
Improving and Expanding the
Interface of an Existing MATLAB

Extension for Modelling
Biological Processes

Luke Paul Buttigieg

Master of Science
School of Informatics

University of Edinburgh
2017

Abstract
This Masters thesis will present the approach taken when exploring ways of improving
and expanding the interface of an existingMATLAB extension for use with Continuous
Pi Calculus. The existing number of files visible when accessing the extension with
a command line was reduced, and techniques from User Centred Design were applied
when designing and implementing a Graphical User Interface for this MATLAB Ex-
tension, including a Cognitive Walk-through, a Heuristic Evaluation, Interviews and
the Think-Aloud Protocol. We involved stakeholders and prospective users in all stages
of the design and implementation of this project. Most of the functionality of the MAT-
LAB Extension is now accessible from a Graphical User Interface, and User Support
Documentation is now available.

Acknowledgements
I am grateful for the constant and unwavering support of my supervisor, Dr. Ian

Stark, who guided me as I worked through this project.
I am thankful for the participation of the Systems Biologists and Bioinformaticians

who took time out of their busy days to test the user interfaces I designed.
I am indebted to the academics at the University of Edinburgh, particularly those

teaching Human Computer Interaction and Bioinformatics, who bestowed upon me the
knowledge I needed to complete this project.

Last but not least, I would like to thank my parents, partner and friends back home
and here in Edinburgh, for being there when things got challenging.

Declaration
I declare that this thesis was composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text, and that this work has not
been submitted for any other degree or professional qualification except as specified.

(Luke Paul Buttigieg)

Contents

1 Introduction 11
1.1 Previous Work . 11
1.2 Work Undertaken . 11
1.3 Report Structure . 12

2 Background 13
2.1 Continuous Pi-Calculus . 13

2.1.1 Example . 13
2.2 Continuous Pi-Calculus Workbench 14
2.3 MATLAB . 15
2.4 CPi MATLAB Extension . 15

2.4.1 Inspiration . 15
2.4.2 Functionality . 15

2.5 Human-Computer Interaction in Bioinformatics Software 16
2.5.1 Poorly Designed Software 16
2.5.2 Motivation for Improvement 17
2.5.3 User Centred Design in Bioinformatics 18
2.5.4 System Documentation . 20

2.6 User Interface Design Principles and Methods 21
2.6.1 Interface Metaphor . 21
2.6.2 Affordance . 21
2.6.3 Gestalt Principles . 22
2.6.4 Gutenberg Diagram . 22
2.6.5 Contextual Help Information 22
2.6.6 Usability Inspections . 24
2.6.7 Interview . 25
2.6.8 Think-Aloud Protocol . 25
2.6.9 Personas . 25

3 Planning and Methodology 27
3.1 System Constraints . 27

3.1.1 Command Line Interface Constraints 27
3.1.2 Graphical User Interface Constraints 27

3.2 Work Plan . 28

7

4 Analysis of Existing Tools 29
4.1 Intrinsic Noise Analyser . 29

4.1.1 General Observations . 29
4.1.2 Design Observations . 30

4.2 Kappa Calculus . 31
4.2.1 KaDE . 31
4.2.2 KaSim . 32

4.3 Visual SPiM . 33
4.3.1 General Observations . 33
4.3.2 Design Observations . 34

4.4 IQM Tools . 35
4.4.1 General Observations . 35
4.4.2 Design Observations . 36

4.5 MATLAB Simbio . 36
4.5.1 General Observations . 36
4.5.2 Design Observations . 37

4.6 CPi-IDE . 37
4.6.1 General Observations . 37
4.6.2 Design Observations . 38

4.7 Summary of Design Observations 39

5 Code Re-factoring and Command Line Interface Redesign 41
5.1 Inline documentation and the Private Folder 41
5.2 CLI Modification . 42

6 Graphical User Interface Design and User Evaluation 43
6.1 Design . 43

6.1.1 Design Choices . 43
6.1.2 Usability Inspections . 44
6.1.3 Stakeholder Influence . 46

6.2 Pre-Implementation User Testing . 46
6.2.1 Test Procedure . 46
6.2.2 Results . 47
6.2.3 Test Improvements . 49

6.3 Personas . 49
6.3.1 Emily MacDonald . 49
6.3.2 Ross McIntosh . 50

7 Graphical User Interface Implementation and User Evaluation 51
7.1 Implementation . 51

7.1.1 Implementation Choices . 52
7.1.2 Differences between Mock-Up Designs and Implementation . 55

7.2 Interviews . 56
7.2.1 Question Structure . 56
7.2.2 Answer Analysis . 56

7.3 Post-Implementation User Testing 57
7.3.1 Test Procedure . 58

7.3.2 Results . 58
7.3.3 Test Improvements . 59

8 Project Evaluation 61
8.1 Background Research . 61
8.2 Re-factored Source Code and CLI Changes 62
8.3 Design and Implementation of a GUI 62
8.4 Pre- and Post-Implementation User Testing 63
8.5 System Documentation and Walk-through 63

9 Conclusion 65
9.1 Achievements . 65
9.2 Known Issues . 65
9.3 Future Work . 66

9.3.1 Additional Functionality . 66
9.3.2 Interface Improvements . 66

A Code Dependency Report 69

B Final Version of the Design Mock-Ups 73

C Sample Consent Forms 81

D Graphical User Interface Screen-shots 85

E User Testing Plans 89

F GUI Support Documentation 95

Bibliography 111

Chapter 1

Introduction

Throughout this project, we have explored and tried different approaches of improving
and expanding the user interface of an existingMATLAB [1] extensionwhich facilitates
the use of Continuous Pi-Calculus (henceforth CPi) [2], predominantly by creating a
graphical user interface (henceforth GUI).

1.1 Previous Work

Researchers frequently buildmodels of biological or biochemical systems to understand
them, often in terms of first-order ordinary differential equations (henceforth ODE(s)).
CPi is a recent biochemical process algebra which provides a framework for expressing
reactions in terms of ODEs. MATLAB [1] is a widely used platform for scientific
and numerical modelling. The CPi MATLAB extension (henceforth CPiME) [3] was
created to enable CPi processing through MATLAB, by interfacing with a Haskell
library [2] and command line tool known as CPi Workbench (henceforth CPiWB) [4].

1.2 Work Undertaken

CPiME could previously only be used through a Command Line Interface (henceforth
CLI), and the aim of this project was to improve this and expand on it, primarily by
providing a GUI but also by improving the existing CLI.

We started by conducting a thorough literature survey and analysing other tools
to familiarise ourselves with this class of scientific software. We tried different User
Centred Design (henceforth UCD) techniques which allowed stakeholders to be well
involved in the design and implementation process including Cognitive Walk-through
[5], Heuristic Evaluation [6], Think-Aloud Protocol [7], Interview [8] and Personas
[9]. We believe that we created a GUI which implements many of the best practices,
principles and methods we found, such as Interface Metaphors [10] and Affordances
[11], Contextual Help Information [12], Gutenberg Diagram[13] and the Gestalt Prin-
ciples [14]. We improved on this design by running pre- and post-implementation user
tests. We iterated through four different designs, as seen in Figure 1.1a and two different
implementation versions, as seen in Figure 1.1b. By creating a GUI, we might have

11

12 Chapter 1. Introduction

provided inexperienced CPiME users with a more straightforward way to experiment
with the functionality available.

We have created two Personas which can guide future CPiME team members when
developing future versions. We provided features which appeal more to non-technical
users, such as a GUI, Support Documentation and Contextual Help Information and
also technical users by providing richer in-line comments, and reducing the number of
visible function files from twenty-eight to nine.

(a) A mock-up design of the "Simulate Pro-
cess" screen, which is used to create graph
plots and display numerical solutions of a CPi
Model.

(b) The implemented "Compare Processes"
screen, which is used to compare up to four
CPi Model Processes.

Figure 1.1: We designed different versions of screen mock-ups and evaluated them
by involving CPiME team members and prospective users. We then implemented the
designs, and involved prospective users in testing them.

1.3 Report Structure
This report will first cover background knowledge necessary to understand the work
performed during this project in Chapter 2. A literature survey of Human-Computer
Interaction (henceforth HCI) in the Bioinformatics domain will also form part of this
background chapter. The work-plan is then presented, with the project constraints in
Chapter 3. Next, Chapter 4 will cover an analysis of other software tools and packages.
Subsequently, we will be describing the work performed when improving the CLI in
Chapter 5. We describe how we designed the GUI in Chapter 6 and implemented it in
Chapter 7. We include an analysis of the answers received when we interviewed System
Biologists and Bioinformaticians to understand their behaviour and expectations to
software they use in the latter chapter. Finally, we evaluate the entire project in Chapter
8. We conclude in Chapter 9, but summarising our achievements, known issues and
suggestions for future work.

Chapter 2

Background

This chapter covers the background knowledge necessary to understand the work done
in this project. It describes the separate technology components which were used to
build CPiME. It also includes a literature survey of HCI studies and the application of
UCD in the Bioinformatics domain, which we reviewed to enhance our understanding
of the field. We used this literature as a starting point when planning how to approach
the task of making the user interface (henceforth UI) easier to use.

2.1 Continuous Pi-Calculus

CPi [2] is a biochemical process algebra that provides a framework for expressing
reactions in terms of algebraic definitions.

There are two components of an algebraic definition — chemical species that
represent the individual molecules, and processes that represent the overall systems, by
forming descriptions in terms of parallel compositions of the species.

2.1.1 Example

To illustrate the language syntax, we can consider a simple example which involves
four species: A, B, C, and D. A reacts to form C, while B reacts to form D. C decays at
rate unity until it holds no concentration, otherwise known as an inert species. In this
case, the reaction sites for A and B hold a mutual natural attraction at rate unity.

This example can be represented in CPi as follows:

species A(a) = a.C();
species B(b) = b.D();
species C() = tau<1>.0;
species D() = tau<0>.D();

process Pi = [1.0]A(a)||[1.0]B(b)||[0.0]C()||[0.0] D():a-b@1);.

In this example, site a is where A reacts to form C, while b is where B reacts to form
D. We can model spontaneous or silent actions, such as degradation, using tau in CPi.

13

14 Chapter 2. Background

C decays into an inert species, denoted by 0. On the other hand, D is static, and we can
represent this silent action with rate 0.

All the changes of the four species of this systems example are described in Process
Pi. We can use the || operator to denote parallel composition in the process definition.
A non-negative, real number value is associated with them, representing the concen-
tration prior to any temporal changes, is associated with the species in the process
definition. There is also a colon (:), inserted after this parallel composition definition,
which indicates the start of a global affinity network for the process.

Briefly, an affinity network is a finite, weighted graphwhich represents the attraction
between any two reaction sites of the system. The nodes represent the reaction sites;
i.e. where the reaction actually takes place. The weight of the edge represents the
natural attraction between two reaction sites — an absence of an edge denotes no
natural attraction. When using CPi, global networks must be defined for each process.
These can be empty or else contain any number of attractions, separated by commas.
The scope of attractions defined in these networks is global, and therefore visible to all
other parts of the system. This is contrary to local networks which can be defined for
each species in a model; these are only visible in the species they are defined in.

In the example process Pi, the reaction sites a and b have a "unity" attraction set.
Species A and B are initially given a "unity" concentration. Species C and D have
no concentration in the initial stage, since they arise from the reaction of A and B
respectively.

The high-level description of a chemical species and their individual behaviours
can be compiled into a set of ODEs. These ODEs represent what happens when they
are combined, including all possible interactions and any new chemical species that
emerge as the system reacts.

2.2 Continuous Pi-Calculus Workbench
Banks et al. created CPiWB [4] as a CLI tool for CPi. Written in Haskell [15], it
can validate sets of CPi definitions, and also construct first-order ODEs for a specified
process. CPiWB can also solve CPi ODE systems, and simulate them. Either temporal
simulations of the concentration can be performed, or phase plots in two dimensions
can be created for any two species in a process.

A screen-shot of the CLI of CPiWB can be found in Figure 2.1, which shows a
simple CPi Model loaded into the system.

Figure 2.1: The CPiWB Command Line Interface.

2.3. MATLAB 15

2.3 MATLAB
MATLAB [1] stands for MATrix LABoratory and is a widely used programming lan-
guage developed by MathWorks Inc. It targets scientists and engineers and offers ex-
pansive Mathematical functionality built in. It includes a variety of ODE solvers [16]
and solution simulation functionality [17], making it especially appropriate for CPi
analysis. Several packages have previously been identified by Rhodes [3] which allow
biochemical modelling inside MATLAB. Examples of these include MATLAB Sim-
Biology [18] and IQM tools [19]. These packages served as inspiration for CPiME’s
design and implementation.

As part of this project, we followed three online MATLAB courses for us to fully
grasp the MATLAB syntax and use best practices when developing with it [20]. The
courses were called "MATLAB Onramp Preview", "MATLAB Fundamentals" and
"MATLAB Programming Techniques", and they were valuable sources of coding help.

2.4 CPi MATLAB Extension
Rhodes stated that CPiWB’s and CPi-IDE’s shortcomings influenced the design de-
cisions of CPiME [3]. CPi-IDE was one of the previous attempts at creating a GUI for
use with CPi, and we analysed the tool in detail in Chapter 4.

2.4.1 Inspiration
Experimenting with parameter values in CPiWB is said to be cumbersome as the user
needs to reload the file manually after each change of the parameter values. The tool
does not offer any text editing functionality, and is also said to be missing any form of
comparator between CPi processes. That said, CPiWB was still integrated into CPiME
using foreign calls through C code [21], and it is used to generate the ODEs from the
CPi model.

Rhodes cites CPi-IDE’s lack of scalability as a significant limitation which he at-
tempted to overcomewhen creating CPiME. CPi-IDE reportedly becomes unresponsive
and crashes when attempting to use models which have a large number of species and
affinities. Therefore, CPiMEdoes not contain any code of CPi-IDE at all, but inspiration
was drawn from it.

2.4.2 Functionality
CPiME offers six different functions, as seen in Figure 2.2. It allows a user to: edit
a CPi Model definition text file, generate and view ODEs, simulate a process and
plot a graph of its temporal differences, compare two processes, analyse solutions by
allowing logical statements to be checked against the solutions, and parameter scanning.
Generally, most functions require a user to select one or more CPi Model definition text
files upon launch, which have a .cpi file extension, and contain the CPi representation
of the model. Most functions then call CPiWB to return the first-order ODEs for the
chosen model and process. The ODEs are solved using one of a number of available
MATLAB ODE solvers, and the different functions use this solved system to perform

16 Chapter 2. Background

their respective functionality. Some functions of CPiME already used a GUI; for
example, selecting a process involves a list dialog box, and selecting a file uses a file
sector dialog box. However, the GUI was not unified and only appeared in some parts
of the application.

