
Investigating the Ability of Neural

Networks to Learn Simple

Modular Arithmetic

Theodoros Palamas

Master of Science

School of Informatics

University of Edinburgh

2017

Abstract
Neural networks are computing systems built to learn to do certain tasks by analyzing

examples that are representative of that task, and progressively improve themselves, in-

stead of being specifically programmed for that task. They were developed during the

1960s and were inspired by the neural structure of the human brain. Initially, research

was scarce, mainly due to the fact that the computers of that era did not have enough

processing power to handle the training of large neural networks yet. As computer

hardware got better, however, advances in neural networks were slowly made. It was

only until recent years, along with with advances in parallel programming and GPU

processing, that neural networks became of interest again, leading to an explosion in

research activity. They have found application and have been successful in many areas,

including speech recognition, natural language processing, computer vision, medical

diagnosis and have even learned to play board and video games. One common char-

acteristic of the tasks in these areas is that they cannot be easily solved by specifically

programming for them, hence the success of neural networks. An interesting question

then is: How can a neural network handle an already solved problem that has a specific

algorithmic solution? To get a glimpse of their capabilities in such an environment we

will investigate whether various neural network architectures can learn simple modular

arithmetic, i.e. whether they can learn to predict the remainder of an integer modulo

another integer. Our results show that neural networks struggle with this task, not be-

ing able to outperform random chance in most cases. There is also some evidence that

the networks might be memorizing instead of learning.

i

Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Theodoros Palamas)

ii

Table of Contents

1 Introduction 1
1.1 The Strength Of Neural Networks 1

1.2 Motivation . 2

1.3 The Task . 3

1.4 Related Work And Contribution . 4

1.5 Thesis Outline . 5

2 Background 6
2.1 Perceptron . 6

2.2 Architectures . 7

2.2.1 Feed-forward . 7

2.2.2 Convolutional . 10

2.2.3 Recurrent . 14

2.3 Training . 15

2.3.1 Datasets . 16

2.3.2 Optimization . 17

2.3.3 Training Issues . 19

3 Experimental Setup 22
3.1 Task . 22

3.2 Datasets . 23

3.3 Metrics . 24

3.4 Technical Details . 24

3.5 Hyperparameter Optimization . 24

3.6 Architectural Experiments . 27

3.6.1 Feed-forward . 27

3.6.2 Convolutional . 28

iii

3.6.3 Recurrent . 29

3.7 Regularization Experiments . 30

3.8 Dataset Experiments . 32

4 Results 34
4.1 Multi-class Task . 34

4.1.1 Initial Feed-forward Search 34

4.1.2 Specialized Architectures . 38

4.1.3 Regularization . 39

4.1.4 Data Modifications . 39

4.2 Binary-class Task . 42

4.2.1 Initial Feed-forward Search 42

4.2.2 Specialized Architectures . 44

4.2.3 Regularization . 45

4.2.4 Data Modifications . 45

5 Discussion 48
5.1 Initial Feed-forward Search . 48

5.2 Specialized Architectures . 49

5.3 Regularization . 50

5.4 Data Modifications . 51

5.5 General Discussion . 52

6 Conclusion 55
6.1 Summary . 55

6.2 Critique . 55

6.3 Further Work Suggestions . 56

Bibliography 57

iv

List of Figures

2.1 A simple perceptron. 7

2.2 A simple feed-forward network. 8

2.3 The form of the sigmoid function. 9

2.4 The connections of the first unit of a convolutional layer. 11

2.5 The connections of the second unit of a convolutional layer. 11

2.6 The feature maps of a convolutional layer. 12

2.7 Pooling of a single feature map. 13

2.8 Pooling of an entire convolutional layer. 13

2.9 A recurrent neural network and its unrolling. 14

2.10 An example of dropout. 21

4.1 Training accuracy for networks trained on modulus 3. 35

4.2 Validation accuracy for networks trained on modulus 3. 35

4.3 Validation accuracy for networks trained on modulus 2. 36

4.4 Validation accuracy for networks trained on modulus 6. 36

4.5 Confusion matrix for FF28-B6. 37

4.6 Confusion matrix for FF28-B10. 38

4.7 Confusion matrix for FF29-D2-LAST34. 40

4.8 Confusion matrix for FF29-D5-LAST34. 40

4.9 Confusion matrix for FF29-D10-LAST34. 41

4.10 Confusion matrix for FF29-B4-REM3. 41

4.11 Confusion matrix for FF29-D4-REM3. 42

4.12 Training accuracy for networks trained on modulus 3. 43

4.13 Validation accuracy for networks trained on modulus 3. 43

4.14 Confusion matrix for FF29-D2-LAST34. 46

4.15 Confusion matrix for FF29-D5-LAST34. 46

4.16 Confusion matrix for FF29-D10-LAST34. 47

v

4.17 Validation accuracy for FF29-(B/D)3 trained on the SKEW datasets. . 47

vi

List of Tables

4.1 Feed-forward accuracies at the end of training. 35

4.2 Specialized architecture accuracies at the end of training. 38

4.3 Regularization technique accuracies at the end of training. 39

4.4 Feed-forward accuracies at the end of training. 42

4.5 Specialized architecture accuracies at the end of training. 44

4.6 Regularization technique accuracies at the end of training. 45

vii

Chapter 1

Introduction

In this first section we will provide context about the achievements of neural networks,

discuss our motivations for choosing modular arithmetic and briefly describe the task.

We will also provide relevant literature and an outline of the thesis.

1.1 The Strength Of Neural Networks

From the moment research activity begun on neural networks and until today, they have

been applied to numerous areas, in which they have been very successful in learning

difficult tasks, for which there is no apparent algorithmic solution.

Some of the early research involves handwriting recognition. It was shown that they

were better at recognizing handwritten digits and letters than systems with hand-designed

heuristics (LeCun et al., 1998) and achieving high accuracy in general (LeCun et al.,

1990; Knerr et al., 1992; Martin and Pittman, 1990).

In speech recognition they were very successful in recognizing single words from set of

noisy confusable words (Lang et al., 1990), continuous speech (Bourlard and Morgan,

1993; Hinton et al., 2012a) and phonemes (Waibel, 1989; Waibel et al., 1989; Mo-

hamed et al., 2012). Their performance improved with the usage of recurrent neural

networks (Graves et al., 2013).

They have also found application in natural language processing, in which they have

made great progress by being able to analyze word sequences and recognize the un-

derlying semantic and grammatical roles (Bengio et al., 2003; Collobert and Weston,

1

Chapter 1. Introduction 2

2008), as well as parse sentences (Pei et al., 2015; Chen and Manning, 2014; Durrett

and Klein, 2015; Weiss et al., 2015).

In recent years, mainly due to the increase in processing power, they have exploded

in the area of computer vision and image classification, where convolutional neural

networks have been applied in a large degree. They have performed exceptionally well

in classifying images from various datasets and especially ImageNet, which is one of

the largest and most diverse ones (He et al., 2016; Szegedy et al., 2015; Krizhevsky

et al., 2012; Goodfellow et al., 2013; Zeiler and Fergus, 2014; Oord et al., 2016).

Neural networks have also begun making strides in the area of medical diagnosis, in

which they have managed to diagnose lung cancer (Ganesan et al., 2010), colorectal

cancer (Bottaci et al., 1997) and recognize invasive cancer cells using only their shape

(Lyons et al., 2016).

We should also mention that they have managed to learn to play simple video games

(Mnih et al., 2013) and even have defeated the human European champion in the game

of Go (Silver et al., 2016), which has been considered a board game more difficult than

chess and has posed a great challenge for AI.

One of the main reasons why they have been so successful is their representational

power. It has been proven that a neural network with a single hidden layer that contains

a finite number of units can approximate any real continuous function (Cybenko, 1989;

Hornik, 1991; Mhaskar, 1993; Hornik et al., 1989). However, these are not guarantees

that they can learn these functions by themselves and even if they can it says nothing

about how fast they can do it. Recently, there have been some research activity on these

matters. It is shown that neural networks can learn any low-degree polynomial (Andoni

et al., 2014) and that there are some cases where training specific network architectures

can be achieved in polynomial time (Livni et al., 2014; Arora et al., 2014), while in

general it has been shown that finding the optimal weights is NP-hard (Bartlett and

Ben-David, 1999; Blum and Rivest, 1989).

1.2 Motivation

The motivation behind this thesis is of two kinds: short-term and long-term. The short

term motivation is the success of neural networks itself. They have found application in

many tasks that are extremely difficult to solve by specifically programming for them,

Chapter 1. Introduction 3

if any such solution exists at all. But this is what they were designed for. It would

be very interesting to see what they can do in a task that is already algorithmically

solvable and that has been easily calculated by computers for a long time. This is

why we chose modular arithmetic. On might wonder why we chose it over addition or

multiplication. The reason behind this is because, intuitively, these operations seem far

simpler to learn. We have very specific rules for how to add or multiply two integers,

which are universal and we can apply just by looking at them. However, the case is

not so simple for modular arithmetic. While there are some such simple rules, like

checking the last digit of an integer to find its remainder mod2, these do not apply to

the majority of moduli. To find whether the remainder of an integer mod3 is 0 we need

to sum its digits and check the result for the same condition, which does not directly

solve the problem but rather transforms it into a simpler one. Still, this same rule

cannot be applied to other moduli and for some of them we even need to execute a

division algorithm. We would therefore like to see whether a neural network can learn

such rules.

Then there is the long-term motivation, which might seem to border the impossible

but it is quite intriguing. Let us assume that in the future, neural networks do indeed

learn modular arithmetic and that they learn it for large integers. A possible next step,

then, could be to try and teach them how to factorize large integers. If they even

learn to do that, then the only thing we would need, is for the training process to be

faster than the factorization algorithm. The implications of such an achievement would

be tremendous for cryptography and especially RSA cryptosystems whose security

guarantees are based on the fact that factorization is extremely difficult. Again, even

though this might seem far-fetched, it would be wise to at least consider the possibility.

1.3 The Task

In this thesis we will investigate the capability of neural network architectures to learn

modular arithmetic by treating it as a classification problem. The congruence relation

n ≡ r(mod p) can be seen as classifying n to one of p classes depending on the re-

mainder r that their Euclidean division produces. Our datasets consist of randomly

generated 128-bit integers. We will initially test several feed-forward networks for

small moduli p. We will continue by trying to improve some of these results with con-

volutional and recurrent networks, followed by regularized feed-forward ones. Finally,

Chapter 1. Introduction 4

we will test some of the initial networks on modified datasets. The point of this thesis

is to test whether the networks can make the correct classifications just by looking at

the integers, and therefore the feature vectors of our datasets will consist only of their

digits with no feature engineering.

1.4 Related Work And Contribution

The first pieces of related work come to us from the 1990s. During that period neural

networks were also studied simply as circuits that could be implemented to calculate

basic arithmetic operations. It was shown that feed-forward neural networks of up to

five layers could compute very fast addition, multiplication, division and other opera-

tions (Siu and Bruck, 1990; Siu et al., 1993; Franco and Cannas, 1998). However, the

networks in question were not trained but rather their weights were fixed and set by

hand. Nevertheless, this research indicates that there are indeed weights that render the

network able to compute these operations.

Another area of interest that neural networks are starting to show some progress re-

cently, is that of learning program execution. They have been taught how to execute

with high accuracy simple programs like copying, sorting and addition (Zaremba and

Sutskever, 2014; Reed and De Freitas, 2015; Graves et al., 2014). While this is not

exactly like learning addition just by looking at examples of integers and their result, it

can be seen in a sense as such, and is much closer to what we are trying to accomplish.

The aim of this thesis is different from what we have discussed above in two ways.

First of all, we are trying to teach a neural network modular arithmetic by training with

examples and not setting the weights by hand. Furthermore we are trying to achieve

this not by teaching it an algorithm, like Euclidean division, that has already been

used to solve the problem, but rather let the network itself recognize any underlying

structure that an integer has, which might determine its remainder. Something similar

was done for addition (Hoshen and Peleg, 2016), where it was shown that a neural

network could add 7-digit integers with high accuracy.

