
A synthetic data generating

approach and synthetic data

mechanisms for regularization

Jin Xu

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2017

Abstract

This project explores how to the improve predictive performance of machine learning

system using synthetic data when training data is insufficient. We investigate different

ways to generate synthetic data, and how to train methods on them. In particular, we

propose an approach to generate synthetic data by only modeling the conditional of

one input feature given all the others. We show that it is possible to sample from the

model totally upon these conditionals.

By modeling conditionals separately, we obtain a flexible framework, that many

methods could be brought in as conditional distribution models. We try GB (Gradi-

ent Boosting), RF (Random Forest), neural network (and also a parameters sharing

architecture) and SVM (Support Vector Machine) as conditional distribution models

for categorical features. Afterward, we extend our exploration to real-valued cases

by introducing MDN (Mixture Density Network) and GAN (Generative Adversarial

Network) as conditional distribution models for real-valued features.

Furthermore, as a main application of our approach, we apply synthetic data regu-

larization to state-of-the-art methods in various classification and regression tasks. Per-

formance improvements are observed on all datasets, even though the original methods

are already high-performance ones. We show that our approach is very successful on

categorical datasets, and clearly outperform joint distribution models like RBM (Re-

stricted Boltzmann Machine) in terms of regularization. The extension to real-valued

datasets is not as successful as expected. Currently, we still lose to GMM (Gaussian

Mixture Model) on real-valued datasets.

Finally, we explore and discuss the effects of possible hyper-parameters and model

options for our approach, along with some empirical techniques that could be useful

in practice. Lots of experiments are conducted to verify our hypotheses, and a list of

recommendations are provided in the end.

In addition, we also show that our synthetic data generating approach can also be

useful in knowledge distilling, and give an example of compressing the knowledge

from an ensemble into a single model.

i

Acknowledgements

First of all, I would like to express my sincere gratitude to my supervisor Dr. Iain

Murray for his expertise, patience, and encouragement. His guidance helped me in all

the time of this project. Without his insightful comments and detailed feedback, this

work is not possible. The discussions with Iain greatly widen my horizon in various

fields, and I feel so fortunate and privileged to have been supervised by him.

I would also like to thank all my lecturers and tutors, for teaching me so much and

helping me with any questions I have. It has been such a fruitful and pleasant year for

me, and I really appreciate all your hard work.

Thanks to all my friends I met here. It is a great pleasure to know all of you, and I

wish you all have a brilliant future.

Last but not least, an immense gratitude to my parents, for being supportive through-

out my life. They always give me the freedom to do what I want to do, and always

firmly stand behind me. Their unconditional love gives me the strength to go through

any hard time.

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Jin Xu)

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 1

1.2 Objective . 3

1.3 Contributions . 3

1.4 Overview . 4

2 Background 5
2.1 Preliminary . 5

2.1.1 Classification task and regression task 5

2.1.2 Generative model and discriminative model 6

2.1.3 Overfitting and underfitting 6

2.1.4 Cross validation . 7

2.2 Markov chain Monte Carlo and Gibbs sampling 8

2.3 Restricted Boltzmann machine . 8

2.3.1 Model structure . 9

2.3.2 Sampling from RBM . 10

2.3.3 Training algorithm: contrastive divergence 10

2.4 Gaussian mixture model . 11

2.4.1 Gaussian mixture distribution 11

2.4.2 Sampling from GMM . 12

2.4.3 Training GMM: expectation-maximization algorithm 12

2.5 Synthetic data generating approaches 13

2.5.1 Approaches based on generative models 13

2.5.2 Modifying training data . 13

2.5.3 Discussion . 14

2.6 Regularization . 15

2.6.1 L1 and L2 regularization . 15

iv

2.6.2 Early-stopping . 16

2.6.3 Tangent propagation . 16

2.7 Feeding synthetic data as regularization 17

3 A Synthetic Data Generating Approach 18
3.1 Dependency network . 18

3.1.1 Definition . 19

3.1.2 Inconsistency . 19

3.1.3 Sampling . 20

3.1.4 Pseudo likelihood . 20

3.2 Neural network as a model of conditionals 21

3.2.1 Neural network . 21

3.2.2 Parameters sharing . 22

3.3 Calibrated classifiers . 24

3.4 Random forest . 24

3.5 Mixture density network . 25

3.5.1 Model structure . 25

3.5.2 Initialization of MDN . 26

3.6 Generative adversarial network as a model of conditionals 26

3.6.1 Adversarial network . 26

3.6.2 Sampling from GAN . 27

3.6.3 An architecture to model conditionals 27

3.7 An intermediate summary . 28

3.8 Randomized sampling order . 30

3.9 Introducing sampling temperature 30

3.9.1 Motivation . 30

3.9.2 Formal Definition . 31

3.9.3 A heuristic definition for Gaussian mixture model 31

3.10 DIS: A measure of synthetic data quality using a discriminator 33

3.10.1 Definition . 33

3.10.2 Notes . 33

3.10.3 Why we need this? . 34

4 Synthetic Data for Regularization 35
4.1 An introduction of default experiments settings 35

4.1.1 Datasets . 35

v

4.1.2 Pre-processing . 37

4.1.3 Metrics . 38

4.1.4 Default settings for training neural network 39

4.1.5 Randomized parameter optimization 39

4.1.6 A convention of feeding synthetic data 40

4.1.7 Implementation . 40

4.2 A comparison of conditional distribution models for categorical features 41

4.3 Synthetic data regularization on categorical datasets 43

4.4 Mixture density network and generative adversarial network 45

4.5 An extension to real-valued datasets 48

4.6 DIS measure on all datasets . 49

4.7 How much synthetic data should we use? 50

4.8 An empirical comparison to other approaches 51

4.8.1 How “close” are synthetic data and training data? 55

5 Empirical Techniques 56
5.1 Randomized sampling order . 56

5.2 A study of sampling temperature . 58

5.3 Pseudo importance sampling using a discriminator 63

5.4 Creating diversified ensemble using synthetic data 64

5.5 Auxiliary features . 65

5.6 Discretizing real value features . 66

5.7 Empirical guidelines . 67

6 Further Investigations 69
6.1 An additional note on parameters sharing neural network architecture 69

6.2 Other usages of synthetic data: knowledge distilling 70

7 Conclusions and Future Work 73
7.1 Conclusion . 73

7.2 Future work . 74

Bibliography 76

vi

List of Figures

2.1 Structure of the RBM . 9

3.1 An example of inconsistent dependency network 19

3.2 Neural network with weights sharing 23

3.3 Conditional GAN . 28

3.4 Effects of temperature . 32

4.1 NLL of synthetic data against sampling round on the AD dataset when

using different conditional distribution models 41

4.2 QQ plots of marginals (a comparison of training data and synthetic

data generated by MDN) . 46

4.3 QQ plots of marginals (a comparison of training data and synthetic

data generated by GAN) . 47

4.4 Histogram of the marginal for 2nd feature of HOUSES 48

4.5 Performance against synthetic data size 51

4.6 Distance between generated data and training data 54

5.1 R2 on the HOUSES dataset (randomized order versus fixed order) . . 57

5.2 NLL of synthetic data against temperature on the AD dataset 59

5.3 Performance (accuracy and R2) when feeding synthetic data together

with training data against sampling temperature on the AD dataest and

HOUSES dataset . 61

5.4 R2 performance on the AD test dataset 62

6.1 Negative log likelihood against sampling round on the AD dataset (A

more flexible neural network model is explored) 70

vii

List of Tables

4.1 A summary of datasets . 35

4.2 Accuracy on the AD dataset when feeding synthetic data together with

training data, different conditional distribution models are used and

compared to the accuracy without synthetic data 43

4.3 Applying synthetic data regularization to categorical datasets 44

4.4 Applying synthetic data regularization to datasets with real value features 49

4.5 DIS on all the datasets . 50

4.6 A comparison of dependency network and joint distribution models

(RBM and GMM) . 52

4.7 NLL of the first round synthetic data on AD dataset 53

5.1 A comparison of fixed order and randomized order in terms of DIS . . 58

5.2 Re-weight samples with pseudo importance sampling 63

5.3 Creating an ensemble using synthetic data 64

5.4 Use auxiliary feature to indicate whether the sample is a synthetic one 66

5.5 Discretizing real value features[2] 67

6.1 Knowledge distilling using synthetic data on the HOUSES dataset . . 72

viii

Chapter 1

Introduction

1.1 Motivation

In a typical machine learning problem, we train our model on the training data, trying

to capture relationships between variables. Then the model is used to give predictions

on new unseen data. Sometimes, the amount of training data is very limited and it

may be expensive or hard to collect more data. Our model could just memorize all

the training data including noise, instead of identifying the meaningful trends in it.

In that case, the model cannot have good predictive performance on new data. The

phenomenon is often called overfitting (see 2.1.3 for details), and it is a big obstacle to

improve the predictive performance of a machine learning system.

In order to overcome the overfitting problem, we often use techniques to control

the complexity of our model. With limited expressive power, our model is forced

to capture significant relationships between variables, rather than random noise. In

section 2.6, we will discuss various techniques that control the model complexity by

modifying the training procedure, we often call them regularization. As an effective

and flexible regularization technique, feeding synthetic data together with training data

to our machine learning system could potentially contribute considerable performance

improvement. However, the performance heavily depends on how we generate these

synthetic data.

Existing approaches for synthetic data generation mainly fall into two categories.

The most straightforward one is to model the joint distribution P(xxx) over all variables xxx

of the data, and then sample directly from the model. The other way is more heuristic,

often involving perturbations or transformations on the training data. For example,

adding noise to the training data[35], applying transformations to the data[25] (mainly

1

Chapter 1. Introduction 2

for image data or sequence data), or swapping attributes between neighbouring samples

like MUNGE[6].

Our approach is landing on the middle ground. We adopt a model called the de-

pendency network [19] (see section 3.1), which is actually a collection of conditional

distribution models P(xm | xxx\m) (the conditional of one feature given all the others). So

if the dataset has M attributes, we will have a collection of M conditional distribution

models. we do not require these conditional distribution models to be consistent with

each other. By relaxing the consistency constraint, theoretically, any machine learn-

ing method that is able to model P(xm | xxx\m) can be introduced into our framework.

To generate synthetic data, we could perturb the training data by resampling attributes

from corresponding conditionals one-by-one and record changes along the way. The

sampling procedure is actually called Gibbs sampling (see 2.2). It has been proven that,

if we run the procedure for enough steps, the original training data will be forgotten

and an equilibrium distribution could be reached.

Our approach is interesting to explore because it potentially has the following ad-

vantages:

• Modeling conditional distributions P(xm | xxx\m) is considered to be easier than

modeling the joint distribution P(xxx). So it is reasonable to expect our model

outperforming some joint distribution models.

• Many existing state-of-the-art machine learning methods can be used as one-

dimensional conditional distribution models, and most implementations directly

support doing that. So this work could greatly expand our model choices.

• If we generate synthetic data by applying perturbations or transformations, the

synthetic data will be inevitably similar to the training data. The synthetic data

only carry limited information except for some prior knowledge. In our ap-

proach, attributes are perturbed by Gibbs sampling. As we discussed above, if

we wait for enough time, the original training data will be forgotten, and the

synthetic data could be quite informative.

Synthetic data can also be useful in other ways. For example, sometimes, people

want to compress the knowledge of a large expensive model into a small, cheap model,

which is more efficient in terms of computing time and storage space. The task is of-

ten called knowledge distilling (also known as model compression, or teacher-student

model) [6][21]. When we conduct knowledge distilling, we often need additional sam-

ples as ”teaching examples” in addition to the training data, and here is where synthetic

Chapter 1. Introduction 3

data come into play. In this project, we will use a simple example to demonstrate that

our synthetic data generating approach can also perform fairly well in knowledge dis-

tilling.

1.2 Objective

This project aims to develop a synthetic data generating approach based on the de-

pendency network model, and compare it to other existing approaches. We intend to

explore all kinds of candidates for conditional distribution models, and compare them

with each other. Furthermore, we want to focus on the usage of synthetic data in

regularization when limited training data are given, and verify whether performance

improvement can be observed in various datasets. As a new approach, there will be

many tunable parameters or options, we want to explore and understand the effects of

them through experiments and all kinds of measures.

1.3 Contributions

The contributions of this work can be summarized as follows:

• Based on the dependency network model, a synthetic data generating approach

is developed. By giving up the consistency constraints of conditionals, we intro-

duce a flexible framework that can bring in many state-of-the-art methods that

we used to believe are only suitable for classification or regression tasks.

• We explore the possibility of using random forest, gradient boosting, neural net-

work and support vector machine as the conditional distribution model for cat-

egorical features, and the possibility of using mixture density network and gen-

erative adversarial network as the conditional distribution model for real-valued

features. We evaluate their performance by various measures on datasets.

• By applying synthetic data regularization to other methods, which can be seen

as an application of our data generating approach, we achieve performance im-

provement on all datasets with limited training data (considerable improvement

on categorical datasets, and slight improvement on real-valued datasets). Even

though the original methods we are comparing to are already state-of-the-art

methods. Experiments are conducted on various datasets, including different

tasks and feature types.

Chapter 1. Introduction 4

• We introduce lots of empirical techniques for synthetic data regularization that

can potentially be useful under certain circumstances. Lots of experiments are

conducted to verify our hypotheses. Moreover, a useful empirical guideline is

provided.

• We show that our approach can also be used in knowledge distilling, and back up

this argument by compressing an ensemble of models into a single model using

synthetic data generated by our approach.

1.4 Overview

In chapter 2, we give a background review of existing synthetic data generating ap-

proaches, including joint distribution models, and other more pragmatic approaches.

We will also give a more detailed explanation of regularization and why synthetic data

can be used for that purpose. Our approach will be presented in chapter 3, including all

kinds of model choices for conditional distributions, the sampling method, and some

modeling and sampling options associated with our approach. A theoretical compar-

ison to other approaches is at the end of that chapter. The following chapters are all

empirical results. In chapter 4, we show that our synthetic data regularization method

can greatly improve performance on categorical datasets. We also extend our conclu-

sions to real-valued cases. Different conditional distribution models for categorical

features and real-valued features are compared to their counterparts based on exper-

iment results. We also compare our dependency network model to other generative

models in the end. The chapter 5 is mainly about empirical techniques that could be

useful under certain circumstances. We describe and discuss experiments that we used

to verify our hypotheses. A handy empirical guideline is presented in the last section.

Chapter 6 is used to discuss some interesting topics that are not closely related to the

central claims, but still contains interesting findings. Finally, In chapter 7, we draw

overall conclusions. Directions for future work are also proposed.

Chapter 2

Background

The chapter reviews background knowledge to help with reading the later chapters.

Most contents are definitions or standard results. Those who are familiar with machine

learning field can safely skip materials here. At first, we introduce some basic concepts

in machine learning. Then we present a family of sampling methods called Markov

chain Monte Carlo, which is especially suitable for sampling from a distribution over

high-dimensional space. After that, we introduce two generative models which will

be compared to our approach through experiments. Then, an overview of synthetic

data generating approaches is provided. In the end, we talk about a technique called

regularization, which can be used to overcome the so-called overfitting problem (see

2.1.3), and also why we can use synthetic data in regularization.

2.1 Preliminary

2.1.1 Classification task and regression task

Classification and regression are two typical tasks in machine learning. Generally,

classification identifies group membership of data points, whereas regression estimates

relationships between variables. (It is often about predicting one dependent variable

given several input features.) Both of them can be described as predicting label y given

input features xxx, or modeling P(y | xxx) if in a probabilistic viewpoint. Although in

classification, y is a categorical variable indicating which class it belongs, whereas, in

regression, y is often a continuous variable.

The main differences between classification and regression tasks appear when we

try to define the error function, which measures the discrepancy between our predic-

5

Chapter 2. Background 6

tions and the ground truth. Also, the error function is often the optimization objective

for training. In a C class classification task, our model predicts that, given input fea-

tures xxx, P(c | xxx) is the probability that the sample belongs to class c. Then we can

define the error function as

err(xxx,y) =
C

∑
c=1
− logP(y = c | xxx), (2.1)

which is often called cross-entropy error. In a regression task, the label y is a contin-

uous variable, and a commonly used error function is mean squared error. When the

prediction is f (xxx), the error function is defined as

err(xxx,y) = (f (xxx)− y)2 (2.2)

It is worthwhile to mention that, in a probabilistic aspect, the two error function

above can be unified. You may notice that the cross-entropy error is simply the NLL

(Negative Log Likelihood) of the label under the predicted distribution. If we convert

our prediction f (xxx) to a probabilistic one N (f (xxx),ε2) (assuming Gaussian noise), then

the NLL (Negative Log Likelihood) of label is

− logN (y; f (xxx),ε2) ∝ (f (xxx)− y)2, (2.3)

which is proportional to the original error function.