Figure 2.2: The CPiME CLI screen, showing the available options after the help com-
mand was run.

2.5 Human-Computer Interaction inBioinformatics Soft-
ware

As the field of Bioinformatics grows andmatures, so have the approaches and tools used
to extract, analyse and disseminate biological data [22]. We reviewed literature related
to this area and summarised it into sections of knowledge relevant to this project. The
aim is to understand the current state of HCI in Bioinformatics, and to identify suitable
courses of action for this project.

2.5.1 Poorly Designed Software
According toMacaulay et al.[23], Bioinformatics tools suffer frommany of the usability
difficulties other scientific software is said to have.

2.5.1.1 Origins of the Problem

Macaulay et al.[23] said that funding for scientific software development is nearly al-
ways limited, usually being part of a larger research grant bid. Software Developers
in this domain usually need to have scientific skills to understand the end-user require-
ments. In fact, it is necessary for scientists to be involved for a Software Developer to
truly understand their requirements, but unfortunately it is said that this involvement
only happens occasionally. Academic software developers tend to focus mostly on the

2.5. Human-Computer Interaction in Bioinformatics Software 17

local setting of the laboratory for which the software is written. Additionally, funding
bodies and cultural expectations are said to create barriers to creative design because
most require open source software. Managing the expectations of software users is
also problematic, especially when software developers are operating with the limited
resources commonplace in scientific software development.

2.5.1.2 Anti-Agile Development

In more recent work, Morrison et al.[24] described many of these usability issues and
noted that scientists’ lack of understanding of computational methods are impacting
the outcome of their research objectives. It seems that while scientists have managed to
increase the volume of data being created after an experiment, the strategies and tech-
nologies of processing and interpreting the data have not caught up with the increase.
Paradoxically, scientists are actually relying more on this software to interpret the data
efficiently. This is said to be one of the leading bottlenecks in genomic discoveries, with
software hindering rather than aiding the scientist’s research efforts. The sheer size of
the data returned is also making collaboration more difficult, especially because these
Bioinformatics tools are not often designed to be collaborative tools. This limitation
was also noted in previous work by Barker et al.[25], who claimed that efficient data
integration was one of the major challenges facing Bioinformatics and systems biology
software.

2.5.1.3 Limited and Sporadic Record Keeping

Scientists are reportedly [26][27] not keeping record of the data analysis procedure and
how they interact with bioinfomatics tools in the same way that they record wet-lab
experiments. As a result, the way tools are used in analysis work flows, such as the
parameter settings used, are often lost. When scientists keep notes, they are often
in the form of "cheat sheets" which demonstrate their limited understanding of how
the tools work. They also do not keep track of the output of the system, relying on
digital output instead. Morrison et al.[24] also observed that scientists rely on default
parameter values when using Bioinformatics tools, which are at times unsuitable for
the data being analysed, because they do not fully understand the algorithm powering
the tool. Command Line interface tools are often said to be difficult to understand
and use, and frequently publishers leave out useful system documentation. Ultimately,
the combination of these issues mean that scientists rely on computational experts to
perform their work, and are concerned when they are unable to access this expertise.
To conclude, gaps exist in the study of the factors which make it difficult for scientists
to use Bioinformatics software. Therefore additional, undocumented issues could also
be having a usability impact.

2.5.2 Motivation for Improvement
Javafery et al.[28] claimed that initial tools were not user friendly nor well designed.
Hence, given the novelty of the tools, developers made little effort to make the tools
more approachable and easy to learn. As more scientists started using the tools,
Javafery et al.[28] said that the need for Bioinformatics systems which are easier to use

18 Chapter 2. Background

for new users and more capable for experts became evident. Bioinformatics tools are
said to be especially challenging because users try to perform various complex tasks
with them. Medical researchers and practitioners are expected to make broader use
of better designed Bioinformatics applications. Training costs are also said to have
decreased by improving usability. Migrating users to newer versions of software is
also claimed to be easier when a tool is better designed. Thus, they recommend that
software developers analyse and understand the users’ experience to successfully design
and release Bioinformatics tools.

2.5.2.1 Impact on Research Quality

Additionally, Al-Ageel et al.[29] state that people’s perception and experience when
interacting with Bioinformatics tools can have a great impact on the understanding
of complex data being analysed. They claim that in spite of advances in technology,
ultimately it is humans who perform most of the data mining by joining the different
parts of an analysis together, and hence make decisions in an analytic Bioinformatics
study. Realistically many users of Bioinformatics or systems biology tools are said not
to have a computational background, which motivates a greater investment in usability
engineering. This echoes the earlier assertions byBolchini et al.[30] andMirel et al.[31]
that the software tools scientists use can vastly influence the direction and success of
their research.

2.5.2.2 Commercial Advantages

Separately, Mayhew et al.[32] claimed that this is an area which companies are targeting
for competitive advantage, and first noted that better usability allows users to adapt to
new versions of existing systems quicker, spend less time in training, achieve better
quality of work and decrease the risk of data input errors. He states that improving
usability allows users to take advantage of the best balance of compromise and trade-off
by providing a simpleUI for powerful functionality. Otherwork bySenadheera et al.[33]
graded existing Bioinformatics tools according to their perceived "user-friendliness"
and suitability for inclusion in open and distance learning programs of Bioinformatics,
which again confirms the commercial value of improving the tools’ usability.

2.5.3 User Centred Design in Bioinformatics
HCI and UCD deserves greater attention according to Pavelin et al.[34], who claimed
that a cultural shift is required in the field of Bioinformatics for stakeholders to embrace
UCD approaches and make a greater effort in designing systems users actually want to
use. They claim that although the Bioinformatics community is managing to supply
accurate data which is valuable to users, the interfaces to access the data are seldom
well designed and often not straightforward to use.

2.5.3.1 Overview and First Sample Approach

UCD is described as a design philosophy which focuses on the user throughout the
development process of the software application, including when designing, testing

2.5. Human-Computer Interaction in Bioinformatics Software 19

and implementing the application [34]. The goal of this philosophy is to produce a
usable application tailored to the specific needs of a set of users. By including users in
the design and development process, software developers can better understand their
user’s needs and how they will interact with the software once it is created. This is said
to be especially relevant in the case of Bioinformatics software, where the end users
are often formally trained in Biology and have acquired complimentary, rather than
dedicated, computer skills.

Figure 2.3 shows an overview from Pavelin et al.[34] of the UCD process. This
strongly influenced the project plan, although time constraints limited the scope for
multiple iterations.

Figure 2.3: A suggested overview of the user-centred design process [34]. The needs
of the user are said to take precedence, ensuring that the final implementation is ac-
ceptable for the user and fulfils their needs. This process is said to be iterative. It is
interesting to note that user testing for the interface design is recommended to take
place prior to the implementation.

Pavelin et al.[34] state that although it might seem that the entire development
process becomes longer since the design process involves far more work in a UCD
approach, this is offset by software developers ultimately spend less time implementing
the system. In fact, Mirel et al.[35], who focused on applying a UCD technique called
Heuristic Evaluation [6] to Bioinformatics tools, stated that this was ultimately a low
cost method for identifying issues with a UI design, and far less expensive than dealing
with issues once the software development is complete.

2.5.3.2 Second Sample Approach

More recently, deMatos et al.[36] confirmed that involving domain experts in the design
process leads to an effective approach to UCD. They listed HCI and UCD best practices
which they uncovered in their study, some of which have the potential of universal
application; for example, they found that software developers should time-stamp data

20 Chapter 2. Background

they are exporting from a system, as this would make it easier for a researcher to recall
the context of this data at a later date. They also noted that users want an easy way of
forwarding information to their peers.

They also recommend the use of consent forms prior to carrying out the usability
study, and notifying the participants of the right to withdraw from the study at any time.
They note that multiple activities can be part of a UCD approach, depending on the
requirements of the project and the availability of information.

Their UCD approach involved:

1. Holding a stakeholder meeting during which they gathered and formalised the
scope and requirements of the project.

2. Creating personaewhich represent amajor user group. These descriptions guided
them when taking decisions about product features, navigation and interactions.

3. Interviewing users to confirm that the personae align to them.

4. Creating a work flow map which condenses the information gathered in the
interview and personae describing.

5. Organising workshops with domain experts, to confirm the most important ele-
ments of the design and information architecture.

6. Creating paper prototypes to identify issues with the design.

7. Creating a technical specification document defining what needs to be developed.

8. Refining the prototypes after testing the usability using an interactive prototype.

2.5.4 System Documentation
When designing a Bioinformatics tool using user centred design principles, the de-
veloper must tailor the application for the task being carried out.

Barlett et al.[37] listed a number of best practices in their work, which are suitable
for Bioinformatics analysis tools. They state that an overall lack of cohesive information
describing the use of tools in conjunction with others is a common source of frustration
for scientists. Their first suggestion is to create better system documentation of the
type of analysis information the tools can provide, details of the information resources
create and how different resources fit into the whole picture.

Secondly, they claim that it is advantageous to list both the reasons behind per-
forming the Bioinformatics analysis, and separately, how to perform it in the system
documentation. They recommend layering the systems documentation, presenting in-
creasingly specific and detailed information as a user goes deeper into an area of the
documentation. The very outer layer of documentation should include an overall view
of all the functionality available and its use in context. They also recommend using a
breadcrumb trail in the application, which allows a user to easy identify the stage they
are in and also to backtrack with ease. In the end, they admit that their recommended
design choices were not proven to improve the efficiency of Bioinformatics analysis and
that an additional experiment would have to be developed to confirm their hypothesis.

2.6. User Interface Design Principles and Methods 21

2.6 User Interface Design Principles and Methods
We will now introduce the relevant UI design principles practices which we used, or
referred to, in this project.

2.6.1 Interface Metaphor
An interface metaphor is used to make complex computer notions easier to understand
by giving them a real world label, even though thismight not be entirely correct, realistic
or fully representative of the underlying logical concept [38]. Interface metaphors are
popular and have now become ubiquitous in a modern operating system (henceforth
OS) and applications. An example of an interface metaphor would be the "computer
desktop" with "windows", as in Figure 2.4. There is no "desktop" in a computer
screen, but the blank area which usually contains clickable icons (usually referred to
with another metaphor as "files") has been named as such as it represents the active
work-space of a computer user, just like the user’s active work-space in the physical
world. Other popular interface metaphors include a "folder" used to organise "files", a
"trash can" used to delete "files", a floppy disk icon used to save "files" and "tabs" used
to organise UIs, much like file dividers in the physical world.

Figure 2.4: An early example of the "desktop" interface metaphor with "windows", show-
ing "files" and "folders", and a "trash can" [10].

2.6.2 Affordance
An object’s design can suggest how it is to be used, thus clearly and easily indicating
how to use it. For example, a flat panel on a door indicates that the door is to be pushed,
while a handle indicates that the door needs to be pulled instead. This is known as an
affordance [11]. Since GUIs are not made out of physical objects, affordances in UI
design are actually only perceived affordances, arising when a user is familiar with the
represented object in the real world. For example, a user knows that a button in a GUI
is to be clicked because buttons in the real world are pressed. GUI affordances leverage
user’s real world knowledge to indicate how they should interact with them.

22 Chapter 2. Background

2.6.3 Gestalt Principles
The Gestalt Principles [14] are a set of principles which explain how human perception
works, based on the earlier work of Gestalt psychologists [39]. Part of their observation
concerned how humans perceive objects in a grouped, organised way and in a pattern,
even if they are not deliberately placed like that. These observations can be exploited
when designing a UI, as following the Gestalt Principles allows properties of interface
elements to be conveyed in-explicitly. For example, one of the principles is that of
proximity: that objects close to each other seem to create groups. UI designers can
use this principle by placing interface elements, such as buttons belonging to the same
theme, close together, while leaving space between unrelated groups. Figure 2.5 shows
a diagram of the different Gestalt principles of perception.

Figure 2.5: An illustration depicting the Gestalt Principles [14] [39] taken from a blog
entry by Taylor [40]. The eight illustrations depict different ways the brain can be influ-
enced to believe that objects belong in the same group.

2.6.4 Gutenberg Diagram
The Gutenberg Diagram demonstrates the direction Western users look at information
which is presented in a fairly distributed and even manner [13]. Users typically
immediately focus on the top left quarter of a screen, known as the primary optical
area, before moving down and across to the bottom right of the screen, known as
terminal area. The top right and bottom left of the information, known as the strong
fallow area and weak fallow area respectively, receive little attention unless they are
visually emphasised. This principles generally does not apply when the elements are
not homogeneous and evenly distributed — in that case, the weight and make up of the
elements guide the eye. This principle can serve as inspiration when creating UIs, as
following it is said to improve comprehension of the information presented. Figure 2.6
shows an illustration of the Gutenberg diagram.

2.6.5 Contextual Help Information
Extensive, comprehensive support documentation is useful and undoubtedly one of
the key tools to make a UI easier to use. However, there are times when it would be

2.6. User Interface Design Principles and Methods 23

Figure 2.6: An illustration depicting the direction of a user’s eyes when perceiving ho-
mogeneous material which is equally distributed [13].

valuable to display short excerpts of this documentation directly in the location of the UI
element being used. This is known as contextual information [12] with one of the most
popular forms existing as tool-tips, which appear when hovering a mouse pointer over
a GUI element like in Figure 2.7, such as when a user is hesitating to interact with the
GUI element. Contextual information offers a quick and effortless means of conveying
additional information to a user when it seems to be needed, without requiring them to
go through support documentation.

Figure 2.7: An example of contextual help information in a video game [41]. The inform-
ation is presented within the UI itself.

24 Chapter 2. Background

2.6.6 Usability Inspections
There are different ways of performing usability inspections, but they are generally all
cost-effective means of discovering problems with a UI [42]. They usually involve
evaluators inspecting a UI, usually against a defined criteria, and attempting to discover
issues without involving an end user.

2.6.6.1 Cognitive Walk-through

A cognitive walk-through is a task-specific usability inspection method which is espe-
cially useful when evaluating systems for which users do not receive prior training, and
when users are expected to simply use the system without having consulted support
documentation first [5]. Evaluators check whether each step of the interaction process
bring a user closer or further away from their goal when using the system, by following
a defined, systematic, analytic approach. They first create a set of tasks that they believe
a user would want to carry out using the system they are testing. For example, if they are
testing a parking ticket payment machine, a sample action would be "Pay the parking
ticket". Afterwards, they decompose the action into steps which a user must go through
to perform the action, such as "Insert the ticket into the ticket machine".

Usually, evaluators ask four standard, learning theory-based questions at each of
the steps that they are analysing:

1. Do users actually want to carry out this specific action?

2. Is the control for the action, such as the button, visible?

3. Is it clear that the control for the action produces the effect the users want?

4. Does the system respond appropriately once a user triggers the control, allowing
them to confidently proceed to the next step?

