17: The average MSE achieved by an average of the population of networks

across each skill. The ”autistic” network is that with 2 cross-connected units. The

”neurotypical” network has 6

With only a single cross-connection, the autistic networks perform slightly worse than

the neurotypical networks, implying that only a single cross connection is insufficient

to convey enough information about the stimulus across time steps to use to predict

the data accurately. When a network with no cross connections is used, performance

is significantly worse, as expected.

It is also important to note that although is no evidence of the savant-like skills in the

averaged analysis, this is unsurprising since we expect the savant skills to be somewhat

rare and also distributed randomly among the five skills, meaning that any fluctuations

there are averaged out in these plots.

To obtain evidence for savant-like skills, the results were broken down still further to

plot the MSE obtained by a single network in the population for a given setting of inter

and intra hemispheric connectivity. For some networks a savant-like pattern of skill is

detected. For instance, the chart for network 76 for epoch 500 is plotted below:
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Figure 3.18: A graph of a network which has developed a savant skill which is signifi-

cantly better (in terms of lesser MSE errors) than the other skills.

The autistic network possessed 1 connection between each hemisphere while the neu-

rotypical network possessed 6. As can be seen, there is some degree of savantlike

skill where one skill in the autistic network is significantly better than the rest. How-

ever, it is important to note that the general error for the autistic networks, even for

the non-savant skills, was often lower than that of controls. This is likely due to the

non-sequential nature of the inputs, as explained above. Savant-like patterns are not

robust, however. Many networks do not show any evidence of savant-like skills. This

pattern is shown in the graph below:
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Figure 3.19: A graph of a network which does not show any apparent savant-skill. This

shows the MSE error for network 89 in the final 500th epoch

This is not surprising, as savant skills are uncommon even in populations diagnosed

with ASD. The precise mechanisms that drive some networks to develop a savant skills

while others do not are difficult to determine.

In addition, in some cases, both the autistic and the neurotypical network exhibit what

appear to be savant skills, as is shown in the plot below:

Figure 3.20: A graph of a network in which both the neurotypical and the autistic net-

works appear to display savant-like skills.
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Exactly why this occurs is unclear. One possibility is that the degree of connectiv-

ity even in the supposed neurotypical networks is insufficient to prevent hemispheric

specialisation from developing, and thus all networks tested here are all ”autistic” in a

sense. Another is that the inherent nature of the task and network architecture, means

that the network tends towards savant-like learning, no matter the degree of inherent

connectivity. A third possibility is that this pattern is due to a defect in the training

procedure. It is possible, for instance, that the ”savant” skill is simply that which the

network learnt first or last, for instance, and therefore has no relation to the degree

of connectivity. Under this hypothesis, it is difficult to explain, however, why many

networks should show no evidence of savant skills.

One possible confounder of results is that the total number of connections differed be-

tween networks since the number of inter-hemispheric connections was varied while

the number of intrahemispheric connections remained the same. It is thus possible

that the results observed are simply an artefact of the that networks with greater in-

terhemispheric connectivity simply have greater total connectivity, and hence greater

representational power. The greater lesser variance in the performance of the net-

works with greater interhemispheric connectivity may simply because they better train

to match the input stimuli and a greater capacity overall so that perhaps their success

is less dependent upon a certain training path. There appears to be little evidence for

this, however, since the mean errors of the greater and lesser interhemispherically con-

nected networks were so similar, and also this hypothesis would struggle to explain

the development of savantism in any network. Nevertheless, this hypothesis was tested

by creating networks which varied the number of intra-hemispheric connections in a

manner inversely proportional to the number of interhemispheric connections, so that

the total number of connections remained the same at all time. The variance over

2000 training epochs for all values of interhemispheric connectivity - from 1 to 7 - was

plotted. The number of total connections in the network was held total at 8, and thus

a network with seven interhemispheric connections possessed one intrahemispheric

connection, and vice versa.



Chapter 3. Experiments 44

Figure 3.21: The training variance over time of networks with an equal number of total

connections.

This graph shows a similar pattern to the others. Thus it appears that the total number

of connections in the network is not a significant confounder of the results.