2.1.2 Generative model and discriminative model

Roughly speaking, given input variables xxx and output label y, a generative model is a

model of P(xxx,y), and a discriminative model is model of P(y | xxx). The definitions are

over-simplified, because not all discriminative models have probabilistic meanings.

If we only care about the prediction accuracy, discriminative models are sometimes

regarded as a superior choice, because conditional distribution is easier to model. How-

ever, a generative model does not necessarily lose to a discriminative model. As a rule

of thumb, generative models will probably perform better than discriminative models

when training data is extremely insufficient.

2.1.3 Overfitting and underfitting

In machine learning tasks, the model is fit to the training data. We say our model

is overfitting, when the model describes random noise in the training data instead of

Chapter 2. Background 7

the underlying relationship. Overfitting often happens when the model has excessive

complexity. A typical sign of overfitting is that the model has a very low error on the

training set, but a much higher error on a new dataset. An intuitive understanding of

this phenomenon is that, the model performs very well on the training data simply be-

cause it has memorized all the training data, instead of actually learning the underlying

relationship between variables.

Underfitting is the opposite of overfitting, it means the model does not have enough

complexity to capture the underlying relationship.

Both overfitting and underfitting lead to poor generalization performance. It is

worthwhile to mention that, there is no clear boundary between overfitting and un-

derfitting, and there does not exist a perfect complexity that can make sure the model

capture all the trends but do not model the random noise. In fact, to some extent, most

models are overfitting and underfitting at the same time.

2.1.4 Cross validation

A parametric model (which can be described by a finite number of parameters) often

has hyper-parameters that can control the complexity of the model. For instance, the

degree in polynomial regression and the number of components in a Gaussian mix-

ture model (see 2.4) are all hyper-parameters. We cannot choose hyper-parameters by

minimizing error on the training set because we will end up infinitely increasing the

complexity to fit all the training data. A simple model is often embedded in a complex

model, so increasing complexity can always lead to lower error. But in that case, our

model is simply overfitting the training data and cannot generalize well.

Usually, we pick our hyper-parameters on the validation dataset, which is different

from the training set and the test set. The procedure is to train the model on the training

data with different combinations of hyper-parameters. Then the error is computed on

the validation set, to see if our model can generalize well. In the end, the combination

of hyper-parameters which leads to the best validation error is adopted. We call the

procedure cross validation.

Using cross validation means we need to set aside a validation set to validate mod-

els. When we do not have sufficient data, this is a huge waste. Therefore, sometimes

we use a cross validation method called K-fold cross validation, which does not need

a separate validation set. The training set is randomly split into K parts with equal

sizes. Each part will be used as the validation set once, and the training set consists

Chapter 2. Background 8

of the rest K−1 parts. In the end, K validation errors are obtained, and we report the

final K-fold validation error as the mean of these K validation errors.

2.2 Markov chain Monte Carlo and Gibbs sampling

MCMC (Markov Chain Monte Carlo) is a family of sampling methods, which can give

correlated samples from the target distribution P(xxx). It constructs a random walk to ex-

plore P(xxx). MCMC is widely used to sample from distribution over high-dimensional

variables. Other sampling methods such as rejection sampling and importance sam-

pling scale badly with dimensionality[29].

To sample from the distribution P(xxx), we construct a transition kernel T (xxx′← xxx)

for a Markov chain, to make sure the the equilibrium distribution of this Markov chain

happens to be P(xxx). In that case, regardless of the initialization, if we run the Markov

chain for enough time, the states of this Markov chain can be regarded as samples from

the equilibrium distribution. Recall that the equilibrium distribution is the same as the

desired distribution P(xxx), these samples are exactly what we want. We often call the

reach of equilibrium distribution mixing and the period before mixing burn in period.

In this project, a popular MCMC method called Gibbs sampling will be used as the

sampling method for our model. So we provide more details about it below:

To introduce this MCMC method, we only need to specify the transition kernel.

Because a Markov chain is fully defined by the initial state and the transition kernel.

Assuming xxx is a M dimensional random variable and xxx = (x1,x2, ...,xM), we could

compute conditional distributions P(xm | xxx\m) from the joint distribution P(xxx). we

could construct a transition kernel for each m:

Tm(xxx′← xxx) = P(x′m | xxx\m), (2.4)

where xxx′ = (x′m,xxx\m). Now let’s decide a sampling order o1,o2, ...,oM, which is a

permutation of 1,2, ...,M. The transition kernel for Gibbs sampling can be defined as

T = Tom , (2.5)

where m is the step.

2.3 Restricted Boltzmann machine

The RBM (Restricted Boltzmann Machine) is a generative model that can model the

distribution over a set of binary inputs. It is a very good choice to model joint dis-

Chapter 2. Background 9

tribution if all the input features are binary, because of its ability to capture complex

relationship between variables and the efficient training method called contrastive di-

vergence [8]. (It is possible to extend the model to real-valued features [20], but we

won’t discuss it here.)

2.3.1 Model structure

The RBM has binary visible units vvv = (vi)i and hidden units hhh = (h j) j, and a matrix

of weights W = (wi j) with each element wi j corresponding to a connection between

vi and h j. There will also be an offset ai for each visible unit vi and an offset b j for

hidden unit h j. We define the energy function E of the RBM as

E(vvv,hhh) = ∑
i

∑
j

viwi jh j +∑
i

aivi +∑
j

b jh j. (2.6)

The energy function can be used to determine a distribution P(vvv,hhh) over all visible and

hidden units

P(vvv,hhh) =
1
Z

exp(E(xxx,hhh)), (2.7)

where Z =
∫

exp(E(vvv,hhh))dvvvdhhh is a partition function. Therefore, the RBM is a gen-

erative model parameterized by aaa = (ai)i,bbb = (b j) j and W . Usually vvv corresponds to

our observations , whereas hhh are hidden variables used to explain the observations.

Figure 2.1: Structure of the RBM

v1

v2

v3

h1

h2

The structure of RBM is a bipartite graph. A symmetric connection exists

between each hidden unit and each visible unit. There are no intra-layer

connections within the hidden layer or the visible layer.

If we call all visible units the visible layer and all hidden units the hidden layer,

RBM is a network which has no intra-layer connections. Because of this special struc-

ture, visible variables are mutually independent given all hidden variables. Similarly,

Chapter 2. Background 10

hidden variables are mutually independent given all visible variables. Formally,

P(vvv | hhh) = ∏
i

P(vi | hhh) (2.8)

P(hhh | vvv) = ∏
j

P(h j | vvv). (2.9)

2.3.2 Sampling from RBM

We use Gibbs sampling to sample from RBM, and the special structure of RBM also

leads to a more efficient sampling procedure. From equation 2.8, 2.9, it’s not hard to

conclude

P(vi | vvv\i,hhh) = P(vi | hhh) (2.10)

and

P(h j | hhh\ j,vvv) = P(h j | vvv). (2.11)

Therefore, we can resample all visible variables or all hidden variables at the same

time. One round of Gibbs sampling is simply

hhht ∼ P(hhh | vvvt) (2.12)

vvvt+1 ∼ P(vvv | hhht) (2.13)

We often call it block Gibbs sampling, because we resample a block of variables at

the same time.

2.3.3 Training algorithm: contrastive divergence

To be concise, we simplify our energy function as

E(vvv,hhh) = vvvTWhhh. (2.14)

The offset terms can be absorbed by adding new variables v0 = 1 and h0 = 1. So

E(vvv,hhh) = ∑
i

∑
j

viwi jh j +∑
i

viaih0 +∑
j

v0b jh j. (2.15)

From equation 2.16, it is easy to have

∂E
∂wi j

= vih j. (2.16)

To train a RBM, our objective is to minimize the discrepancy between P(vvv) and

Pdata(vvv), here P(vvv) is determined by RBM. Therefore, we want to minimize

J =< E >∞ −< E >0, (2.17)

Chapter 2. Background 11

where < ·>k means the expectation with respect to distribution over visible variables

when these variables are drawn from the kth block Gibbs sampling round. In practice,

we won’t run block Gibbs sampling for infinite rounds, so instead we minimize

Jk =< E >k −< E >0, (2.18)

The gradient of J with respect to wi j will be

∂J
∂wi j

=< vih j >k −< vih j >0 . (2.19)

< ·>0 can be estimated by sampling from the training data, whereas < ·>k can be es-

timated by running Gibbs sampling for k rounds starting from the training data. When

k = K, we call the algorithm CD-K (CD stands for constrastive divergence). In prac-

tice, CD-1 works surprisingly well[20].

2.4 Gaussian mixture model

The GMM (Gaussian Mixture Model) is a generative model over real-valued variables.

Regardless of its simple structure, it performs very well on some tasks. In our project,

the GMM appears in three places:

1. As a joint distribution model, GMM is used to generate synthetic data and com-

pared to our approach on real-valued datasets.

2. GMM is can be used as a component of mixture density network (see section

3.5).

3. GMM is used to initialize the mixture density network.

2.4.1 Gaussian mixture distribution

The Gaussian mixture distribution has the following density function:

P(x) =
C

∑
c=1

ωcN (x;µµµc,Σc), (2.20)

where
C
∑

c=1
ωc = 1,ωc ≥ 0, and N is the density function for Gaussian distribution. It is

easy to notice that the density function is simply a weighted sum of Gaussian density

functions. We call each Gaussian distribution a component, and the component weights

define a categorical distribution Cat({ωc}c). A Gaussian mixture model describes data

using a Gaussian mixture distribution.

Chapter 2. Background 12

2.4.2 Sampling from GMM

Sampling from a GMM takes 2 steps. Firstly, we sample from the categorical distri-

bution Cat({ωc}c) to determine which component the sample comes from. When the

component is determined, the next step is simply a standard procedure to sample from

a Gaussian distribution. Formally, it is

c∼Cat({ωc}c) (2.21)

xxx∼N (xxx;µµµc,Σc) (2.22)

2.4.3 Training GMM: expectation-maximization algorithm

The EM (Expectation-Maximization) [13] algorithm is an iterative method, which it-

eratively runs the E step and the M step. The E step compute the expectation of all

unobserved latent variables, given the observations and the current parameters. The M

step updates parameters to maximize the likelihood, assuming the latent variables are

not hidden and given by the last E step.

In the context of GMM, assuming {xxx(n)}n=1,2,...,N is the dataset, the latent variable

is zzz(n) = (z(n)1 ,z(n)2 , ...,z(n)C) where z(n)c indicates whether the sample xxx(n) comes from

component c. So the training of GMM is just iteratively running the following two

steps:

1. E step: fill in hidden variables z(n)c with expectations, given the current parame-

ters:

z(n)c =
ωcN (xxx(n);µµµc,Σc)
C
∑

i=1
ωiN (xxx(n);µµµi,Σi)

(2.23)

2. M step: Update all parameters {ωc,µµµc,Σc}c=1,2,...C to maximize the negative log

likelihood:

−
N

∑
n=1

log [
C

∑
c=1

ωcN (xxx(n);µµµc,Σc)] (2.24)

So:

ωc =
N

∑
n=1

z(n)c /N (2.25)

µµµc =
N

∑
n=1

z(n)c xxx(n)/
N

∑
n=1

z(n)c (2.26)

Σc =
N

∑
n=1

z(n)c xxx(n)xxx(n)T/
N

∑
n=1

z(n)c −µµµcµµµT
c (2.27)

Chapter 2. Background 13

2.5 Synthetic data generating approaches

In this section, we review approaches for generating synthetic data. Roughly speaking,

there are two mainstreams to obtain synthetic data. One is to construct a generative

model by learning from the training data, and design a sampling procedure to get sam-

ples from the model. On the other hand, we could generate synthetic data simply by

modifying training data, for example applying transformations based on prior knowl-

edge, adding noise to the data, or perturbing attributes according to some rules.

2.5.1 Approaches based on generative models

Previously, we talk about RBM and GMM, which are all high-performance generative

models which model the joint distributions over all variables. We describe the model

structure, sampling methods together with training algorithms. These are all we need

to design a synthetic data generating approach based on a generative model. Firstly,

we train the generative model on the training data using the training algorithm. To

generate synthetic data, we sample from the model using the corresponding sampling

method.

There are of course other generative models. Theoretically, any generative model

can be used as a synthetic data generating approach, if an efficient sampling method

can be found. In this project, we will compare our approach to RBM on categorical

datasets, and to GMM on real-valued datasets.

2.5.2 Modifying training data

Rather than modeling the training data using a generative model, we could apply trans-

formation or perturbation to the training data. To deal with image data or sequence

data, we are able to find invariant transformations [25][12]. For example, for an image,

we could apply rotation, transition, up-down or left-right flip and so on. The trans-

formations are based on the prior knowledge that our predictions should not change

because of these transformations. However, for a general machine learning task, it is

hard to find such invariant transformations. Alternatively, people could add random

noise to the features, or set a random subset of features to 0 (for example denoising

auto-encoder[39]).

Different from the above, a pragmatic approach to generate synthetic data called

MUNGE is proposed in [6], which performs quite well in knowledge distilling tasks(see

Chapter 2. Background 14

6.2). Firstly, given the training data, we calculate pairwise distances. Here Euclidean

distance is used for continuous variables, whereas hamming distance is used for cat-

egorical variables. Secondly, for each data point xxx, we find its nearest neighbour xxx′.

After that, we swap attributes between neighbours xxx and xxx′. For each attribute a, if a is

categorical, we swap xxx[a] and xxx′[a] with probability p (here xxx[a] is the attribute a for xxx).

If a is continuous, with probability p, we resample xxx[a] and xxx′[a] from the following

distribution:

xxx[a]∼N (xxx[a],σ2) (2.28)

xxx′[a]∼N (xxx′[a],σ2), (2.29)

where

σ =
distance(xxx[a],xxx′[a])

s
(2.30)

p and s are considered as hyper-parameters of this method.

2.5.3 Discussion

In this part, we discuss the advantages, disadvantages, and limitations of all the syn-

thetic data generating approaches mentioned above. The discussion is a useful guide

of whether to use a particular approach under a certain circumstance, and some of

the disadvantages and limitations become motivations of our approach, which will be

presented in later chapters.

• Learning the joint distribution over a high-dimensional space is a hard task. Al-

though methods like RBM and GMM are already high-performance, for some

tasks we will still end up with a poor generative model. Sampling from such

models will give us untrustworthy synthetic data.

• Generating synthetic data by modifying training data is easy to understand and

implement. However, the synthetic data only carry our prior knowledge, rather

than the relationships between variables. So compared to a generative model,

these synthetic data give us very limited information.

• Invariant transformations are only possible for special kinds of data, so we can-

not apply them to a general machine learning problem.

• Although modifying training data is easy to implement, it does not mean it is ef-

ficient. For example, in MUNGE we need to calculate pairwise distances, there-

fore, the computational cost is O(MN2), where M is the number of attributes, N

Chapter 2. Background 15

is the number of training samples. Because the cost is super-linear with respect

to training set size, we cannot use it for large datasets.

2.6 Regularization

Regularization is a technique which can be used to overcome the overfitting (section

2.1.3) problem by controlling the complexity of the model. As mentioned before,

parametric models often have hyper-parameters that can control the complexity of the

model. However, hyper-parameters usually control the complexity by adjusting the

structure of the model (for example the number of units or layers in a neural network).

Regularization, on the other hand, often controls the complexity by modifying the

training procedure. For example, adding a regularization term to the objective function,

or terminating training procedure based on some evaluation (see early-stopping below).

2.6.1 L1 and L2 regularization

The most commonly used regularization technique is to add a loss penalty to the ob-

jective function. Let’s say we have a model parameterized by θ. To train the model,

we define a loss function L(θ) on the parameters. Our training objective is to mini-

mize the L(θ). As a regularization, we could add a regularization term to the objective

function, so the new function becomes:

L ′(θ) = L(θ)+λΩ(θ), (2.31)

where Ω(θ) is a penalty on the parameters θ, and λ controls the strength of this penalty.

We often want to control the magnitude of parameters, thus controls the complexity

of the model. So if θ = (θ1,θ2, ...,θK) we could let

Ω(θ) =
K

∑
k=1

θ
2
k . (2.32)

This is called L2 regularization. We could also let

Ω(θ) =
K

∑
k=1
|θk|, (2.33)

which is called L1 regularization.