Chapter 1. Introduction 5

1.5 Thesis Outline

In chapter one we gave a brief introduction on the general standing of neural networks

as of recently. We also provided motivation for choosing to investigate modular arith-

metic and briefly described the task at hand, as well as presented literature that could

be considered relevant to our work.

In chapter two we will describe in more detail the three core neural network architec-

tures that will be used in our experiments: feed-forward, convolutional and recurrent.

We will also discuss the training process of neural networks, from how we use the

available data to how the networks are actually trained and we will also consider some

of the most common issues that emerge during that process.

In chapter three we will describe in more detail the task at hand and our experimental

setup. We will present our datasets, the technical details of our environment and a brief

introduction on hyperparameter optimization. This will be followed by the description

of the experiments, which consist of testing several neural network architectures, some

regularization methods and finally, some modifications on the datasets themselves.

In chapter four we will present the results produced by the experiments described in

chapter three. They show that the vast majority of the networks we trained was no

better than random chance and in the cases that they seemed to be learning, evidence

leads us to believe that they were instead memorizing.

In chapter five we will provide a thorough discussion on the results of our different sets

of experiments, as well as some general remarks, in the context of the achievements of

neural networks and relevant literature.

We will conclude in chapter five by summarizing our findings, providing critique on

our experimental process and suggesting ideas for further work that might prove fruit-

ful in the future.

Chapter 2

Background

In this section we will present some background about neural networks, which are the

core elements of our experimentation. We will start with a brief introduction about

their origins and then continue with the description of some widely used architectures,

as well as the process with which they are trained.

2.1 Perceptron

Before neural networks evolved into the more sophisticated versions that we see today,

we had the perceptron. Inspired by the workings of the neurons in the human brain, it

was developed in the 1960s (Rosenblatt, 1961).

Generally speaking, a neuron receives input signals from other neurons and depending

on whether the combination of those signals exceeds a certain threshold, it produces

a signal that is in turn transmitted to other neurons. Similarly, the basic model of a

perceptron takes a number of inputs, computes a weighted sum of them, as well as

adding a bias and finally outputs 1 or 0 depending on whether the computed quantity

is positive or not. Below we have the formula for the perceptron in Figure 2.1.

f (x1,x2,x3) =

1, if w1x1 +w2x2 +w3x3 +b > 0

0, otherwise

The weights wi and bias b are the learnable parameters of the perceptron that are de-

termined through training. The weights control the importance of each input and the

6

Chapter 2. Background 7

Figure 2.1: A simple perceptron.

Source: http://neuralnetworksanddeeplearning.com/

bias controls how easy it is for the perceptron to output 1. This simple mathematical

model can serve as a binary linear classifier. Linear because the decision is made using

a linear combination of the inputs and binary because the output is either 1 or 0.

Modern neural networks are composed of units (sometimes called neurons), that are

based on the simple perceptron model mentioned above.

2.2 Architectures

Throughout the years, several neural network architectures have been proposed and

have been used. Here, we will focus on feed-forward networks, which are the sim-

plest and also the stepping stone for the development of many of the rest, as well as

convolutional and recurrent networks which have been prominent recently due to their

success.

2.2.1 Feed-forward

One of the earliest neural network architectures are the feed-forward networks. They

are composed of a stack of layers which themselves are composed of units similar to

perceptrons. Each unit within a layer has as inputs the outputs of all the units from the

previous layer and its output is directed to all the units of the next layer. However, units

within a layer share no connection whatsoever between them. Due to the units between

layers being fully pairwise connected, this type of layer is also called a fully-connected

layer. The weights and the biases of each unit in the network constitute the totality of

its learnanble parameters and are commonly used to measure its size.

Chapter 2. Background 8

This structure is also the reason why they are called feed-forward. Due to the way the

layers are connected, they form an acyclic graph and therefore the information flows

form one end of the network to the other without any loops. For historical reasons,

feed-forward networks may also rarely be called multilayer perceptrons, which is not

entirely accurate since most of the time the units are not pure peceptrons.

In Figure 2.2 we can see a feed-forward network composed of five layers.

Figure 2.2: A simple feed-forward network.

Source: http://neuralnetworksanddeeplearning.com/

The leftmost layer is called the input layer. This layer does not consist of actual units

but instead these are the features of our data that are fed into the next layer. In an image

classification task, for example, the features are usually the pixel values of the image

and in a natural language processing task they can be the words in a sentence. When

we talk about the number of layers of a network we do not count the input layer.

The next three layers are called hidden layers and their number can vary depending

on the task. As we mentioned earlier, they do not actually consist of perceptrons, but

modified versions of them. The reason behind that is that perceptrons make the training

process difficult to control. As we train the parameters, small adjustments can cause

certain perceptrons to flip, which in turn can cause a cascade of sudden flips in the rest

of the network. Even though these changes may cause some datapoints to be predicted

correctly, it is quite possible that they have caused the network to behave in a drastically

different way on other datapoints. This makes it difficult to adjust the parameters

Chapter 2. Background 9

accurately in order to smoothly reach their desired values. The way we solve this

issue is by using what is called an activation function. As we saw earlier, perceptrons

compute a weighted sum of their inputs and they output a binary outcome depending

on whether this sum is positive or not. With activation functions, however, we don’t

produce a binary output. We pass the weighted sum through the function, which is

smoother, and output its outcome. Historically, the most used activation function is the

sigmoid (f (x) = 1/(1+ e−x)).

Figure 2.3: The form of the sigmoid function.

Source: https://en.wikipedia.org/wiki/Sigmoid function

Sigmoids produce values between 0 and 1 and in contrast with perceptrons, the transi-

tion between them is smooth and gradual. There have been proposed many other acti-

vation functions, like the hyperbolic tangent (f (x) = (ex− e−x)/(ex + e−x)) which has

a form similar to the sigmoid and the rectified linear unit (ReLU) (f (x) = max(0,x))

which has been vary popular in recent years.

Finally, we have the rightmost layer, which is called the output layer and its output

is taken as a prediction made for a certain datapoint. This layer does not use any

activation functions (or we can say that it uses the identity activation function f (x) =

x) because the outputs of its units represent different things depending on the task.

For a regression task this can be some real-valued target and for a classification task

it can be the scores of the different classes. We should also mention that while in

regression we can take the prediction of the output layer as is, in classification we

often want a probability distribution over the different classes. To accomplish that we

use a softmax activation function (fi(x) = exi/∑
N
j=1 ex j where x is a vector of length

N) on the output layer. This function takes the class scores and transforms them to

make them all positive and add up to 1, in order to be interpreted as a distribution.

Chapter 2. Background 10

2.2.2 Convolutional

Throughout the years, other neural network architectures have also been developed,

that thrive in areas where simple feed-forward networks could not perform very well.

One such architecture is the convolutional neural network (LeCun et al., 1998). The

structure of these networks is very well-suited for the task of image classification and

in recent years their use has increased considerably.

Convolutional neural networks utilize two new types of layers, the convolutional and

the pooling layer. Their general structure consists of a stack of convolutional layers

with pooling layers in-between some of them, followed by a few of the fully-connected

layers that feed-forward networks use.

The convolutional layer is the one that makes these networks perform very well in im-

age recognition tasks and its main difference from a fully-connected layer is structural.

Since every unit in a fully-connected layer connects with every unit in the next layer,

it is unable to take into account any spatial properties of the data that might be useful.

In an image classification task, for example, pixels close to one another share greater

dependencies that those far apart. A layer that treats all pixels the same way will have

difficulties differentiating between images. The convolutional layer, however, is struc-

tured in a way that takes advantage of any spatial properties that might exist. At this

point it should be better to think of the layers of the network as a square of units instead

of a line as we did for feed-forward networks. Now, instead of a unit being connected

to every unit in the previous layer, it is only connected to a small window of units,

which is called its local receptive field. These connections are the weights associated

with that unit and we also have a bias. The units of the convolutional layer behave

similarly to those of a fully-connected layer, but instead of a simple weighted sum,

they compute a 2-D convolution (hence the name) and then pass the result through an

activation function to the next layer. In Figure 2.4 and Figure 2.5 we can see an ex-

ample of this kind of connectivity, where each unit is connected to a 5x5 area of the

previous layer. As we move to the next unit, the local receptive field also moves, which

can be thought of as sliding a window over the previous layer. Using this process we

construct the convolutional layer.

Its size is determined by two factors: the size of the local receptive field and the stride.

The stride is how many units the local receptive field slides when we move to the next

unit of the convolutional layer (it is 1 for both dimensions in our example). The size

Chapter 2. Background 11

Figure 2.4: The connections of the first unit of a convolutional layer.

Source: http://neuralnetworksanddeeplearning.com/

Figure 2.5: The connections of the second unit of a convolutional layer.

Source: http://neuralnetworksanddeeplearning.com/

Chapter 2. Background 12

of the convolutional layer will usually be smaller since the local receptive field cannot

move outside the limits of the previous layer. In cases, however, where we want to keep

the same size we can use zero padding, which means that we allow the local receptive

field to go outside the limits and treat this extra area as consisting entirely of zeros.

Another important reason that convolutional layers are so good at detecting spatial

properties is the fact that all the units within the layer share the same weights and bias.

As a consequence all the units of a convolutional layer will detect the same feature (in

the case of images it can be an edge or some other shape for example), but each unit

will do that in a different position on the previous layer. This gives the convolutional

layer the ability to be translation-invariant with respect to features. This group of units

that share weights and bias is usually called a feature map and the shared weights and

bias themselves are called a kernel or filter. In our example, the convolutional layer

consists only of one feature map, but almost always we stack many different ones

together in order to detect different features, as we can see in Figure 2.6.

Figure 2.6: The feature maps of a convolutional layer.

Source: http://neuralnetworksanddeeplearning.com/

This seems to add a third dimension or depth to the way we think about the layout of

the units in the convolutional layer. This is not a problem since we can also extend the

local receptive field of the next layer with a third dimension to cover this case. It is

common practice for the size of the local receptive field depth of the next layer to be

equal to the number of feature maps of the previous layer. We also use no zero padding

in this dimension, which means that the local receptive field will only be sliding in two

dimensions. In the end, each convolutional layer scans the previous one as if it was

two-dimensional but at each location takes into account all the different features that

could be there, as detected by the previous feature maps. This also helps with situations

where the input of the first convolutional layer is an image with three color channels.

Chapter 2. Background 13

We should also mention that due to this sharing of weights and biases, they have far

less total parameters than a feed-forward network. This leads to faster training times

and deeper networks that can achieve better performance.

The other type of layer used by convolutional networks is the pooling layer, which is

found between some of the convolutional layers. It is a simple layer with no parameters

and no activation function and its main purpose is to simplify the information of the

previous layer. The most common form of pooling, max-pooling, uses a 2x2 local

receptive field with a stride of 2 and no zero padding, which is applied on a feature

map from the previous convolutional layer, and propagates to the next convolutional

layer only the largest value in its local receptive field. This results to the feature map

being halved in size as seen in Figure 2.7. This process is repeated for all the previous

feature maps and the result is given as input to the next convolutional layer as seen in

Figure 2.8.

Figure 2.7: Pooling of a single feature map.

Source: http://neuralnetworksanddeeplearning.com/

Figure 2.8: Pooling of an entire convolutional layer.

Source: http://neuralnetworksanddeeplearning.com/

Chapter 2. Background 14

Intuitively, we can think of a max-pooling layer as propagating to the next layer the

rough location of a feature relative to others instead of its exact one, which is not so

important. As a result, there are fewer pooled features, which helps to progressively

reduce the number of parameters in later layers.

2.2.3 Recurrent

Another network architecture that has been very prominent is recurrent neural net-

works. It solves a core issue from which feed-forward networks suffer, that of sequen-

tial dependencies. Simple feed-forward networks treat datapoints as being completely

independent from one another. This can be problematic in tasks where we are provided

with sequential data that are closely related, like predicting the next word in a sentence

or the next frame in a video. It is quite clear that we need a longer context than just

the previous word or frame to make correct predictions. Recurrent neural networks are

structured in a way that lets them take advantage of these dependencies and have been

very successful in areas such as natural language processing and speech recognition.

The simplest recurrent network architectures are very similar to the feed-forward ones,

with one exception. At each training step, each layer, instead of only using as input the

current output of the previous layer, it also takes as input the output of itself from the

previous training step.