In this section, we have implemented and tested the effect of the degree of network

hemisphericity in autism, and in the development of autistic savantism. We have shown

that by partitioning a network into two hemispheres, the variance in performance of the

population of networks is greater when there is a smaller amount of interhemispheric

connectivity. We have also shown that in at least some of the networks, savant-like

skills can develop in that the network shows a pattern of performance where it performs

significantly better at one skill than the others. We show that savant skills do not

develop in all networks, however, which suggests that they are not produced purely as

an artefact of the training process or network architecture. We also show that the results

obtained are not simply a result of there being a greater number of connections in total

in the model, but are actually due to the differences in interhemispheric connectivity.
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Discussion

Our predictive processing hypothesis of autism proposed three key hypotheses which

we set out to test. These were that the pattern of long-range underconnectivity and

short range overconnectivity observed in studies of autism would lead several seem-

ingly disparate effects: first, it would cause the lower levels of the sensory hierarchy

overfitting the data, thus leading to improved discrimination on some tasks, but also

impaired generalisation and increased sensitivity to small and irrelevant differences in

stimuli compared to controls. Second, due to the impaired long range connectivity,

the predictions flowing down the hierarchy to the lower levels are incomplete, thus

helping contribute to the overfitting, and also making the lower levels less sensitive

to high level context. Third that the impaired connectivity between layers of the hi-

erarchy would mean that information about the sensory stimuli would have difficulty

being propagated up the hierarchy, thus causing the higher levels to generally become

impoverished relative to controls and leading to worse overall performance at tasks that

require complex analysis of more than local features, and also a difficulty integrating

multiple disparate sources of information.

We tested the first hypothesis - that lower levels of the sensory hierarchy overfit - by

training a discriminative network to discriminate between different mnist digits, and

then between small variations on the same mnist digit. For both translations and ro-

tations, the autistic networks with poorer connectivity showed a greater sensitivity to

these identity-preserving transformations than controls, thus vindicating this part of

the hypothesis. On the other hand, it was found that despite this greater fine-grained

sensitivity, the autistic networks actually performed slightly worse at the simpler task

of learning to discriminate the two digits. One possibility here is that this worse over-

45
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all performance could be due to the greater sensitivity to small, irrelevant differences,

thus leading to the autistic networks to reject a pair of the same digit due to slight dif-

ferences between them. This kind of brittle cognition is also a feature of autism. On

the other hand, few studies report a generalised perceptual impairment in autism, and

thus this aspect of the result should not be taken as representative of autism generally.

Moreover, the advantage of the neurotypical network over the autistic one in the sim-

ple MNIST discrimination task was fairly small compared to the significantly greater

sensitivity of the autistic network to the slightly transformed digits,

The second hypothesis was that due to the poorer long-range connectivity, the infor-

mation reaching the higher areas is disrupted. This is especially the case when the

higher areas must integrate information from multiple regions and modalities together.

Because of this we hypothesise that a network which must integrate information from

two different sensory regions together will perform poorer when instantiated with the

autistic pattern of connectivity than when it has a more standard neurotypical pattern.

We found that the autistic networks did indeed train slower, plateaued at a higher level

of error and obtained worse accuracy on the training set than the control networks.

They also performed worse in validation testing, thus confirming that the effect is not

merely due to overfitting on the training set. Moreover, the training path of the autistic

networks had significantly more variance than control networks. One possible reason

for this is that, due to the impaired connectivity between layers, the predictions propa-

gated down from the higher level were distorted and disrupted, thus leading to incorrect

predictions reaching the lower levels, thus causing the gradient descent learner based

on the prediction errors to update wrongly in some instances, thus leading to greater

variance in training. Both of these results were in line with the initial hypothesis, and

this provides strong evidence that a connectivity pattern similar to that observed in

autism can cause significant deficits in the abilities of networks to integrate multiple

disparate stimuli together to respond to a task.

Additionally we tested the theory of Lawson et al (2014) that the precision given to

the prior predictions in autism is lower than in neurotypicals, thus leading to indi-

viduals with ASD tending to overweight the importance of local sensory information

over more global higher level gestalts. While Lawson et al did not provide any kind

of mechanistic explanation for why the precision should be downweighted in autism,

except perhaps due to a imbalance of neurotransmitters, our theory provides the ex-
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planation that due to the impaired connectivity, the predictions flowing down will be

disrupted and noisy, and thus worse at predicting the inputs flowing up the hierarchy

than in neurotypicals, and that thus each layer has a strong incentive to downweight

their precision. We tested our hypothesis by adding prediction variables to the model

and found that in the networks with the autistic pattern of connectivity, they naturally

decreased unlike those with a neurotypical pattern, thus confirming the hypothesis.