L1 and L2 regularization are very efficient to compute and easy to use. They are

widely used in all kinds of models.

Chapter 2. Background 16

2.6.2 Early-stopping

If you use cross validation (see section 2.1.4) to estimate hyper-parameters, usually

the training error monotonically goes down during the training procedure, but after a

certain point, the validation error stops going down and starts increasing. A possible

explanation is that, at the beginning, our model updates parameters to capture the re-

lationships between variables. However, as the training proceeds, the model continues

to increase its complexity simply trying to model the noise in the training data. In

that case, the model becomes overfitting, and cannot generalize well to the validation

set. To prevent this phenomenon and control the model complexity, we could stop our

training at the turning point of the validation error. We often call this technique early-
stopping. Early-stopping is a very easy technique and can actually reduce training

time because we won’t run additional steps to model the noise.

2.6.3 Tangent propagation

In section 2.5.2, we talk about applying invariant transformations to training data, thus

generate new synthetic data. Normally, people feed these synthetic data together with

real training data into our model for the final task. (see the next section). Tangent
propagation [36] is such an idea that, instead of really applying these transformations,

we could directly encode the associated prior knowledge into our model.

To be specific, if we know an invariant transformation T (xxx,α), where xxx is the fea-

ture vector, and α is the transformation parameter. An example of α is the degree of

rotation. Let’s assume that the transformation is continuous with respect to the param-

eter, so

‖T (xxx,α)− xxx‖→ 0 (2.34)

when α→ 0.

Assuming our model is a function of xxx, and we denote it as f (xxx). Because of

invariance, we have
∂ f (T (xxx,α))

∂α
|α=0 = 0 (2.35)

If our training set is D = {xxxn}n=1,2,...,N , then we can encode our prior knowledge about

this invariant transformation as a penalty term

Ω(θ) =
N

∑
n=1

∂ f (T (xxx,α))
∂α

|α=0 (2.36)

Tangent propagation is often more efficient than directly feeding synthetic data.

When feeding K times synthetic data, the computing time grows at least linearly with

Chapter 2. Background 17

K. But with tangent propagation, we only need to deal with an additional term in the

objective function.

2.7 Feeding synthetic data as regularization

Feeding synthetic data together with training data into our model for training can be

considered as another regularization technique. More training data is always beneficial,

if these training data come from the real underlying distribution. If our synthetic data

generating approach is good, it would be hard for us to discriminate these synthetic

data from training data. Thus, feeding synthetic data would be like expanding the

training set, even though the additional data are actually synthetic.

We talk about many approaches to generate synthetic data in this chapter, and we

will introduce our synthetic data generating approach in the next chapter. Potentially,

they can all be used for regularization.

However, there will always be a discrepancy between synthetic data and real data.

Clearly, we do not want synthetic data to be overwhelming. But usually, in order to

make the synthetic data regularization work, we need much more synthetic data than

the original training data. To overcome this problem, we use sample weight in the

objective function. If we have a training set {(xxxn,yn)}n=1,2,...,N , we could generate

K time synthetic data {(xxx′n,y′n)}n=1,2,...,KN . Then the objective function to minimize

would be:

J(θ) =
N

∑
n=1

err(xxx(n),y(n);θ)+
λ

K

KN

∑
n=1

err(xxx(n),y(n);θ), (2.37)

where err is the error function, and θ stands for parameters of our model. If we do not

use sample weight, λ = K and synthetic data will be overwhelming. But if we set λ

to 1, the training data and synthetic data will have equal total weights, thus we do not

need to worry about using too much synthetic data.

λ is a tunable hyper-parameters. In this project, we always set λ to 1 for the reported

results, because we find that λ = 1 is a good option for most problems. We believe that

cross validate λ could lead to a higher performance, however, this issue is not explored

and could be studied in future work.

Chapter 3

A Synthetic Data Generating Approach

This chapter describes our synthetic data generating approach in detail. We specify our

model structure, training algorithms and the sampling method in the first half. Then

we introduce a few options for sampling, which may influence the distribution of our

synthetic data. These options can be considered as hyper-parameters of our approach,

and could be useful under some circumstances. In the end, we introduce a measure of

synthetic data quality called DIS, which is mainly used for debugging and reasoning

in our project.

3.1 Dependency network

Dependency network [19] is a graphical model that can represent relationships between

variables. Based on this graphical model, we introduce a new framework to build a

generative model, which is quite different from the generative models we discussed

in the last chapter. Under this framework, our model is a collection of models which

are able to model the conditional P(xm | xxx\m). The training procedure depends on

which conditional distribution model we are actually using, but the sampling method

is unified. In this part, we will introduce the structure of dependency network and

the sampling method. In the later sections, we will concentrate on various conditional

distribution models, including models for categorical features and models for real-

valued features.

18

Chapter 3. A Synthetic Data Generating Approach 19

3.1.1 Definition

A consistent dependency network is a pair (G ,P), where G is a cyclic directed graph,

and P is a set of conditional distributions. Each node corresponds to a random vari-

able, and the edge goes from a parent node to a child node, thereby defining a direct

dependent relationship between variables.

Considering a set of variables xxx= (x1, x2, ..., xM), (G ,P) is a dependency network

for xxx when

P(xm | xxx\m) = P(xm | Pa(xm)). (3.1)

Here m = 1,2, ...,M, and Pa(xm) denotes parent nodes of node xm in graph G .

We call P(xm | Pa(xm)) local probability distribution[19].

3.1.2 Inconsistency

Given a dependency network (G ,P) over xxx = (x1, x2, ..., xM), it is not always possi-

ble to find a joint distribution P over xxx that all the conditional distributions in P can

be deduced. By relaxing the consistent condition, we obtain a flexible model that is

sometimes very useful. We can call it inconsistent dependency network. From now

on, when we say dependency network, we do not assume the consistent condition.

Figure 3.1: An example of inconsistent dependency network

x1 x2

According to the graph, we have local probability distributions P(x2 | x2)

and P(x2) (x1 has no parents in the graph). However, according to Bayes’

rule, if our local probability distributions are consistent, and P(x1 | x2) =

P(x1), we can always have P(x2 | x1) = P(x2). Obviously, it cannot be guar-

anteed simply based on the dependency network model. Figure credits: IRP

[42]

We give a simple example of inconsistent dependency network in figure 3.1. In the

context of this project, we try to model P(xm | xxx\m) separately. Because our models

are just approximating the ground truth, there is no way to guarantee these conditional

distributions are consistent. However, consider the fact that these local probability dis-

tributions are all learned from the same dataset, these conditionals may only have small

Chapter 3. A Synthetic Data Generating Approach 20

deviations from the truth. We call this state it near consistency[19] and in practice, it

may not cause any problem.

3.1.3 Sampling

We have many choices for conditional distribution models, and each choice actually

leads to a different generative model. However, under the framework of the depen-

dency network, the sampling method is unified.

As discussed in section 2.2, the transition kernel of Gibbs sampling can be de-

termined totally upon conditional distributions P(xm | xxx\m). Because a dependency

network model for xxx = (x1, x2, ..., xM) could be roughly seen as a collection of local

probability distributions P(xm | Pa(xm)), where m = 1,2, ...,M, Gibbs sampling is a

natural choice for the whole family of generative models which are based on depen-

dency network.

Technically, if our dependency network is inconsistent, what we are actually run-

ning is just pseudo Gibbs sampling, as there may not exist a global joint distribution at

all. So our concern is, even though the deviation is small for a particular local proba-

bility distribution, will it be amplified along with the sampling procedure? This issue

is examined in [19] from a theoretical aspect, and we find it not a problem in our appli-

cations. In the following part, we will still call our sampling Gibbs sampling, in spite

of the inconsistency of local distributions.

3.1.4 Pseudo likelihood

It is possible to train all the conditional distribution models separately, but we could

also define a global loss function and train these models together.

We have mentioned in section 2.1.1 that many error functions can be unified by

NLL (Negative Log Likelihood) in a probabilistic aspect.

Let’s say our dataset is D = {xxx(n)}n=1,2,...,N , where xxx(n) = (x(n)1 ,x(n)2 , ...,x(n)M). The

NLL loss function for each conditional distribution model is

Lm(θ) =−
N

∑
n=1

logP(x(n)m | xxx(n)\m;θ). (3.2)

Instead, we could define a global pseudo likelihood

PL(θ) =
N

∏
n=1

M

∏
m=1

P(x(n)m | xxx(n)\m;θ). (3.3)

Chapter 3. A Synthetic Data Generating Approach 21

Then a global loss function can be defined on top of this pseudo likelihood:

L(θ) =− logPL(θ) =−
N

∑
n=1

M

∑
m=1

logP(x(n)m | xxx(n)\m;θ) (3.4)

3.2 Neural network as a model of conditionals

Starting from this section (until section 3.6), we introduce various choices for condi-

tional distribution models. In this part, we turn the neural network model (introduced

below) into a conditional distribution model for categorical features. We first talk

about a standard feed forward architecture, and then introduce a novel architecture,

which shares parameters among individual neural networks.

3.2.1 Neural network

A multilayer feed forward neural network, also known as a multilayer perceptron

(MLP) stacks multiple artificial neural network layers, and each layer is a combina-

tion of a linear transformation and a non-linear element-wise activation function.

Formally, given input feature vector xxx, An artificial neural network layer consists

of a linear transformation

zzz =Wxxx+bbb, (3.5)

and a non-linear element-wise activation function

aaa = σ(zzz). (3.6)

The non-linearity activation function σ can take many forms such as

σ(z) =
1

1+ exp(−z)
(sigmoid function) (3.7)

σ(z) =
1− exp(−2z)
1+ exp(2z)

(hyperbolic tangent function) (3.8)

σ(z) = max(0,z) (rectified linear unit) (3.9)

(3.10)

In this project, we find out that the hyperbolic tangent function (Tanh) and the rectified

linear unit (ReLU) usually performs better than sigmoid function in our tasks. The

choice between the former two usually does not matter. In practice, we recommend

ReLU because it avoids the so-called saturation problem (the gradient is close to 0

when the element of zzz has big magnitude) [31].

Chapter 3. A Synthetic Data Generating Approach 22

For a neural network with L layers, the architecture can be formalized as

aaa0 = xxx (3.11)

aaal = σ(Wlaaal−1 +bbbl), (3.12)

where l = 1,2, ...L.

In order to model the conditional of a categorical feature, the output aaa(l)=(al
1,a

l
2, ...,a

l
C)

must define a categorical distribution, which means we need to have

al
c ≥ 0 (3.13)

C

∑
c=1

al
c = 1 (3.14)

To ensure this property of outputs, we substitute the non-linear activation function

with the softmax function aaa(l) = so f tmax(zzz(l)), where

al
c =

expzl
c

C
∑

c=1
expzl

c

. (3.15)

Because of softmax function, we guarantee the property in equations 3.13 and 3.14.

3.2.2 Parameters sharing

When we use the neural network to model P(xm | xxx\m), we need M neural networks,

one for each conditional. However, it is possible to share parameters among these

models, and use just one single neural network to model all the conditionals.

The architecture is illustrated in figure 3.2. For each conditional P(xm | xxx\m), we

build a binary mask mmmm with length M, with the m-th element being 0 and all the rest

being 1. The masked inputs x̄xx is

x̄xx = xxx�mmmm, (3.16)

where � denotes element-wise multiplication. Except for the output layer, all the

parameters are shared by M conditional distribution models. The global loss function

is given by pseudo likelihood (see equation 3.4).

The parameters sharing architecture borrows ideas from NADE (Neural Autore-

gressive Density Estimator) [38], which is a state-of-the-art density estimation method.

Generally, NADE uses neural network outputs (a1,a2, ...,aM) to model

P(xom | xxxo<m),m = 1,2, ...,M, (3.17)

Chapter 3. A Synthetic Data Generating Approach 23

Figure 3.2: Neural network with weights sharing

x1 x2

masked, set to 0

x3 x4

x

1 0 1 1

mask

�
0 1 0 0

opposite mask

h1 h2 h3

P(x1 | xxx\1 P(x2 | xxx\2

target

P(x3 | xxx\3 P(x4 | xxx\4

conditional probability

∼
This figure is taken from IRP [42].

where order o is a permutation of 1,2, ...,M, xom is the m-th variable according to the

order o, and xxxo<m means all the variables before xom in order o. As you can see, the

model depends on the order o, and there are M! different orders. So an order-agnostic

version or NADE shares parameters among models using different orders.

However, it has been pointed out in [38] that the strength of parameters sharing

is sometimes too strong, and could lead to poor performance. Parameters sharing

significantly reduces the number of parameters, thus can be roughly seen as a very

strong regularization. To relax it a little bit, we also adopt the technique proposed in

[38]. Previously, we use a binary mask mmmm to mask the inputs. Now to indicate which

variable is masked by the binary mask, we include opposite of the binary mask ∼ mmmm

as additional inputs. As illustrated in 3.2, now (x̄xx,∼mmmm) is actually our neural network

inputs. Since only the m-th element in∼mmmm is non-zero, only weights associated with

the m-th element have effects. The net effect is that, an additional bias term is added

to the original structure. However, because different m defines different masks, these

additional bias terms are not shared by these M models. Now each model has its own

bias term, thus relax the constraint of parameters sharing.

Chapter 3. A Synthetic Data Generating Approach 24

3.3 Calibrated classifiers

Theoretically, it is possible to turn arbitrary classification methods into conditional dis-

tribution models for categorical features through probability calibration. In this project,

we adopt Platt scaling (or Platt calibration)[34], and transform SVM (Support Vector

Machine)[18] and GB (Gradient Boosting)[14][15] into conditional distribution mod-

els. An alternative approach is to fit an isotonic regression model to the ill-calibrated

model, and it has been proven to work even better than Platt scaling when we have

enough training data[32]. However, since we focus on the situation when training data

is insufficient, the isotonic regression is not suitable.

To understand experiments in this project, we only need to know that we transform

SVM and GB into conditional distribution models through Platt scaling, even though

the original methods do not carry explicit probability meanings.

To be more specific, consider a binary classification task, if our classifier can output

a score f (xxx) for inputs xxx, (The function f is often called decision function) and the

binary label is predicted by sign(f (xxx)), we could map the score f (xxx) into an estimated

probability.

P(y = 1 | xxx)≈ PA,B(f) =
1

1+ exp(A f (xxx)+B)
[27] (3.18)

where A,B are estimated by solving a maximum likelihood problem.

3.4 Random forest

A decision tree is a tree-like model that each node corresponds to a test on one feature.

Based on the outcome of this test, the tree grows out branches. In the end, each sample

resides in one leaf. The decision tree can easily assign a class probability to a sample

belongs a certain leaf. The probability is computed as the fraction of training samples

of a class in that leaf.

Random forest [5] can be roughly seen as an ensemble of decision trees. So the

class probability is just the mean predicted class probability of all the decision trees.

Therefore, we do not need calibration methods to turn the random forest into a condi-

tional distribution model. Random forest is already a well-calibrated model, and can

be directly used for our purpose.

Chapter 3. A Synthetic Data Generating Approach 25

3.5 Mixture density network

Previously, we talk about many conditional distribution models for categorical features.

In this section, we move on to talk about a conditional distribution model for real-

valued features. The model is called MDN (Mixture Density Network) [3]. Just as its

name suggests, it is a combination of mixture density model and neural network.

3.5.1 Model structure

The mixture density model extends the idea of GMM (Gaussian Mixture Model) (see

section 2.4). In GMM, the component distributions are all Gaussians. But in fact,

the components can be arbitrary distributions over the domain of interest. We restrict

the mixture density model to GMM here, because that’s enough to understand the

experiments in this projects. An extension of model structure using arbitrary mixture

density models would be straightforward, given materials in this part.

Recall that a one-dimensional Gaussian mixture distribution has the following den-

sity function

P(x) =
C

∑
c=1

ωcN (x;µc,σ
2
c), (3.19)

where
C
∑

c=1
ωc = 1,ωc ≥ 0, and N is the density function for Gaussian distribution.