The answers to the questions are then used to determine whether the system should
be redesigned or not.

2.6.6.2 Heuristic Evaluation

A Heuristic Evaluation is a cost-effective means of checking whether a UI adheres to
an agreed-upon list of usability best practices [6]. Evaluators usually iterate through
the list and then suggest improvements if they discover that the UI does not implement
the best practice. This method is often used before implementing or involving users in
usability testing. It usually results in a holistic approach of issue finding.

An often used list is known as Nielsen’s Heuristics [43], which is cited below:
1. Visibility of system status
2. Match between system and the real world
3. User control and freedom
4. Consistency and standards
5. Error prevention
6. Recognition rather than recall
7. Flexibility and efficiency of use

2.6. User Interface Design Principles and Methods 25

8. Aesthetic and minimalist design
9. Help users recognise, diagnose, and recover from errors
10. Help and documentation

2.6.7 Interview
An interview is a research method which provides a rich understanding of a subject’s
opinion of a matter, providing the possibility of obtaining firsthand opinions, beliefs
and attitudes [8]. They are often conducted in person, as body language can be included
as part of the participant’s opinion. Structured interviews follow a strict set of scripted
questions, and unstructured interviews are more akin to a conversation and usually
more comfortable for participants. In unstructured interviews, researchers usually have
a number of subject areas they would like to investigate but not a defined number of
questions. Interviews can also be semi-structured, borrowing elements from structured
and semi-structured.

The appropriate selection of the target audience is an important element when
conducting interviews — it is important that researchers involve users who qualify as
stakeholders in their research. For example, if a researcher is interested in the behaviour
of new users of a particular software application, it is important that the interviewees
are indeed new users, and not seasoned users.

2.6.8 Think-Aloud Protocol
The Think-Aloud protocol is a simple, but effective, evaluative method which involves
direct participation of a user [7]. When using the think-aloud protocol, the researcher
sits by a user, and asks them to perform a number of tasks and to verbalise what is going
through their mind as they as doing so. Two major forms exist: concurrent think-aloud,
where a user speaks as they perform the task, or retrospective think-aloud, when a
user describes their experience after they complete the task. Participants are usually
recorded in the retrospective setup, to help them recall their thoughts afterwards.

Users are usually requested to completely speak their mind, including intermediate
thoughts or at points of confusion, to ensure the researcher understands their intuition
and identifies the sources of any issues. Researchers are not only interested in the
participant’s thoughts, but also their feelings and how they approach the assigned task.

2.6.9 Personas
Personas humanise the focus of the design effort and remind designers who the target
audience is [9]. Personas usually consist of half page to a page-long descriptions of a
fictitious person’s life and goals, history, skills and sometimes also a photo, and there
is usually one persona for each group of users targeted. For example, if an application
is to be made usable by novice, intermediate and expert users, one would usually create
a persona for each of those levels of expertise. Personas are usually created to cover a
larger group of users with similar needs, rather than an outlier.

Personas are then typically used throughout all the project phases, making it easier
for system developers to sympathise with users’ needs.

Chapter 3

Planning and Methodology

This chapter briefly describes System Constraints which impact the design and devel-
opment of this project. We will also be describing the work plan we followed in this
project.

3.1 System Constraints
As part of the initial stages of the project, we listed the system constraints to ensure
they are followed. They are organised by interface type. The CLI constraints impact
users who are either directly running the functions in the files (bypassing the existing
CLI), or else those using the existing CLI. The GUI constraints naturally only impact
users accessing the functionality using the GUI.

This is by no means a complete, explicit list of requirements; rather, it is a collection
of informal constraints from different stakeholders. Henceforth, stakeholders will refer
to fellow CPiME Team Members and the Project Supervisor.

3.1.1 Command Line Interface Constraints
1. The CLI should retain the same functionality as it was published by Rhodes [3].

Any changes in the code should not be visible to the CLI user, but only to anyone
inspecting the source code.

2. Upgrade the CLI functionality, if required.

3. Inline documentation should be extended in the files containing functions which
can be directly called, and the extension’s functionality should be made modular.

3.1.2 Graphical User Interface Constraints
1. The desktop application GUI should recreate the existing CLI functionality ap-

propriately by adapting it to the new interface format. The design should avoid
including a series of dialog boxes to enter parameters, or a wizard-style approach
[28].

2. The GUI should adopt popular design cues and should be as simple as possible.

27

28 Chapter 3. Planning and Methodology

3. The GUI design should be consistent [44] across the different screens.

4. The .cpi file selected on one screen should remain selected even if a user selects
another screen.

5. The GUI should offer appropriate documentation, in the form of contextual
information [12] and standalone support documentation.

3.2 Work Plan
After reviewing the literature covering HCI and UCD practices in Bioinformatics and
Systems Biology, we synthesised it to form a work plan. Our goal was to combine
the novel techniques and approaches in the literature and while still going through the
typical phases of the development cycle, such as the requirements collection, design,
development and test phases [45]. The plan is similar to Pavelin et al.’s [34] in Figure
2.3, involving stakeholders and prospective end-users in every step of the design and
implementation process. It is as follows:

1. Review alternative Systems Biology and Bioinformatics applications, perform a
Heuristic Evaluation [6] on them and analyse whether they observe the Gestalt
principles [14].

2. Review the existing CPiME [3] code and implement changes to fulfil the con-
straints defined in Section 3.1.1.

3. Design the mock-up designs of the GUI next, in line with Section 3.1.2. This
part was planned to involve several iterations, as we designed different versions.

(a) Finish designing a version of the mock-up designs.
(b) Perform a Cognitive Walk-through [5] which should tackle issues affecting

users who do not consult support documentation before using the applica-
tion. Perform a Heuristic Evaluation [6].

(c) Involve different stakeholders in evaluating the mock-up designs by inter-
viewing them [8]. Incorporate their feedback in the mock-up designs, and
repeat the process if necessary.

4. Select the final set of mock-up designs and start iterating through the implement-
ation process.

(a) Implement the first set of GUI screens.
(b) Perform Usability Testing using an Interview [8] and the Think-Aloud pro-

tocol [7]. Implement any changes which are discovered to be needed.
(c) Repeat the iterative process with the next set of screens.

5. Once the screens are implemented, implement other functionality in the GUI,
such as support documentation and improving the look and feel. Possibly, exper-
iment with other UCD techniques. This part of the plan was known to be time
permitting.

Chapter 4

Analysis of Existing Tools

After consulting relevant literature and extracting what we feel were the best practices
from it, we turned to existing Bioinformatics or Systems Biology tools for inspiration
on what to do, and what to avoid. We analysed seven different tools which are likely
to be used by the same user-base as CPiME to understand how they make complex
functionality easy to use.

We first recorded the general observations when using the tools, and then performed
a Usability Inspection by informally performing a Heuristic Evaluation using Nielsen’s
Heuristics [46], and also checkedwhether they generally observed the Gestalt principles
of perception [39]. These two techniques were described in Chapter 2. We summarised
our analysis of which of Nielsen’s Heuristics [43] each application observed by creating
Table 4.1, which can be found at the end of this chapter.

Since a full and thorough analysis of these software tools using these two techniques
would have been beyond the scope of this project, and also unrealistic due to the time
constraints, we used a quicker, less formal method and then summarised our findings
below each application. We generally used the list of Nielsen’s Heuristics and Gestalt
principles of perception as guidelines and commented if we noticed whether they
were significantly followed, or not. Understanding the technical functionality of these
applications was also deemed outside the scope of this exercise — we merely sought
to understand the approach taken when creating a UI for these tools, and to establish
whether best practices seem to have been followed or not.

4.1 Intrinsic Noise Analyser
The Intrinsic Noise Analyser (henceforth INA) [47] is a software application which
uses system size expansion to explore stochastic biochemical kinetics.

4.1.1 General Observations
INA provides a similar feature set to CPiME, allowing a user to create models and then
simulate them. It is also possible to plot these simulations. Users can use a GUI to
interact with the functionality. Unfortunately, we could not compile or run the software
when we evaluated this application, and this issue was confirmed by one of the authors
of this paper. Therefore, we evaluated the screen shots found in the paper itself, as

29

30 Chapter 4. Analysis of Existing Tools

seen in Figure 4.1; there exists a possibility that the functionality which we presume is
provided is not fully accurate.

Figure 4.1: Four sample screens of the Intrinsic Noise Analyser application [47]. Figure
A seems to depict the screen used to modify a reaction model. The screen on Figure B
can seemingly be used to analyse the reaction and its properties. Figure C is a screen
requesting feedback from a user, in the form of a wizard. Figure D depicts the plot of
concentrations of the different species.

4.1.2 Design Observations

INA appears to adhere to most of Nielsen’s heuristics, with a clean, consistent design
that supports the user’s actions. Support documentation appears to be available, and
the terminology used seems to be familiar to a Systems Biology or Bioinformatics user.
We could not verify whether it prevents errors effectively, and wewere also unclear with
how the system status is communicated to the user. We were also unsure whether the
feedback given when an error arose was helpful or not. The GUI seems to respect the
Gestalt principles, using distinct areas to organise the screen of elements into groups.
Proximity is used to show that screen elements are related to each other; for example,
the buttons in Figure 4.1c are close together as a user is expected to select only one
button of the three at a time.

4.2. Kappa Calculus 31

4.2 Kappa Calculus

Kappa Calculus [48] is a visual language which is used to define first-order functions.
A popular application of the language is in modelling molecular biology, for example
in modelling protein-protein interactions.

We analysed two different toolswhich useKappaCalculus. The firstwasKaDE [49],
which is a desktop application which compiles Kappa Calculus models into ODEs. The
secondwas amore recent application calledKaSim [50], a web-based applicationwhich
allows models to be simulated and plotted.

4.2.1 KaDE

KaDE offers a GUI to compile Kappa Calculus models into ODEs with many custom-
isable parameters, as seen in Figure 4.2.

Figure 4.2: The landing page of KaDE [49] showing the data selection page.

4.2.1.1 General Observations

KaDE offers a fairly rudimentary GUI. We feel that parts of it are a little haphazard,
possibly due to a lack of interest or resources in investing in a better design. This seems
to be in line with the limitations of scientific software design mentioned in some of
the literature surveyed in Chapter 2, such as Javafery et al.[28]. It offers "Normal" and
"Expert" modes, offering more parameters in the latter setting. Unfortunately, it is not
clear how or why some options are considered for "Expert" use only, and this could be
a course of confusion for some users. There does not seem to be any extensive support
documentation built-in, but contextual information is available when hovering over the
buttons or the text boxes. Users can save the options inserted into the GUI onto a file on
disk, or import them from it, which would be appreciated by the scientists who lament
needing to remember all the parameters they need to insert [24].

32 Chapter 4. Analysis of Existing Tools

4.2.1.2 Design Observations

The GUI is organised in different pages which are accessible using tab buttons. Radio
buttons are also used for the "Normal" or "Expert" mode switching, another interface
metaphor allowing only one of the two options to be selected at a time. Onscreen
buttons pop out of the screen with their 3D design, which is a Affordance [11], helping
users identify which buttons they can press.

The developers do not seem to have followed many of Nielsen’s Heuristics; for
example, it is not easy to know what the current system status is, nor does it seem
like sufficient guidance is provided to help users prevent errors. Some heuristics seem
adhered to; contextual information allows users to avoid errors, and "Reset to default"
and "Clear" buttons provide a high degree of user control and freedom. The design is
also fairly clean.

Furthermore, the design does not seem to abide by the Gestalt principles: parameter
text fields are not in line with each other or close enough to suggest that they belong to
the same group. As stated by Lidwell et al.[51], alignment can lead a user through a
design and contribute to the overall aesthetic, so this could prove problematic.

4.2.2 KaSim

KaSim [50] allows users to create and edit models defined in the Kappa Language, and
to simulate and plot graphs of them. Apart from a text editor with line numbers, the
program also represents the process using a visual editor, which can then be exported
as an image, as seen in Figure 4.3.

Figure 4.3: The landing page of KaSim [50] showing the Kappa Calculus model text
editor on the left and the visual editor on the right.

4.3. Visual SPiM 33

4.2.2.1 General Observations

Thisweb-based application seems to have been developed using fairlymodern standards
such as data visualisation library d3 [52].

The interface feels responsive, using JavaScript [53] to prevent reloading the page
when new data needs to be presented on screen. JavaScript also animates elements on
screen. When a simulation is taking place, no end time is required and the simulation
continues indefinitely, updating the plotted graph and the numbers displayed on screen
until the simulation is halted.

4.2.2.2 Design Observations

We believe that the developers of this web-application designed it with usability in
mind, as many of Nielsen’s Heuristics seem adhered to. As the process is simulated,
a live log, which is in a dedicated tab, allows a user to know the status of the system.
A user can stop and clear a partially simulated model, easily undoing any changes they
might have made. The design is clean and fairly straightforward to use, and implements
popular interface metaphors such as tabs.

We could not trigger any error messages while using the application, which could
either mean that the application is robust enough to support the variety of parameters
we inserted, or that the application actually doesn’t help a user prevent and recover from
errors. The application also wholly excludes support documentation in the application
itself, with contextual help and embedded, longer guides not being found.

The observation of Gestalt principles makes it naturally easy to navigate the inter-
face. Different colours of shading and areas enclosed by lines group onscreen elements
together. These grouped elements have the same dimensions and shapes. Although
no border line is present around the right panel on the landing page, the continuity
principle affords a user to naturally associate the interface elements within it, together.
Drop down menus use shadows to indicate that they are in focus and in the foreground,
with the rest of the elements being in the background when they are open.

4.3 Visual SPiM

Stochastic Pi is a programming language used to design and then simulate computational
models of biological processes. Visual Stochastic Pi Machine (henceforth SPiM) [54]
is a web-based application created for use with the Stochastic Pi Language [55].

4.3.1 General Observations

Visual SPiM offers a GUI which is rich in functionality, responsive and fast to use.
It was built using Microsoft’s proprietary web browser plug-in called Silverlight [56].
Users can load or save Visual SPiM models defined in text files using the interface and
also edit them using the text editor, as seen in Figure 4.4. It also allows users to zoom
in and out of the text in the text editor. It has a number of examples built in, so users
can quickly try out the application and the functionality. Models are first built, and then

34 Chapter 4. Analysis of Existing Tools

Figure 4.4: Visual SPiM [54] showing the model text editor on the left, a plot of the
simulated model in the centre and the support documentation on the right.

simulated using respective buttons on the UI. Users can plot graphs of the chemical
ODEs, and numerical solutions are presented in tabular format.