Figure 2.9: A recurrent neural network and its unrolling.

Source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/

On the left part of Figure 2.9 we have a layer A that takes some input xt and output ht

at training step t. By using an arrow that starts from A and ends in A we symbolize

the fact that the layer also takes input from itself at training step t − 1. Thinking of

recurrent networks in this loopy form may not make clear what their actual structure is

or how far back the dependencies go. What we can do to better visualize the network is

Chapter 2. Background 15

to unroll it as seen on the right of Figure 2.9. We can also think of a recurrent network

as multiple copies of the same feed-forward network, with each copy propagating past

information to the next one.

This unrolling we mentioned above, is what gives a recurrent neural network its ability

to form dependencies between sequential data. The more we unroll the network, the

longer the context on which our prediction depends becomes. If we are trying to predict

the next frame of a video we may only need a few previous frames and so we only

need to unroll the network a couple of times. There are cases, however, where a longer

context might be needed. We might want to predict the next word in a sentence, but

the necessary information is not present in the sentence itself. It might be located a

few sentences back or even a few paragraphs back. We could end up unrolling so

much that the network becomes unable to learn to connect the information. It has

been shown that recurrent neural networks have difficulties learning these long-term

dependencies (Bengio et al., 1994).

This problem is solved by what is, in recent years, one of the most prominent types

of modules in recurrent neural networks, the Long Short Term Memory or LSTM cell

(Hochreiter and Schmidhuber, 1997). The LSTM recurrent neural network has the

same structure as we mentioned above, but instead of a simple fully-connected layer

it uses an LSTM cell. These cells are memory-like structures that are specifically de-

signed to deal with long term dependencies. They contain information outside of the

regular flow of the network and by using special structures called gates, they can reg-

ulate the state of this information. An LSTM cell contains three gates: the forget gate,

the input gate and the output gate. The forget gate controls which of the information

already stored in the cell is no longer relevant and should be discarded. The input

gate controls which of the new information should be stored in the cell and finally, the

output gate controls how much information the cell will output and allows it to keep

information that is not relevant at the current training step but might be relevant in the

future.

2.3 Training

Apart from all the different architectures that exist, another core part of neural networks

is their training procedure. We will discuss all the important aspects, from how we use

Chapter 2. Background 16

the available data to how the parameters are optimized, as well as some common issues

that emerge during training.

2.3.1 Datasets

Neural networks belong in the category of supervised learning. This means that they

are trained on labeled data. Each datapoint consists of a feature vector and a label.

The feature vector contains all the features of that datapoint (e.g. pixels of an image or

words in a sentence) that we will use to make a prediction, and the label is the target

outcome (e.g. what the image actually depicts or what the next word in the sentence

is). The available data are most commonly separated in three sets, a training set, a

validation set and a test set, to be used at different stages of training.

The training set contains the majority of the data and is the one used during training to

adjust the parameters of the network.

The validation set is smaller and is used as a means of controlling the training. This

set contains data that are never shown to the network and therefore have no influence

on the adjustment of the parameters. At certain points during training we evaluate

the performance of the network on this set, which is there to verify that an increase

in accuracy on the training set actually yields an increase in accuracy on unseen data.

Another reason to use a validation set is to help us compare the performance of dif-

ferent networks. Since high accuracy on the training set does not always translate to

high accuracy in unseen data, the training set is not useful for these comparisons. The

validation set, however, can serve this purpose since it has not been used for training

by any of the networks.

Finally, the test set is used as a measure of the expected performance of a network in

future data. It is used only once and only in the end of training. Unlike the validation

set the network performance on it is not monitored during training. The core reason

behind this is to avoid a form of quasi-training that happens on the validation set.

Often the networks differ on what we call hyperparameters, like the number of layers,

the number of units per layer, the activation function, etc. By comparing all these

networks on the validation set we are in a sense training those hyperparameters. The

test set solves this issue by being the last evaluation step and therefore a more accurate

measure of future performance.

Chapter 2. Background 17

2.3.2 Optimization

Training a neural network is in essence an optimization problem. We are trying to

find values for the network parameters (weights and biases) so that it approximates the

training set as accurately as possible by minimizing the error between its predictions

and the actual labels.

In order to calculate that error we need to define an appropriate cost function. These

are non-negative functions that approach zero when the predictions of the networks

approximate very well the actual labels of datapoints and grow larger when that is not

the case. Mean squared error and cross-entropy are two of the most commonly used

cost functions. While both perform very well in classification tasks, cross-entropy

usually achieves faster training than mean squared error (Golik et al., 2013), which

stems mainly from the structure of cross-entropy which allows the network to learn

faster when the error is larger.

With a cost function defined, we can proceed to actually train the network by using a

process called gradient descent, which is widely used in optimization problems. Gra-

dient descent makes use of the gradients of all the network parameters with respect

to the cost function. These gradients essentially show us in which direction we have

to adjust the parameters in order to reach an optimal configuration that minimizes the

cost function.

Assuming we have a cost function C, the gradient of parameter w of our network is the

partial derivative ∂C
∂w . We use this gradient in the update rule w′ = w−η

∂C
∂w to calculate

the new value w′. The same is also done for the rest of the parameters. This process

is then repeated in order to minimize the error as much as possible. The gradients are

calculated using the algorithm of backpropagation which was introduced in the 1970s

but it was only a few years later until its efficiency for neural networks was discovered

(Rumelhart et al., 1988).

In the update rule above we have introduced a new variable η which is called learning

rate. This controls how much we change the parameters. If η is too large then the pa-

rameters change too much and we might miss the optimal configuration we are looking

for. On the other hand if η is too small the parameters change very slowly and it might

take too long to reach it.

The way we usually measure how much we have trained our network is in epochs.

Chapter 2. Background 18

An epoch is a whole pass through the training set. When using the basic form of

gradient descent we just described, in order to compute the gradients we calculate the

cost function based on the whole training set. That means that during an epoch each

of the network parameters are only updated once. This leads to our network learning

extremely slowly when we have a huge number of training datapoints. This problem

is solved by a modified version of gradient descent, called stochastic gradient descent.

The idea behind it is to estimate the gradients by only using a small randomly chosen

sample of training datapoints (called a mini-batch) and use these gradients to update

the parameters. After using a mini-batch we chose another from our training set, that

contains different datapoints, and update the parameters again. This process is then

repeated until we exhaust the training set. As a result, many parameter updates are

happening during an epoch and training is much faster.

Another way we can modify gradient descent to speed up training is to change how we

update the parameters after we have computed the gradients. There have been numer-

ous update rules proposed throughout the years and they can generally be classified in

three categories: momentum updates, annealing updates and adaptive updates.

There are cases where by using the simple update rule, instead of moving directly

towards the minimum of the cost function, we oscillate slowly around it until we reach

it. Momentum updates solve this problem by incorporating the concept of momentum

or velocity in the update rule. As we move toward the minimum we gather momentum

and therefore any gradients that makes us change direction matter less than those that

do not. Nesterov momentum is one of the most used momentum updates (Nesterov,

1983).

If we use a large learning rate, then there is the danger of passing over the minimum

as we get closer to it. If we do, then the next update will make us move in the opposite

direction in order to reach it and we might pass over it again and as a result we might

end up oscillating over it. Annealing updates do not have this problem. These updates

reduce the learning rate as time passes and so we end up taking smaller and smaller

steps towards the minimum. A simple way to do that is to introduce an exponential

decay to the learning rate, so that at epoch t it becomes ηt = η0e−kt , where η0 is the

initial learning rate and k is an adjustable hyperparameter.

In all the update rules described so far, the same learning rate is used for all the parame-

ters. Adaptive updates, however, tune the learning rate of each parameter individually.

Chapter 2. Background 19

The most popular adaptive updates are Adagrad (Duchi et al., 2011), RMSProp (Tiele-

man and Hinton, 2012) and Adam (Kingma and Ba, 2014). These updates are usually

the ones that work best in practice.

2.3.3 Training Issues

In the previous section we described how neural networks are trained and tried to solve

some of the issues that arise. These are in a sense minor issues that either have been

partially solved or mitigated in a acceptable degree. There exist, however, some other

ones that pose a greater threat to neural network training. In this section we will discuss

two of those issues: unstable gradients and overfitting.

The issue of unstable gradients stems from the way backpropagation works. Generally

speaking, it first calculates the gradients of the parameters of the last layer and then

uses these to calculate the ones of the second-to-last layer. Then these new gradients

are used to calculate those of the third-to-last layer and the process is repeated until

we reach the first layer. This is also the reason why it is called backpropagation. It

propagates the calculation of gradients from the back of the network to the front. In

the end, the gradients of earlier layers may end up containing products of terms from

later layers. From this we get two versions of the unstable gradient issue: vanishing

and exploding gradients.

Vanishing gradients, which is the most commonly encountered version of the issue,

result from many of those terms in the product being very small. Subsequently, the

gradients of earlier layers become themselves very small, which hinders their ability

to learn. If our network is too deep it is quite common for early layer to get stuck

during training. Very rarely we might also encounter exploding gradients. This when

the exact opposite happens. The gradients of early layers get too large the later layers

are the ones getting stuck. The issue of unstable gradients is most commonly resolved

by controlling the depth of the network or by a well-chosen activation function. Earlier

we also mentioned that recurrent neural networks have difficulties learning long-term

dependencies and vanishing gradients is one of the main reasons why (Hochreiter et al.,

2001).

Overfitting is another one of the major issues we encounter during the training process

of a neural network. It happens when a network learns the training set in such a degree

Chapter 2. Background 20

that it can no longer generalize well to unseen data. Instead of learning the underlying

general structure of the data, it ends up learning specific traits or noise that only exist

in the training set. In a sense we could say that it does not learn but instead memorizes.

Overfitting is more prominent in neural networks with a large number of parameters,

since those are the ones with the most degrees of freedom and can approximate a larger

range of phenomena.

The low-level reason for why overfitting happens is weights with extreme values.

When a feature of the datapoints has an extreme weight associated with it, it becomes

much more important than all the others when we make a prediction. This leads to our

network depending too much on it when in reality it might be just noise or a peculiarity

of the training set.

Generally, the best thing we can do to mitigate the damage of overfitting is to enrich

our training set with more data. However, in most cases this is not possible due to data

being expensive or difficult to acquire. Fortunately, there is another way we can solve

the issue, namely regularization techniques. As the name suggests, the techniques try

to control the training process in order to avoid overfitting. While there are many of

them, we will discuss two of the most commonly used ones: L2 regularization and

dropout.

L2 regularization tries to solve overfitting by restricting the size of the weights during

training. It does that by introducing a regularization term to the cost function. Assum-

ing we have a cost function C, we get the new regularized cost function Creg by adding

to C the sum of the squares of all weights in the network S, scaled by a constant λ

which is called the regularization strength or penalty (Creg =C+λS). This way, if any

of the weight gets too large, Creg will also get larger, which is the opposite of what we

want, since we are trying to minimize the cost function. As a result, our neural network

prefers to learn small weights, with larger ones being allowed only if they improve the

first term (C) of the cost function (Creg) more than they do the regularization term. How

much more is controlled by the the regularization penalty λ, with larger λ resulting in

smaller weights. We should also mention that the biases are usually not included in

the regularization term. This is mainly due to the fact that large biases do not make the

network sensitive to specific features as much as large weights and so we do not need

to worry that much about them. Small weights have the appealing property of making

the network use the majority of the data features a little instead of specific features a

lot. Therefore it is more difficult for it to learn noise or peculiarities controlled by a

Chapter 2. Background 21

few features.

The second method we will discuss, dropout (Hinton et al., 2012b; Srivastava et al.,

2014), works in a completely different way than L2 regularization. Instead of acting

on the network weights, it acts on the network structure itself. Before we calculate the

gradients to make the parameter updates we randomly and temporarily delete a certain

set of units from the hidden layers of the network, with each one having a certain

probability p of being kept. With p = 0.75, for example, we will delete about a quarter

of the units.

Figure 2.10: An example of dropout.