Now we use this model to approximate P(xm | xxx\m). In order to do that, a feed for-

ward neural network (see section 3.2.1) is used to represent a mapping from xxx\m) to all

the parameters of GMM. Because GMM is parameterized by {ωc,µc,σc}c=1,2,...,C, the

output vector has a dimension of 3C. You may notice that these parameters are con-

strained, so reparameterize techniques must be applied. Assuming zzz = (z1,z2, ...,z3C)

is the final outputs (before any non-linearity), we denote

zzzω = (z1,z2, ...,zC) (3.20)

zzzµ = (zC+1,zC+2, ...,z2C) (3.21)

zzzσ = (z2C+1,z2C+2, ...,z3C). (3.22)

Now we map these outputs to the parameters we want:

(ω1,ω2, ...,ωM) = so f tmax(zzzω) (3.23)

(µ1,µ2, ...,µM) = zzzµ (3.24)

(σ1,σ2, ...,σM) = exp(zzzσ) (3.25)

Chapter 3. A Synthetic Data Generating Approach 26

The definition of a softmax function is already given in 3.2.1.

Through reparameterization, training is just an unconstrained optimization prob-

lem, and can be solved by standard packages.

3.5.2 Initialization of MDN

It is worthwhile to mention that, sometimes, people use GMM to initialize the bias

terms of the output layer in MDN [30]. To be specific, if we are using MDN to model

P(xm | xxx\m), we could use GMM to model the marginal P(xm) at first. The number of

components in MDN should be equal to the number of components in GMM. The bias

terms of the output layer should be set in such a way that, if all the weights are 0, the

MDN recovers GMM, which is actually a model of the marginal.

In this project, we tried this initialization scheme but cannot improve performance

when we apply our approach for regularization. So we simply initialize all bias terms

to 0.

3.6 Generative adversarial network as a model of con-

ditionals

GAN (Generative Adversarial Network) [17] is a newly proposed generative model.

So far, GAN is mainly applied to image or sequence data, and applications in applied

machine learning problems are rarely seen. In this section, we first introduce the struc-

ture of GAN and how to sample from it. Then, we modify the structure of conditional

GAN [28], making it suitable for our problem.

3.6.1 Adversarial network

To model a distribution P(xxx) over xxx, we use a multilayer feed forward neural network

G(zzz;θg) as a generator. We define a prior Pzzz(zzz) over noise variables zzz (for example a

Gaussian distribution). The neural network G is simply a mapping from noise space

to data space. If G(zzz;θg) ∼ Pg, we want Pg to learn the data distribution P(xxx). So we

define a second neural network D(xxx;θd) to discriminate G(zzz;θg) from xxx. The discrim-

inator D outputs a scalar, assigning probability of how likely the input sample comes

from Pdata rather than Pg. Simultaneously, the generator G is trained to maximize the

error of the discriminator (to fool the discriminator), whereas, the discriminator D is

Chapter 3. A Synthetic Data Generating Approach 27

trained to minimize it. Formally, G and D is playing a two-player minimax game,

which can be formulalized as:

min
G

max
D

V (D,G) =< logD(xxx)>xxx∼Pdata(xxx)+< log(1−D(G(zzz)))>zzz∼Pzzz(zzz), (3.26)

where < ·> is a notation for expectation, and V is called value function in game theory.

3.6.2 Sampling from GAN

Sampling from GAN is extremely easy. We only need to sample prior noise z from

Pzzz(zzz). The prior distribution is chosen by us, and is usually Gaussian distribution or

uniform distribution. So sampling the prior noise is straightforward. Then computing

G(zzz) is just a forward pass through the neural network, and G(zzz) is the sample we

want.

3.6.3 An architecture to model conditionals

We construct an architecture to model conditionals by feeding the variables we condi-

tioning on as additional inputs. As shown in figure 3.3, to model P(xxx | yyy) with GAN,

the prior noise zzz and the given variables yyy are concatenated as inputs in generator.

In discriminator, we discriminate (G(xxx | yyy),yyy) from (xxx,yyy). The architecture is called

conditional GAN [28].

However, in our problem, we want to model P(xm | xxx\m). Since xxx\m are all given,

synthetic data only have one feature that is different from real data. It could cause dif-

ficulty for the discriminator, because synthetic data and real data are so similar except

for one feature, and the discriminator has no idea which feature it is. To make training

easier, we add the opposite binary mask ∼ mmmm = (1(m = 1),1(m = 2), ...,1(m = M))

(binary mask has been introduced in 3.2.2) as additional inputs to the discriminator.

So now we present (G(xxx | yyy),yyy,∼mmmm) to the discriminator. This opposite binary mask

indicates which feature is perturbed, thus the discriminator would find it easier to dis-

criminate generated samples.

Chapter 3. A Synthetic Data Generating Approach 28

Figure 3.3: Conditional GAN

The goal is to model P(x | y), and z denotes prior noise. The prior noise z

and the given variables y are concatenated as inputs to the generator. x and

y are concatenated as features for discrimination. Figure credits to [28].

3.7 An intermediate summary

Based on a graphical model called the dependency network, we introduce a novel

approach to generate synthetic data. Under the framework of the dependency network,

we discuss various choices for conditional distribution models. Below is a list of them:

• Conditional distribution models for categorical features: neural network, neural

network with parameters sharing, gradient boosting), SVM, random forest.

• Conditional distribution models for real-valued features: mixture density net-

work, generative adversarial network.

We also provide fundamental steps of our approach in algorithm 1

Chapter 3. A Synthetic Data Generating Approach 29

Algorithm 1: The synthetic data generating approach

Input : dataset D = {xxx(n) = (x(n)1 , ...,x(n)M)}n=1,...,N , sampling round R,

sampling order O (permutation of 1,2, ...,M), conditional distribution

models {Mm}m=1,2,...,M

Output: synthetic dataset S

1 for m← 1 to M do
2 X = {xxx(n)\m}n=1,...,N ;

3 Y = {x(n)m }n=1,...,N ;

4 dataset Cm = (X ,Y);

5 train Mm on Cm to model P(xm | xxx\m);
6 end
7 for n← 1 to N do
8 xxx = (x1, ...,xM)← xxx(n);

9 for r← 1 to R do
10 for m← 1 to M do
11 m = Om;

12 xm← Sample from Mm(xm | xxx\m);
13 end

14 end
15 add xxx to S;

16 end
17 return S;

Chapter 3. A Synthetic Data Generating Approach 30

3.8 Randomized sampling order

We run Gibbs sampling (section 2.2) to generate samples from our model, setting train-

ing data as initial samples. The sampling procedure can be seen as perturbing features

one by one. In practice, the sampling order can be an arbitrary permutation of at-

tributes, so an interesting question would be, how does sampling order influences the

generated samples, thus influences the regularization performance when using these

synthetic data for regularization?

In this project, we do not try to explore whether there exists a best sampling order

for a particular problem, but use a random order. There are two options in practice.

Firstly, we can decide a sampling order at the beginning of each run, and then stick to

that order when we run Gibbs sampling. Secondly, we could have different sampling

order for each initial sample. We call the first one a fixed order, and the second one

a randomized order. The choice may cause some differences and have effects on the

generated synthetic data.

Intuitively, when we adopt a fixed order, the order we are using will determine the

distribution of synthetic data. Different orders will lead to slightly different distribu-

tions, especially when the sampling procedure hasn’t reached the equilibrium distribu-

tion. When a randomized order is adopted, it is like mixing different sampling orders

in one run. So potentially, a randomized order will make our results less dependent

on the order we choose. However, in practice, we could run many times using a fixed

order, and combine all the synthetic data together.

3.9 Introducing sampling temperature

3.9.1 Motivation

When we train a generative model, the error function is often NLL (Negative Log

Likelihood) (discussed in 2.1.1) of the training data under our model. It is also the

case when we train our conditional distribution model. However, there is one thing

about NLL that we need to pay attention to. If a sample is very unlikely to appear but

actually exist in the training set, the error will be very big and we are heavily punished

for that. Let’s take a look at the definition of NLL again:

NLL =−
N

∑
n=1

logP(xxxnnn,yn). (3.27)

Chapter 3. A Synthetic Data Generating Approach 31

If P(xxxnnn,yn) is extremely small, − logP(xxxnnn,yn) would be very big. So if NLL is our

training objective, our model will try everything to avoid that situation. The conse-

quence is, our model will spread the probability mass just to cover the outliers.

However, we do not want to sample from these locations where only some outliers

reside. So we want our model to be more concentrated on the region with high prob-

ability mass. Therefore, we introduce the concept of temperature below, which is in

accord with this intuition.

3.9.2 Formal Definition

If P(x) is density function for the distribution we draw samples from, we can define a

new distribution:

PT (x) =
1
Z

P(x)
1
T , (3.28)

where Z =
∫

P(x)
1
T dx is the normalization constant.

When T = 1, we recover the original distribution P(x). When T → ∞, we recover

a uniform distribution over positive density region. When T → 0, x is always the

maximum likelihood solution:

x = argmax
x

P(x) (3.29)

When we run Gibbs sampling in our problem, we sample from P(xm | xxx\m) one by

one following a particular order. So when we say we run Gibbs sampling at tempera-

ture T , at each step, we are actually sampling from:

PT (xm | xxx\m) =
1

Zm
P(xm | xxx\m)

1
T , (3.30)

where Z =
∫

P(xm | xxx\m)
1
T dx.

We provide an illustration in figure 3.4. When T = 1, we have a broad distribution,

which covers a wide area far away from the central region. Then we decrease the

temperature to T = 0.5, now you can see more probability mass is put on the central

region. We also provide the distribution when T = 2 as comparison, which goes the

opposite way.

3.9.3 A heuristic definition for Gaussian mixture model

In order to sample from PT (x), we need to compute the normalization constant. It is

easy to compute when the distribution is over a discrete variable, the computation is

Chapter 3. A Synthetic Data Generating Approach 32

Figure 3.4: Effects of temperature

20 15 10 5 0 5 10 15 20
values

0.00

0.02

0.04

0.06

0.08

0.10
de

ns
ity

T=0.5
T=1.0
T=2.0

When the temperature decreases, we favour the region with high probability mass

more, and seldom draw samples from the region with low density.

simply a summation. Unfortunately, for many distributions over a real variable, the

integral is hard to compute. In this project, we will have to deal with Gaussian mixture

distribution, which has the following density function:

P(x) =
K

∑
k=1

ωkN (x;µk,σ
2
k), (3.31)

where K is the number of components. Then the normalization constant for tempera-

ture T

Z =

∫
[

K

∑
k=1

ωkN (x;µk,σ
2
k)]

1/T (3.32)

is hard to compute. So instead, we give a heuristic definition of PT (x) as:

PT (x) =
1
Z

K

∑
k=1

ω
T
k N (x;µk,

σ2
k

T
). (3.33)

The normalization constant Z is now is to obtain because:

Z =
K

∑
k=1

ω
T
k . (3.34)

There are of course other ways to define it, and this definition here is just trying to

accord with our intuition.

Chapter 3. A Synthetic Data Generating Approach 33

3.10 DIS: A measure of synthetic data quality using a

discriminator

If we have a synthetic dataset gen and a training set train, we could create a binary

classification task discriminating fake samples from real samples. The original features

and labels will all be treated as input features in this task. The labels are 0 for samples

in gen, and 1 for samples in train. Intuitively, the best accuracy a discriminator can

achieve tell us how good our synthetic data are. Of course, the performance is not

deterministic, and the results depend on the classifier we are using.

Based on this idea, we would like to define a measure of synthetic data quality. The

goal is to invent a tool for debugging and reasoning, rather than a formal theoretical

measure. It is more like an illustration that can help us build our intuition and criticize

our model.

3.10.1 Definition

We define

DISclassifier cls, random seed rs(gen, train) (3.35)

as the output of the following procedure:

1. If train and gen have different sizes, resample without replacement from the

larger one to make sure that the two datasets have the same size.

2. Transform the original labels into additional input features, and assign new labels

to indicate which dataset the samples come from.

3. Mix samples from the two datasets, and split them into the training set T and the

validation set V (50%−50% split).

4. Train cls on T , and tune hyper-parameters on V . Report the best accuracy on V .

5. All random choices are determined by random seed rs.

3.10.2 Notes

About this measure, there are a few things we need to point out:

• Strictly, it is not a measure. The result depends on the classification method,

hyper-parameters for the method, and random seed.

Chapter 3. A Synthetic Data Generating Approach 34

• If the synthetic data is perfect, we should get an accuracy that is close to 50%.

• Because when usually train our generative model on the training data, we will

also want to see DIScls, rs(gen,valid), where valid is the validation set of the

original problem.

3.10.3 Why we need this?

If we want to evaluate our generative model, a straightforward solution is to calculate

the likelihood of training data under the model. If we have a generative model P(xxx,y),

and a training set {xxxnnn,yn}n=1,2,...,N , we want to know how good our model is. We

normally calculate the NLL (Negative Log Likelihood):

NLL =−
N

∑
n=1

logP(xxxnnn,yn). (3.36)

Unfortunately, this approach does not apply to our dependency network model.

Since a collection of conditional distributions is all we have, it is not possible to calcu-

late NLL. Alternatively, we can calculate the pseudo likelihood 3.1.4.

So the question is, why we don’t directly evaluate the generative model? First of

all, we generate data by perturbation. An evaluation of our generative model cannot

tell us how good the synthetic data are after the first, or second round of perturbation.

Secondly, it is not always possible to calculate NLL. In our case, only the pseudo

likelihood can be provided. In the case of MUNGE 2.5.2, nothing similar can be

defined. Thirdly, the DIS is an intuitive measure. It is sometimes more useful for

debugging and reasoning.

If we only care about synthetic data regularization, can we just feed synthetic data

into the final predictive model, and observe the final performance? Surely it is a good

idea. But sometimes, we want to make the data generating procedure right before

involving the final task. It is a more modularized workflow. Such a workflow can

avoid building a big system, but do not know which part is wrong when debugging.

Chapter 4

Synthetic Data for Regularization

A synthetic data generating approach has been described in the previous chapter. In

practice, these synthetic data can be useful in many ways. This chapter presents em-

pirical results about using the synthetic data for regularization.

4.1 An introduction of default experiments settings

We will start with introducing a few default experiments settings, to ensure the repro-

ducibility of our experiments. Many of our experiments share the same settings, so it

would be verbose to talk about them in every part. Unless stated explicitly, experiments

are conducted in a way that follows the default settings here.

4.1.1 Datasets

Table 4.1: A summary of datasets

Datasets AD1 RCV1 OTTO RNA COVTYPE HOUSES

Feature type categorical categorical integer real mixed1 real

Task Type classification classification classification classification classification regression

Number of classes 2 2 9 2 2 -

Number of attr. 50 150 93 8 12 8

Train set size 1000 500 10000 2000 5000 1000

Valid set size 1000 500 10000 2000 5000 1000

Test set size 35000 38000 20000 39535 80000 1760

1 The perfect Bayesian classifier using the underlying generative model gives 99.57% on the AD dataset.
2 It contains 2 categorical features and 10 real value features

35

Chapter 4. Synthetic Data for Regularization 36

At the beginning, we give a summary of datasets in table 4.1,and the arguments

presented in the following parts will be demonstrated on these datasets. It is our inten-

tion to make sure the task is not too easy, so that it is possible to observe a significant

improvement. We also prefer datasets with sufficient data, so that a big test set can be

used to provide a reliable comparison.

All in all, we have 3 categorical datasets (the OTTO dataset is not a categorical

dataset, but in practice, we treat it as one) and 3 datasets with real-valued features. 4 of

them are binary classification tasks, and the other two are a multi-class classification

task and a regression task.

The artificial dataset (AD) is generated as follows: A Bayesian network with 50

variables is randomly generated. For each new variable, we randomly pick 1 to 5

parents (uniform) from the previously generated variables. All the variables are binary,

and all the conditional probabilities in the factorization take random values between

0.1 and 0.9 (uniform). This dataset has two classes with the same factorization, but

different conditional distributions.

RCV1, RNA, and COVTYPE datasets are all from UCI machine learning repository[26].

However, clean and pre-processed versions from the LIBSVM dataset [9] are used in

our experiments. The HOUSES dataset is also taken from the LIBSVM dataset, and

original dataset appears in [33].

The OTTO dataset is taken from the Kaggle competition Otto Group Product Clas-

sification Challenge 1. The feature values are all counts of products, with most of them

close to 0. In practice, when we build the generative models, we treat these features as

categorical features with 5 classes 0,1,2,3,≥ 4, so that is why we present the results

in the parts for categorical datasets.

It should be clarified that, all datasets are shuffled and split again. So the original

sample order and dataset split do not maintain.