However, in our model the precision variables are optimised by gradient descent which

is the same process that updates the weights. This is different to most predictive pro-

cessing models which tend to assume the precision is a more global state determined

by general concentrations of various neurotransmitters, and adapts or updates in a dif-

ferent way to the synapses which carry the equivalent of the ’weights’ of the network.

Because of this mismatch, it is unclear to what extent our results can be generalised to

the biological setting. Nevertheless, our model provides at least an existence proof of

the mechanism of decreased precision presented in our predictive processing theory of

autism.

A related hypothesis concerns the pattern of connectivity in autism and the develop-

ment of autistic savantism. This argument relies on the connectivity of the hemispheres

of the brain. The corpus callosum appears to be smaller in autism as compared to

neurotypical brains and this is consistent with the long range pattern of long-range

underconnectivity and short range overconnectivity. It is hypothesised that because

of the lesser interhemispheric connectivity, each hemisphere can learn and develop

skills more independently than in a fully connected brain. This, in turn, means that

hemispheres can specialise for individual skills in those with the autistic pattern of

connectivity than neurotypicals, and generally are much less coordinated in develop-

ing and learning specific capacities. This increased specialisation can yield especially

good results if the specialisations learned by each hemisphere complement each other,

but, conversely, will yield especially bad results if they do not. This means that it is

expected that the performance of populations of networks on various tasks will have

greater variance than control networks. Moreover, this greater autonomy and variance

of hemispheres could lead to one hemisphere specialising in one skill to the expense

of the other, thus leading to the development of savant skills. It is worth noting that

although this argument is couched in terms of hemispheres, it can be relatively eas-

ily extended and generalised to talk about relations between any functionally separate

units in the brain
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A network with a simulated hemispheric split was implemented to test these hypothe-

ses. It was found that, in accordance with the first hypothesis, the variance of training

error across the population of networks decreased monotonically with the amount of

interhemispheric connectivity, thus confirming that hypothesis. It was, however, ob-

served that in general the networks with the pattern of connectivity prevalent in ASD

often performed slightly better on average than the control networks. Exactly why this

is so remains unclear, since it is naively expected that the autistic networks perform

worse, or at about the same level as controls. One possibility is that it is due to the fact

that the nature of the task and networks were such that greater hemispheric autonomy

and specialisation was generally beneficial in this task as compared to the multitude of

more complex tasks the brain faces in the real world. Since our data were so primitive-

just correlated streams of bits - this question of ecological validity is of real importance.

Some individual networks in the population were observed to possess something like a

savant skill - a single skill on which the network performed significantly better than all

the other skills. Savant networks were not ubiquitous, however they were quite com-

mon - significantly more than the proportion of savants in the population with ASD.

Although, our model, being merely an existence proof of the importance of hemi-

spheric specialisation and connectivity playing an important role in the development

of some facets of autistic behaviour, specifically savant skills, it should not necessarily

be expected to reproduce the exact proportions of savantism found in the population

with ASD. The increased proportion is intriguing, however. This is especially the case

when it is considered that on occasion the supposedly neurotypical networks also ex-

hibit cases of savant skills. One possibility is that the nature of our autoencoding task

or the network architecture naturally predisposes it towards specialising in one skill at

the expense of the others. This may be because, since the skills are only patterns of

random bits with different degrees of correlation, and although the skills are presented

in sequence, they are each presented to the same input layer with the same weight ma-

trix. This means that the network must use the same pattern of connectivity with every

skill, which renders with the choice of either specialising in one skill to the detriment

of the others, or else learning a weight configuration which is poor for all skills, but

nevertheless better than the configuration specialised at only one skill. This may ex-

plain why many even supposedly neurotypical networks developed savant-like skills in

this model. However, it is interesting that different networks in the population devel-
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oped different strategies, as it shows that the particularities of the random initialisation

is enough to have a very large effect on the later configuration of the network.

Overall, however, the results show that this pattern of connectivity between hemi-

spheres does leader to greater variance in the result, and furthermore can provide a

mechanism by which savant skills can develop. Moreover, even though some of the

neurotypical networks developed savant skills unexpectedly, the proportion of savants

was greater in the autistic networks with lesser cross-hemispheric connectivity, thus

confirming the hypothesis at least to some degree.