Source: Srivastava et al. (2014)

We then calculate only the gradients for those units that were kept and update only

them. Then, before the next update we restore the previously deleted units and delete

a different set. We repeat this process throughout the whole training session.

We can think of dropout in a different way which will also give some insight on why it

helps with overfitting. In a sense we can imagine this procedure as training a different

neural network at each training step, with all of them using the same data, and in the

end averaging their predictions. Each of these networks is overfitting in a different way

and hopefully, the net effect of the averaging will be to minimize the overfitting of the

original network.

Chapter 3

Experimental Setup

In this section we will present our experimental setup, starting with a more detailed de-

scription of the task a hand. We will provide information about the datasets we will use,

as well as the technical details of our environment. This will be followed by a brief

discussion about hyperparameter optimization. Finally, we will describe the experi-

ments we conducted, which are split in three categories: architectural, regularization

and dataset experiments.

3.1 Task

The task at hand is to investigate whether neural networks can learn simple modular

arithmetic, i.e. congruence relations of the form n≡ r(mod p), where r is the remainder

of the Euclidean division between n and p. While we could treat this as a regression

problem, we chose classification because we are dealing with integers. Regression

is mainly used when we want to predict real continuous values. Classification seems

much more fitting when we are dealing with distinct entities, in our case remainders.

In mathematical terminology, the set of all integers n that have the same remainder

when divided by a modulus p, is actually called a residue or remainder class.

We will tackle the problem in two different ways: as a multi-class and as a binary-class

classification problem. A multi-class network will have to classify an integer between

all possible remainders when divided by a modulus p, while a binary-class network

will only need to decide between whether the remainder is equal to 0 or not. While

with multi-class networks we demand complete information about the remainder of an

22

Chapter 3. Experimental Setup 23

integer, with binary-class networks we only need information about a single remainder.

This might seem less powerful but actually it is not. Knowing which integers have

remainder 0 when divided by a modulus p is equivalent to knowing which integers

have remainder 1,2, ..., p− 1. This is due to the following property that congruence

relations have: n ≡ r(mod p)⇒ n+ k ≡ r + k(mod p) for any integer k. Assuming

we have a network that can answer correctly whether the remainder is 0 or not, then

the question of whether an integer n has remainder 1,2, ..., p− 1 when divided by a

modulus p is equal to whether n− 1,n− 2, ...,n− (p− 1) has remainder 0. For this

reason, as well as the fact that trying to learn only one remainder is less demanding

information-wise, we chose to also rephrase the task as a binary-class problem instead

of just a multi-class one.

3.2 Datasets

For our experiments we will be using two datasets of randomly generated 128-bit inte-

gers: a training set of 1 million integers and a validation set of 100 thousand integers.

These dataset sizes were mainly chosen due to time and memory constraints. Depend-

ing on the representation we choose for each network, each integer is converted to a

feature vector of binary or decimal digits. The feature vector that will be given as in-

put to the networks has a size of 128 for binary and 39 (the longest 128-bit integer) for

decimal representation. Depending on the modulus, the label of each feature vector is

set to the remainder that is produced when we divide the corresponding integer by that

modulus.

Due to our work being investigative in its core and does not aim to improve perfor-

mance or find the best hyperparameter settings, we will not have to make choices based

on the validation set and therefore there is no danger of training the hyperparameters

on it. For this reason, we chose not to use a test set, but rather let the validation set

play that role.

We also wanted for this task to be quite challenging for our networks, which is why we

chose 128-bit integers. They are large enough to ensure a huge diversity of data and

small enough to deal with our memory constraints.

Chapter 3. Experimental Setup 24

3.3 Metrics

During training we will monitor four quantities: the error and the accuracy on both the

validation and training sets. The error is the raw value that is produced by our cost

function and the accuracy is the percentage or correct classifications. The validation

accuracy (usually the test accuracy but as we already mentioned we will not be using

a test set) is the standard way of assessing the performance of a neural network and

the error will be used to track the learning process as well as potential overfitting. Our

networks will be trained for 50 epochs and these quantities are all checked at the end

of each epoch.

3.4 Technical Details

For the implementation of our neural networks we used Python, which is widely used

in machine learning due to its huge variety of libraries that can support such tasks. We

used NumPy for its extensive mathematical capabilities and TensorFlow for building

and training our networks. There are other libraries for machine learning tasks, like

Keras and Theano, but we chose TensorFlow due to familiarity both with how it works

and how it can be set up for GPU processing. As for the versions, we are using Python

3.5.2 and TensorFlow 0.12.1 with GPU support.

3.5 Hyperparameter Optimization

The weights and biases of a neural network constitute its parameters. These are ad-

justed during the training process in order to find the optimal configuration. However,

there is a second set of parameters that are not optimized this way. They are called

hyperparameters and consist of things like the size of the network, the learning rate,

the activation function, the L2 regularization penalty and others. Tuning these hyper-

parameters is very frequent in neural networks and in machine learning generally, and

can be a very time-consuming process. The bad news is that there is no one optimal

setting (or an optimal way to find one) for these and they are usually task-dependent.

This is why there has been also great interest in automating that process (Snoek et al.,

2012). They also provide a great summary of the problem:

Chapter 3. Experimental Setup 25

”The use of machine learning algorithms frequently involves careful tun-
ing of learning parameters and model hyperparameters. Unfortunately,
this tuning is often a ”black art” requiring expert experience, rules of
thumb, or sometimes brute force search.” (Snoek et al., 2012)

Having said all that, we will now provide justification for some of the hyperparameters

that are common to all our experiments. These values will be used in all of them unless

otherwise specified. Justification for hyperparameters specific to certain experiments

will be given in their corresponding sections. The choices we made for these hy-

perparameters are a product of preliminary experimentation, evidence from literature,

previous experience in the training of neural networks and reasoning.

• Representation: Our networks will be tested on both decimal and binary rep-

resentation of our data. Decimal is the most logical choice since in this system

we already have some established rules to easily find the remainder (e.g. when

dividing by 10 the remainder is equal to the last digit). However, we have de-

cided to use a binary representation as well. Results from (Siu and Bruck, 1990;

Siu et al., 1993; Franco and Cannas, 1998), where neural networks are used as

circuits and are shown to be able to compute simple arithmetic operations, are

all based on the binary representation of integers. Its usage in our experiments,

therefore, might prove fruitful.

• Output Layer: The output layer of all our networks will have a size equal to the

number of classes corresponding to a particular experiment. For a multi-class

experiment trying to classify an integer when divided by a modulus p, its size

will be equal to p (one class for each remainder) and for the same binary-class

experiment its size will be 2 (one class for 0 and one for the rest of the remain-

ders). We can think of the output layer as a vector with elements representing the

score of each class. The element with the highest score is the one determining

the prediction. In addition, in order to have a more interpretable result as a prob-

ability distribution over classes, we will also use a softmax activation function

on the output layer.

• Activation Function: For our activation function we will be using ReLUs.

These type of units are quite popular with neural networks and have been shown

to speed up training (Krizhevsky et al., 2012) when compared to sigmoid or tanh

units. An advantage ReLUs have over them, is the fact that ReLUs do not cause

gradients to saturate. In contrast, when the input of a sigmoid or tanh unit be-

Chapter 3. Experimental Setup 26

comes too large or too small the gradients very quickly reach values close to 0.

For this reason, ReLUs can also greatly help to mitigate the issue of vanishing

gradients.

• Cost Function: Since this is a classification task we will chose cross-entropy as

our cost function instead of mean squared error. As we have already mentioned

cross-entropy has been found to achieve faster training and better results (Golik

et al., 2013), which have made it more popular than mean squared error in recent

years. Cross-entropy is also better when used in conjunction with a softmax

output layer.

• Optimizer: We will train our networks with stochastic gradient descent along

with Adam adaptive learning rate updates. Due to their nature, adaptive updates

can lead to faster and more flexible training. Adam has been shown to slightly

outperform other adaptive updates (Kingma and Ba, 2014).

• Learning Rate: The learning rate is a hyperparameter that has to be tuned by

hand most of the time. Usual values that have been shown to perform well, in-

clude negative powers of 10 and multiples of them. Preliminary experiments

showed that with a learning rate of 0.001 (which is also the default in Tensor-

Flow’s Adam implementation) several networks had difficulties learning even

the training set. This is likely due to the fact that we are taking too large steps

when we adjust the parameters and end up missing optimal configurations. With

0.00001 the networks were learning but it was a bit slow. We finally settled with

0.0001 as a middle ground.

• Batch Size: We will be using a batch size of 100. Sizes of that degree are very

common in literature. A small batch runs the risk of not being representative of

the whole dataset, while larger batches can result in very few parameter updates

and can slow down learning. Our choice is a compromise between these two and

at the same time deals with our memory constraints.

• Parameter Initialization: We initialize the weights of our networks randomly

according to (Glorot and Bengio, 2010), where it is recommended to use a nor-

mal distribution with mean equal to 0 and variance equal to 2/(nin+nout) where

nin and nout are the number of units in the previous and next layer respectively.

The biases are initialized to 0.

Chapter 3. Experimental Setup 27

3.6 Architectural Experiments

Here we will describe the first set of experiments we conducted. They are mainly fo-

cused on testing the capabilities of various networks with different architectural prop-

erties. We will begin with feed-forward networks and continue with convolutional and

recurrent ones. All the networks we will describe in this and future sections will be

used in both the multi-class and the binary-class problem.

We decided to also test convolutional and recurrent architectures because in a sense

an integer can also be viewed as a 1-D image or as an ordered sequence of digits.

Convolutional networks can deal with the first view and may be able to learn rules

that determine the remainder based on local features, like a few neighbouring digits.

Recurrent networks deal with the second view and they may be able to learn how much

the remainder of an integer is dependent on each of its digits as a sequence.

3.6.1 Feed-forward

Our initial experiments, consist of a simple architectural search on feed-forward net-

works. We trained networks of 2 and 3 layers with 256 and 512 units per layer. The

main inspiration for the number of layers was (Siu et al., 1993). There it is shown that

a feed-forward network with 2 layers is able to compute the modulo operation. But

as we have already said the weights in these networks were set by hand. This does

not mean that networks of that depth can also learn them. Therefore, we decided to

also add a third layer to increase their flexibility. Above that, preliminary experiments

showed that the networks were barely learning and we also run the risk of vanishing

gradients. Networks with 128 units per layer did not perform any better than those with

256 units, so we chose the latter for flexibility. The few preliminary networks we also

tested with 1024 units per layer showed extreme amounts of overfitting. We decided,

for now, to only go up to 512 units and revisit these networks again when we trained

our regularized networks.

Each of those networks was trained for ten different moduli, from 2 to 11. Among

these we have moduli for which we can decide the remainder based on a few digits (2,

4, 5, 8, 10) and moduli for which the rules are more complex (3, 6, 7, 9, 11). Therefore,

we have a range wide enough for the networks to be tested.

Chapter 3. Experimental Setup 28

To avoid future confusion and avoid long names, we will also introduce the naming

convention that will be used throughout this thesis to indicate each network. Here

we will consider only feed-forward names and any additional conventions will be dis-

cussed in their respective sections. For each of our four architectural combinations we

use the following names:

• FF28: 2 layers / 256 units per layer

• FF29: 2 layers / 512 units per layer

• FF38: 3 layers / 256 units per layer

• FF39: 3 layers / 512 units per layer

The FF is used to indicate that the network if feed-forward and after this first part there

will be a dash followed by the letter B or D to indicate binary or decimal representation

and a number indicating the modulus. For example, a feed-forward network with 2

layers, 256 units per layer trained on binary integers and modulus 3, will be named

FF28-B3.

3.6.2 Convolutional

Guided by the results of our initial feed-forward tests, which were not very encour-

aging, we decided to test convolutional architectures only on modulus 3 to see if the

performance could be improved. The four architectures we will be using and their

initial notation are as follows:

• C6: 2C16-P-2C32-P-2C64-P

• C8: 2C16-P-2C32-P-2C64-P-2C128-P

• C9: 3C16-P-3C32-P-3C64-P

• C12: 3C16-P-3C32-P-3C64-P-3C128-P

In the descriptions above nCk stands for n convolutional layers with k feature maps and

P stands for pooling layer. The C in the name stands for convolutional. The name will

also be followed by dash and then a number indicating the size of the local receptive

field and finally we will append B3 as described in the previous section (e.g. C6-3-B3).