You may notice that the dataset split is different from usual: The training set and

validation set is much smaller than the test set. That is because, our aim is not to

provide the best possible solution on these datasets. Instead, we want to explore how

to use synthetic data as regularization when data is relatively insufficient. So a small

training set is deliberately used. Another consideration is that, the training set should

be small enough so that significant improvement is possible. The test set is much

bigger than the training set and validation set, in order to reduce the sampling error and

provide a reliable comparison. Because we use a small training set, our conclusions

1https://www.kaggle.com/c/otto-group-product-classification-challenge

Chapter 4. Synthetic Data for Regularization 37

should not be extended to problems with large training sets.

Lastly, all the performance measures are calculated on the test sets, so that it is

convenient and sensible to compare them with each other. The test sets are used only

for reporting purposes, not for the tuning of models. Moreover, in case we find some

interesting phenomena on the test set and need to do more experiments or modify our

previous models, we also keep reserved datasets which have never been touched before

and do not belong to all the three datasets.

4.1.2 Pre-processing

In our experiments, we try not to introduce tricky pre-processing techniques, otherwise

we may find it hard to tell where our improvements come from. However, there are

a few techniques which we find very necessary, and they are also recommended in

applications of our methods.

Firstly, for a categorical feature xm with cm classes, we replace it with cm binary

features (1(xm == 1),1(xm == 2), ...,1(xm == cm)), where 1 is an indication func-

tion. This is often called one-hot encoding. In our experiments, it is applied to all

categorical features except binary features. It is a reasonable representation for all cat-

egorical features if we do not want to introduce untrue value ordering assumption to

the feature. It has already been widely accepted that this is almost always beneficial.

Secondly, there are some numerical features in our datasets that are actually in-

tegers or are calculated from integers. We may have some problem when we use a

real-valued distribution to model it. For example, if a Gaussian mixture model is used

to model the conditionals, we may end up using one component with a narrow band-

width to model a single integer value. That is because, under a real-valued conditional

distribution model, the probability of taking a certain value is exactly 0. To avoid this

problem, uniform noise σ∼U(−d2,d2) is added to the features, where d is the mini-

mum gap between neighbouring feature values (in the case of integer features, d = 1).

Lastly, conditionals of real-valued features are generally hard to model, and we

find out that a statistical procedure called PCA (Principle Component Analysis) [41]

can make the job much easier. Generally, PCA applies an orthogonal transformation

A to the inputs xxx and convert it into uncorrected variables (which are called principle

components). PCA is often used to reduce dimensionality, because we can keep a

subset of principle components. However, in our experiments, we only use it as a

linear transformation and keep all the variables. That is to say, in our experiments, the

Chapter 4. Synthetic Data for Regularization 38

dimension of data does not change after PCA.

It is worthwhile to clarify that, one-hot encoding and PCA are beneficial not only to

the training of the dependency network, but also to the final task. In the following parts,

all the benchmark results can benefit from all these pre-processing, and are compared

to our methods on top of these techniques. Therefore, there will be no concern about

whether our improvements come from these pre-processing techniques.

4.1.3 Metrics

In this part, we will introduce and clarify the definitions of several metrics. They are

heavily used in our experiments and will be referred throughout the following chapters.

First of all, we would like to introduce the performance measure for classification

tasks. We will simply report the accuracy because our datasets are well-balanced. In

practice, we also calculated precision, recall and F-score on all tasks. It turned out that

each of these measures gave similar conclusions in our experiments. So for simplicity,

we omit results of other measures. The accuracy Acc is defined as:

Acc =
T
N
, (4.1)

where T is the number of true predictions and N is the number of all test samples.

Secondly, R2 (coefficient of determination) will be used as performance measure

for regression tasks. Assuming we have N test samples with ground truth { fn}n=1,2,...,N ,

and the predictions corresponding to fn is yn. The residual for the nth sample will be

en = yn− fn. On account of the above, we define total sum of square SStot as:

SStot =
N

∑
n=1

(yn−
1
N

N

∑
n=1

yn)
2, (4.2)

and define residual sum of square SSres as:

SSres =
N

∑
n=1

e2
n. (4.3)

So

R2 = 1− SSres

SStot
(4.4)

. If the predictions are perfect, R2 = 1, and if we predict the expected output value

regardless of input features, we will get R2 = 0.

In order to measure the quality of synthetic data, we want to know how likely these

data will be generated by the actual data distribution. NLL (Negative Log Likelihood)

Chapter 4. Synthetic Data for Regularization 39

is such a measure:

NLL =
1
N

N

∑
n=1
− logP(xxxnnn), (4.5)

where {xxxnnn}n=1,2,...N are the data points (jointly with labels), and p(·) is the density

function. It is possible to calculate NLL on the artificial dataset because the exact

underlying generative model is known.

4.1.4 Default settings for training neural network

In this project, many models use the neural network model as components, such as

GAN, MDN and so on. We would like to clarify some experiments settings for neural

network training. However, they are not directly related to our conclusions, so we

won’t go into details here. It is possible that changing some options could lead to

better performance. But we did not explore them in this project.

• We adopted Xavier initialization [16] for all the parameters in neural networks

except for biases (biases are all initialized to 0).

• We used the Adam optimizer [24] with initial learning rate 0.001 to update pa-

rameters.

• We did not use other techniques such as batch normalization [22] or dropout

[37].

4.1.5 Randomized parameter optimization

We often need cross validation to estimate hyper-parameters, and grid search is a

widely used method for this task. However, if there are many hyper-parameters, the

number of combinations will grow exponentially, which makes grid search an expen-

sive method. So instead of searching the whole grid, we conduct a randomized search

over hyper-parameters [2]. Firstly, we pose distributions over each hyper-parameters

(could just be a list of parameter values). Then during the cross validation, hyper-

parameters are sampled from the distribution independently. Consider the fact that

many hyper-parameters do not have significant effects on the performance, it is possi-

ble to achieve good estimation with much less computing time. Another advantage is

that, the computing budget is tunable and can be easily configured.

We have two levels of cross validation: we need to pick hyper-parameters for the

conditional distribution models, and we also need to pick hyper-parameters for the

Chapter 4. Synthetic Data for Regularization 40

final estimators. It would be wrong if our generative models peek at the validation set

in some way. Because in that case, even though an improvement is observed, it may

just due to the fact that our generative models have access the validation set through

cross validation. So in our experiments, K-fold cross validation is used for generative

models within training data, and validation set is only used for the final tasks.

4.1.6 A convention of feeding synthetic data

In this thesis, when we say feeding synthetic data together with training data into an

estimator, specifically we mean the following:

• We run Gibbs sampling for one round, and get samples at the end of the first

round. In experiments, we find out that for most datasets, the sampler already

shows a sign of reaching the equilibrium distribution after one round. So it makes

no sense to run the sampling longer. On the other hand, we cannot improve our

performance by running for less than one round.

• We run the procedure above for K times, and combine all the samples into one

synthetic dataset. Now the amount of synthetic data is K times as many as the

training data.

• We use sample weights to balance the synthetic data and training data, so that

they have the equal total weights (λ = 1 in section 2.7). In experiments, we find

out that, this is very often a good choice. Surely, sample weights for synthetic

data can be tuned by cross validation.

We do not conclude that all these conventions are the best for all problems. But

as justified above, these choices are very often good default choices, and are recom-

mended if you do not want to tune them.

4.1.7 Implementation

This project involves lots of models and methods. We develop a package on top of

open source packages including Tensorflow [1], Sklearn [7], XGBoost [10], Keras[11],

Numpy [40], SciPy [23]. This package is available at https://github.com/Aaron-Jin-Xu/

msc_package.

https://github.com/Aaron-Jin-Xu/msc_package
https://github.com/Aaron-Jin-Xu/msc_package

Chapter 4. Synthetic Data for Regularization 41

4.2 A comparison of conditional distribution models for

categorical features

Figure 4.1: NLL of synthetic data against sampling round on the AD dataset

when using different conditional distribution models

0.0 0.5 1.0 1.5 2.0 2.5 3.0
round

29

30

31

32

33

34

35

36

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d

SVC
Gradient boosting
Random forest
Neural network
Neural network (weights sharing)

(a) The fraction round is proportional to the Gibbs sampling steps, thus the number

of steps in each round is equal to the number of attributes.

(b) Since a single MCMC run can be too noisy to identify the trend, the curves are

actually averages of multiple runs.

(c) The starting point of each round is the NLL of training data, which estimates the

entropy of the underlying distribution.

The performance of our synthetic data generating approach heavily depends on

the choice of appropriate conditional distribution models. After all, our dependency

network model can be roughly seen as a collection of these conditional distribution

models. In the previous chapter, we discussed all kinds of model choices for categori-

cal features, but we need to test which one works best in practice.

To give a preliminary comparison of these categorical conditional distribution mod-

els, we use dependency networks with each of these choices to model the AD dataset.

Synthetic data can be generated from all these models through Gibbs sampling. Be-

Chapter 4. Synthetic Data for Regularization 42

cause we know the underlying model of the AD dataset, NLL (Negative Log Like-

lihood) can be calculated. For every sampling step, we calculate the NLL (given by

equation 3.27) of the current samples, and plot the NLL against sampling steps in

figure 4.1.

Our sampling method perturbs attributes one-by-one by resampling from the con-

ditionals. Intuitively, our training data are corrupted little by little along with the sam-

pling procedure. If NLL is a measure of synthetic data quality, it should increase

along with the sampling steps. On the other hand, as discussed in section 2.2, Gibbs

sampling will eventually reach an equilibrium distribution, and forget about the initial

state (which is training data). Therefore, at same point, NLL should stop increasing.

When we plot NLL against sampling steps, the convergence of this curve indicates

reaching of the equilibrium distribution (we call mixing, see section 2.2). The equilib-

rium distribution is actually the distribution of our generative model, so the final NLL

roughly indicates how good our model is. Compare the curves in figure 4.1, we have

the following observations:

First of all, on the AD dataset, gradient boosting clearly outperform all other mod-

els because of fast mixing and the best NLL it can achieve in the end. The performance

of SVM is close to neural network in this experiment, and random forest seems to be

the worst model in terms of the NLL measure. In addition, an interesting observation

is that, the neural network model with parameters sharing actually outperform the one

without weight sharing, even though the former one has much fewer parameters.

Moreover, one this particular dataset, after one round of sampling, all these curves

show a sign of mixing no matter which model we are using. That is to say, the dis-

tribution of samples at the end of the first round is already close to the equilibrium

distribution.

However, the NLL measure only indicates how likely these synthetic data are gen-

erated by the true underlying distribution. Although it is our belief that data with high

NLL often means it will benefit the final task more, this is not guaranteed. A good con-

trary example may be, if our generative model simply remembers all the training data,

and only generate data that is close to the training data, then for sure it will achieve high

NLL. But in that case, the synthetic data only gives us limited additional information,

and may not be very useful in the final task.

We use synthetic data from the first round, and feed them together with the real

training data into the final estimator. As shown in table 5.4, the synthetic data generated

with different conditional distribution models all give an improvement of accuracy.

Chapter 4. Synthetic Data for Regularization 43

Gradient boosting still outperforms other models, and neural network with parameters

sharing is still better than the one without parameters sharing. However, previously,

we regard random forest as the worst conditional distribution in terms of NLL on the

AD dataset, but now, it is slightly better than all the neural network models. This is

a solid evidence that sometimes high likelihood does not mean it will work better as

regularization.

Table 4.2: Accuracy on the AD dataset when feeding syn-

thetic data together with training data, different conditional

distribution models are used and compared to the accuracy

without synthetic data

Conditional models GB+Syn Accuracy

- 94.13% 1

SVM 96.61%

Neural network 95.56%

Neural network (weights sharing) 95.95%

Random forest 96.17%

Gradient boosting 97.34%

1 No synthetic is used here. This line is included for compari-

son.

4.3 Synthetic data regularization on categorical datasets

In this part, we give a study of applying synthetic data regularization to categorical

datasets, and see if our approach can improve performance compared to state-of-the-

art methods. In the previous section, we regard gradient boosting as a very good con-

ditional distribution model, so from now on, gradient boosting will be the default con-

ditional distribution model for categorical features unless otherwise stated.

The synthetic data regularization has only been applied together with gradient

boosting (which is also used here as the classification method to report final perfor-

mance). Logistic regression is meant to be a baseline model, and is often seriously

underfitting. SVM cannot scale to large datasets, so it will be very time-consuming to

use synthetic data. Regarding random forest, the implementation from sklearn seems

Chapter 4. Synthetic Data for Regularization 44

Table 4.3: Applying synthetic data regularization to cate-

gorical datasets

Dataset AD RCV1 OTTO1

Logistic Regression 91.08% 76.48% 74.68%

SVM 94.23% 84.15% 75.10%

RF (Random Forest) 93.05% 85.80% 78.18%

GB (Gradient Boosting) 94.13% 85.69% 78.58%

GB (train x 2)2 95.43% 87.20% 80.15%

GB+Syn(B)3 97.34% 86.61% 79.49%

GB+Syn(J) 4 96.49% 86.62% 51.66%

1 The OTTO dataset is presented in the categorical part be-

cause we treat counts as categorical features to construct

the generative model.
2 Double the training set size using reserved data, it is a good

comparison to the results when feeding synthetic data.
3 Model each class separately and construct the generative

model using Bayes’ rule.
4 Model the data jointly with the labels.

to ignore the sample weights, thus the total weights of synthetic data would be much

larger than the total weights of training data. Luckily, gradient boosting is almost

always among the best models and the XGBoost implementation is highly efficient.

However, we will talk about a technique in section 5.4 which could make it possible

to apply the synthetic data regularization to other estimators like random forest and

SVM.

The most important observation in table 4.3 is that, on all datasets, our synthetic

data regularization contributes considerable improvement of accuracy, even though it

is compared to many state-of-the-art methods. Actually, it is quite impressive that the

accuracy using our synthetic data is close or even better than doubling the training set

size.

However, we need to emphasize again that, since we always use datasets with very

limited training data, the conclusions above should not be extended to tasks with suf-

ficient training data. In fact, we find out that, if we have a large training data set,

Chapter 4. Synthetic Data for Regularization 45

synthetic data regularization did not contribute significant improvement. This fact ac-

cords with our understanding that regularization is important when data is insufficient.

In practice, for a classification task, there are two options to build a generative

model. The first one is to model each class separately, and acquire the whole generative

model using Bayes’ rule. The class probability can simply be estimated by counting

training data labels. The other option is to treat the class label as another attribute,

and model the data using just one dependency network. In table 4.3, we try both

options on all categorical datasets. It turns out that, the option choice should be task-

dependent. Generally, they all work well on AD and RCV1, but the second way seems

to work poorly on the OTTO dataset, which has 9 classes and each class has quite

different distribution of inputs. Intuitively, modeling the data jointly with labels is like

sharing parameters between different classes. If the distributions of inputs from all

these classes are similar, we can benefit from this option because now one class can

borrow useful information from other classes. On the other hand, if this is not the case,

just like the OTTO dataset, forcing different classes to share parameters may end up

with a very bad generative model.

4.4 Mixture density network and generative adversarial

network

As discussed above, the synthetic data regularization significantly improves accuracy

on categorical datasets. But this is not enough, because there are lots of real-life ap-

plications in which real-valued attributes are provided. So we would like to extend our

conclusion to real-valued datasets.

We discussed two models for modeling conditional distributions of real-valued fea-

tures in the previous chapter. One is MDN (Mixture Density Network), the other is

GAN (Generative Adversarial Network).

If the synthetic data distribution and the training data distribution fit well, their

one-dimensional marginals should fit well. Although the reverse is not true, it is still

an intuitive way of examining how good our models are. This comparison can be

achieved by QQ (Quantile-Quantile) plots.

We present the 8 QQ plots corresponding to 8 attributes of the HOUSES dataset

below. The plots are provided for both MDN and GAN.