However, the richness in functionality comes at a cost, as defined in Hick’s Law [57]
which states that the time it takes to perform a task increases as the number of alternat-
ives increases. We found that the interface looked busy, and while the tabbed interface
metaphor is useful in structuring the onscreen elements, we discovered a deeply nested
tabs structure which left the application feeling cumbersome to use. All buttons and
tabs are active at all times, even when the functionality behind that element is not ready
to be used. This meant that we were not always clear with what we should click next,
and this negatively impacted the application’s ease of use. We also found repeated use
of the same terms across the UI, without an explanation of how one instance differs
from another. For example, we found three "Graph" tabs across the entire interface,
and there was no information regarding the distinction between them.

4.3.2 Design Observations

Visual SPiM adheres to the majority of Nielsen’s Heuristics. A clear system status
field can be found in the top left corner, and the UI uses design cues which are visually
similar to typical Microsoft software [58], matching the system with that of the real
world of the user. It supports undo and redo operations in the text editor, and the design
language used is mostly consistent. User support documentation is available and highly
detailed, and contextual help is also present in the form of tool tips on many buttons.
Since the UI is generally static, users do not need to recall anything from memory, but
rather can simply recognise that they are using the application appropriately. Plotted
graphs can be panned by simply clicking and dragging them, a UI affordance which
feels natural to use. Additionally, users can immediately know which buttons to click
in the text editor as they have popular interface metaphors, such as a floppy disk icon

4.4. IQM Tools 35

on the "Save File" button.
We observed an element of inconsistency in the UI, for example, some "Save File’

buttons have a floppy disk icon on them, while others have a string description instead.
There also seems to be another system status indicator in the lower right corner, which
replicates that in the upper left corner.

Gestalt principles appear to be followed since related UI elements are in close
proximity and use varying degrees of shading, for example in the text editor buttons
layout. Shadows are used to show which elements are in the foreground, such as active
tabs.

4.4 IQM Tools
IQM Tools [19] is a software package which plugs into MATLAB to expand its func-
tionality. It is used mainly in systems pharmacology, pharmacometrics and systems
biology, and is made up of a number of different, distinct libraries which all have
independent and unrelated GUIs.

Figure 4.5: IQM Tools [19] has numerous different GUIs. This one is used to edit and
simulate models.

4.4.1 General Observations
The installation process of IQM Tools involved a significant amount of configuration
and preparation, which might discourage inexperienced users from installing it. Once
installed, the different GUIs of the software package are loaded by inserting a command
into the CLI in MATLAB. The GUI designs vary considerably, and depend on the use
of the specific GUI. For this exercise, we are going to focus on the "SBedit" screen,
which can be used to create and edit models, simulate them and export the simulations
to a variety of formats. This screen can be seen in Figure 4.5.

36 Chapter 4. Analysis of Existing Tools

4.4.2 Design Observations
Since there is no unified GUI to launch all the different components of IQM Tools,
users need to recall the CLI command every time they choose to use it. This directly
challenges the Nielsen’s Heuristic that recognition is better than recall. In "SBedit",
the system status is not clearly visible when a model is being simulated, and it is also
not possible to stop a simulation once it starts, or to undo or redo any changes. Since
the different GUIs are significantly different, we feel that this package is not consistent
and non-homogeneous.

IQM Tools has support documentation in the form of text files within the tool’s
directory structure, but not inbuilt to the system’s interface. Contextual information, in
the form of tool tips, is also not widely available.

Some buttons belonging to the same group are enclosed in a border line which
organises the interface, but this does not apply to all button groups, such as the export
buttons in the lower left corner. The spacing principle between groups of buttons is
also not applied consistently, so some groups appear more distant than others without
a definitive reason.

4.5 MATLAB Simbio
MATLAB Simbio [18] is offered as part of MATLAB [1], and offers system biology
and pharmacokinetic/pharmacodynamic model building and analysis functionality.

Figure 4.6: The MATLAB Simbiology [18] interface, displaying a model.

4.5.1 General Observations
This application appeared to be the most mature in terms of functionality and design,
following MATLAB’s design style and pattern [1], as seen in Figure 4.6. It felt well

4.6. CPi-IDE 37

designed because we felt it incorporated good usability practices, such as tabs and icon-
ography on GUI buttons using popular interface metaphors [10], which are likely to
help users understand what the buttons do quicker. Breadcrumb navigation represents
files and folders in the file selection bar, which offers quick, inline navigation to the
desired file or folder [59]. The task-bar design mimics that of the Microsoft-developed
Ribbon interface [60], which is used another popular application like Microsoft Of-
fice [61]. We suspect that this allows new users to immediately feel familiar with the
application, even if it would be their first time using it.

We agreed that this application likely offers the best model for us to design CPiME’s
GUI design off, since we suspected that the target audience is likely similar.

4.5.2 Design Observations
We found that MATLAB Simbio follows Nielsen’s Heuristics significantly. There is
a system status bar along the bottom of the GUI, and the application’s GUI resembles
another popular applications, Microsoft Office [61]. Undo and redo are both sup-
ported, design is consistent and error prevention was developed by providing suitable
user feedback when needed. The application also offers keyboard shortcuts for more
experienced users, and displays critical information at all times, so users do not need
to remember it as they use the interface. Contextual help information and technical
support documentation are both available.

Drop down menus also keep extra information out of the way until it is needed,
following the 80/20 rule [62]. The Gestalt principles [14] also seem observed, for
example, the proximity and styling of UI elements seem to used to group them together,
or distinguish them. Users see different buttons in the menu bar together as a whole,
as the continuity principle affords this. Different shades are used to indicate which
elements are in the figure and ground of the interface.

4.6 CPi-IDE
CPi-IDE was one of the previous attempts at creating a GUI for use with CPi [63].

4.6.1 General Observations
CPi-IDE offers a simple interface which displays the contents of the text file containing
the CPi model definition on the left. It offered similar functionality to that of CPiME,
including CPi model definition editing, viewing ODEs, model simulation, plotting of
the simulation and phase plots, and also the possibility to logically verify models.

Although the application feels basic and unfinished at times due to elements not
being positioned appropriately, the functionality offered seems robust. The plotting
functionality allows users to remove species and re-plot the graph easily. It also provides
a graphical formula builder.

Unfortunately, it reportedly does not scale well and becomes unresponsive if it is
made to perform complex simulations [3]. Regardless, CPi-IDE offered an appropriate
starting point to the design and functionality which should be included in the CPiME
GUI, primarily because it was tailored to CPi [2].

38 Chapter 4. Analysis of Existing Tools

Figure 4.7: The CPi-IDE application [63], displaying a model definition and a plot of its
simulation.

4.6.2 Design Observations
CPi-IDE’s GUI is organised using nested tabs. The design is clean and simple, and
some Gestalt principles are observed, such as grouping elements by proximity and
similarity which aids users in navigating the interface.

The "file" menu allows users to open a file selection dialog box, and to save the
model displayed, and we feel that it might have been more appropriate to display this
functionality permanently on the GUI. Even though there is a "help" menu option,
this menu only generates a dialog about the program. There is no contextual help
information available and we could not find evidence of any other Nielsen Heuristic
being observed.

4.7. Summary of Design Observations 39

4.7 Summary of Design Observations

Tool Heuristics Observed Heuristics Not Observed
INA 6 4
KaDE 1 9
KaSim 7 3
Visual SPiM 9 1
IQM Tools 3 7
MATLAB Simbio 10 0
CPi-IDE 2 8

Table 4.1: The total number of Nielsen’s Heuristics [43] observed for each application.

Chapter 5

Code Re-factoring and Command Line
Interface Redesign

One of the planned goals of this project was to re-factor the existing source code of
CPiME [3] as we wanted to allow users to call the different functions of the CPiME
CLI independently. This additional flexibility would make the functions more suitable
for plugging into data processing pipelines, and also allows users direct access to the
functionality without needing to load the interactive CPiME CLI. Another planned
goal was to redesign the existing CLI to make it more interactive, allowing a user more
flexibility when following a function rather than necessitating a strict, logical flow. The
work described in this chapter is targeted to the Persona described by Ross McIntosh,
found in Section 6.3.2. We believe it could make CPiME more efficient to use for more
technical users.

5.1 Inline documentation and the Private Folder
While following the introductory MATLAB [1] courses mentioned in Chapter 2 [20],
we discovered that MATLAB supports direct, external calling of functions defined
in specific files without any additional setup. As a result, we did not feel the need
to re-factor the existing code to expose suitable entry points, as we felt that this was
already available. Instead, we focused on analysing the existing code to identify how
the functions rely on each other and how the chain of function calls take place. We
generated the built in "Code Dependency Report" to assist our effort — a copy of it
can be found in Appendix A. We identified nine function files from the previous total
of twenty-eight which were suitable entry points into the code logic, being reasonably
independent and accepting parameters which a user can easily provide. We used another
MATLAB trick to organise the folder contents, by placing the unsuitable entry point
files in a folder called private. Function files defined inside a private folder can
only be called by function files immediately one level above them, and not from the
MATLAB command line [64]. This successfully limited the scope of the functions and
will show future users of CPiME that only nine functions files should be called directly.

We improved the existing inline code documentation of the nine function files
to help users quickly understand the implemented functionality, and also described
the expected parameters. CLI users can now use a standard MATLAB CLI support

41

42 Chapter 5. Code Re-factoring and Command Line Interface Redesign

documentation function, help [65], to return information about a CPiME function. An
example is shown in Figure 5.1.

Figure 5.1: Using the inbuilt MATLAB help [65] functionality to return information about
the analyse_ode_solutions function.

We also considered merging separate function files together, and using nested or
local functions to define more than one function in one function file. We abandoned
this effort, however, when we realised that the length of two merge candidate files
(answer_query.m and validate_query.m) were over three-hundred lines long, so it was
more appropriate to leave each function in its own file.

We hypothesise that these changes will improve the experience of new users of
CPiME, allowing them to understand how to make use of the extension with greater
ease than the previous file organisation structure.

5.2 CLI Modification
After spending more time investigating CPiME, we realised that a significant degree of
flexibility and interactivity is already implemented. Users can pick the function they
want to use from the initial menu, and they can also easily quit most processes they are
currently in, and return to the main menu.

We consulted relevant literature [66] [67] and believe that the CLI for CPiME
already implements those recommendations. Therefore, we chose not to change the
existing CLI implementation and allocated the time we had planned for this part of the
project to subsequent tasks.

Chapter 6

Graphical User Interface Design and
User Evaluation

Four different versions of the mock-up designs were created as we involved different
stakeholders, and evaluated their feedback. The final set of mock-up designs, found
in Appendix B, incorporate the best-practices from literature, other tools analysis and
user feedback sessions.

6.1 Design
Our motivation behind designing the GUI was making it as straightforward to use as
possible, allowing users to navigate through the functionality using little more than
their intuition. We decided to use Balsamiq Mockups 3 [68] to generate the mock-up
designs, as we found it fast, easy to use, and it offered the UI elements we needed.

The screen which allows users to generate ODEs can be seen in Figure 6.1. The
full set of final mock-up designs can be found in Appendix B, with full descriptions of
how we anticipated a user should use the screen.

6.1.1 Design Choices
We planned one screen for each existing function in CPiME. While designing the
screens, we were aware of Ockham’s Razor [69], which recommends always selecting
the simplest design given a choice. We simplified designs to include only elements
which had to be present on that specific screen. We also exploited the Gestalt Prin-
ciples [14] to depict element grouping naturally, such as with the buttons near the file
selection bar in Figure 6.1. The buttons are close together, aligned and also have the
same dimension. For example, one can immediately tell that the buttons near the file
selection bar fall into a different group to the menu buttons along the top of the GUI.

We designed top-left heavy interfaces since this is the primary optical area given
the Gutenberg Diagram hypothesis [13], and most screens have buttons to perform the
execution in the bottom right since that is the terminal area of the screen, such as the
"Analyse Solutions" screen found in Figure B.6.

We designed the menu structure to resemble the Microsoft Ribbon interface [60]
which we observed in MATLAB Simbio [18] as we believe that this would make it

43

44 Chapter 6. Graphical User Interface Design and User Evaluation

easier for our users to start using the GUI, especially if they are regular MATLAB [1]
users too. We followed Fitts’ Law [70] when establishing the size of the buttons — it
states that the time it takes to move to a target depends on the target size and the distance
to the target. We therefore designed the screen to have a small size with comparatively
large menu bar buttons, and organised what we believe are the most frequently used
elements to be in the top-left and bottom-right areas.

We gave preference to a symmetric design as this is said to be aesthetically pleas-
ing [71]. We used a tabbed interface metaphor given its prevalence in the alternative
applications we surveyed in Chapter 4, such as in the Compare Processes screen, seen in
Figure B.4. We also designed the mock-up designs using iconography rather than text
on the buttons or labels, as we believed that this would allow users to understand what
the buttons do at a glance. Finally, we aimed to fit all screen elements within the screen,
letting users observe all parameter values even after they selected them. We believe
that this is a significant improvement over the CLI, where new commands showing up
on the interface would automatically scroll the onscreen text upwards, taking them out
of sight.

Figure 6.1: A mock-up design of the "View ODEs" screen, allowing users to generate
ODEs for a selected CPi model definition. The full set of final mock-up designs can be
found in Appendix B.

6.1.2 Usability Inspections

We performed a Cognitive Walk-through [5] and Heuristic Evaluation [6] immediately
after designing the first set of mock-up designs, before we showed them to any stake-
holders or prospective users. We thought through the four questions as listed in Section
2.6.6.1, and then reorganised the menu bar buttons to better reflect the groups of terms
we believe a user would be looking for. Before the Cognitive Walk-through, the buttons
were organised as in Figure 6.2.

The initial designs allowed users to check the generated ODEs from each screen.
We moved away from this, as we realised through the Cognitive Walk-through that

6.1. Design 45

it is unlikely that a user would need to check the ODEs every time they use other
functionality in CPiME.

Figure 6.2: The first version of the mock-up design of the menu bar of the CPiME GUI,
which was reorganised following the Cognitive Walk-through.

We also performed a Heuristic Evaluation [6] using Nielsen’s Heuristics [43]. The
results influenced the initial design and prompted us to include additional features, as
seen:

1. Visibility of system status: We added a status bar along the bottom, and planned
on using dialog boxes to present feedback. Initially, we planned on using three
dots to indicate the page position when using screens with multiple pages.

2. Match between system and the real world: We matched the language used on
the GUI to what users without a computational background might be more famil-
iar with: "Settings" instead of "Parameters" and "Model" instead of "Definition".
We planned on using GUI elements which offered perceived affordances [11].

3. User control and freedom: We included a "Reset" button on screens with a
settings panel. We also planned on investigating inserting "Undo" and "Redo"
buttons, although this was anticipated to be complex. The "Back" button, such
as in Figure B.8, offers user control.