Below we discuss the rest of hyperparameters.

Chapter 3. Experimental Setup 29

• Network Depth / Number Of Filters: As a starting point for our architec-

tural choices we used VGGNet (Simonyan and Zisserman, 2014), which was the

runner-up in the ImageNet image recognition competition in 2014. Its input is

much larger and its datasets are approximately the same size as ours, so we tried

to scale accordingly and ended up with the networks presented above. Prelimi-

nary experiments showed that increasing either the number of layers or feature

maps per layer did not improve performance significantly.

• Local receptive fields / Strides / Padding: For these we will be using some of

the settings that have been found to perform well in literature. We will try both

3x3 and 5x5 local receptive fields with a stride of 1, as well as zero padding. With

these local receptive fields we can start recognizing the smallest features and as

we progress the network will have a wider view of the input. A stride of 1 and

zero padding are mainly used in order for the convolutional layers to preserve

the size of their input, so that we will only concern ourselves with reducing it in

the pooling layers.

• Pooling: Max-pooling layers will be used between some of the convolutional

layers, but not after each one. We will add max-pooling only before a layer

where we increase the number of feature maps, in order to control the spatial size

of the integer representation and to compensate for the increase in parameters.

• Fully-connected Layers: For ease of comparison we decided to use 2 fully con-

nected layers with 256 units per layer (as in FF28) after the stack of concolutional

layers.

As a final note we should mention that since we do not deal with images but with

integers, we have modified the convolutional layer to use 1-D convolutions instead of

2-D, to compensate for the loss of a dimension.

3.6.3 Recurrent

As with convolutional networks, we will only test recurrent neural networks on mod-

ulus 3 to see whether there is any increase in performance. We will not be using the

general architecture of a recurrent network, but rather the LSTM version. LSTM net-

works are among the most popular ones and as we have mentioned in Chapter 2, they

do not have some of the problems that the simple architecture has.

Chapter 3. Experimental Setup 30

An issue that LSTM networks usually have is that they are slow learners and their

training takes more time than in other networks. For this reason and due to time con-

straints, in these experiments we will use a learning rate of 0.001 instead of 0.0001 and

a training dataset of 100 thousand integers instead of 1 million.

For ease of comparison with our feed-forward networks we will train LSTM networks

with 2 and 3 layers but for the reasons mentioned above, as well as memory constraints

we will halve the units per layer to 128 and 256.

Another hyperparameter we need to configure is how much we will unroll our LSTM

networks. The amount we unroll will determine how far the dependencies go within

an integer. For the decimal representation we will unroll our networks 3, 13 and 39

times and in binary we will unroll 32, 64 and 128 times. These values were chosen

since they divide the length of our integers exactly and in order to test both short and

long dependencies.

Following the previously mentioned notation we have the following network architec-

tures:

• R27: 2 layers / 128 units per layer

• R28: 2 layers / 256 units per layer

• R37: 3 layers / 128 units per layer

• R38: 3 layers / 256 units per layer

Similarly, the R stands for recurrent and the names above will be followed by a dash

along with a number to indicate the unrolling factor. At the end we will also append

B3 or D3 (e.g. R27-32-B3).

3.7 Regularization Experiments

We previously mentioned that some of our feed-forward networks showed signs of

extreme overfitting. Even some of our less flexible networks had considerable general-

ization errors (i.e. the difference between training and validation error). In this section

we will present the regularized versions of some of our feed-forward networks. We

will use two regularization techniques: L2 regularization and dropout. Again we will

focus on modulus 3.

Chapter 3. Experimental Setup 31

We have the following regularized networks:

• FF29-(B/D)3-L4: 2 layers / 512 units per layer / L2 regularization penalty

0.0001

• FF29-(B/D)3-L5: 2 layers / 512 units per layer / L2 regularization penalty

0.00001

• FF210-(B/D)3-L4: 2 layers / 1024 units per layer / L2 regularization penalty

0.0001

• FF210-(B/D)3-L5: 2 layers / 1024 units per layer / L2 regularization penalty

0.00001

• FF39-(B/D)3-L4: 3 layers / 512 units per layer / L2 regularization penalty

0.0001

• FF39-(B/D)3-L5: 3 layers / 512 units per layer / L2 regularization penalty

0.00001

• FF310-(B/D)3-L4: 3 layers / 1024 units per layer / L2 regularization penalty

0.0001

• FF310-(B/D)3-L5: 3 layers / 1024 units per layer / L2 regularization penalty

0.00001

• FF29-(B/D)3-D90: 2 layers / 512 units per layer / dropout keep probability 0.9

• FF210-(B/D)3-D75: 2 layers / 1024 units per layer / dropout keep probability

0.75

• FF39-(B/D)3-D90: 3 layers / 512 units per layer / dropout keep probability 0.9

• FF310-(B/D)3-D75: 3 layers / 1024 units per layer / dropout keep probability

0.75

Networks FF29 and FF39 were chosen since they were showing the most overfitting

among the ones tested. We also decided to include some of our preliminary networks

with 1024 units per layer (FF210 and FF310), where overfitting was most prevalent.

Maybe by increasing the size of our networks while we regularized them, we could

take advantage of the extra flexibillity.

As for the hyperparameter selection, preliminary experiments showed that regulariza-

tion penalties over 0.0001 caused the regularization term to take over and the networks

Chapter 3. Experimental Setup 32

were not learning at all, while those under 0.00001 had no significant effect. For sim-

ilar reasons, we chose a high dropout keep probability (0.9) for our smaller networks

and lower one (0.75) for our larger networks.

The naming convention is the same, but with an extra L or D at the end for L2 regular-

ization or dropout respectively, followed by a number indicating their hyperparameter

value.

3.8 Dataset Experiments

Our last set of experiments will consist of modifications on the training set. Some of

our initial feed-forward networks managed to learn to classify integers correctly when

dividing by 2, 4, 5, 8 and 10 but struggled with the rest. What these five moduli all have

in common is that we only need to look at a few of the last digits of the integer in order

to determine the remainder. Since, however, we are using very large integers all these

combinations of last digits exist multiple times in the training set. What we wanted to

see is whether our networks actually learned or just memorized the combinations. In

order to do that we will take one of our initial feed-forward networks, FF29, and test it

on training sets with missing data, while the validation set stays unmodified.

We will use two modified datasets:

• LAST34: In this dataset we will replace all the integers that end in 3 or 4 with

ones ending in other digits. This way we equally reduce both the set of integers

that have odd remainders and the set of integers that have even remainders, with-

out removing a whole remainder class. Incidentally, when dividing by 10 this

does not hold since we end up removing these two remainder classes. We should

also mention that this is only possible with a decimal representation due to it hav-

ing multiple different digits. With a binary representation we can only remove

integers ending in 0 or in 1, which would result in removing a whole remainder

class. Therefore, we will only use this set with a decimal representation.

• REM3: In this dataset we will replace all integers that have remainder 3 when

divided by 4 with ones that have one of the other remainders. Here, we are

actually removing a whole remainder class. This dataset will be used with both

binary and decimal representations and only in conjunction with modulus 4.

Chapter 3. Experimental Setup 33

Having said all this, on the set LAST34 we will train the network FF29 with a decimal

representation for moduli 2, 5 and 10. On the set REM3 we will train FF29 with both

binary and decimal representations for modulus 4.

The few experiments we will present now only apply only to the binary-class task. In

the multi-class task all classes will be equally represented in the training set. In the

binary-class task, however, this is not true since for all moduli except 2, the integers

that have remainder 0 are less than those who do not. For this reason we will cre-

ate three more datasets, SKEW25, SKEW50 and SKEW75 that will be used to test

the network FF29 with both binary and decimal representations for modulus 3. The

distribution in these datasets has been skewed to only contain 25%, 50% and 75% of

integers that have remainder 0 when divided by 3 respectively.

Chapter 4

Results

In this chapter we will present the results that were produced from our networks, first

those of the multi-class task and then those of the binary-class task. They will be pre-

sented through tables, line graphs that track both the training and validation accuracy

during training and confusion matrices. These matrices are commonly used in classi-

fication tasks to give us a better idea about correct and wrong classifications. Its lines

represent the true labels of the data and its columns represent the prediction of our

network. Each cell, then, shows us how many datapoints had a certain class as a true

label and were classified in another class (possibly the same) by our network.

4.1 Multi-class Task

4.1.1 Initial Feed-forward Search

In Table 4.1 we have the final performances of our networks with the moduli split in

four categories depending on certain properties they exhibited.

Moduli 3, 7, 9 and 11 behaved very similarly, regardless of representation. For each of

them, none of our networks managed to achieve better validation accuracy than their

respective random chance baseline. All oscillated around it, with changes only in the

third decimal place. In addition, as the modulus increased, learning slowed down.

Figures 4.1 and 4.2 show the training and validation accuracy for modulus 3. The

graphs for the rest of the moduli in this category are all very similar to these.

34

Chapter 4. Results 35

Modulus Binary Training Accuracy Decimal Training Accuracy Binary Validation Accuracy Decimal Validation Accuracy Random Chance Baseline

3 45%-70% 40%-50% 33% 33% 33%

7 24%-45% 20%-30% 14% 14% 14%

9 19%-35% 16%-25% 11% 11% 11%

11 16%-34% 14%-20% 9% 9% 9%

2 100% 100% 100% 100% 50%

4 100% 100% 100% 100% 25%

8 100% 100% 100% 100% 12.5%

6 45%-70% 38%-42% 33% 33% 16.6%

5 30%-54% 100% 20% 100% 20%

10 30%-54% 100% 20% 100% 10%

Table 4.1: Feed-forward accuracies at the end of training.

0 10 20 30 40 50
Epoch number

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

Training Accuracy
FF28-B3
FF28-D3
FF29-B3
FF29-D3
FF38-B3
FF38-D3
FF39-B3
FF39-D3

Figure 4.1: Training accuracy for networks trained on modulus 3.

0 10 20 30 40 50
Epoch number

0.328

0.330

0.332

0.334

0.336

0.338

Ac
cu

ra
cy

Validation Accuracy
FF28-B3
FF28-D3
FF29-B3
FF29-D3
FF38-B3
FF38-D3
FF39-B3
FF39-D3

Figure 4.2: Validation accuracy for networks trained on modulus 3.

Chapter 4. Results 36

Next, we have moduli 2, 4 and 8. These are all powers of the binary system’s base and

can be also found in powers of the decimal system’s base. All networks reached 100%

validation accuracy. Networks trained with binary representation reached it almost

immediately, while those with decimal representation did it after a few epochs passed,

with the number of epochs approximately doubling as the modulus increased.

Modulus 6 is a special case itself. Our networks all had a validation accuracy oscillat-

ing around 33% instead of the corresponding random chance baseline which is 16%.

Furthermore, a binary representation resulted in this accuracy being reached faster than

a decimal representation. The validation accuracy graphs below show a similarity in

the behaviour of our networks for moduli 2 and 6.

0 10 20 30 40 50
Epoch number

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Validation Accuracy

FF28-B2
FF28-D2
FF29-B2
FF29-D2
FF38-B2
FF38-D2
FF39-B2
FF39-D2

Figure 4.3: Validation accuracy for networks trained on modulus 2.

0 10 20 30 40 50
Epoch number

0.18

0.20

0.22

0.24

0.26

0.28

0.30

0.32

0.34

Ac
cu

ra
cy

Validation Accuracy

FF28-B6
FF28-D6
FF29-B6
FF29-D6
FF38-B6
FF38-D6
FF39-B6
FF39-D6

Figure 4.4: Validation accuracy for networks trained on modulus 6.

Chapter 4. Results 37

The following sample confusion matrix shows us that the networks have managed to

differentiate between odd and even remainders.

Figure 4.5: Confusion matrix for FF28-B6.

The last category consists of moduli 5 and 10. These are found in or are powers

of the decimal system’s base. Networks trained with decimal representation reached

100% validation accuracy on both moduli. However, this percentage fell to 20% for

both moduli for binary representation. For modulus 5 this follows the pattern we saw

previously, of networks not being able to perform better than random chance. But

for modulus 10 this is better than its corresponding 10% random chance. Similarly to

modulus 6, the network has managed to differentiate between odd and even remainders,

which can be seen in Figure 4.6.