From only the information provided by QQ plots, MDN is a better model, as all

Chapter 4. Synthetic Data for Regularization 46

Figure 4.2: QQ plots of marginals (a comparison of training data and synthetic data

generated by MDN)

2 0 2 4
Quantiles of training samples

3

2

1

0

1

2

3

4

Qu
an

til
es

 o
f s

yn
th

et
ic

sa
m

pl
es

2 1 0 1 2
Quantiles of training samples

2

1

0

1

2

Qu
an

til
es

 o
f s

yn
th

et
ic

sa
m

pl
es

2 0 2 4
Quantiles of training samples

2

0

2

4

Qu
an

til
es

 o
f s

yn
th

et
ic

sa
m

pl
es

5.0 2.5 0.0 2.5 5.0
Quantiles of training samples

6

4

2

0

2

4

6

Qu
an

til
es

 o
f s

yn
th

et
ic

sa
m

pl
es

5.0 2.5 0.0 2.5 5.0 7.5
Quantiles of training samples

6

4

2

0

2

4

6

Qu
an

til
es

 o
f s

yn
th

et
ic

sa
m

pl
es

6 4 2 0 2 4
Quantiles of training samples

6

4

2

0

2

4

Qu
an

til
es

 o
f s

yn
th

et
ic

sa
m

pl
es

4 2 0 2 4
Quantiles of training samples

4

3

2

1

0

1

2

3

4

Qu
an

til
es

 o
f s

yn
th

et
ic

sa
m

pl
es

2 0 2 4
Quantiles of training samples

2

0

2

4

Qu
an

til
es

 o
f s

yn
th

et
ic

sa
m

pl
es

the marginals fit very well. While on the other hand, GAN has marginals that deviate

far from the actual distribution, for example the 2nd feature (second column of the first

row in figure 4.3). To investigate the problem, we also provide the histogram for the

2nd feature in figure 4.4. The blue area is the histogram for synthetic data and the red

one is the histogram for training data. It seems that the problem is, GAN only captures

on peak of the training data, and fails to cover another.

For the following parts, we consider MDN as the default model for real-valued

features and give up GAN for now. It is not because we think it underperforms MDN.

We have no clear evidence to say so. GAN is a very new model, and has been applied

and studied mainly for image and sequence data. Therefore, it is trick to train a GAN

Chapter 4. Synthetic Data for Regularization 47

Figure 4.3: QQ plots of marginals (a comparison of training data and synthetic data

generated by GAN)

4 2 0 2
Quantiles of training samples

4

3

2

1

0

1

2

3
Qu

an
til

es
 o

f s
yn

th
et

ic
sa

m
pl

es

2 0 2 4
Quantiles of training samples

2

1

0

1

2

3

4

5

Qu
an

til
es

 o
f s

yn
th

et
ic

sa
m

pl
es

2 0 2 4
Quantiles of training samples

2

0

2

4

Qu
an

til
es

 o
f s

yn
th

et
ic

sa
m

pl
es

2 0 2 4
Quantiles of training samples

2

0

2

4

Qu
an

til
es

 o
f s

yn
th

et
ic

sa
m

pl
es

4 2 0 2 4
Quantiles of training samples

4

2

0

2

4

Qu
an

til
es

 o
f s

yn
th

et
ic

sa
m

pl
es

4 2 0 2
Quantiles of training samples

4

3

2

1

0

1

2

3

Qu
an

til
es

 o
f s

yn
th

et
ic

sa
m

pl
es

2 0 2
Quantiles of training samples

3

2

1

0

1

2

3

Qu
an

til
es

 o
f s

yn
th

et
ic

sa
m

pl
es

2 0 2
Quantiles of training samples

3

2

1

0

1

2

3

Qu
an

til
es

 o
f s

yn
th

et
ic

sa
m

pl
es

for our problem, and many heuristic techniques must be carefully applied in order to

make it work. So let’s not draw any conclusions about GAN here before it is thoroughly

studied. We save it for future work, and hopefully it can be a good candidate for real-

valued conditional distribution models.

Chapter 4. Synthetic Data for Regularization 48

Figure 4.4: Histogram of the marginal for 2nd feature of HOUSES

2 1 0 1 2 3 4
Feature values

0.00

0.01

0.02

0.03

0.04

0.05
Fr

eq
ue

nc
y

(a) The histogram is a normalized version.

(b) The blue area corresponds to synthetic data generated by GAN, and the

red area corresponds to training data.

4.5 An extension to real-valued datasets

In this section, we use MDN (Mixture Density Network) as conditional distribution

models for real-valued attributes, and see if the previous conclusions on categorical

datasets still apply.

As shown in table 4.4, synthetic data regularization improves accuracy of gradient

boosting, on all the datasets with real-valued features. (On the HOUSES dataset, our

model with synthetic data loses to the SVM model because SVM performs particularly

well on this task, but SVM is not suitable for synthetic data regularization because it

cannot scale well).

However, the improvement is not as significant as those on the categorical datasets.

We give two possible explanations for this phenomenon. On the one hand, how much

Chapter 4. Synthetic Data for Regularization 49

we can improve is limited by the asymptotic performance that would be obtained by

an infinite training set. For example, on the RNA dataset, a big improvement was ob-

served even though the training set size was doubled. On the other hand, as stated

earlier, the performance heavily depends on which conditional distribution model we

are using. In the categorical cases, gradient boosting has been proven to be a very good

conditional distribution model. For real-valued cases, only MDN is tested. It is pos-

sible that we can find a better conditional distribution model for real-valued features,

and eventually get considerable performance improvement.

Table 4.4: Applying synthetic data regularization to datasets with

real value features

Dataset RNA COVTYPE HOUSES

Logistic Regression 93.67% 75.40% 0.5898

SVM 93.96% 79.64% 0.6740

RF (Random Forest) 93.75% 79.77% 0.6277

GB (Gradient Boosting) 94.23% 79.30% 0.6298

GB (train x 2) 2 94.69% 81.82% 0.66781

GB+Syn(B)3 94.48% 80.13% -

GB+Syn(J)4 94.55% 79.31% 0.6588

1 When we use a doubled training set to train the SVM, we got a R2

score of 0.6917.
2 Double the training set size using reserved data, it is an good com-

parison to the results when feeding synthetic data.
3 Model each class separately and construct the generative model

using Bayes’ rule.
4 Model the data jointly with the labels.

4.6 DIS measure on all datasets

As introduced in section 3.10, DIS an intuitive measure that tells us how accurate a

discriminator can discriminate synthetic data from real data. It is a useful tool for

debugging and reasoning. We use it a lot to check our implementation, and would like

to recommend it if you want to develop new methods for synthetic data generation.

Chapter 4. Synthetic Data for Regularization 50

In this section, we calculate DIS on all datasets and describe some findings.

Table 4.5: DIS on all the datasets

Dataset AD RCV1 RNA OTTO COVTYPE HOUSES

DIS (Gen, Train) 51% 53% 53.8% 62.4% 55.12% 61.10%

DIS (Gen, Valid) 55.7% 59.4% 55.65% 62.24% 56.18% 60.20%

We use gradient boosting as the discriminator, and calculate the measure on all

datasets. Both training set and validation set are used as the true data.

As you can see in table 4.5, on most datasets, the measure is quite close to 50%,

which is an indication that our approach is doing very well on synthetic data genera-

tion. We can also see that, the DIS using the validation set is very often higher than the

counterpart using the training set, which tells us our model is slightly over-fitting. It is

reasonable, as all parameterized models will be over-fitting to some extent.

4.7 How much synthetic data should we use?

When we apply synthetic data regularization, we wonder how much synthetic data we

should feed into the final estimator. In this part, we use a simple experiment to answer

this question. We apply synthetic data regularization to gradient boosting. We tune

the amount of synthetic data from 1 to 50 times as many as the training data. The

way of feeding these synthetic data sticks to the statements in 4.1.6. 10 independent

experiments are conducted for each synthetic dataset size. The results are shown in

figure 4.5 in a form of box plot.

From the figure, we have two main take-away points:

• As long as our computing resources permit, the more synthetic data the better.

• If very few synthetic data are used, the variance of performance may be big, and

we also have the danger of underperforming the counterpart without synthetic

data.

Chapter 4. Synthetic Data for Regularization 51

Figure 4.5: Performance against synthetic data size

1 5 10 20 30 40 50
Synthetic dataset size (multiple of training set size)

0.61

0.62

0.63

0.64

0.65

0.66

0.67
R2

 sc
or

e
without synthetic data

(a) For each synthetic dataset size, 10 independent experiments are conducted. The

10 R2 scores are then used to construct the box plot.

(b) The green horizontal line indicates where we are if no synthetic data regulariza-

tion is applied. As you can see, if only one round of synthetic data is used in this

example, we have the danger of getting even worse results.

4.8 An empirical comparison to other approaches

All generative models can provide synthetic data for regularization. Previously we

claim that conditional distributions are much easier to model than a joint distribution.

It would be interesting to see, in terms of regularization, is the dependency network a

better generative model compared to some joint distribution models?

In this section, we make use of synthetic data generated from joint distribution

models by feeding them into the final estimator together with training data, just like

what we did with the dependency network model. The performance of the final esti-

mator with synthetic data regularization is compared to the results in previous experi-

ments. For categorical datasets, we use a RBM (Restricted Boltzmann Machine) model

to model the joint distribution, which is considered as a state-of-the-art method. For

real-valued cases, GMM (Gaussian Mixture Model) is adopted, which is a benchmark

Chapter 4. Synthetic Data for Regularization 52

model with high-performance.

Table 4.6: A comparison of dependency network and joint distribution models

(RBM and GMM)

Dataset AD RCV1 RNA HOUSES

Feature type categorical categorical real real

Joint distribution model RBM RBM GMM GMM

GB (Gradient boosting) 94.13% 85.69% 94.23% 0.6298

GB+Syn (Joint)1 95.55% 86.34% 94.72% 0.6704
GB+Syn (DN)2 97.34% 86.62% 94.55% 0.6588

1 Synthetic data is generated from the corresponding joint distribution model.
2 Synthetic data is generated from the dependency network. (The default condi-

tional distribution model is gradient boosting for categorical features, and MDN

for real value features)

As shown in table 4.6, the dependency network model outperforms RBM on both

categorical datasets, but loses to GMM on both real-valued datasets. The fact cor-

responds to our previous conclusion that we have very good categorical conditional

distribution models, but need to find better real-valued conditional distribution mod-

els. The experiments are not conducted on the other two datasets because we don’t

want to introduce complexity for dealing with mixed attribute types and counts data.

We also calculate the NLL (Negative Log Likelihood) of synthetic data, which

generated by RBM, on the AD dataset. The NLL of the first round data is 35.54 (here

one round means a block Gibbs sampling step of sampling hidden variables given the

inputs, and then another step of input variables given hidden variables generated by the

previous step.). If you compare it to the results in table 4.7, it is better than the model

random forest conditional distribution model, but worse than all the others. As indi-

cated by NLL, the dependency network with high-performance conditional distribution

models is actually a better generative model than RBM on this dataset.

Chapter 4. Synthetic Data for Regularization 53

Table 4.7: NLL of the first round synthetic data

on AD dataset

Conditional models NLL

SVM 34.84

Neural network 34.98

Neural network (parameters sharing) 34.66

Random forest 35.81

Gradient boosting 33.92

Chapter 4. Synthetic Data for Regularization 54

Figure 4.6: Distance between generated data and training data

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
distance

0.00

0.05

0.10

0.15

0.20

0.25

fre
qe

nc
y

train->train
gen->train DN
gen->gen DN
gen->train RBM
gen->gen RBM

0 1 2 3 4 5
distance

0.00

0.02

0.04

0.06

0.08

0.10

0.12

fre
qe

nc
y

train->train
gen->train DN
gen->gen DN
gen->train GMM
gen->gen GMM

(a) The upper figure shows results on the AD dataset, and hamming

distance is used. The lower figure shows results on the HOUSES dataset,

and Eucliean distance is used.

(b) DN stands for Dependency Network, RBM stands for Restricted

Boltzmann Machine, and GMM stands for Gaussian Mixture Model.

(c) When we say gen→gen, the generated data on the two sides are actually

from different sampling runs.

Chapter 4. Synthetic Data for Regularization 55

4.8.1 How “close” are synthetic data and training data?

Given a synthetic data generating approach, we want to know whether the generated

synthetic data are very similar to the original training data. Because if that is the case,

our model may be heavily overfitting to the training data. Or in our approach, maybe

it is simply because we did not run Gibbs sampling for enough steps.

In order to measure how “close” two datasets are, we need to first measure the dis-

tance between data points, and then the distance between a dataset and a data point.

For categorical features, hamming distance is adopted as point-to-point distance, and

for all numerical features, Euclidean distance is adopted point-to-point distance. Es-

tablished on the definition of point-to-point distance, the distance between a datatset

and a point would be the minimum distance between this point and all the points in

that dataset (except that point). In fact, if that data point is taken from another dataset

B (let’s call the original dataset A), we would be able to calculate the point to dataset

distance for each point in B. In that case, we obtain a distribution of distances, which

gives a good illustration of how “close” these two datasets are.

The distance distribution is interesting to see because if we have a generative model

that is actually over-fitting the training data, then the distance from generated data to

the training data will probably be smaller than usual. So when we plot this distribution,

we will observe a left shifting of density to 0 compared to the distance from training

set to training set itself.

In figure 4.6, we can see that all our generative models, no matter the dependency

network, or the joint distribution models, do not show a sign of seriously over-fitting.

The generated samples are quite new, when compare to the training set. On the other

hand, the distance distribution gen→gen is also close the train→train. As stated under

the figure, gen→gen measures how close the samples from two different runs are. So

the results tell us that we can repeatedly sample from our models, and obtain synthetic

data that are quite different from each other.

Chapter 5

Empirical Techniques

The last chapter has shown that synthetic data generated by our approach can be used

as regularization in various tasks. The chapter below will move on to describe some

empirical techniques that could be useful in some circumstance when we apply the

synthetic data regularization. Some of these techniques do not show clear evidence

that they will improve performance in practice, but still, interesting phenomena have

been observed. We present experiments results here, and have a general empirical

guideline at the end of this chapter.

5.1 Randomized sampling order

As introduced in section 3.8, when we run sampling, a fixed order could be determined

at the beginning of each run, or we could have different sampling orders for each

individual initial samples (we call randomized sampling order in this thesis).

In this section, we would like to explore differences between the two. The con-

jecture is, on average, there should be no performance difference between the two.

However, if a randomized sampling order is adopted, we do not rely on a particular

order that is generated at the beginning. Thus we could avoid some unexpected bad

results due to a bad choice of sampling order, which totally relies on random number

generators.

In order to test our hypothesis, we design an experiment in such a way that only

one round of synthetic data is generated, and is fed into the final estimator together

with training data. We run the experiments for 100 times for both the case of a fixed

order and the case of a randomized order. To clarify the definition of a fixed order, the

order is fixed means all the samples share the same order in each run. But the orders

56

Chapter 5. Empirical Techniques 57

in 100 experiments are different from each other as they are randomly generated at the

beginning of each run. Moreover, it is also worthwhile to point out that the generative

model is the same for all the experiments, because it is the randomness of sampling

order that we care about here.

Figure 5.1: R2 on the HOUSES dataset (randomized order versus fixed order)

fixed order randomized order

0.52

0.54

0.56

0.58

0.60

0.62

0.64

R2
 sc

or
e

(a) One round of synthetic data is generated and fed into our estimator together with

training data (here the synthetic dataset has the same size of training set, please notice

that before we normally use more synthetic data than training data by running sam-

pling many times.). We run the experiment for 100 times, and record the R2 score for

each of them. The left box plot shows the situation when a fixed order is determined

at the beginning of each run, while the right box plot shows the situation when a ran-

domized sampling order is adopted.

(b) We denote Q1,Q2,Q3 (from small to big) as quartile values. The box extends from

Q1 to Q3, with a line Q2. The whiskers extend from Q1− IQR∗1.5 to Q3+ IQR∗1.5,

where IQR = Q3 −Q1. Outliers are those data points which past the end of the

whiskers.

Now we have 100 R2 scores for both sampling order options, and we show box plots

in figure 5.1 for comparison. From the figure, the medians of the two are very close.

Overall, we cannot draw conclusions about which one is better even on this particular

dataset. However, when a fixed order is adopted, we can observe a few outliers showing

Chapter 5. Empirical Techniques 58

extremely bad performance. This does not happen for the randomized order. To sum

up, at least on this particular HOUSES dataset, the results accord with our conjecture.

We also try to use the DIS measure to tell if the randomized order has advantages.

The synthetic data distributions will be slightly different from each other when sam-

pling orders are different. Intuitively when a randomized order is adopted, it is like

mixing all the sampling orders in one run. So the hypothesis is, the synthetic data will

be harder to discriminate when the randomized sampling order is adopted.

Table 5.1: A comparison of fixed order and randomized order in terms of DIS

Dataset RNA COVTYPE HOUSES

DIS (Gen, Train), fixed order 53.8% 55.12% 61.10%

DIS (Gen, Valid), fixed order 55.65% 56.18% 60.20%

DIS (Gen, Train), randomized order 52.40% 55.5% 58.30%

DIS (Gen, Valid), randomized order 54.2% 57% 58.1%

However, we cannot draw conclusions confidently according to the results in table

4.5. On the RNA and HOUSES datasets, the synthetic datasets are indeed closer to the

training set and validation set, when using a randomized order. But this is not true on

the COVTYPE dataset, actually, the DIS measure is even slightly higher.