4. Consistency and standards: We used the same design for file selector bar and
menu bar along on top in all screens. We also used the same icons and labels
throughout, and a design which is influenced by other popular applications like
MATLAB Simbio [18].

5. Error prevention: We planned on inserting confirmation [72] boxes before
significant processing or clearing of data. We would test this further during the
post-implementation testing session.

6. Recognition rather than recall: We display important information like CPi
file selection or CPi definitions in all screens and throughout other parameter
selection process.

7. Flexibility and efficiency of use: We would look into enabling keyboard short-
cuts to accelerate GUI use for more experienced users.

8. Aesthetic andminimalist design: We kept the design clean and organised using
the Gestalt Principles [14].

9. Help users recognise, diagnose, and recover from errors: We would notify
users if a parameter value is outside the acceptable range or in an incorrect format,
after using contextual help information to guide them.

46 Chapter 6. Graphical User Interface Design and User Evaluation

10. Help and documentation: Wewould create Support Documentation, accessible
from a ? button, and use contextual help information, accessible from a i
button [12].

6.1.3 Stakeholder Influence

We discussed the first set of mock-up designs with other members of the CPi team who
recommended additional changes. For example, the initial designs allowed users to
check the ODEs generated from each model from each different screen. A stakeholder
felt that this resulted in a lot of repeated functionality, so this functionality was retained
only in the "View ODEs" screen. We also changed the design so models could only be
edited from the "Edit Model" screen, rather than every screen as originally designed.
Instead, we placed an edit button, which was originally designed with a pencil icon on
it, overlapping the "CPi Model" text area to let users quickly switch to the "Edit Model"
screen from anywhere. This is in line with the Flexibility-Usability Trade-off, which
states that increased flexibility in a system results in less usability [73]. We were also
asked to ensure that common GUI elements, such as the file selection bar, "CPi Model"
text areas and process drop-down list selector were consistent [44] across all screens.

This feedback process led to two iterations of the mock-up designs, with this third
version being presented to end users as part of the "Pre-Implementation User Testing"
phase.

6.2 Pre-Implementation User Testing

Three different male participants with a Systems Biology or Bioinformatics background
evaluated the mock-up designs individually. One had prior CPi experience, and all had
at least six to ten years of experience in the field and considered themselves as having
advanced or better computer skills. Their highest level of education achieved was a
doctoral level degree.

We picked another three participants for the Post-Implementation User Testing
session, bringing the total number of participants to six. This is above the recommended
minimum total of five participants [74], needed to effectively find usability issues. In
fact, involving more than five participants is said to have a small impact on the total
number of usability issues found.

6.2.1 Test Procedure

A central part of UCD is performing user testing when designing an application [34].
We provided participants with consent forms prior to commencing the tests, which can
be found in Appendix C, informing them that the session will be audio recorded and
that notes will be taken. We carried out the same pre-implementation test with each
participant — the full plan can be found in Appendix E.

The first section of both the pre- and post-implementation tests involved a brief inter-
view [8] to understand the participant’s attitude to Systems Biology or Bioinformatics
software, and a description of CPi. This is described in Section 7.2.

6.2. Pre-Implementation User Testing 47

The next part involved the mock-up design evaluation. Our main objective was
to understand whether the designs were in line with the participants’ expectations for
what such a GUI would look like. We started by priming the participants by describing
what the mock-up design would be of, to encourage them to create a mental image.
Then, we showed the participants the design and asked them whether it fell within their
expectations; we also asked them to describe how they would perform a sample task
by using the screen. We tried to understand whether the design principles or practices
we used, such as interface metaphors or pre-populating fields with default parameter
values, were indeed known and favoured by our participants. This process was repeated
for each mock-up design for the entire GUI.

6.2.2 Results

We discuss the interview questions and analyse the responses from both test sessions
together in Section 7.2. Apart from some exceptions, the participants’ expectations of
the screenwere generally alignedwith themock-up designs, and their intuition correctly
guided them in anticipating how to use them.

6.2.2.1 Consensus

Participants seemed to find the screens mostly consistent and commented on their
similarity. Their reservations were also mostly similar. All participants found the
initial page number interface metaphor selected unsuitable for this type of interface,
believing it was better suited for mobile devices, as seen in Figure 6.3. They all called
for a clear description of what the "refresh" button, such as that in the "View ODEs"
screen (Figure 6.1), actually does— either by inserted text labels or by using contextual
help information [12].

(a) Before the evaluation (b) After the evaluation

Figure 6.3: Our participants found the first page interface metaphor we used more suit-
able for mobile devices, not desktop applications (a). We redesigned the page interface
metaphor to a more traditional one (b).

Before the evaluation, the screens all had a "Play" button on the left side of the
screen which displayed the CPi Model definition, as in Figure 6.4a. This allowed users
to generate the ODEs prior to proceeding with the processing, just like the CLI. All
participants found this intermediate step unnecessary, so we removed it and retained
only one "Play" button per screen, anticipating the ODE generation to happen silently in
the background instead, like in Figure 6.4b. Users also found it challenging to identify
which elements were editable on the second "Parameter Scanning" screen. We added
iconography which we believe makes it more evident, as seen in Figure 6.5a and 6.5b
respectively.

48 Chapter 6. Graphical User Interface Design and User Evaluation

(a) Before the evaluation (b) After the evaluation

Figure 6.4: Our participants found the multiple "Play" buttons on many screens confus-
ing (a). We retained only one "Play" button per screen, making the ODE generation
invisible (b).

(a) Before the evaluation (b) After the evaluation

Figure 6.5: Our participants found it difficult to identify which elements were editable (a).
We added "Pencil" icons to make it more evident (b).

6.2.2.2 Differing Views

One user did not immediately realise that the buttons along the top bar were intended
to change the screen displayed, and thought that they were actually buttons to perform
a specific action instead. Another noted that the parameters requested for each screen
were not consistent, and that this could be a source of confusion. This participant
also incorrectly interpreted how the "Analyse Solutions" screen (Figure B.6) should be
used, as the test results positioning seemed to have misguided them. We believe that
these difficulties could be due to the fact that a wire-frame mock-up design was being
used and parts of the design could be ambiguous, and this could be mitigated by using
appropriate contextual help information and appropriate support documentation in the
implemented GUI. Two participants felt that displaying the CPi Model definitions on
each and every screenwas not necessary, and it would have beenmore suitable to display
them only on the "Edit Model" screen (Figure B.1). We appreciated this concern, but
in order to remain consistent with CPi-IDE [63] and to provide users the possibility of
using each screen independently of the other, we retained this setup.

6.3. Personas 49

6.2.3 Test Improvements

We suspect we could have been clearer in wording the question "Is this mock-up design
what you expected to see?", as while we wanted participants to reply with a yes or a no,
most felt compelled to describe the screen instead and describe how one would use it.

6.3 Personas
Personas [9] would have been ideally been created at the very beginning of the UCD
process and used during all parts of it. Personas could have helped guide the selection
of participants in the Pre-Implementation User study and also our design choices when
designing the mock-ups.

We chose to create Personas at this stage just the same to help us with the remainder
of the project and to be available for future CPiME team members. Although many
different Personas could have been created, we chose to focus on two which we be-
lieve represent a significant proportion of CPiME’s user base: experienced System
Biologists/Bioinformaticians from either a Computer Science or a Life Sciences back-
ground. Some of the interview responses, which are discussed in Section 7.2, served
as inspiration. These Personas are completely fictitious and any similarities to actual
people, living or dead, are purely coincidental. We avoided references to gender, age
and marital status to avoid unconscious bias.

6.3.1 Emily MacDonald

Figure 6.6: System Bio-
logist Emily MacDonald
conducting an experiment
[75].

City: Glasgow, U.K.
Job Description: Emily MacDonald, seen in Figure 6.6,
has over ten years of experience leading a team of five Sys-
tem Biologists investigating the microbiology processes
leading to malignant skin cancer. Her typical day involves
planning and conducting experiments in the morning, and
then analysing the results using her computer in the af-
ternoon. She enjoys experimenting with novel tools, but
sometimes finds it hard to get them up and running and to
be sure of the impact of the parameter values being used.
She usually keeps notes of dry lab experimental proced-
ures, so she can easily replicate the data processing tasks.
Emily usually gets the subway to work.
Education: She graduated with a first class undergraduate degree in Biological Sci-
ences from the University of Glasgow. She started reading for a PhD shortly thereafter
and successfully defended her thesis in 1992, in which she developed a novel exper-
imental method for monitoring malignant tumour growth in epidermal tissue. Apart
from a single class in her undergraduate degree which introduced her to Scientific
Computing practices and programs, Emily’s computer skills are self-taught.
Aspirations: Emily’s life goal is to create an extensible model of epidermal malignant
cancer, a disease which took the life of her first Biology teacher. She hopes that this
model would be used to create a cure for it. She also wants to become a qualified Yoga

50 Chapter 6. Graphical User Interface Design and User Evaluation

instructor.
Favourite Colour: Green Favourite Food: Roast Chicken

6.3.2 Ross McIntosh

Figure 6.7: Software
Engineer Ross creating
a new data processing
pipeline [76].

City: Edinburgh, U.K.
Job Description: Ross McIntosh, seen in Figure 6.7, has
been coding for over 20 years, and is currently part of a
team of four software engineers creating data processing
pipelines for a synthetic biology company. His typical
day involves a scrum meeting in the morning to report his
progress and get set his day’s work. Ross typically codes
all day, stopping only for lunch or to ask a question to his
peers or manager. Ross enjoys experimenting with new
tools and has a knack for remembering minute details with
little effort. His obsession is writing ever leaner code, and
believes that this is how his competitive streak manifests
itself. Ross usually gets the bus to work.
Education: Ross read for a B.Sc. (Hons.) in Computer Science at the University of
Barcelona, Spain, graduating in 2001. He later read for an M.Sc. in Informatics at the
University of Edinburgh. Ross is a great fan of online courses and complements his
formal education with these. He also participates in coding competitions regularly, and
believes this has granted him invaluable coding experience.
Aspirations: Ross’ life goal is to create a software package which would vastly improve
Biology researchers’ performance. He would also like to become a certified fitness
instructor.
Favourite Colour: Blue Favourite Food: Vegan Mushroom Burger

Chapter 7

Graphical User Interface
Implementation and User Evaluation

We split the implementation phase into two iterations, each handling half the GUI
screens as seen in Appendix B. We successfully completed the first iteration, imple-
menting the first three screens, and then testing them with three participants. We used
the feedback to influence the development of the next three screens. In the next iteration,
we managed to implement two of the three screens, but then had to stop due to time
constraints. We managed to develop a fully-functioning GUI for five of the six CPiME
CLI functions. We have enclosed screen-shots of the implemented GUI in Appendix
D. The work described in this chapter is targeted to the Persona described by Emily
MacDonald, found in Section 6.3.1. We believe it could make CPiMEmore straightfor-
ward to use for less technical users. We have not detailed the GUI functionality in this
section; a full, detailed description can be found in the support documentation of the
GUI in Appendix F. This documentation was written following the recommendations
from Barlett et al. [37], as noted in Section 2.5.4.

7.1 Implementation

We investigated two different ways of creating a GUI in MATLAB [1], GUIDE [77]
and App Designer [78]. GUIDE was the first attempt at creating a GUI builder and
has been available, and includes a limited set of just thirteen UI elements and a classic
look-and-feel. App Designer is a very recent addition to MATLAB, released only in
2016 and includes a greater range of UI elements and a modern look-and-feel. We
originally planned on using App Designer in this project, but discovered very limited
graphics support [79] in the 2016 version which was only improved in the 2017 version.
Since the computers of the School of Informatics at the University of Edinburgh ran
MATLAB version 2015, and with version 2017 being so cutting edge, we chose to go
for the more established GUI builder instead. This ensured that our GUI could run on
most computers running MATLAB, rather than only those running version 2017.

Wemanaged our software changes and versions usingGit [80]. While implementing
the GUI, we kept the Personas presented in Section 6.3 in mind to guide any decisions
we had to take.

51

52 Chapter 7. Graphical User Interface Implementation and User Evaluation

7.1.1 Implementation Choices

We used one MATLAB Figure, named gui.fig and its accompanying gui.m for the
entire GUI, so that the entire GUI is defined in one file, which makes it could make it
easier for developers to analyse and led to fewer files in the file structure. Launching
the GUI simply involves typing gui in the MATLAB command window.

We have not detailed theGUI functionality in this section; a full, detailed description
can be found in the support documentation of the GUI in Appendix F.

7.1.1.1 Different Screen Implementation

GUIDE allowed us to layout the GUI visually, and then add functionality to the ele-
ments in each element’s respective Callback function which is executed when the
element is clicked. We also inserted some functionality in the gui_OpeningFcn in
the accompanying gui.m which is executed just before the GUI is made visible, for
example to display the default screen panel. We created six overlaid Panels, one for
each screen, and another Panel along the top which contained the menu bar and its six
Buttons (one for each screen). We set all screen Panels to hidden by default, and we
display the Panel upon detecting a click on its respective Button by calling a custom
change_panel function, passing the frame name identifier as a parameter. The "View
ODEs" screen can be seen in Figure 7.1. Screen-shots of the entire GUI can be found
in Appendix D.

7.1.1.2 Main Button Implementation

Some screens have a Button which executes the primary calculations of the screen,
for example, the "Generate" Button in the "View ODEs" screen (Figure 7.1) or the
"Simulate" Button in the "Simulate Process" screen (Figure D.3). Pressing these
buttons is analogous to calling the respective function file directly in the CPiME CLI.
To adapt these functions to the GUI, first we fully understood them and established
what parameters needed to be passed for them to work. Then, we implemented each
Button’s Callback function such that it parses the information which has been typed
into that screen’s GUI, validating it if necessary. Validation feedback is returned via
dialog boxes, which also display an appropriate, informative message, helping users
recover from the error. For example, start and end times must be digits and not negative
numbers, otherwise a dialog box is displayed asking the users to correct the error.

In all cases, we first tried to directly call the functions which were already im-
plemented in CPiME and pass the input as parameters, allowing us to perform these
calculations while reusing as much code as possible. Since the previous functions were
primarily written to be used with the CLI, any user feedback was always returned to
the CLI. We discovered that the previously implemented functions did return feedback
from a uniform level in the code — rather, feedback was printed to the CLI whenever
an exception arose, sometimes even deep within nested called functions. This meant
that it was not straightforward to convert the existing CLI functions to work with the
GUI. Even if we had adapted the top level function, a lower level function might
inappropriately return feedback to the CLI even if it was called from the GUI.