Finally, we will mention some general observations. In the vast majority of these

experiments, larger networks reached higher training accuracy in the following order:

FF39 > FF29 > FF38 > FF28. Additionally, apart from moduli 5 and 10, a binary

representation resulted in higher training accuracy. In the end, this increase in training

accuracy did not lead to an increase in validation accuracy in most cases, which means

that these networks suffered from overfitting.

Chapter 4. Results 38

Figure 4.6: Confusion matrix for FF28-B10.

4.1.2 Specialized Architectures

The table below summarizes our findings for convolutional and LSTM networks. Nei-

ther of those architectures managed to improve the performance on modulus 3.

Architecture Binary Training Accuracy Decimal Training Accuracy Binary Validation Accuracy Decimal Validation Accuracy Random Chance Baseline

Convolutional 52%-62% 33%-48% 33% 33% 33%

LSTM Most around 35% 40%-80% 33% 33% 33%

Table 4.2: Specialized architecture accuracies at the end of training.

The validation accuracy of all our convolutional networks oscillated around 33% with

changes only in the third decimal place, similarly to the feed-forward networks. Apart

from that, the rest of our remarks are about training performance. Again, using a

binary representation lead to higher training accuracy. In contrast with feed-forward

networks, here the convolutional networks with the least layers had the highest training

accuracy: C6 > C8 > C9 > C12. As for the local receptive fields, there was no clear

evidence of which is better.

Our LSTM networks did not perform any better. Still we have these oscillations around

33%. As for the training process, in these networks it was the decimal representation

Chapter 4. Results 39

that achieved higher training accuracy. Networks with less unrolling also had higher

training accuracy than those with more unrolling. However, there was no clear evi-

dence about which settings were generally better in terms of depth or width.

We should also mention that in order to make sure that the lack of improvement in

performance was due to the modulus and not the architecture, we also ran some pre-

liminary experiments for both convolutional and LSTM networks on modulus 2, in

which they all reached 100% validation accuracy.

4.1.3 Regularization

The results from the regularized versions of the initial feed-forward networks, were

not encouraging either, as seen below.

Technique Binary Training Accuracy Decimal Training Accuracy Binary Validation Accuracy Decimal Validation Accuracy Random Chance Baseline

L2 0.0001 33%-47% 33%-42% 33% 33% 33%

L2 0.00001 60%-80% 35%-70% 33% 33% 33%

Dropout 0.75 53% 33% 33% 33% 33%

Dropout 0.9 53% 33% 33% 33% 33%

Table 4.3: Regularization technique accuracies at the end of training.

Regardless of regularization technique or representation, all the regularized networks

still had a validation accuracy oscillating around 33%. The only difference was in the

training performance which for the vast majority of regularized networks was worse

than that of the best unregularized one. Regarding L2 regularization, a penalty of

0.0001 turned out to be more punishing and several networks that used it had only a

small increase in training accuracy.

4.1.4 Data Modifications

The results from the modified are very interesting. All the networks we tested on the set

LAST34 (FF29-D2, FF29-D5 and FF29-D10) reached almost immediately a training

accuracy of 100% like they did in our initial experiments but now they only achieved a

validation accuracy of 80%, which is the percentage of last digits (8 out of the possible

10) that remained in LAST34. This means that the integers ending in 3 or 4 were

classified entirely incorrectly. If we assume that they are classified randomly then we

have the following baselines: 90% (mod2), 84% (mod5) and 82% (mod10). These are

Chapter 4. Results 40

all higher than what our networks achieved. The following confusion matrices show in

which classes these integers where incorrectly classified.

Figure 4.7: Confusion matrix for FF29-D2-LAST34.

Figure 4.8: Confusion matrix for FF29-D5-LAST34.

For modulus 2, in order to have complete misclassification the integers ending in 3

need to be classified as having remainder 0 and those ending in 4 classified as having

remainder 1, which is exactly what happened. We had similar results for modulus

10. For modulus 5, the majority of the unseen last digits were classified as having

remainder 0. In Figure 4.8 we can also see that there were some integers classified as

having remainder 3 or 4. These were the ones ending in 8 or 9 respectively.

Chapter 4. Results 41

Figure 4.9: Confusion matrix for FF29-D10-LAST34.

We observed a similar behaviour in the network we tested on REM3 (FF29-D4). Both

binary and decimal representations reached a training accuracy of 100% like before,

but a validation accuracy of only 75%. This is the percentage of remainder classes (3

out of the possible 4) that still remained in REM3. Again, integers with a remainder

of 3 were completely misclassified. Here, the baseline is 81.25%. Below we have the

confusion matrix for both representations.

Figure 4.10: Confusion matrix for FF29-B4-REM3.

For the decimal representation the unseen integers were all classified as having a re-

Chapter 4. Results 42

Figure 4.11: Confusion matrix for FF29-D4-REM3.

mainder of 1, which is the only other odd remainder, while for the binary representation

they were split between remainders 1 and mostly 2.

4.2 Binary-class Task

4.2.1 Initial Feed-forward Search

Below we have the performances of our networks with the moduli split in three cate-

gories depending on certain properties they exhibited. Here as a baseline we will use a

classifier that always classifies an integer as not having a remainder of 0.

Modulus Binary Training Accuracy Decimal Training Accuracy Binary Validation Accuracy Decimal Validation Accuracy Simple Classifier Baseline

3 70%-91% 66%-76% 56%-60% 58%-65% 67%

6 87%-98% 84%-87% 76%-79% 79%-83% 83%

7 86%-96% 86%-89% 77%-84% 82%-85% 86%

9 89%-97% 89%-91% 79%-87% 85%-89% 89%

11 91%-98% 91%-93% 84%-90% 89%-91% 91%

2 100% 100% 100% 100% 50%

4 100% 100% 100% 100% 75%

8 100% 92% 100% 92% 87.5%

5 81%-95% 100% 69%-77% 100% 80%

10 92%-98% 100% 84%-88% 100% 90%

Table 4.4: Feed-forward accuracies at the end of training.

The first category consists of moduli 3, 6, 7, 9, and 11. Regardless of representation, all

Chapter 4. Results 43

the networks had an initial validation accuracy at the baseline which started decreas-

ing as training progressed, in contrast with the multi-class task where their validation

accuracy oscillated around the random chance baseline. As for the training accuracy,

the vast majority of the networks surpassed 90%. Modulus 6 is also included in this

category since it does not have the strange behaviour it exhibited in the multi-class

task. Below we have the graphs for the training and validation accuracy for modulus

3. The graphs for the rest of the moduli in this category are all very similar to these.

0 10 20 30 40 50
Epoch number

0.65

0.70

0.75

0.80

0.85

0.90

Ac
cu

ra
cy

Training Accuracy
FF28-B3
FF28-D3
FF29-B3
FF29-D3
FF38-B3
FF38-D3
FF39-B3
FF39-D3

Figure 4.12: Training accuracy for networks trained on modulus 3.

0 10 20 30 40 50
Epoch number

0.56

0.58

0.60

0.62

0.64

0.66

Ac
cu

ra
cy

Validation Accuracy

FF28-B3
FF28-D3
FF29-B3
FF29-D3
FF38-B3
FF38-D3
FF39-B3
FF39-D3

Figure 4.13: Validation accuracy for networks trained on modulus 3.

Again we have moduli 2, 4 and 8 which are grouped similarly to the multi-class task.

Networks trained on modulus 2 and 4 all reached 100% validation accuracy regardless

Chapter 4. Results 44

of representation. Networks trained with a binary representation reached it almost

immediately, while those with decimal representation did it after a few epochs passed.

For modulus 8, however, only the binary representation resulted in 100% validation

accuracy, in contrast with 92% which was the highest among networks with decimal

representation.

The remaining moduli are 5 and 10. Networks with decimal representation achieved

100% accuracy, while the accuracy of those with a binary representation fell below the

baseline, decreasing as training progressed. Similarly to modulus 6, modulus 10 did

not exhibit any strange behaviour in the binary-class task.

The general remarks are the same as in the multi-class task. Larger networks reached

higher training accuracy, as well as binary representation did for all moduli except

for 5 and 10. Also, since in the majority of these networks, as the training accuracy

increased the validation accuracy decreased, overfitting was more prevalent.

4.2.2 Specialized Architectures

The performance of convolutional and LSTM networks is presented below. Again,

neither of those architectures was able improve the performance on modulus 3. The

validation accuracy for both architectures started at the base line and then fell off sim-

ilarly to the feed-forward networks.

Architecture Binary Training Accuracy Decimal Training Accuracy Binary Validation Accuracy Decimal Validation Accuracy Simple Classifier Baseline

Convolutional 69%-82% 67%-73% 56%-63% 61%-66% 67%

LSTM Most around 67% 67%-95% Most around 67% Most around 56% 67%

Table 4.5: Specialized architecture accuracies at the end of training.

Regarding the training performance of convolutional networks our remarks are similar

to those in the multi-class task. Binary representation resulted in higher training accu-

racy, networks with less layers also had the same effect and none of the local receptive

fields was strictly better.

For LSTM networks, decimal representation resulted in higher training accuracy than

binary representation with less unrolling also having a similar effect. In terms of depth

or width no setting was strictly better.

Finally, we also ran some preliminary experiments for both convolutional and LSTM

networks on modulus 2 similarly to the multi-class task, in which they all reached

Chapter 4. Results 45

100% validation accuracy.

4.2.3 Regularization

As in the multi-class task, regularized networks did not improve performance at all.

Technique Binary Training Accuracy Decimal Training Accuracy Binary Validation Accuracy Decimal Validation Accuracy Simple Classifier Baseline

L2 0.0001 67%-68% 67% 63%-67% 65%-67% 67%

L2 0.00001 79%-90% 79%-81% 54%-57% 59%-64% 67%

Dropout 0.75 73% 67% 45%-60% 64%-66% 67%

Dropout 0.9 73% 67% 45%-60% 64%-66% 67%

Table 4.6: Regularization technique accuracies at the end of training.

The validation accuracy, again, started at the baseline and kept decreasing as training

progressed. Regarding the training performance, there was no regularized network that

achieved higher training accuracy than that of the best unregularized one. Similarly

to the multi-class task regularized networks, an L2 regularization penalty of 0.0001

slowed down learning much more than a penalty of 0.00001.

4.2.4 Data Modifications

Modified datesets, again, provide us with some interesting results. Similarly to the

multi-class task the networks that were tested on LAST34 (FF29-D2, FF29-D5 and

FF29-D10) reached a training accuracy of 100%. However, the validation accuracy

for each modulo was different. FF29-D2 reached 80%, FF29-D5 reached 90% and

FF29-D10 reached 100%. As a baseline we will use a simple classifier that always

classifies the unseen data as not having remainder 0 , which in our case will have a

validation accuracy of 90% (mod2), 100% (mod5) and 100% (mod10). Apart from

FF29-D10, the other network did not reach these. The confusion matrices that show

the misclassifications can be seen in Figures 4.14, 4.15 and 4.16.

For modulus 2 the results were exactly the same as in the multi-class task. For modulo

10 there were no misclassifications and for modulus 5 only the integers ending in 4

were misclassified.

In contrast with the multi-class task, the network we tested on REM3 (FF29-D4) not

only reached 100% training accuracy, but also achieved a validation accuracy of 100%

for both representations, despite the decimal one doing this much slower.

Chapter 4. Results 46

Figure 4.14: Confusion matrix for FF29-D2-LAST34.

Figure 4.15: Confusion matrix for FF29-D5-LAST34.

Chapter 4. Results 47

Figure 4.16: Confusion matrix for FF29-D10-LAST34.

Finally, we have the experiments on the SKEW datasets.

0 10 20 30 40 50
Epoch number

0.35

0.40

0.45

0.50

0.55

0.60

0.65

Ac
cu

ra
cy

Validation Accuracy

FF29-B3-SKEW25
FF29-B3-SKEW50
FF29-B3-SKEW75
FF29-D3-SKEW25
FF29-D3-SKEW50
FF29-D3-SKEW75

Figure 4.17: Validation accuracy for FF29-(B/D)3 trained on the SKEW datasets.