5.2 A study of sampling temperature

As discussed in section 3.9, when NLL is used as the error function, we could end

up with a broad model that spreads out probability mass just to cover some outliers.

To avoid that, the notion of temperature could be introduced when sampling from the

model. The definition of sampling temperature is already provided in section 3.9.

To demonstrate the effect of temperature on the generated samples, we plot the

NLL against temperature in figure 5.2. All the data are taken at the end of the first

sampling round.

The figure clearly shows that smaller temperature leads to higher NLL. The obser-

vation is in accord with our intuition. When the temperature is small, we favour the

area with high probability density more than usual, so that more samples are generated

from these high density area. Thus we push up the NLL.

Chapter 5. Empirical Techniques 59

Figure 5.2: NLL of synthetic data against temperature on the AD

dataset

0.6 0.8 1.0 1.2 1.4
temperature

30

31

32

33

34

35

36

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d

Again, we should clarify that high NLL does not necessarily mean better regular-

ization performance. A natural question we want to ask is, should we introduce the

temperature as another hyper-parameter for our methods? Using synthetic data gen-

erated under different temperature, and feeding them into the estimators, we report

performance of the final task in figure 5.3. We deliberately make our training dataset

smaller, by only use 20% of training data. Also, because the results can depend on

which training set we are using, we run independent experiments using all the 5 train-

ing subsets. In figure 5.3, different curves correspond to different runs with different

training subsets. On the AD dataset, in all runs, a temperature of 1.2 or 1.3 is always

better than a temperature of 1.0. Therefore, we have the reason to believe that a tem-

perature of 1 is not the best setting, and tuning the temperature as a hyper-parameter

can improve the regularization performance in that task. However, this is not the case

when it comes to the HOUSES dataset. There is no obvious trend in all the curves.

It is worthwhile to point out again that, the definition of temperature in these two

examples are different. Because adding temperature to the mixture of Gaussian will

make computation intractable, we actually use a heuristic definition (see section 3.9.3)

which may not be right. It is still unclear if there exists a better computational tractable

approximation to the exponent of mixtures.

Chapter 5. Empirical Techniques 60

Is setting a higher temperature on the AD dataset indeed a better idea? The answer

may be negative. Previously, we conduct all the experiments on the validation set.

Now let’s try temperature 1.0,1.1,1.2,1.3 on the test set, and report the accuracy using

synthetic data regularization in figure 5.4. Because the test set is much bigger, the

sampling error is significantly reduced. Now you can see that the curves become quite

flat, and we cannot say there exists a better temperature than 1.

Chapter 5. Empirical Techniques 61

Figure 5.3: Performance (accuracy and R2) when feeding synthetic

data together with training data against sampling temperature on the

AD dataest and HOUSES dataset

0.6 0.8 1.0 1.2 1.4
temperature

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96
ac

cu
ra

cy
 (v

al
id

 se
t)

0.6 0.8 1.0 1.2 1.4
temperature

0.58

0.59

0.60

0.61

0.62

0.63

0.64

0.65

R2
 sc

or
e

(v
al

id
 se

t)

(a) Each curve corresponds to a different training set, and for each training

set, different temperatures are tested.

(b) The training set size is only 20% of the original one, in order to imitate

the situation when the generative model is untrustworthy.

(c) All the results in this figure is on validation sets.

Chapter 5. Empirical Techniques 62

Figure 5.4: R2 performance on the AD test dataset

1.00 1.05 1.10 1.15 1.20 1.25 1.30
temperature

0.88

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

ac
cu

ra
cy

 (t
es

t s
et

)

Chapter 5. Empirical Techniques 63

5.3 Pseudo importance sampling using a discriminator

Obviously, no matter how good our model is, there will always be discrepancy between

the true underlying distribution Ptrue(xxx,y) and the synthetic data generating distribu-

tion Pgen(xxx,y). Sometimes, the discrepancy is big if the data is particularly hard to

model. Theoretically, we are sampling from the synthetic data distribution, and try to

estimate expectations on the actual data distribution. So if we know exactly about the

two distribution, importance sampling could be used. Unfortunately, there is no way

to know the distributions. But it is possible for us to do something similar: We could

construct a binary classification task to tell whether the samples are from the actual

distribution Ptrue(xxx,y) or from the synthetic data distribution Pgen(xxx,y). The discrimi-

nator assigns probability p(xxx,y) to each synthetic data point, estimating how likely this

is a real sample instead of a synthetic one. If we fully trust this discriminator, then we

have

p(xxx,y) =
Ptrue(xxx,y)

Ptrue(xxx,y)+Pgen(xxx,y)
. (5.1)

So if we want to estimate

E(xxx,y)∼Ptrue(xxx,y)
[

f (x,y)
]
, (5.2)

but only have samples drawn from Pgen(xxx,y), instead we could estimate

E(xxx,y)∼Pgen(xxx,y)
[p(xxx,y)

1− p(xxx,y)
f (x,y)

]
. (5.3)

In the application of regularization, p(xxx,y) is assigned to each synthetic data point

by the discriminator, and we re-weight sample weights in the final estimator by multi-

plying a coefficient of p(xxx,y)
1−p(xxx,y) . Theoretically, this technique gives us the chance to put

less weights on those synthetic samples we do not trust, and increase the weights on

more promising samples.

Table 5.2: Re-weight samples with pseudo

importance sampling

Dataset OTTO HOUSES

GB + Syn 79.49% 0.6588

GB + Syn + Imp1 79.19% 0.6614

1 The synthetic data is re-weighted by

pseudo importance sampling.

Chapter 5. Empirical Techniques 64

Intuitively, this technique may be useful when our generative model is not good

enough. So we refer to table 4.5 and pick the OTTO and HOUSES datasets which

have the largest DIS accuracy. In table 5.2, pseudo importance sampling is applied

to re-weight the sample weights on both datasets. On the HOUSES dataset, there is

a slight improvement, but it is not true on the OTTO dataset. Therefore, we cannot

justify our hypothesis through this experiment, and further investigations are needed.

5.4 Creating diversified ensemble using synthetic data

Previously, the amount of synthetic data is K times as many as the training data. When

applying synthetic data regularization, all the synthetic data are fed into the final es-

timator together with training data. To avoid synthetic data becoming overwhelming,

sample weights are used to balance the two, so that training data and synthetic data

have equal total weights.

Table 5.3: Creating an ensemble using synthetic data

DataSet AD RCV1 RNA OTTO COVERTYPE HOUSES

SVM+Bagging 93.18% 85.16% 94.22% 75.54% 79.36% 0.6734
RF+Bagging 93.02% 87.12% 93.61% 77.29% 80.22% 0.6309

GB+Bagging 93.64% 86.26% 94.37% 78.55% 79.55% 0.6598

GB+Syn1 97.34% 86.61% 94.48% 79.49% 80.13% 0.6588

SVM+Syn Ensemble 95.34% 85.45% 94.43% 75.72% 79.53% 0.6598

RF+Syn Ensemble 93.74% 87.33% 94.05% 77.83% 80.69% 0.6415

GB+Syn Ensemble 95.25% 86.92% 94.58% 79.71% 80.52% 0.6658

1 Results in this row are taken from table 4.3 and table 4.4, where all synthetic data is fed into one

estimator.

In this section, we adopt a different way of using synthetic data. Instead of feeding

all the synthetic data into just one estimator, K estimators are created and form an

ensemble when predicting. The same amount of synthetic data as training data is used

in each estimator. In table 5.3, we compare performance using this kind of ensemble

to the previous versions. In addition, since we now benefit from ensemble methods,

it would be unfair to compare our results to the performance of a single estimator. So

we also create ensembles without synthetic data using bagging[4] and compare them to

Chapter 5. Empirical Techniques 65

our methods. On 4 of all the 6 datasets, ensembles using synthetic data achieve the best

performance so far. However, it is not our intention to creating a whole ensemble just

to achieve a slight improvement. This technique is attractive because of the following

reasons:

• There are methods or implementations that cannot deal with sample weights

well, for example, the sklearn implementation of random forest. In that case,

synthetic data will be overwhelming if they are fed into one estimator. We bypass

this issue by creating the ensemble, so that synthetic data regularization can be

applied to all the methods.

• There are methods that cannot scale well, for example SVM. So creating an

ensemble will be much faster than feeding all the synthetic data into just one

estimator.

• The algorithm is now more suitable for parallel computing by nature.

5.5 Auxiliary features

When we feed synthetic data together with training data into one estimator, the estima-

tor has no access to the information of whether a particular sample is synthetic. What

if we add an auxiliary feature to indicate whether this sample is actually generated,

instead of coming from the training set? It is potentially a good idea because now the

estimator is given the opportunity to decide whether to trust these synthetic data.

To be more formal, assuming the original dataset is D = {(xxxnnn,yn)}n=1,2,...,N , and

I(xxx,y) is an indicator of whether this sample is a synthetic one. Using I(xxx,y) as an aux-

iliary feature, now the dataset becomes D = {(x̄xxnnn,yn)}n=1,2,...,N , where x̄xx = [xxx, I(xxx,y)].

During test time, I(xxx,y) will always be set to 0.

We introduce this auxiliary feature on the AD dataset and HOUSES dataset. At

least on these two particular task, no clear improvements can be observed.

Chapter 5. Empirical Techniques 66

Table 5.4: Use auxiliary feature to indicate

whether the sample is a synthetic one

Dataset AD HOUSES

GB 94.13% 0.6298

GB+Syn1 97.34% 0.6588
GB+Syn+Aux1 97.05% 0.6555

1 Results in this row are taken from table 4.3 and

table 4.4.
2 One auxiliary feature is used to indicate whether

the sample is a synthetic one. The feature will

be set to 0 during test time.

5.6 Discretizing real value features

As discussed in the last chapter, our synthetic data regularization performs much better

on the categorical dataset than on the real value dataset. A natural idea would be, can

we just convert these real value features into discrete ones and model the conditional

distributions just like those for the categorical features? A typical way of conversion

is to discretize the values by splitting at quantiles, thus get ordinal features instead of

real values. We further apply one-hot encoding to these ordinal features and turn them

into categorical features. By discretizing, we lose information, but as we have much

better conditional distribution models for categorical features, it may be worthwhile to

try.

We test this technique on all our real value datasets, and show results in table

5.5. Here deciles calculated from training data are used as split points. Categorical

features are only used for our generative models, and we will convert them back to

ordinal values when training the final estimator. That is because the relative order of

these values is important for these tasks. Unfortunately, this technique did not improve

performance. The results turn out to be worse. However, we argue that this is not

because the information we lose by discretization, at least not the main reason. If

discretization is what should be blamed, then the second row in table 5.5 should be

much worse than the first row, and no significant improvement can be observed on the

third row. Clearly this is not the case. The results actually tell us, if we have more data,

even though the feature values are discretized, we can still achieve high performance.

Chapter 5. Empirical Techniques 67

Table 5.5: Discretizing real value features[2]

Dataset RNA COVTYPE HOUSES[3]

GB 94.23% 79.30% 0.6298

GB + Discretized1 93.68% 79.36% 0.6126

GB + Discretized (train x 2)4 93.83% 81.35% 0.6456

GB + Discretized + Syn 93.56% 78.62% 0.6110

1 Each real value features are divided by deciles calculated from training

data.
2 When we train the generative model, discretized features are processed by

one-hot encoding. However, when predicting, these features are converted

back to ordinal features.
3 The HOUSES dataset is a regression task, so the targets are not discretized.
4 Just as those in the previous tables, train x 2 means we double the training

set size using reserved data.

A possible explanation we can provide is, although we have good categorical con-

ditional distribution models, what we actually deal with are ordinal features. We give

up the information of relative order when applying one-hot encoding to them. So prob-

ably we can achieve better performance using this technique, if a good conditional

distribution model for ordinal features can be found.

5.7 Empirical guidelines

Many empirical techniques and procedures are introduced throughout the thesis, and

some of them are worthwhile to try only under certain circumstances. In this part, we

give a concise list of these techniques and summarize when they should be tried:

• Adding uniform noises to feature values (see section 4.1.2): It is recommended

when feature values are integers or indirectly calculated from integers, to avoid

putting too much probability mass on a single value.

• PCA (Principle Component Analysis) (see section 4.1.2): We recommend PCA

for all the dataset with real value features, as it will normally make the modeling

of conditionals much easier. When the attributes are of mixed types, PCA can

be applied to the subset of attributes taking real values.

Chapter 5. Empirical Techniques 68

• Randomized sampling order (see section 5.1): It is recommended when we want

to avoid extremely bad performance because of a poor sampling order choice.

This technique is not important when synthetic data are taken from different

runs and then combined together.

• Pseudo importance sampling (see section 5.3): There is no clear evidence that it

leads to performance improvement in our experiments. However, it is still worth

trying if we are not confident about our generative model, and want to adjust

weights on synthetic data.

• Creating an ensemble using synthetic data (see section 5.4): It is recommended

when inference speed is not an important issue. It should be adopted when our

final estimator cannot scale well or cannot deal with sample weights appropri-

ately.

• Using auxiliary features (see section 5.5): It shows no improvement in our ex-

periments, further investigations may be needed.

• Real value discretization (see section 5.6): We recommend to try it only when a

good conditional distribution model for ordinal features can be found.

Chapter 6

Further Investigations

This chapter presents some results and discussions that do not concern the central

arguments of this thesis, but are still very worthwhile to investigate. Only a few exper-

iments are conducted, but the discoveries turn out to be quite interesting, and may lead

to thorough investigations in the future.

6.1 An additional note on parameters sharing neural

network architecture

In section 4.2, we compare various conditional distribution models for categorical fea-

tures. There is an interesting phenomenon that neural network model with parameters

sharing actually outperforms the model without parameters sharing, no matter in terms

of negative log likelihood on the AD dataset, or in terms of final accuracy when syn-

thetic data regularization is applied. As discussed in section 3.2.2, parameters sharing

saves us lots of storage space and computing time. Consider all of these, at least on

this particular dataset, parameters sharing architecture is a better option. There are also

other models based on neural networks involves an architecture of parameters sharing,

such as NADE [38]. So it is worthwhile to devote more efforts to it.

In this part, we investigate this phenomenon further. Before, even though parame-

ters are not shared, we still use a global loss function based on pseudo likelihood (see

3.4), and all the neural network conditional distribution models share the same hyper-

parameters (number of layers, number of hidden units and so on.). All these constraints

could be relaxed. In fact, we are going to make the training of all conditional distri-

bution models totally independent. That is to say, each neural network has its own

69

Chapter 6. Further Investigations 70

loss function, pick its own hyper-parameters through cross validation, and apply early-

stopping separately. We plot the corresponding curve of NLL against sampling round

just like those in figure 4.1, and compare it to other neural network architecture and

gradient boosting in figure 6.1. As you can see, now our neural network model become

the model with lowest final NLL, even slightly lower than gradient boosting, which is

previously considered as the best model for categorical features.

Figure 6.1: Negative log likelihood against sampling round on the AD

dataset (A more flexible neural network model is explored)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
round

29

30

31

32

33

34

35

ne
ga

tiv
e

lo
g

lik
el

ih
oo

d

Gradient boosting
Neural network
Neural network (weights sharing)
Neural network (train separately)

However, low NLL does not mean good classification performance when we use

the model to generate synthetic data and train on them. We use the model described

above in synthetic data regularization, and achieves an accuracy of 95.45%, which is

worse than the original neural network model without parameters sharing (95.56%).

6.2 Other usages of synthetic data: knowledge distill-

ing

Although we mainly focus on regularization so far when demonstrating the application

of our synthetic data generating approach. There is no particular reason why we should

limit the usage of the generated synthetic data.

Chapter 6. Further Investigations 71

In this section, we demonstrate an example of using generated synthetic data for

knowledge distilling [6][21] (or namely model compression, teacher-student model)

on the HOUSES dataset.

At first, we would like to provide a brief introduction of knowledge distilling:

To be concise, we simplify a general machine learning problem as an approxima-

tion to an underlying function f (xxx) using a parameterized function, where xxx is the

inputs. If we have a complex high-performance model fA(xxx;θA), and a simple model

fB(xxx;θB). If fB is flexible enough, we could let fB learn from fA so that fB can possibly

achieve performance close to fA. Since fB is a simple model, the computational cost

for inference is low and the storage space for parameters is small. By compressing the

knowledge of fA into fB, we acquire a much simpler model which outperforms in terms

of computing time and storage, but still achieve similar performance for prediction.