7.1. Implementation 53

We tried to implement an overloaded version of the function which would have
allowed us to extend the function definition and adapt it for the GUI cleanly. However,
we discovered that MATLAB does not support function overloading and has limited
object-oriented-paradigm support. Due to time restraints, we could not significantly
extend the pre-existing code and also test it. Therefore, we chose to replicate some
function files and add a _gui suffix instead; we converted eight pre-existing functions
into these function files with a _gui suffix. Each return user feedback using GUI
elements instead of the CLI, for example using dialog boxes.

Figure 7.1: The implemented "View ODEs" screen, displaying generated ODEs.

7.1.1.3 Retaining the File Selection Between Screens

Once a user selected a file, we wanted the file and process selection to remain so even if
the user moves to another screen. Since the GUI needs to store the details of up to four
models which are being compared in the "Compare Processes" screen, we needed an
efficient way of storing and retrieving the models’ information. We implemented this
using two different hash maps; one for the file name and path (file_map) and another
for the selected process within the file (process_map). The index number value of
the currently selected process from the process drop-down list (curr_pname) and the
model number (1–4) (curr_fname) are stored in global variables. The model number
is actually which of the four model processes is currently selected in the "Process" radio
button group in the "Compare Processes" screen (Figure D.4). We use this number
directly to see which data to retrieve from the hash maps. We also defined functions
which open a file for each of the implemented screens, all starting with an openfile_
prefix. These functions are invoked whenever a user goes from one screen to another,
populating the new screens UI elements with the currently selected model’s properties.
The file path and name and the file contents are populated on each screen using this
function.

7.1.1.4 Reset Functions

We implemented reset functions for each screen, all starting with a reset_ predix.
They are invoked if the user closes the currently selected file from the "Edit Model"

54 Chapter 7. Graphical User Interface Implementation and User Evaluation

screen (Figure 7.2), or else clicks the "Reset" Buttonwhich is available on some screens,
like the "Compare Processes" screen (Figure D.4). These functions clear the selected
file name, path and process in the hash maps mentioned in Section 7.1.1.3, and then
change the onscreen UI elements back to their empty state. Some UI elements revert to
disabled, as they were when the GUI was first launched. For example, the "Generated
ODEs" text area in the "View ODEs" screen (Figure 7.1) is disabled when the "Reset"
button is pressed.

7.1.1.5 Scalable GUI

We attempted to make the GUI scalable by changing the "Resize behaviour" in the
GUI options menu to "Proportional", but we discovered that this led to unpredictable
behaviour with parts of the UI elements disappearing sporadically. We discontinued
our effort and the GUI is now of a fixed size.

7.1.1.6 Heuristics Implementation

Preventing errors from occurring and correcting them was an important heuristic we
followed [43], so we used different Dialog boxes to our advantage, as in Figure 7.2.
Moreover, all UI elements have tool tips assigned to them which appear when hovering
over them, like in Figure D.5. We also disable parts of the screen which are not ready to
be used, such as the right panel of the "ViewODEs" screen as seen in Figure D.2, unlike
applications like Visual SPiM [54]. We implemented the status string as a simple text
label on each of the string panels, like MATLAB Simbio [18]. We programmatically
change the contents of this status label depending on what the user is doing, and then
reset it if the user resets the screen, as described in Section 7.1.1.4. A "Help" button
was implemented in the upper right corner as designed. This button displays a dialog
box advising users to check the help.pdf file for Support Documentation. The full
support documentation can be found in Appendix F of this document.

Figure 7.2: The implemented "Edit Model" screen, displaying a warning dialog box be-
fore closing a file.

7.1. Implementation 55

7.1.2 Differences between Mock-Up Designs and Implementation
We discovered that MATLAB does not fully support the design we had created, so we
had to adapt it accordingly. For example, although we originally wanted to provide a
way of displaying all contextual help information by clicking on an "i" button, we could
not identify a way of doing this and had to abandon our efforts.

7.1.2.1 Interface Metaphors

Interface metaphors [10], such as a tabbed design and iconography over buttons, such
as a "floppy disk" for the "save" button, could not be implemented as GUIDE does not
support this natively. Instead, we used radio buttons for the "Compare Processes" screen
(Figure D.4) and opened separate windows for the graph plot and numerical solutions
in the "Simulate Process" screen (Figure D.3). We also did not end up displaying any
icons over any UI elements as planned, as GUIDE provided no means of doing this.
We resorted to using text labels only instead, which was actually recommended by a
participant in the pre-implementation user testing. We also discovered that MATLAB
did not support displaying the file selection bar format using breadcrumb format [59]
as designed, and had to settle for a simple string layout instead.

7.1.2.2 The "Compare Processes" Screen

The "Compare Processes" (Figure B.4-5) was designed with a two screen layout, but
the implementation (Figure D.4) only contains one screen because the graph plotting
do not appear within the UI but rather in standalone windows. There were multiple
reasons for this: the lack of tabbed interface support and the difficulties experienced
when creating a scalable GUI (Section 7.1.1.5) made it difficult to fit all elements on a
small screen.

7.1.2.3 The "Analyse Solutions" Screen

In the designed "Analyse Solutions" screen as seen in Figure B.6, the "Test" Button is
on the left and the "Clear" Button is on the right. The implemented version (Figure
D.5) has a "Test" Button on the right and a "Reset" Button on the right. We changed it
to maintain consistency [44] among all the screens.

7.1.2.4 The "Simulate Process" Screen

The "Simulate Process" screen (Figure B.3) was designed with an inline graph plot and
numerical solutions. Due to the lack of tabbed interface support and difficulties creating
a scalable GUI (Section 7.1.1.5), the screen has a "Settings" panel on the right instead
(Figure D.3). The graph plot and numerical solutions open in separate windows.

7.1.2.5 Impact of Time Constraints

The second iteration of the implementation process had to be halted before we finalised
it due to time constraints. We chose to organise our work in two iterations instead of
one as soon as we discovered that there was not going to be enough time to implement

56 Chapter 7. Graphical User Interface Implementation and User Evaluation

the entire GUI and then perform the post-implementation user testing afterwards. We
believed it was better to conclude at least one implementation iteration in its entirety
and then fit in as much of the second iteration as we could. Consequently, we did not
finish developing the complex "Parameter Scan" screen, which explains why its button
is disabled on all screen-shots, and we also did not perform Post-Implementation User
Testing of the final three screens.

7.2 Interviews

Wedescribe the demographics and background of the Post-ImplementationUser Testing
in Section 7.3. We asked participants three open ended questions and their opinion on
six different statements in the interview. We also checked what their experience using
the alternative tools which we analysed in Chapter 4 was like. The entire test plan
including the interview questions can be found in Appendix E.

7.2.1 Question Structure

The aim of this project was to improve and expand the interface of CPiME, primarily
by creating a GUI which could make it easier to use. Hence, our first interview
question tackled the participant’s attitude to interface types: whether a CLI or a GUI
was actually preferred and why. We then asked them to recall their most frustrating
and rewarding experiences using Bioinformatics or Systems Biology software. Next,
we asked participants to give their opinion on six statements which describe their
attitude towards when and how they use user manuals, whether they expect themselves
to use applications out of the box without consulting any help documentation, and
their involvement of peers in understanding how to use such applications. We offered
standardisedLikert-scale [81] responses to the participants to reduce any biases. Finally,
we mentioned the names of the applications we analysed in Chapter 4, and asked them
to describe their past experiences using them, if any at all.

7.2.2 Answer Analysis

Since only six participants were involved in the interview, we did not analyse the data
quantitatively but rather qualitatively.

7.2.2.1 CLI versus GUI

Participants preferred a CLI when using Bioinformatics or Systems Biology Software,
citing efficiency, the possibility for computation parallelism and a higher degree of
control. A participant also stated that CLIs usually make it easier to keep a natural
log of execute by saving commands as scripts. Some participants claimed that GUIs
are useful when they are new to a software package and need to experiment with the
functionality to understand it better, but echoed complaints found in literature [34] that
GUIs in scientific software often fall short of expectations.

7.3. Post-Implementation User Testing 57

7.2.2.2 Sources of Frustration

Most of the frustration using such tools arose when users did not achieve the aims
they set out to achieve. Participants cited various issues, such as difficulty installing,
setting up and using applications. For example, knowing which parameters should
be used for a specific result to be obtained is said to be tricky, as noted in literature
[28]. Two participants mentioned limited access to the source code as a concern, also
recommended in literature [67].

7.2.2.3 Practices Worth Praising

On the contrary, participants were pleased when the tools worked as they needed to and
provided them with insights which helped them advance their work. Four participants
praised "easy-to-use" applications which feel natural to use (even by a user without a
computational background), keep a log and also allow backtracking — characteristics
which are aligned to Nielsen’s Heuristics [43].

7.2.2.4 Attitudes Towards Support Documentation

Support documentation was generally popular sources of guidance for participants, but
there was no clear usage pattern. Approximately the same number of participants said
they used support documentation before using an application for the first time, and did
not expect themselves to know how to use applications out-of-the-box. The reverse was
also true, with participants expecting themselves to know how to use the applications
immediately. These participants only said they used support documentation when they
ran into a difficulty and also relied on contextual help to find their way around an
application. Most participants claimed not to request assistance from peers when using
such software, while younger participants were more likely to involve them.

These answers reveal an interesting distinction between our participants: some
learnt by tinkering and experimenting, and others relied on support documentation first
to ensure they are using an application appropriately.

7.2.2.5 Attitudes Towards Alternative Tools

Only two participants had used any of the alternative tools we analysed in Chapter 4
in the past, and they did not clearly remember how the tools looked or worked. Some
had used other similar tools [82][82][83], but we did not get any valuable information
about such experiences.

7.3 Post-Implementation User Testing

Three different male participants with a Systems Biology or Bioinformatics background
evaluated the first three implemented GUI screens individually. None had used CPi
before, and two were relatively younger (25–34 years old) and naturally had few years
of experience in the field (1–5 years). The other participant was older and had over ten
years of experience.

58 Chapter 7. Graphical User Interface Implementation and User Evaluation

7.3.1 Test Procedure
Users were provided a consent form prior to starting the study — a copy of this can be
found in Appendix C. We audio recorded the entire session and also took notes during
the exercise. After the interview (Section 7.2), we used the concurrent Think-Aloud
protocol [7] to discover usability issues in the first three screens of the implementedGUI
by asking participants to speak out loud while performing two specific compound tasks.
After briefly describing CPi, we conditioned their mind-set into speaking out loud by
asking them to perform a simple, unrelated exercise — this is known as Think-Aloud
training [84].

Our usability goal was for the participants to successfully carry out the tasks we
assigned to them. The tasks were purposely designed to use secondary screens first,
and not require participants to interact with the screens in a serial way which we hoped
would mimic how a real user would use CPiME. The study is known as within subjects,
as we showed all the UIs to all the participants. Our independent variables were the
demographics and years of experience of the participants, and their prior experience
using CPi or alternative tools. Our dependent variable was simply the success rate of
performing the tasks assigned, since we were interested in uncovering usability issues.

7.3.2 Results
We found that the results obtained were generally coherent across all participants. We
did not analyse how the independent variables caused the dependent variable to change,
as we were only interested in implementing improvements to the GUI based on any
critical incidents which happened.

Technical errors during the testing process caused the Think-Aloud session to be
interrupted. Although we believed that the GUI screens was working as intended before
performing the user testing, we experienced fatal errors in the second task which meant
that users could not complete it. Usability issues also led to the first task not being
completed. This means that the usability goal was not achieved for both tasks and all
three participants. We introduced changes in the implementation after these results
which we believe would change the success rate of achieving the usability goal should
a future Think-Aloud session be held.

7.3.2.1 Common Tasks Outcomes

We will now describe the results which were common across all participants, and the
impact they had on the implemented CPiME GUI.

All participants worked through the first part of the first task successfully, but
became confused when trying to confirm whether the file was successfully saved to
disk. Most of the confusion arose from the status string in the lower left corner which
was originally not being updated when a user clicked "Save" — the status remained
Editing file, as in Figure D.1. We changed this behaviour so the status string
reverted back to Ready after a user clicked "Save". Another source of confusion was
the original wording in the dialog box shown when the "Close" button was clicked, as
in Figure 7.2. During the test, users were warned that closing the file could result in
the loss of unsaved data, even though they had just saved the data. This led them to

7.3. Post-Implementation User Testing 59

doubt whether they had actually saved the file or not, especially because such warning
messages are usually shown only in those circumstances when using popular software,
such asMicrosoft Office [61]. We simplified the dialog box warning message to the one
in Figure 7.2, with no mention of unsaved changes. These errors halted participant’s
progress and we had to intervene, leading to failing to achieve the usability goals.

The second task uncovered technical issues with the implementation. The CPiME
GUI should display the numerical solutions on a first Figure and a graph plot on a
second figure when simulating a model. Instead, two participants were experiencing
non-deterministic behaviour where the graph plot would end up within the numerical
solutions figure and the figure intended for the graph plot would end up blank. After
restarting the CPiME GUI, participants succeeded in completing the task.

We determined that this could be due to a thread racing issue, with MATLAB [1]
using the same figure object instead of different ones because of the way we are
calling separate secondary functions from the main GUI function. We considered
implementing a thread waiting condition, but we did not find evidence that MATLAB
supports this. Instead, we introduced small execution pauses of 2 milliseconds between
the calling of the two functions which resolved the matter.

Moreover, theGUI did not always feel fully responsivewhich led someusers to doubt
their success at carrying out their assigned task. For example, dialog boxes sometimes
took longer than expected to appear, and users reacted by repeatedly clicking the
button. A thorough analysis of the GUI performance could be performed to understand
the cause, but this was not attempted due to time constraints.

7.3.2.2 Other Outcomes

A participant recommended the use of progress bars to communicate the system status
more explicitly. Another participant was also uncomfortable using the type of computer
whichwas used for the test; this could have introduced additional unspecified bias which
impacted the participant’s test performance. In fact, this user was the only one who
found it difficult to tell which screen one was actually on. We chose to increase the font
size of the screen name to mitigate this. This participant also described the additional
"Edit" Button over the CPi definition text box in most screens as redundant and said
that it was not clear what the "Close" Button in the "Edit Model" screen was for.

7.3.3 Test Improvements
We successfully identified a number of usability issues with the first three GUI screens
which we implemented, and took measures to mitigate the problems. The test results
could have been verified by running the same test with the improved interface through
different participants, which is known as a between subjects study. The results of this
second round of testing could indicate whether the measures we took were effective.
We would have avoided involving the same people for the second round of testing due
to priming.

Ideally an additional two rounds of Think-Aloud testing would have been performed
with the second set of three GUI screens, but these could not be performed due to time
constraints.