As we can see from the graph, the networks (FF29-B3 and FF29-D3) behave very

differently in each of the datasets. In SKEW25 the validation accuracy starts at 66%

and slowly falls down to 60%, in SKEW50 it starts at 37% but after a while it stays at

50% and in SKEW75 it starts at 34% and goes up to 40%. It seems as though networks

trained on SKEW25 and SKEW75 converge towards those trained on SKEW50. Apart

from that, the differences between representations are negligible.

Chapter 5

Discussion

In this section we will discuss the results that were produced from our experiments. We

will do that in the context of the breakthroughs that neural networks have achieved and

try to explain why our networks have not performed as well. We will offer comments

separately for each batch of experiments, as well as a general discussion on the issues

at hand.

5.1 Initial Feed-forward Search

With only a few exceptions that will be mentioned in a while, in both the multi-class

and binary-class tasks, for moduli 3, 6, 7, 9 and 11 the networks did not manage to per-

form any better than random chance or a very simplistic classifier respectively. In the

binary-class task especially, not only did they not improve but rather performed worse

than the baseline of always classifying an integer as having a non-zero remainder.

In contrast, they were all able to learn perfectly moduli 2, 4, 8, 5 and 10. Networks

trained on a decimal representation learned all of them, while those trained on a binary

representation only learned 2, 4 and 8 and were no better than the baselines for the rest.

Essentially, each representation learned the moduli that are found in or are powers of

its base.

The exception we mentioned earlier refers to the behaviour exhibited by networks

trained for modulus 6 on both representations and for modulus 10 on binary repre-

sentation and was only observed in the multi-class task. In each of these cases, the

48

Chapter 5. Discussion 49

validation accuracy of the networks instead of oscillating around the random chance

baseline (16% and 10%) it did that a bit higher (33% and 20%). What these cases

have in common is that their prime factorization (2*3 and 2*5) contains a factor that

could be learned (2) and one that could not (3 and 5). The higher validation accuracy

that the networks reached in each case corresponds to the baseline of the unlearnable

factors. This indicates that when a modulus contains a learnable factor the networks

can at least make a partial classification. We should also mention that this behaviour

was not exhibited in the binary-class task since there we are only targeting a single

remainder (0).

There is a huge difference in the behaviour of the networks on each of these categories

of moduli. As we have already mentioned the moduli in the second category are all

found in or are powers of a numerical system’s base. What they have in common is

that the rule for determining the remainder is very simple. For moduli 2n, 5n and 10n,

we only need to look at the last n digits of the integer. It seems as though our networks

are learning moduli for which the information needed to determine the remainder is

localized.

5.2 Specialized Architectures

We initially chose to test convolutional and LSTM networks, with the aim of hopefully

improving the performance even a little. These specialized architectures fare very well

in a variety of areas that simple feed-forward networks do not, most notably image

recognition and natural language processing. It could be possible that they were able

to identify features of an integer in a way similar to an image or a sentence. As we saw

in the previous chapter, however, they were unsuccessful.

Regarding convolutional networks, if they can even improve performance at all, then

one thing that might hinder that improvement is the pooling layer. These layers are

used in order to downsize the convolutional layers as the networks gets deeper. If we

think for a while in the context of image classification, the effect they have is to throw

out the exact positional information of a feature on an image while retaining its general

location. In this case, this is beneficial, since this kind of information is not important

to make a prediction and sometimes it might even lead to overfitting. In a task like ours,

in contrast, where our predictions are very closely tied to all the digits of an integer,

Chapter 5. Discussion 50

this loss of precision is problematic.

As for LSTM networks, they did not manage to improve performance either. However,

due to the specific circumstances of our experiments we cannot draw any concrete

conclusions. Since LSTM networks are more difficult to train, we chose to use a

smaller dataset and a larger learning rate and even then there were networks that barely

learned the training set. Their inability to learn might as well be a result of those

choices. While, based on our results so far, we are not optimistic, it is possible that

different configurations might lead to better results. If there are such configurations,

it should be expected that networks with an unrolling factor equal to the length of the

integer will perform better, since they will preserve dependencies over all digits.

5.3 Regularization

In both multi-class and binary-class tasks all the networks, apart from those trained

for moduli that are found in or are powers of a numerical system’s base, suffered from

overfitting. While the training accuracy increased, the validation accuracy stayed at

the same level as the baseline and did not improve at all. In the binary-class task,

particularly, it fell below the baseline with higher training accuracy leading to lower

validation accuracy.

Regularization techniques, like L2, dropout (Srivastava et al., 2014) and others (Zaremba

et al., 2014; Wan et al., 2013; Zou and Hastie, 2005), usually work very well in practice

by improving the performance of the networks due to the reduced overfitting. How-

ever, here, this is not the case. Putting aside the networks that did not even learn the

training set due to the applied regularization being too strong, the only effect it had

was to slow down learning in the rest.

The question then is, what is the reason behind this behaviour. A possible explanation

is that the problem stems from the nature of our task. Regularization is mostly used in

order for the network to be able to learn certain general patterns that exist, for example,

in an image or in the structure of sentences, without learning noise or very specific

peculiarities that they may possess. In an image of a dog, we do not need to learn

exactly how far apart its ears are, just their general location and in the sentence ”I went

to the store and bought milk” we do not need to learn that the last word is exactly milk,

just that it is the object of the sentence and can be found in a store. In contrast, our

Chapter 5. Discussion 51

task needs this exactness. The remainder of an integer is fully determined by all its

digits for the vast majority of the cases, apart from when the modulus is found in or

is a power of a numerical system’s base. Due to that and since our networks were not

even learning in the first place, regularization did not have any positive effects. Having

said this, it might still be possible for it to be of assistance if any future unregularized

networks show improvement in performance but also suffer from overfitting.

5.4 Data Modifications

Previously we mentioned that our networks seem to learn moduli for which we only

need the last few digits to determine the remainder. However, in our experiments we

never got further than 3 last digits (mod8). The possible combinations that can appear

in these are only 1000 for decimal representation and 8 for binary. The training set we

used contained 1 million integers, which means that all these possible combinations

will appear multiple times in it. The question then is, whether the networks are actually

learning or just memorizing the combinations, which is why we also ran experiments

on the modified datasets LAST34 and REM3.

In the multi-class task, both the networks tested on LAST34 and those tested on REM3

completely misclassified the unseen data, managing to perform worse even than ran-

dom chance. Additionally, there was no consistence in the misclassification.

In the binary-class task, from the networks trained on LAST34, FF29-D2 performed

exactly the same as in the multi-class task, which is not surprising since in this case

the tasks are exactly the same. FF29-D10 had no misclassifications. We could say that

it learned that only integers ending in 0 have a remainder of 0, so when it encountered

the unseen data it just classified them in the other class. However, we cannot say that

for sure. Maybe it just got lucky with its particular parameter configuration and had

some accidental correct classifications. If we look at the results of FF29-D5, we will

see that this is the more likely explanation. If we apply the same reasoning here, all

the unseen data should have been correctly classified but this is not the case. The

unseen integers ending in 3 were correctly classified but those ending in 4 were not.

For similar reasons, we should also not say that the networks trained on REM3 were

successful. In the end, it seems that our networks are quite data-dependent and seem

to be memorizing which integers go to each class instead of learning.

Chapter 5. Discussion 52

Furthermore, we should not draw any conclusions about why these specific misclassi-

fications happen. Unfortunately, in the parameter space of a neural network there are

many minima and which one we end up with can be in part influenced by the parameter

initialization. Different ones might lead to different minima and while they will all be

chosen to make the correct classifications for the data in the training set, they might be-

have quite differently for completely unseen data. In the end, different minima might

have different misclassifications or accidental correct classifications.

As for the networks trained on the SKEW datasets, we also had some interesting re-

sults. These network seem to be influenced heavily by the different distribution of in-

tegers in these datasets, as can be seen in 4.17, in which they all have different starting

points. Networks trained on SKEW25 seem to assume that there mostly exist integers

that do not have a remainder of 0 when divided by 3 and therefore they initially behave

as a classifier that always classifies integers in that way (67% initial validation accu-

racy). In contrast, those trained on SKEW75 seem to assume the exact opposite and

behave as a classifier that always classifies integers as having a remainder of 0 (33%

initial validation accuracy). While these networks have different initial assumptions,

they seem to be converging towards the validation accuracy of networks trained on

SKEW50, which after a while stabilizes around 50%, a validation accuracy that inci-

dentally follows the distribution of SKEW50. While we cannot assume that they will

inevitably converge, if that happens it would mean that the networks will not be better

than random chance which would have an accuracy of 50%. In part, this might also

explain why for the majority of the networks in the binary-class task, their validation

accuracy started at the same point as if they were behaving like the simplistic baseline

classifier and then fell off towards 50%. This will also be consistent with the behaviour

exhibited by the majority of the multi-class networks of not being better than random

chance.

5.5 General Discussion

In the introduction of this thesis we dedicated a whole section on the numerous achieve-

ments of neural networks throughout the years. So, how can they fail in a simple

and already solvable task when they have succeeded in many more algorithmically

demanding tasks? In chapter 3, we mentioned VGGNet (Simonyan and Zisserman,

2014). This convolutional network took as input 224x224 images (for a total of 50176

Chapter 5. Discussion 53

input features) and was trained on 1.3 million images, in the end reaching a test accu-

racy of 93%. This shows that convolutional networks can handle many input features

and large training sets. A logical assumption then, is that they should also be able to

handle our 1 million integers with at most 128 input features. However, this is not what

we observed.

A possible explanation for why this happens seems to be the nature of the tasks them-

selves. Classifying an image is not an exact task. We do not need complete information

about every pixel to know whether there is a dog in it, only some general patterns. All

other images of dogs will follow these patterns but again, they do not need to do it

exactly. In our case, for the majority of moduli we need to know exactly all the digits

in order to determine the remainder. We can see this from another perspective by com-

paring how strongly connected datapoints and their labels are. In an image of a dog,

we can tamper even with one quarter of the pixels and a good network would still be

able to classify it as a dog. This is a loose connection. In contrast, if we try to change

a single digit of an integer, there is a very high chance that its label (or remainder) will

change. This is a strong connection. In essence, in image classification, the datapoints

within a class have small variance while in our task we have a huge variance (integers

with same remainders might look completely different).

But are these networks actually learning? In the majority of our experiments, the net-

works learned the training set but were no better than random chance on the validation

set. Similar results can be found in (Zhang et al., 2016). The authors of this paper

trained several neural networks on ImageNet and CIFAR10 but in one case they ran-

domized the labels and in another they replaced the images with random noise. All the

networks managed to learn the training set perfectly with 0 error but on the test set they

were no better than random chance since there was no correlation between images and

labels. They then show, that large enough neural networks have the capacity to learn

any labeling of the training data. This can, in a sense, be seen as them having the

ability to memorize any training set without necessarily generalizing well. This would

also mean that their performance is closely related with the quality of the dataset. This

is partially supported by the results of our last set of experiments where the networks

learned the modified training sets with 0 error but were unable to handle the unseen

data.

In the end, what might actually be happening is that the convolutional networks just

memorize the few general dog patterns that we provide them and then classify as dogs

Chapter 5. Discussion 54

any images that match one of them very closely. Given a dog pattern that is not among

those learned, they could possibly have trouble classifying it, like our networks did

with unseen data. If that is shown to be true, then another reason why neural networks

might not be able to learn modular arithmetic is that there might be no such set of

general patterns we can provide them that can be used in the same way and we would

also need an exact and not approximate match.

In the introduction we also mentioned that there exist parameter configurations that

make a neural network able to compute arithmetic operations (Siu and Bruck, 1990;

Siu et al., 1993; Franco and Cannas, 1998). In these results, as we said however, the

weights were set by hand. In a sense the networks were programmed rather than taught

how to perform the tasks.