As examples, we can distill the knowledge from a very deep neural network into

a shallow neural network, or from an ensemble of estimators into a single estimator.

Some online applications need fast inference, and only limited storage space can be

provided in devices like mobile phones. That is why knowledge distilling is often a

very useful method.

For a general machine learning problem, we need synthetic data in order to let fB

learn from fA. That is because our optimization objective is, assuming the mean square

error is used:

minExxx∼P(xxx)
[
(fB(xxx;θB)− fA(xxx;θA)

2], (6.1)

where P(xxx) is the distribution of inputs, which is normally unknown.

So instead, we should get enough samples from P(xxx), and use them as “teaching

examples”. For a general task, using only training data as examples is far from enough,

and this is where a synthetic data generating approach comes into play.

In [6], a pragmatic approach called MUNGE is used to generate synthetic data.

However, this approach cannot scale well, because we need to re-calculate distance

between data points at every update. So the computing time will grow quadratically

along with the training set size.

In this part, we use the HOUSES dataset as an example, and compress an ensemble

of SVM (which is the best model we have on this dataset) into a single estimator like

linear regression, random forest or gradient boosting.

As shown in table 6.1, the performance of a single random forest model and a

gradient boosting model is largely improved after distilling and has a performance that

is close to the teacher model. Unsurprisingly, we cannot compress our model into a

Chapter 6. Further Investigations 72

Table 6.1: Knowledge distilling using synthetic data on the HOUSES dataset

Estimator Linear regression Random forest Gradient boosting

R2 0.5898 0.6277 0.6298

R2 after distilling1 0.5680 0.6588 0.6682

R2, SVM+Bagging 0.6727

1 Linear regression, random forest and gradient boosting are student models, while

SVM+Bagging is the teacher model. Synthetic data generated by our approach is used

for knowledge distilling, instead of MUNGE in [6].

linear regression, as it is seriously under-fitting.

Chapter 7

Conclusions and Future Work

In this thesis, we develop a synthetic data generating approach based on the depen-

dency network model. We study all kinds of choices for conditional distribution mod-

els, and explore various parameters and options for both modeling and sampling. A

broad study of empirical techniques is also conducted. In this chapter, we summarize

the main points of this thesis and highlight some directions for future work.

7.1 Conclusion

First of all, although the conditional distribution models in a dependency network

could be inconsistent with each other, our approach works well in practice. we ob-

tain synthetic data which reflect the true underlying distribution well through sampling

from the model, and our model does not show a sign of over-fitting to the training data.

At least on the tested datasets, the sampler seems to reach an equilibrium distribution

quickly.

Secondly, regarding the conditional distribution models for categorical features,

GB (Gradient Boosting) outperforms other models, no matter in terms of the likeli-

hood of generated data, or in terms of synthetic data regularization performance, or in

terms of computational efficiency. (We later show in 6.1 that neural network could be

comparable to GB if they are trained separately, but computational cost is still much

bigger.) In the case of real value features, MDN (Mixture Density Network) works

fairly well, and shows a more stable performance than GAN (Generative Adversarial

Network). However, we believe that GAN could perform better if reasonable architec-

tures and appropriate training tricks could be thoroughly studied.

Thirdly, we tested our hypotheses on various datasets with limited training data.

73

Chapter 7. Conclusions and Future Work 74

With GB as the conditional distribution model, our synthetic data regularization works

very well on categorical datasets. If training data is insufficient, our approach can con-

tribute significant performance improvement. On the other hand, conditionals of real

value features seem to be much harder to model. With MDN as the conditional distri-

bution model, normally we can only observe a small improvement on the performance.

In addition, we give an empirical comparison between dependency network model

and joint distribution models like RBM and GMM. On categorical datasets, our model

clearly outperforms RBM as far as regularization is concerned. However, on real value

datasets, our model still loses to GMM.

What’s more, many empirical techniques are proposed throughout chapter 4 and

chapter 5, a detailed summary of conclusions can be found in 5.7.

Finally, knowledge distilling can be conducted successfully with our synthetic data

generating approach. If the computational cost of training the conditional distribution

model grows linearly with the training set size N (which is normally the case), the

overall computational cost of our approach is also linear with N. However, the cost of

MUNGE is O(N2M) (as discussed in 2.5.3). In that sense, our approach is superior

MUNGE when the training set is big.

7.2 Future work

Turning now to future work, our findings and analysis suggest the following directions

that would be interesting and potentially rewarding to explore in the future:

• The performance of our approach heavily depends on the choice of conditional

distribution models. While the results on categorical datasets are satisfactory,

we still need to find a better model as conditional distribution models for real

value features. We suggest more research could be conducted to improve GAN.

Specifically, we would like to design a good neural network architecture for

GAN, when using it as a conditional model in a general machine learning prob-

lem. We also need to explore the best practices in order to acquire stable perfor-

mance.

• If a high-performance conditional distribution model for real value features is

hard, then another direction would be discretizing the values by quantiles. How-

ever, we have already shown that, in order to make it work, we may need a better

model to deal with ordinal features.

Chapter 7. Conclusions and Future Work 75

• For synthetic data regularization, we believe that giving our system a mechanism

to discard or put less weights on untrustworthy synthetic samples is a promising

direction to further enhance performance. Roughly speaking, our exploration on

pseudo importance sampling and auxiliary features are examples of such efforts.

• The number of conditional distribution models grows linearly with the number

of attributes, so for a problem with a large number of features, our approach will

be unacceptably slow. So more efforts should be devoted to studying how to

overcome this difficulty. Sharing parameters between models could be a starting

point.

• Because we can define an arbitrary loss function for XGBoost [10] (an efficient

implementation of gradient boosting), we could use it to estimate parameters

of a GMM. So in fact, XGBoost can be used to model real-valued conditional

distributions. We tried this idea, but the performance is bad. It’s still unclear

whether this is due to the XGBoost implementation, or gradient boosting is not

suitable for this task. More work could be devoted, because potentially we could

find a good conditional distribution model for real-valued features.

Bibliography

[1] ABADI, M., AGARWAL, A., BARHAM, P., BREVDO, E., CHEN, Z., CITRO,

C., CORRADO, G. S., DAVIS, A., DEAN, J., DEVIN, M., GHEMAWAT, S.,

GOODFELLOW, I., HARP, A., IRVING, G., ISARD, M., JIA, Y., JOZEFOWICZ,

R., KAISER, L., KUDLUR, M., LEVENBERG, J., MANÉ, D., MONGA, R.,

MOORE, S., MURRAY, D., OLAH, C., SCHUSTER, M., SHLENS, J., STEINER,

B., SUTSKEVER, I., TALWAR, K., TUCKER, P., VANHOUCKE, V., VASUDE-

VAN, V., VIÉGAS, F., VINYALS, O., WARDEN, P., WATTENBERG, M., WICKE,

M., YU, Y., AND ZHENG, X. TensorFlow: Large-scale machine learning on het-

erogeneous systems, 2015. Software available from tensorflow.org.

[2] BERGSTRA, J., AND BENGIO, Y. Random search for hyper-parameter optimiza-

tion. Journal of Machine Learning Research 13, Feb (2012), 281–305.

[3] BISHOP, C. M. Mixture density networks.

[4] BREIMAN, L. Bagging predictors. Machine learning 24, 2 (1996), 123–140.

[5] BREIMAN, L. Random forests. Machine learning 45, 1 (2001), 5–32.

[6] BUCILU, C., CARUANA, R., AND NICULESCU-MIZIL, A. Model compression.

In Proceedings of the 12th ACM SIGKDD international conference on Knowl-

edge discovery and data mining (2006), ACM, pp. 535–541.

[7] BUITINCK, L., LOUPPE, G., BLONDEL, M., PEDREGOSA, F., MUELLER, A.,

GRISEL, O., NICULAE, V., PRETTENHOFER, P., GRAMFORT, A., GROBLER,

J., ET AL. Api design for machine learning software: experiences from the scikit-

learn project. arXiv preprint arXiv:1309.0238 (2013).

[8] CARREIRA-PERPINAN, M. A., AND HINTON, G. E. On contrastive divergence

learning. In Aistats (2005), vol. 10, pp. 33–40.

76

Bibliography 77

[9] CHANG, C.-C., AND LIN, C.-J. Libsvm: a library for support vector machines.

ACM transactions on intelligent systems and technology (TIST) 2, 3 (2011), 27.

[10] CHEN, T., AND GUESTRIN, C. Xgboost: A scalable tree boosting system. In

Proceedings of the 22nd acm sigkdd international conference on knowledge dis-

covery and data mining (2016), ACM, pp. 785–794.

[11] CHOLLET, F., ET AL. Keras. https://github.com/fchollet/keras, 2015.

[12] CUI, X., GOEL, V., AND KINGSBURY, B. Data augmentation for deep neu-

ral network acoustic modeling. IEEE/ACM Transactions on Audio, Speech and

Language Processing (TASLP) 23, 9 (2015), 1469–1477.

[13] DEMPSTER, A. P., LAIRD, N. M., AND RUBIN, D. B. Maximum likelihood

from incomplete data via the em algorithm. Journal of the royal statistical society.

Series B (methodological) (1977), 1–38.

[14] FRIEDMAN, J. H. Greedy function approximation: a gradient boosting machine.

Annals of statistics (2001), 1189–1232.

[15] FRIEDMAN, J. H. Stochastic gradient boosting. Computational Statistics & Data

Analysis 38, 4 (2002), 367–378.

[16] GLOROT, X., AND BENGIO, Y. Understanding the difficulty of training deep

feedforward neural networks. In Proceedings of the Thirteenth International

Conference on Artificial Intelligence and Statistics (2010), pp. 249–256.

[17] GOODFELLOW, I., POUGET-ABADIE, J., MIRZA, M., XU, B., WARDE-

FARLEY, D., OZAIR, S., COURVILLE, A., AND BENGIO, Y. Generative ad-

versarial nets. In Advances in neural information processing systems (2014),

pp. 2672–2680.

[18] GUNN, S. R., ET AL. Support vector machines for classification and regression.

[19] HECKERMAN, D., CHICKERING, D. M., MEEK, C., ROUNTHWAITE, R., AND

KADIE, C. Dependency networks for inference, collaborative filtering, and data

visualization. Journal of Machine Learning Research 1, Oct (2000), 49–75.

[20] HINTON, G. A practical guide to training restricted boltzmann machines. Mo-

mentum 9, 1 (2010), 926.

https://github.com/fchollet/keras

Bibliography 78

[21] HINTON, G., VINYALS, O., AND DEAN, J. Distilling the knowledge in a neural

network. arXiv preprint arXiv:1503.02531 (2015).

[22] IOFFE, S., AND SZEGEDY, C. Batch normalization: Accelerating deep network

training by reducing internal covariate shift. In International Conference on Ma-

chine Learning (2015), pp. 448–456.

[23] JONES, E., OLIPHANT, T., PETERSON, P., ET AL. SciPy: Open source scientific

tools for Python, 2001–.

[24] KINGMA, D., AND BA, J. Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980 (2014).

[25] KRIZHEVSKY, A., SUTSKEVER, I., AND HINTON, G. E. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information

processing systems (2012), pp. 1097–1105.

[26] LICHMAN, M. UCI machine learning repository, 2013.

[27] LIN, H.-T., LIN, C.-J., AND WENG, R. C. A note on platts probabilistic outputs

for support vector machines. Machine learning 68, 3 (2007), 267–276.

[28] MIRZA, M., AND OSINDERO, S. Conditional generative adversarial nets. arXiv

preprint arXiv:1411.1784 (2014).

[29] MURRAY, I. Markov chain monte carlo.

[30] NABNEY, I. NETLAB: algorithms for pattern recognition. Springer Science &

Business Media, 2002.

[31] NAIR, V., AND HINTON, G. E. Rectified linear units improve restricted boltz-

mann machines. In Proceedings of the 27th international conference on machine

learning (ICML-10) (2010), pp. 807–814.

[32] NICULESCU-MIZIL, A., AND CARUANA, R. Predicting good probabilities with

supervised learning. In Proceedings of the 22nd international conference on Ma-

chine learning (2005), ACM, pp. 625–632.

[33] PACE, R. K., AND BARRY, R. Sparse spatial autoregressions. Statistics & Prob-

ability Letters 33, 3 (1997), 291–297.

Bibliography 79

[34] PLATT, J., ET AL. Probabilistic outputs for support vector machines and com-

parisons to regularized likelihood methods. Advances in large margin classifiers

10, 3 (1999), 61–74.

[35] RAVIV, Y., AND INTRATOR, N. Bootstrapping with noise: An effective regular-

ization technique. Connection Science 8, 3-4 (1996), 355–372.

[36] SIMARD, P., VICTORRI, B., LECUN, Y., AND DENKER, J. Tangent prop-a for-

malism for specifying selected invariances in an adaptive network. In Advances

in neural information processing systems (1992), pp. 895–903.

[37] SRIVASTAVA, N., HINTON, G. E., KRIZHEVSKY, A., SUTSKEVER, I., AND

SALAKHUTDINOV, R. Dropout: a simple way to prevent neural networks from

overfitting. Journal of machine learning research 15, 1 (2014), 1929–1958.

[38] URIA, B., MURRAY, I., AND LAROCHELLE, H. A deep and tractable density

estimator. In ICML (2014), pp. 467–475.

[39] VINCENT, P., LAROCHELLE, H., BENGIO, Y., AND MANZAGOL, P.-A. Ex-

tracting and composing robust features with denoising autoencoders. In Pro-

ceedings of the 25th international conference on Machine learning (2008), ACM,

pp. 1096–1103.

[40] WALT, S. V. D., COLBERT, S. C., AND VAROQUAUX, G. The numpy array: a

structure for efficient numerical computation. Computing in Science & Engineer-

ing 13, 2 (2011), 22–30.

[41] WOLD, S., ESBENSEN, K., AND GELADI, P. Principal component analysis.

Chemometrics and intelligent laboratory systems 2, 1-3 (1987), 37–52.

[42] XU, J. Informatics research proposal.

	Introduction
	Motivation
	Objective
	Contributions
	Overview

	Background
	Preliminary
	Classification task and regression task
	Generative model and discriminative model
	Overfitting and underfitting
	Cross validation

	Markov chain Monte Carlo and Gibbs sampling
	Restricted Boltzmann machine
	Model structure
	Sampling from RBM
	Training algorithm: contrastive divergence

	Gaussian mixture model
	Gaussian mixture distribution
	Sampling from GMM
	Training GMM: expectation-maximization algorithm

	Synthetic data generating approaches
	Approaches based on generative models
	Modifying training data
	Discussion

	Regularization
	L1 and L2 regularization
	Early-stopping
	Tangent propagation

	Feeding synthetic data as regularization

	A Synthetic Data Generating Approach
	Dependency network
	Definition
	Inconsistency
	Sampling
	Pseudo likelihood

	Neural network as a model of conditionals
	Neural network
	Parameters sharing

	Calibrated classifiers
	Random forest
	Mixture density network
	Model structure
	Initialization of MDN

	Generative adversarial network as a model of conditionals
	Adversarial network
	Sampling from GAN
	An architecture to model conditionals

	An intermediate summary
	Randomized sampling order
	Introducing sampling temperature
	Motivation
	Formal Definition
	A heuristic definition for Gaussian mixture model

	DIS: A measure of synthetic data quality using a discriminator
	Definition
	Notes
	Why we need this?

	Synthetic Data for Regularization
	An introduction of default experiments settings
	Datasets
	Pre-processing
	Metrics
	Default settings for training neural network
	Randomized parameter optimization
	A convention of feeding synthetic data
	Implementation

	A comparison of conditional distribution models for categorical features
	Synthetic data regularization on categorical datasets
	Mixture density network and generative adversarial network
	An extension to real-valued datasets
	DIS measure on all datasets
	How much synthetic data should we use?
	An empirical comparison to other approaches
	How ``close'' are synthetic data and training data?

	Empirical Techniques
	Randomized sampling order
	A study of sampling temperature
	Pseudo importance sampling using a discriminator
	Creating diversified ensemble using synthetic data
	Auxiliary features
	Discretizing real value features
	Empirical guidelines

	Further Investigations
	An additional note on parameters sharing neural network architecture
	Other usages of synthetic data: knowledge distilling

	Conclusions and Future Work
	Conclusion
	Future work

	Bibliography