Chapter 8

Project Evaluation

Our goal in this project was to improve and expand the existing interface of CPiME [3],
chiefly by making it more flexible and straightforward to use. We believe that through
our efforts, we have produced a set of deliverables which altogether could make CPiME
more suitable for new users and easier to use for existing ones. We have also created
a number of complimentary items, such as the Personas descriptions, which have laid
the groundwork for future analysis and could guide the next CPiME team members
into creating more targeted software. All in all, we believe that we have successfully
experimented with applying a UCD approach to improve the interface of CPiME, and
delivered on all the original objectives. Further experimentation is needed to prove
whether these deliverables have indeed improved the interface of CPiME.

The original project plan was somewhat ambitious in the time it should take to
design and implement the GUI, resulting in the project running two weeks behind
schedule. We had foreseen that the project timing could be tight, so we had organised
the original list of objectives using the MoSCoW method, which prioritises the com-
ponents in must have, should have, could have and would not have groups. No would
not have components had been identified. We reproduced this below and reported our
results. This led to the second GUI implementation iteration having to be terminated
prematurely, leaving out one of the six different screens.

Must Have: Background research for a list of best practices and design decisions
for systems biology or other Bioinformatics software, re-factored source code, restore
the CLI, design and implementation of GUI, Post-Implementation User Testing, project
write up

Should Have: Pre-Implementation User Testing, system documentation detailing
the functionality of the CLI and GUI

Could Have: Upgraded (revamped) CLI, a system walk through

8.1 Background Research
In Section 2.5, we presented a thorough analysis of HCI studies applied to the Bioin-
formatics or Systems Biology domain, and described two different approaches to UCD
found in literature. We also described nine HCI principles and methods which we used
in this project in Section 2.6.

61

62 Chapter 8. Project Evaluation

We investigated and evaluated seven biologymodelling applicationswhich are likely
used by a similar user-base as CPiME in Chapter 4, using Nielsen’s Heuristics [43]
and the Gestalt Principles [14]. We took note of what we believed were best practices
which could have enhanced the usability of these applications. We also kept track of
what seemed to be standard GUI design practices in this class of applications.

8.2 Re-factored Source Code and CLI Changes
Chapter 5 describes our efforts reducing the number of visible files for CLI users from
twenty-eight to nine. We feel that this satisfies the main goal of improving the existing
interface of CPiME, while keeping the changes invisible for CLI users. We also added
more detailed in-line code documentation which is accessible using the MATLAB [1]
help [65] command. We then asserted that after consulting relevant literature, the CLI
does not require any further modification as previously envisaged.

8.3 Design and Implementation of a GUI
We condensed all the information we reviewed in Chapter 2 and 4 while also applying
the knowledge we learnt in the MATLAB online-courses [20] to design the CPiME
GUI. This effort is described in Chapter 6. We combined the best practices we found in
literature with those found implemented in the other existing biology modelling applic-
ations. We performed two usability inspections on the first version of these mock-up
designs. We presented the mock-up designs to other members in the CPiME team,
which led to the creation of an additional three versions. Afterwards, we organised
feedback gathering sessions with three experienced Bioinformaticians or System Bio-
logists, and incorporated their feedback in the GUI design by redesigning elements of
it. We also created two Personas which were used from that point on-wards in the
project, and which could be used by future CPiME team members when designing or
developing software.

In Chapter 7, we justified the important implementation choices we made while
developing the fully-functional CPiMEGUI, including howwe organised our work-plan
into two iterations. The full support documentation of theGUI can be found inAppendix
F, which describes the functionality of the implemented GUI. We noted that almost all
the functionality which was previously available through a CLI is now accessible using
a GUI, which we believe has enhanced the flexibility of the interface of CPiME as we
had planned. We explained that only the "Parameter Scan" screen was not implemented
due to time constraints, and that there are some outstanding performance issues. We
organised three testing sessions with another three experienced Bioinformaticians or
System Biologists, and used the Think-Aloud protocol [7] to identify usability issues
in the first three implemented screens of the CPiME GUI.

Since our goal was to improve and expand the CPiME interface, we did not compare
the usability of the pre-existing CLIwith the newGUI.We also did not perform repeated
usability testing on different versions of the same interface, so we did not comment on
how the GUI improved following the Post-Implementation User Testing described in
Section 7.3.

8.4. Pre- and Post-Implementation User Testing 63

8.4 Pre- and Post-Implementation User Testing
Although we initially graded the Pre-Implementation User Testing as a ’Should Have"
not a "Must Have", the literature survey in Section 2.5 made it clear to us that it is an
essential part of the entire UCD process. Therefore, we organised three sessions with
Bioinformaticians or SystemBiologists, as described in Section 6.2. After interviewing
them to understand their attitudes and behaviour better, we presented the mock-up
designs and gathered their opinions. We modified the mock-up designs on the basis of
their opinions.

After implementing the first three GUI screens, we organised another three sessions
with different Bioinformaticians or System Biologists. We interviewed them as we did
in the earlier testing sessions, and then used the Think-Aloud protocol to understand
their experience using the implemented GUI. We uncovered usability issues using this
testing process, and modified the GUI based on these results. Although the usability
goal of performing the assigned tasks was not achieved while performing the testing, we
believe we were successful in discovering usability issues and trying a UCD technique
first-hand.

We believe that this user testing process could have been made more effective
had we known exactly what functionality MATLAB offers. This would have avoided
discovering that some designed UI elements are not supported by MATLAB after
performing evaluating them with users.

8.5 System Documentation and Walk-through
We also added more detailed in-line code documentation which is accessible using
the MATLAB [1] help [65] command, as described in Section 5.1. We also created
Support Documentation for the GUI, which can be found in Appendix F. We did not
create a walk-through as it was classified as a "Could Have" deliverable, and due to
time constraints we prioritised other parts of the project instead.

Chapter 9

Conclusion

We have described how we explored and tried out different approaches of improving
and expanding the user interface of an existingMATLAB [1] extensionwhich facilitates
the use of CPi [2].

CPiME could previously only be used through a CLI, and the aim of this project
was to improve this and expand it, primarily by providing a GUI but also by enhancing
the existing CLI.

9.1 Achievements
We have conducted a thorough literature survey and analysed other tools to familiarise
ourselves with this class of scientific software. Then, we tried different UCD techniques
which allowed stakeholders to be well involved in the design and implementation pro-
cess, including Cognitive Walk-through [5], Heuristic Evaluation [6], Think-Aloud
Protocol [7], Interview [8] and Personas [9]. We believe that we have managed to
create a GUI which embodies many of the best practices, principles and methods we
found, such as InterfaceMetaphors [10] and Affordances [11], Contextual Help Inform-
ation [12], Gutenberg Diagram[13] and the Gestalt Principles [14]. We improved on
it through pre- and post-implementation user testing by iterating through four different
designs and two different implementations. We believe that by creating a GUI, we
have provided inexperienced CPiME users with a possibly more straightforward way
to experiment with the functionality available.

We have created two Personas which can guide future CPiME team members
when developing future versions. We provided features which appeal more to Emily
MacDonald (Section 6.3.1), such as a GUI, Support Documentation and Contextual
Help Information. We also targeted Ross McIntosh (Section 6.3.2) by providing richer
in-line comments, and reducing the number of visible function files from twenty-eight
to nine.

9.2 Known Issues
The CPiME GUI cannot be maximised due to the issues described in Section 7.1.1.5.
The CPiME GUI also occasionally responds slower than expected, as noted in Section

65

66 Chapter 9. Conclusion

7.3.2.2. These issues could possibly have been remedied in the newer MATLAB App
Designer [78] GUI builder. The "Parameter Scan" screen is not fully implemented and
inaccessible from the CPiME GUI.

9.3 Future Work
While extensive effort was made to create a fully-functional GUI for CPiME in this
project, numerous areas can be enhanced. We now present a suggested list of some
enhancements.

9.3.1 Additional Functionality
This section explores some ideas for expanding the functionality that CPiME offers.

9.3.1.1 Logging

Logging functionality can be implemented to keep track of the user’s actions. This
is especially useful when repeating experiments or analysing results, and useful since
scientists reportedly do not keep track of parameters used [24].

9.3.1.2 Time-stamping Exported Data

Saved ODEs and other exported data can be time-stamped to help users recall their
context at a later date.

9.3.1.3 Parameter Scanning Screen

The screen allowing users to perform parameter scanning using the GUI has already
been designed; it can now be implemented and then tested with a number of users.

9.3.1.4 Accelerators

As recommended by Nielsen et al., users prefer flexible ways of interacting with
interfaces [43]. Keyboard shortcuts allowing users to quickly navigate to a screen,
navigate within the screen or start processing data would enable this.

9.3.1.5 Undo/Redo Buttons

Nielsen et al. state that users value "emergency exits" and being able to undo
changes [43]. ImplementingUndo/Redo functionality throughout the applicationwould
provide this reassurance.

9.3.2 Interface Improvements
While we are satisfied with our CPiME GUI implementation, we have compiled a list
of improvements which could be made.

9.3. Future Work 67

9.3.2.1 Caching of Simulations

In "Analyse Solutions" screen (Figure D.5), CPiME recreates the ODEs and the system
simulation every time a statement is tested. If we had to cache the simulated model
instead, we could provide quicker evaluations of the inserted LBC queries.

9.3.2.2 System Status

Apart from the Status String we implemented in this project, progress bars with per-
centages of progress could be used to convey the system status to the user, as suggested
by a participant in the Post-Implementation User Testing.

9.3.2.3 Rich Model Definition Editor

The "Edit Model" screen text area can be enhanced to provide syntax highlighting and
also additional text editor buttons such as cut, copy and paste buttons.

9.3.2.4 Graph Plots

One could explore how the graph plots could be displayed inline as part of the interface,
as originally designed. Ideally, the design is responsive and a fresh render is displayed
live, as soon as the user changes a parameter.

9.3.2.5 Interface Metaphors

Although tabs and iconography were originally part of the GUI design, MATLAB
GUIDE [77] did not support them natively and we had to use workarounds instead.
One could explore other ways of implementing these metaphors in the CPiME GUI,
possibly programmatically.

9.3.2.6 Enhanced File Selection Bar

The file selection bar could be enhanced to use a breadcrumb navigation layout, similar
to MATLAB Simbio [18] rather than its current string format.

9.3.2.7 Expandable GUI

While we tried create a scalable GUI, the inbuilt functionality proved unreliable at best.
Providing such functionality would be worthwhile, especially when users have large
screen resolutions.

9.3.2.8 Merge CLI and GUI Functions

Since adapting existing code to the GUI was not straightforward, some code duplication
exists between pre-existing CLI code and new GUI code. Merging the two version of
a function would reduce the number of files in the source code.

Appendix A

Code Dependency Report

The code dependency report showed us how the existing MATLAB [1] extension
functions call each other, allowing us to find the files which we should place in the
private folder. It is automatically generated by MATLAB.

69

Dependency Report
The Dependency Report shows dependencies among MATLAB files in a folder (Learn More).

Rerun This Report Run Report on Current Folder

Show child functions Show parent functions (current folder only)
Show subfunctions

Built-in functions and files in toolbox/matlab are not shown

Report for Folder /afs/inf.ed.ac.uk/user/s16/s1651066/project/cpiwb/luke-buttigieg/cpiwb/matlab_extension

MATLAB File List
Children
(called functions)

Parents
(calling functions, current dir.
only)

analyse_ode_solutions current dir : answer_query
current dir : create_cpi_odes
current dir : prepare_legend
current dir : select_single_process
current dir : solve_cpi_odes
current dir : validate_query

cpime

answer_query toolbox : /symbolic/symbolic/@sym/sym.m
toolbox :? Multiple class methods match subs.m

analyse_ode_solutions

command_docs cpime

compare_cpi_processes current dir : construct_new_system_for_comparison
current dir : determine_num_simulations_in_comparison
current dir : retrieve_simulation_times
current dir : separate_plot_comparison
current dir : simulate_single_process
current dir : single_plot_comparison

cpime

construct_new_system_for_comparison current dir : create_cpi_odes
current dir : display_definitions
current dir : select_multiple_processes
current dir : solve_cpi_odes

compare_cpi_processes

cpime current dir : analyse_ode_solutions
current dir : command_docs
current dir : compare_cpi_processes
current dir : parameter_scan
current dir : simulate_single_process
current dir : view_odes

create_cpi_odes analyse_ode_solutions
construct_new_system_for_comparison
parameter_scan
simulate_single_process
view_odes

create_process_simulation current dir : plotCallback simulate_single_process

determine_num_simulations_in_comparison compare_cpi_processes

display_definitions construct_new_system_for_comparison
parameter_scan
simulate_single_process
view_odes

experiment_plots current dir : plotCallback
current dir : prepare_legend

parameter_scan

fillCallback

find_common_species current dir : prepare_legend separate_plot_comparison
single_plot_comparison

parameter_scan current dir : create_cpi_odes
current dir : display_definitions
current dir : experiment_plots
current dir : retrieve_experiment_info
current dir : retrieve_simulation_times
current dir : select_parameters
current dir : select_single_process
current dir : solve_cpi_odes

cpime

plotCallback create_process_simulation
experiment_plots
separate_plot_comparison
single_plot_comparison

prepare_legend analyse_ode_solutions
experiment_plots
find_common_species
simulate_single_process

retrieve_experiment_info parameter_scan

retrieve_process_definitions select_multiple_processes
select_single_process

Dependency Report file:///afs/inf.ed.ac.uk/user/s16/s1651066/.matla...

1 of 2 19/06/17 20:28

retrieve_simulation_times compare_cpi_processes
parameter_scan
simulate_single_process

select_multiple_processes current dir : retrieve_process_definitions construct_new_system_for_comparison

select_parameters parameter_scan

select_single_process current dir : retrieve_process_definitions analyse_ode_solutions
parameter_scan
simulate_single_process
view_odes

separate_plot_comparison current dir : find_common_species
current dir : plotCallback

compare_cpi_processes

simulate_single_process current dir : create_cpi_odes
current dir : create_process_simulation
current dir : display_definitions
current dir : prepare_legend
current dir : retrieve_simulation_times
current dir : select_single_process
current dir : solve_cpi_odes

compare_cpi_processes
cpime

single_plot_comparison current dir : find_common_species
current dir : plotCallback

compare_cpi_processes

solve_cpi_odes toolbox :? Multiple class methods match simplify.m
toolbox : /symbolic/symbolic
/@sym/massMatrixForm.m
toolbox : /symbolic/symbolic/@sym/odeFunction.m
toolbox : /symbolic/symbolic/@sym/sym.m

analyse_ode_solutions
construct_new_system_for_comparison
parameter_scan
simulate_single_process

validate_query analyse_ode_solutions

view_odes current dir : create_cpi_odes
current dir : display_definitions
current dir : select_single_process

cpime

Dependency Report file:///afs/inf.ed.ac.uk/user/s16/s1651066/.matla...