Moreover, the results of the experiments with the predictive processing model broadly

conform to the predictions of the theory of predictive processing in autism proposed

in this paper. These results, then, provide an existence proof, and some empirical

evidence in support of the theory, even though the models used are, by necessity, sig-

nificantly high-level and abstracted away from the biological detail.

4.0.1 Limitations

All of the networks in this paper used artificial neural networks to model biological

systems. However, it is unclear the extent to which the dynamics observed in artificial

neural networks may generalise to more complex biological systems. Unlike a McCul-

lough and Pitts neuron, biological neurons cannot simply be understood as weighted

sums of their inputs; instead many factors other than the direct inputs are involved in

the firing mechanism. Such firing, moreover, cannot simply be understood as a single

scalar value, but instead is a temporally extended spike train with complex internal dy-

namics which may convey additional information about the signal. Moreover, weights

and firings in artificial neural network models can take any scalar value while real neu-

rons are constrained to a maximum firing rate, and also are typically either exhibitory

and inhibitory, but not both. The more complex nature of biological systems means

that a biologically plausible model of a similar system might give rise to different

dynamics to those observed in the current models. The networks were also trained

by gradient descent using backpropagation of error, a method which is assumed not

to be biologically plausible, although there have been attempts made to justify back-

propagation in a biological setting [104], or else to create new algorithms which can
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implement an approximation of backpropagation in a biologically plausible way [105].

Additionally, the networks used to model the phenomena were relatively small, and

only contained several distinct layers at most which were arranged into a simple hierar-

chical configuration. The brain, by contrast, is composed of multitudes of independent

regions, each connected to a complex web of other regions instead of a clear hierarchy.

Due to this difference, it is unclear whether the dynamics observed by altering the con-

nectivity of the simple, hierarchical, artificial models can be fruitfully generalised to

the complex, heterarchical brain. This is especially the case in the integratory network

which only had to integrate inputs from two different regions together. Most regions

of the brain must integrate information from a substantially larger number of regions

than two, and so the model of only two different modalities may prove insufficient for

modelling the challenges of regions which must integrate many more. On the other

hand, the model does, at least, provide an existence proof that in a simplified scenario,

the predictive processing hypothesis is supported.

These considerations of biological plausibility and model scale mean that evidence de-

rived from our models should not be considered to apply to the brain in current form.

Instead, it should be considered as validation that an abstract informational system,

when restricted to the patterns of connectivity and communication observed in studies

of autistic individuals, exhibits abstract analogues of many of the observed deficits in

autism, and explains why several seemingly disparate impairments are so often clus-

tered together.

Furthermore, due to computational tractability concerns, as well as the greater liter-

ature and knowledge dealing with artificial neural networks over fully probabilistic

Bayesian systems, our predictive processing model did not utilise fully Bayesian com-

putation and fully specified distributions, but instead approximated the distribution by

a single point or layer of activations. Although it still remains unknown whether the

brain also uses full distributions in its reasoning, or else some approximate form, our

use significantly diverges from the guidelines laid down by Friston et al, which may

limit the applicability of the model.



Chapter 4. Discussion 51

4.0.2 Future Work

The models presented in this paper were often fairly simple and intended to provide

an abstract proof of concept for the concepts and theories discussed. In addition, they

are not particularly biologically plausible. As such the results and evidence derived

from them cannot be directly applied to the brain. For subsequent research it could be

interesting to make the networks described in this paper more biologically plausible,

for instance by utilising more biologically plausible learning rules such as Hebbian

plasticity or Spike Time Dependent Plasticity (STDP). Moreover, more complicated

network architectures, modelled directly on specific regions of the brain could be ex-

perimented with, as well as using more ecologically valid stimuli and datasets to test

and train the networks on. An example of this could be to train the model of autistic

savantism not simply on random correlated bit patterns, but on ecologically valid skills

that the brain needs for survival, such as object recognition, segmentation and so forth.

This would naturally require a considerable scaling up of the model, but the results

would also be significantly more compelling.

Additionally, relatively little exploration of the parameter space was undertaken. Al-

though this means that the sensitivity of the results to the configuration of hyperparam-

eters cannot be too precise, since the default hyperparameters resulted in the evidence

presented, no quantitative measure of the sensitivity of the results to the hyperparame-

ters is known. Nor is how the results obtained depend upon the features of the network

architecture such as the number of layers or the how the inputs are combined in the

integratory network. Future work could significantly improve our understanding of the

effects of hyperparameter and architectural choices on the performance and behaviour

of predictive processing models.