While modular arithmetic might be a difficult operation to learn, addition on the other

hand is much simpler. There are already results, showing that a neural network can

add 7-digit integers with high accuracy (Hoshen and Peleg, 2016). The reason why

this is possible can be attributed to the fact that, in contrast with modular arithmetic,

addition has very few and universal rules, which lead to a small set of patterns for the

neural network to learn even exactly. They only need to learn the results of the addition

between any two or three single digits and propagate the carry.

Interestingly, based on our results we can draw another parallel between neural net-

works and the human brain, apart from their similar structure. It seems as though they

both struggle with the same tasks. Both are able to recognize an image or speech or

process a sentence but given an arithmetic task that is very simple for computers to

already solve, they have difficulties coping with it.

Chapter 6

Conclusion

In this chapter we will conclude, initially by summarizing our findings. We will then

provide critique on our experimental process, as well as suggestions for further work.

6.1 Summary

What we wanted to accomplish with this thesis, was to investigate whether neural

networks are able to learn modular arithmetic. In the end, our networks were unable

to achieve this and were not even better than random chance. There were also some

evidence which indicate that neural networks might be memorizing instead of learning,

which was partially supported by existing literature. In our discussion we explained

how our task might be different from one that neural networks already excel in, that

of image recognition. We hope that our results provide an insight on the behaviour of

neural networks and incentivize further research on the topic.

6.2 Critique

Due to time and memory constraints we only used 1 million integers and trained for

only 50 epochs. However, in recent years, neural networks have been trained on much

larger datasets. If, as we discussed in the previous chapter, the performance of a neural

network is closely tied to the quality of the dataset, then by providing it with a larger

variety of integers and training it for longer we might see some improvement.

55

Chapter 6. Conclusion 56

6.3 Further Work Suggestions

While our approaches were not successful, we will present two others that might prove

fruitful: curriculum learning and algorithmic approaches.

Curriculum learning was introduced in (Bengio et al., 2009) and is a method for pro-

gressively teaching a neural network, first by providing it with simple examples and

then with more complex ones. This could be helpful for learning modular arithmetic

since there is a certain degree of recursiveness in the task. Most of the divisibility

rules involve performing certain operations between the digits of the integer and then

checking for divisibility on the result. It could be possible that, by initially training a

neural network on integers of a smaller size, we could achieve better performance.

Algorithmic approaches involve neural networks that, instead of learning the task ex-

plicitly from the data, they learn the algorithm that solves it. We have already men-

tioned some of those in the introduction (Zaremba and Sutskever, 2014; Reed and

De Freitas, 2015; Graves et al., 2014). If modular arithmetic proves to be too difficult

to explicitly learn, then the closest thing to learning we can do next, is use some of

these approaches. They can be seen as a compromise between teaching and program-

ming.

Bibliography

Andoni, A., Panigrahy, R., Valiant, G., and Zhang, L. (2014). Learning polynomials

with neural networks. In International Conference on Machine Learning, pages

1908–1916.

Arora, S., Bhaskara, A., Ge, R., and Ma, T. (2014). Provable bounds for learning some

deep representations. In International Conference on Machine Learning, pages 584–

592.

Bartlett, P. and Ben-David, S. (1999). Hardness results for neural network approxima-

tion problems. In Computational Learning Theory, pages 637–637. Springer.

Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural probabilistic

language model. Journal of machine learning research, 3(Feb):1137–1155.

Bengio, Y., Louradour, J., Collobert, R., and Weston, J. (2009). Curriculum learning.

In Proceedings of the 26th annual international conference on machine learning,

pages 41–48. ACM.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with

gradient descent is difficult. IEEE transactions on neural networks, 5(2):157–166.

Blum, A. and Rivest, R. L. (1989). Training a 3-node neural network is np-complete.

In Advances in neural information processing systems, pages 494–501.

Bottaci, L., Drew, P. J., Hartley, J. E., Hadfield, M. B., Farouk, R., Lee, P. W., Mac-

intyre, I. M., Duthie, G. S., and Monson, J. R. (1997). Artificial neural networks

applied to outcome prediction for colorectal cancer patients in separate institutions.

The Lancet, 350(9076):469–472.

Bourlard, H. and Morgan, N. (1993). Continuous speech recognition by connectionist

statistical methods. IEEE Transactions on Neural Networks, 4(6):893–909.

57

Bibliography 58

Chen, D. and Manning, C. D. (2014). A fast and accurate dependency parser using

neural networks. In Emnlp, pages 740–750.

Collobert, R. and Weston, J. (2008). A unified architecture for natural language pro-

cessing: Deep neural networks with multitask learning. In Proceedings of the 25th

international conference on Machine learning, pages 160–167. ACM.

Cybenko, G. (1989). Approximation by superpositions of a sigmoidal function. Math-

ematics of Control, Signals, and Systems (MCSS), 2(4):303–314.

Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for on-

line learning and stochastic optimization. Journal of Machine Learning Research,

12(Jul):2121–2159.

Durrett, G. and Klein, D. (2015). Neural crf parsing. arXiv preprint arXiv:1507.03641.

Franco, L. and Cannas, S. A. (1998). Solving arithmetic problems using feed-forward

neural networks. Neurocomputing, 18(1):61–79.

Ganesan, N., Venkatesh, K., Rama, M., and Palani, A. M. (2010). Application of

neural networks in diagnosing cancer disease using demographic data. International

Journal of Computer Applications, 1(26):76–85.

Glorot, X. and Bengio, Y. (2010). Understanding the difficulty of training deep feed-

forward neural networks. In Proceedings of the Thirteenth International Conference

on Artificial Intelligence and Statistics, pages 249–256.

Golik, P., Doetsch, P., and Ney, H. (2013). Cross-entropy vs. squared error training: a

theoretical and experimental comparison. In Interspeech, volume 13, pages 1756–

1760.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., and Bengio, Y. (2013).

Maxout networks. arXiv preprint arXiv:1302.4389.

Graves, A., Mohamed, A.-r., and Hinton, G. (2013). Speech recognition with deep

recurrent neural networks. In Acoustics, speech and signal processing (icassp), 2013

ieee international conference on, pages 6645–6649. IEEE.

Graves, A., Wayne, G., and Danihelka, I. (2014). Neural turing machines. arXiv

preprint arXiv:1410.5401.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image

Bibliography 59

recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778.

Hinton, G., Deng, L., Yu, D., Dahl, G. E., Mohamed, A.-r., Jaitly, N., Senior, A.,

Vanhoucke, V., Nguyen, P., Sainath, T. N., et al. (2012a). Deep neural networks for

acoustic modeling in speech recognition: The shared views of four research groups.

IEEE Signal Processing Magazine, 29(6):82–97.

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R. R.

(2012b). Improving neural networks by preventing co-adaptation of feature detec-

tors. arXiv preprint arXiv:1207.0580.

Hochreiter, S., Bengio, Y., Frasconi, P., Schmidhuber, J., et al. (2001). Gradient flow

in recurrent nets: the difficulty of learning long-term dependencies.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural compu-

tation, 9(8):1735–1780.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks.

Neural networks, 4(2):251–257.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks

are universal approximators. Neural networks, 2(5):359–366.

Hoshen, Y. and Peleg, S. (2016). Visual learning of arithmetic operation. In AAAI,

pages 3733–3739.

Kingma, D. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

Knerr, S., Personnaz, L., and Dreyfus, G. (1992). Handwritten digit recognition by

neural networks with single-layer training. IEEE Transactions on neural networks,

3(6):962–968.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classification with

deep convolutional neural networks. In Advances in neural information processing

systems, pages 1097–1105.

Lang, K. J., Waibel, A. H., and Hinton, G. E. (1990). A time-delay neural network

architecture for isolated word recognition. Neural networks, 3(1):23–43.

LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E.,

Bibliography 60

and Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation

network. In Advances in neural information processing systems, pages 396–404.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

Livni, R., Shalev-Shwartz, S., and Shamir, O. (2014). On the computational efficiency

of training neural networks. In Advances in Neural Information Processing Systems,

pages 855–863.

Lyons, S. M., Alizadeh, E., Mannheimer, J., Schuamberg, K., Castle, J., Schroder,

B., Turk, P., Thamm, D., and Prasad, A. (2016). Changes in cell shape are corre-

lated with metastatic potential in murine and human osteosarcomas. Biology open,

5(3):289–299.

Martin, G. and Pittman, J. A. (1990). Recognizing hand-printed letters and digits. In

Advances in neural information processing systems, pages 405–414.

Mhaskar, H. N. (1993). Approximation properties of a multilayered feedforward arti-

ficial neural network. Advances in Computational Mathematics, 1(1):61–80.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D.,

and Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv

preprint arXiv:1312.5602.

Mohamed, A.-r., Dahl, G. E., and Hinton, G. (2012). Acoustic modeling using deep

belief networks. IEEE Transactions on Audio, Speech, and Language Processing,

20(1):14–22.

Nesterov, Y. (1983). A method for unconstrained convex minimization problem with

the rate of convergence o (1/k2). In Doklady an SSSR, volume 269, pages 543–547.

Oord, A. v. d., Kalchbrenner, N., and Kavukcuoglu, K. (2016). Pixel recurrent neural

networks. arXiv preprint arXiv:1601.06759.

Pei, W., Ge, T., and Chang, B. (2015). An effective neural network model for graph-

based dependency parsing. In ACL (1), pages 313–322.

Reed, S. and De Freitas, N. (2015). Neural programmer-interpreters. arXiv preprint

arXiv:1511.06279.

Rosenblatt, F. (1961). Principles of neurodynamics. perceptrons and the theory of brain

Bibliography 61

mechanisms. Technical report, CORNELL AERONAUTICAL LAB INC BUF-

FALO NY.

Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al. (1988). Learning representations

by back-propagating errors. Cognitive modeling, 5(3):1.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al. (2016).

Mastering the game of go with deep neural networks and tree search. Nature,

529(7587):484–489.

Simonyan, K. and Zisserman, A. (2014). Very deep convolutional networks for large-

scale image recognition. arXiv preprint arXiv:1409.1556.

Siu, K.-Y. and Bruck, J. (1990). Neural computation of arithmetic functions. Proceed-

ings of the IEEE, 78(10):1669–1675.

Siu, K.-Y., Bruck, J., Kailath, T., and Hofmeister, T. (1993). Depth efficient neural net-

works for division and related problems. IEEE Transactions on information theory,

39(3):946–956.

Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practical bayesian optimization of

machine learning algorithms. In Advances in neural information processing systems,

pages 2951–2959.

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from overfitting. Journal

of machine learning research, 15(1):1929–1958.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-

houcke, V., and Rabinovich, A. (2015). Going deeper with convolutions. In Pro-

ceedings of the IEEE conference on computer vision and pattern recognition, pages

1–9.

Tieleman, T. and Hinton, G. (2012). Lecture 6.5-rmsprop: Divide the gradient by a

running average of its recent magnitude. COURSERA: Neural networks for machine

learning, 4(2):26–31.

Waibel, A. (1989). Modular construction of time-delay neural networks for speech

recognition. Neural computation, 1(1):39–46.

Waibel, A., Hanazawa, T., Hinton, G., Shikano, K., and Lang, K. J. (1989). Phoneme

Bibliography 62

recognition using time-delay neural networks. IEEE transactions on acoustics,

speech, and signal processing, 37(3):328–339.

Wan, L., Zeiler, M., Zhang, S., Cun, Y. L., and Fergus, R. (2013). Regularization

of neural networks using dropconnect. In Proceedings of the 30th international

conference on machine learning (ICML-13), pages 1058–1066.

Weiss, D., Alberti, C., Collins, M., and Petrov, S. (2015). Structured training for neural

network transition-based parsing. arXiv preprint arXiv:1506.06158.

Zaremba, W. and Sutskever, I. (2014). Learning to execute. arXiv preprint

arXiv:1410.4615.

Zaremba, W., Sutskever, I., and Vinyals, O. (2014). Recurrent neural network regular-

ization. arXiv preprint arXiv:1409.2329.

Zeiler, M. D. and Fergus, R. (2014). Visualizing and understanding convolutional

networks. In European conference on computer vision, pages 818–833. Springer.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2016). Understanding

deep learning requires rethinking generalization. arXiv preprint arXiv:1611.03530.

Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic

net. Journal of the Royal Statistical Society: Series B (Statistical Methodology),

67(2):301–320.