Overall, the successes of the model in validating the novel predictive processing hy-

pothesis of autism suggest the productivity of the approach of integrating the insights

from the neurophysiological and theoretical levels of neuroscience to produce novel

theories of brain disorders such as autism.
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4.1 Conclusion

In this dissertation, we have proposed a novel predictive processing explanation of

autism which integrates insight from both the neuroscientific and theoretical level, we

have also provided neural network models that demonstrate that the patterns of aber-

rant connectivity found in individuals with ASD, when instantiated in a predictive

processing model, can organically give rise to several seemingly disparate deficits that

characterise autism. Moreover, we also applied the same paradigm of abberant con-

nectivity to interhemispheric connectivity in autism and showed that such a pattern of

connectivity between hemispheres can lead to greater variance in the autistic network

as well as possibly the development of savant skills in some of the networks, thus

providing a mechanistic model of a fairly mysterious phenomenon.
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[32] Francesca GE Happé and Rhonda DL Booth. The power of the positive: Revis-

iting weak coherence in autism spectrum disorders. The Quarterly Journal of

Experimental Psychology, 61(1):50–63, 2008.

[33] Amitta Shah and Uta Frith. An islet of ability in autistic children: A research

note. Journal of child Psychology and Psychiatry, 24(4):613–620, 1983.

[34] Kate Plaisted, John Swettenham, and Liz Rees. Children with autism show

local precedence in a divided attention task and global precedence in a selec-

tive attention task. The Journal of Child Psychology and Psychiatry and Allied

Disciplines, 40(5):733–742, 1999.

[35] Christopher Jarrold and James Russell. Counting abilities in autism: Possible

implications for central coherence theory. Journal of autism and developmental

disorders, 27(1):25–37, 1997.

[36] Therese Jolliffe and Simon Baron-Cohen. A test of central coherence theory:

Can adults with high-functioning autism or asperger syndrome integrate frag-

ments of an object? Cognitive Neuropsychiatry, 6(3):193–216, 2001.

[37] David Marr and Tomaso Poggio. From understanding computation to under-

standing neural circuitry. A.I. Memo. Massachusetts Institute of Technology,

1976.

[38] Jeffrey D Rudie, JA Brown, D Beck-Pancer, LM Hernandez, EL Dennis,

PM Thompson, SY Bookheimer, and M Dapretto. Altered functional and struc-

tural brain network organization in autism. NeuroImage: clinical, 2:79–94,

2013.

[39] Brittany G Travers, Nagesh Adluru, Chad Ennis, Do PM Tromp, Dan Destiche,

Sam Doran, Erin D Bigler, Nicholas Lange, Janet E Lainhart, and Andrew L



Bibliography 57

Alexander. Diffusion tensor imaging in autism spectrum disorder: a review.

Autism Research, 5(5):289–313, 2012.

[40] Yanni Liu, Vladimir L Cherkassky, Nancy J Minshew, and Marcel Adam Just.

Autonomy of lower-level perception from global processing in autism: Evi-

dence from brain activation and functional connectivity. Neuropsychologia,

49(7):2105–2111, 2011.

[41] Marjorie Solomon, Sally J Ozonoff, Stefan Ursu, Susan Ravizza, Neil Cum-

mings, Stanford Ly, and Cameron S Carter. The neural substrates of cognitive

control deficits in autism spectrum disorders. Neuropsychologia, 47(12):2515–

2526, 2009.

[42] Hideya Koshino, Rajesh K Kana, Timothy A Keller, Vladimir L Cherkassky,

Nancy J Minshew, and Marcel Adam Just. fmri investigation of working mem-

ory for faces in autism: visual coding and underconnectivity with frontal areas.

Cerebral cortex, 18(2):289–300, 2007.

[43] Rajesh K Kana, Timothy A Keller, Vladimir L Cherkassky, Nancy J Minshew,

and Marcel Adam Just. Atypical frontal-posterior synchronization of theory of

mind regions in autism during mental state attribution. Social neuroscience,

4(2):135–152, 2009.

[44] Tal Kenet, Elena V Orekhova, Hari Bharadwaj, Nandita R Shetty, Emily Is-

raeli, Adrian KC Lee, Yigal Agam, Mikael Elam, Robert M Joseph, Matti S
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