2 of 2 19/06/17 20:28

Appendix B

Final Version of the Design Mock-Ups

We designed four versions of the design mock ups following usability inspections and
incorporating the feedback from the stakeholders involved in the pre-implementation
testing.

Figure B.1: The ’Edit Model’ screen. A user is presented with the ’Edit Model’ function-
ality activated by default. A user needs to load a file using the ’folder’ icon, and perform
any modifications in the text area below. The file can be saved using the ’floppy disk’
icon, or else closed using the ’cross’ icon.

73

74 Appendix B. Final Version of the Design Mock-Ups

Figure B.2: The ’View ODEs’ screen. A user needs to load the file like in the ‘Edit Model’
screen, select the process from the drop down list and then click on the ’play’ icon to
calculate the ODEs. The ODEs are presented in the ’Generated ODEs’ text area. The
save button saves the ODEs to a text file.

75

Figure B.3: The ’Simulate Process’ screen. A user needs to open the CPi Model file
as in the previous screens, unless the user has already selected one while using a
previous screen. The definition is shown in the CPi Defn. section. The user then selects
the process to calculate from the drop down, and the right hand side of the screen
becomes activated. The user can modify the start and end time (which are set to 0 and
1 respectively by default). The user can also select a different solver from the ode15s
default solver by using the drop down list. The user then needs to click the second
play button to generate the plot and the numerical solutions in the secondary tab. The
arrows icon on the plot can be used to view the plot in a maximised, separate window
- the default MATLAB [1] plot viewer, which is currently used in the CLI of CPiMATLAB
[3]

76 Appendix B. Final Version of the Design Mock-Ups

Figure B.4: The first ’Compare Processes’ screen. The user needs to select the number
of processes from the Comparison Settings combo box, which is set to 2 by default.
This changes the number of tabs visible. The user needs to select the CPi file, and then
modify the other settings if required. The arrow in the lower right corner takes the user
to the plots screen.

Figure B.5: The second ’Compare Processes’ screen. It shows the plots generated from
the previous screen.

77

Figure B.6: The ’Analyse Solutions’ screen. A user first needs to select the model to use
from the top file bar. The end time is set to 1 by default, but the user can change this to
any value as allowed by CPi-MATLAB. LBC [85] logic statements can then be inserted
in the LBC Query text box. The user can check whether they are true or false by clicking
on the ‘Test’ button.

78 Appendix B. Final Version of the Design Mock-Ups

Figure B.7: The first ’Parameter Scan’ screen. A user needs to select the CPi File as
in previous screens, and modify parameter scan settings if this is required. The user
needs to click the right arrow in the lower right corner to proceed to the next screen.

Figure B.8: The second ’Parameter Scan’ screen. The user needs to select the para-
meters to include, and then insert the minimum, maximum and number of experimental
values.

79

Figure B.9: The third ’Parameter Scan’ screen. The user needs to select which species
are to be included on the scan, and then one needs to select the play button to perform
the parameter scan.

Appendix C

Sample Consent Forms

These consent forms were inspired from an existing one [86]. Figure C.1 shows the
consent form used in the Pre-Implementation User Testing. Figure C.2 is the one used
in Post-Implementation User Testing.

81

82 Appendix C. Sample Consent Forms

CPi-MATLAB GUI Design Test

CONSENT FORM

EXPERIMENT PURPOSE & PROCEDURE

The purpose of this experiment is understand the attitudes of System Biologists or
Bioinformaticians when using Computer Software, and to verify how usable these users find the
Graphical User Interface (GUI) designed for CPi-MATLAB. This is part of a Masters degree project
at the University of Edinburgh.

The experiment consists of two parts as follows, during which you will be asked to answer a
number of questions and then to provide your opinion about a number of designs of the GUI for
CPi-MATLAB.

Please note that none of the tasks is a test of your personal intelligence or ability. The objective is
to test the usability of this Graphical User Interface.

CONFIDENTIALITY

The following data will be recorded:

- Audio Recording of the entire testing session

- Replies to interview questions

- Description of behaviour and reactions when analysing the mock up designs

All data will be coded so that your anonymity will be protected in any research papers and
presentations that result from this work.

RECORD OF CONSENT

Your signature below indicates that you have understood the information about the CPi-MATLAB
GUI Design Test experiment and consent to your participation. The participation is voluntary and
you may refuse to answer certain questions on the interview and withdraw from the study at any
time with no penalty. This does not waive your legal rights. You should have received a copy of
the consent form for your own record. If you have further questions related to this research,
please contact the researcher.

Participant

Date

Researcher

Date

Figure C.1: The Pre-Implementation Consent Form.

83

CPi-MATLAB GUI Test

CONSENT FORM

EXPERIMENT PURPOSE & PROCEDURE

The purpose of this experiment is understand the attitudes of System Biologists or
Bioinformaticians when using Computer Software, and to verify how usable these users find the
Graphical User Interface (GUI) designed for CPi-MATLAB. This is part of a Masters degree project
at the University of Edinburgh.

The experiment consists of two parts as follows, during which you will be asked to answer a
number of questions and then to use the newly designed GUI for CPi-MATLAB.

Please note that none of the tasks is a test of your personal intelligence or ability. The objective is
to test the usability of this Graphical User Interface.

CONFIDENTIALITY

The following data will be recorded:

- Audio Recording of the entire testing session

- Replies to interview questions

- Description of behaviour and reactions when using the GUI to perform the tasks

All data will be coded so that your anonymity will be protected in any research papers and
presentations that result from this work.

RECORD OF CONSENT

Your signature below indicates that you have understood the information about the CPi-MATLAB
GUI Test experiment and consent to your participation. The participation is voluntary and you may
refuse to answer certain questions on the interview and withdraw from the study at any time with
no penalty. This does not waive your legal rights. You should have received a copy of the consent
form for your own record. If you have further questions related to this research, please contact the
researcher.

Participant

Date

Researcher

Date

Figure C.2: The Post-Implementation Consent Form.

Appendix D

Graphical User Interface Screen-shots

We implemented five out of the planned six screens, due to time restraints. Screen-shots
of each screen, with sample model abcd.cpi loaded, are shown below. The "Parameter
Scanning" button is disabled as this functionality was not fully implemented; further
details can be found in Chapter 7.

Figure D.1: The "Edit Model" screen, which allows users to edit the CPi Model Definition
file.

85

86 Appendix D. Graphical User Interface Screen-shots

Figure D.2: The "View ODEs" screen, through which users can view the ODEs gener-
ated from the CPi Model Definition file.

87

Figure D.3: The "Simulate Process" screen, displaying a generated plot window on the
right. This screen allows users to simulate the ODEs generated from the CPi Model
Definition file, and view a graph plot and numerical solutions of it.

88 Appendix D. Graphical User Interface Screen-shots

Figure D.4: The "Compare Processes" screen, which allows users to compare up to four
processes together. Users can plot graphs of the processes; either on separate figures,
or altogether on one figure.

Figure D.5: The "Analyse Solutions" screen, displaying contextual help information. This
screen allows users to test whether an LBC [85] query is true or false for the CPi Model
Definition.

Appendix E

User Testing Plans

These two documents were used to guide the pre- and post-implementation user testing.
The "Interview" section is the same in both plans. Further information can be found in
Section 6.2 and 7.2–3.

89

Pre-Implementation User Test
- Thank you for meeting me. Can stop at any time. Anonymised. Is it OK if I record the session?

- Consent form and signature

Personal Questions

- Age group (12-17, 18-24, 25-34, 35-44, 45-54, 55-64, 65+)

- Level of current study ____________________

- Gender (M/F)

- Area of study (Open) -

Computer Skills
- What in your opinion, is your computer skills expertise from 0 to 5, where 0 is a person who is

unable to use a computer, 1 is someone with basic knowledge, 2 is a novice with limited
experience, 3 is intermediate, 4 is advanced, and 5 is someone who is an expert?

- How many years of experience do you have in Systems Biology/Bioinformatics?

Less than 1 year	 1-5 Years	 6-10 Years	 More than 10 Years

Interview

- When using bioinformatics software, do you prefer GUI or CLI? Why?

- Most frustrating experience using bioinformatics software, and why?

- Most enjoyable experience using bioinformatics software, and why?

Expectations of ease of use of systems biology/bioinformatics applications

State (VT, T, N, U, VU) for each of these statements.

- I often consult user manuals when using bioinformatics applications.

- I normally consult user manuals before starting to use an application.

- I expect myself to know how to use Systems Biology/Bioinformatics software out of the box.

- I only consult a user manual when I run into a problem.

- I rely on contextual help, such as tooltips or overlays to understand how to use Systems

Biology/Bioinformatics software.

- I frequently need to ask peers for assistance using Systems Biology/Bioinformatics software,

whether in person or online.

Other Biology Process modelling applications

- Are you familiar with other Biology Process Modelling languages or tools, such as Kappa
Calculus (KaSim), Microsoft Stochastic Pi Machine (Visual SPiM), Intrinsic Noise Analyser,
MATLAB SimBio?

- Have you ever used them?

- Have you ever used any tools built for them?

- What was your experience like? (Open)

This testing is taking place prior to implementation, to the intuition obtained using your existing
knowledge of systems biology/bioinformatics/computer software.

Mock-Up Design Opinion

CPi-MATLAB GUI is being developed to make CPi-WB easier to use. It allows a user to edit a CPi
Model definition, view ODEs, simulate processes, compare processes, analyse solutions, perform
a parameter scan. All are organised in separate screens. I’m going to present the mock ups and
repeat the process for each one to understand your reaction.

I need you to be completely honest when you answer the following questions.

1) Edit Model

Used to edit the text file defining the CPi model. Here is the mockup.

- Initial reaction to mockup? Is this what you expected to see?

Scenarios
- How would you do load a file? Describe it.

- How would you edit it?

- How would you save it?

- What do you think that ‘i’ icon is?

- What do you think that ‘?’ icon is?

- What do you think the (file) bar represents?

- How would you navigate to the next screen?

General Questions
- Is there anything you would change? Anything seems out of place?

- Anything you really like?

2) View ODEs

Used to check which ODEs are created from each model. Here is the mockup.

- Initial reaction to mockup? Is this what you expected to see?

Scenarios
- How would you do load a file? Describe it.

- Can you think of how you would obtain the ODEs?

General Questions
- Is there anything you would change? Anything seems out of place?

- Anything you really like?

3) Simulate Process

Used to capture settings from a user and generate a plot of the model’s ODEs. Here is the
mockup.

- Initial reaction to mockup? Is this what you expected to see?

Scenarios
- Which part of the screen do you think you need to use first?

- How would you load a file?

- What do you think this pencil icon does?

- How would you generate a plot?

General Questions
- Would you prefer having default values inserted, or none at all?

- Is there anything you would change? Anything seems out of place?

- Anything you really like?

4) Compare Processes

Used to compare different CPi Models to each other, generating plots. Here is the mockup.

- Initial reaction to mockup? Is this what you expected to see?

Scenarios
- How would you select the CPi file for the four different files?

- How would you proceed to the next screen?

General Questions
- Is there anything you would change? Anything seems out of place?

- Anything you really like?

5) Analyse Solutions

Used to run queries on the model. Here is the mockup.

- Initial reaction to mockup? Is this what you expected to see?

Scenarios
- Can you easily see the test result?

- What do you think the refresh button does?

General Questions
- Is there anything you would change? Anything seems out of place?

- Anything you really like?

6) Parameter Scan

Used to check how parameter values impact the model. Here is the mockup.

- Initial reaction to mockup? Is this what you expected to see?

Scenarios
- How many internal pages do you think this section has?

- How would you use the second page?

- How would you use the third page?

General Questions
- Is there anything you would change? Anything seems out of place?

- Anything you really like?

Thank you for your time!

Is it OK if you participate in a second session, in which you would use the implemented version?

Post-Implementation User Test
- Thank you for meeting me. Can stop at any time. Anonymised. Is it OK if I record the session?

- Consent form and signature

Personal Questions

- Age group (12-17, 18-24, 25-34, 35-44, 45-54, 55-64, 65+)

- Level of current study __________________

- Gender (M/F)

- Area of study (Open) -

Computer Skills
- What in your opinion, is your computer skills expertise from 0 to 5, where 0 is a person who is

unable to use a computer, 1 is someone with basic knowledge, 2 is a novice with limited
experience, 3 is intermediate, 4 is advanced, and 5 is someone who is an expert?

- How many years of experience do you have in Systems Biology/Bioinformatics?

Less than 1 year	 1-5 Years	 6-10 Years	 More than 10 Years

Interview

- When using bioinformatics software, do you prefer GUI or CLI? Why?

- Most frustrating experience using bioinformatics software, and why?

- Most enjoyable experience using bioinformatics software, and why?

Expectations of ease of use of systems biology/bioinformatics applications

State (VT, T, N, U, VU) for each of these statements.

- I often consult user manuals when using bioinformatics applications.

- I normally consult user manuals before starting to use an application.

- I expect myself to know how to use Systems Biology/Bioinformatics software out of the box.

- I only consult a user manual when I run into a problem.

- I rely on contextual help, such as tooltips or overlays to understand how to use Systems

Biology/Bioinformatics software.

- I frequently need to ask peers for assistance using Systems Biology/Bioinformatics software,

whether in person or online.

Other Biology Process modelling applications

- Are you familiar with other Biology Process Modelling languages or tools, such as Kappa
Calculus (KaSim), Microsoft Stochastic Pi Machine (Visual SPiM), Intrinsic Noise Analyser,
MATLAB SimBio?

- Have you ever used them?

- Have you ever used any tools built for them?

- What was your experience like? (Open)

This testing is taking place after implementation, to gauge your intuition using your existing
knowledge of systems biology/bioinformatics/computer software.

Think-Aloud Protocol

The only background knowledge which would be useful to know is the following: Continuous Pi
(CPi) is a biochemical process algebra which provides a framework for expressing reactions in
terms of algebraic definitions. An algebraic definition has two components - ‘species’ which
define the individual molecules, and ‘processes’ which define the overall system. A CPi model is
usually defined in a text file, which is then converted to first-order ordinary differential equations
(ODEs). These ODEs can be solved to study the continuous temporal fluctuations of species
concentration and therefore could lead to better understanding of the system’s behaviour.

CPi-MATLAB GUI is being developed to make CPi easier to use. It allows a user to edit a CPi
Model definition, view ODEs, simulate processes, compare processes, analyse solutions, perform
a parameter scan. All are organised in separate screens. The first three screens will be tested
using this test.

Think-Aloud Training

I’m going to ask you to perform a task, and I need you to speak your mind as you think your way
through it.

I need you to speak your mind out loud when answering my questions of how you would use the
screen. As an example, I’ll describe how many windows are in my mother’s house.

Now you do so.

If at any point I hear you go quiet, I’ll just tell you ‘keep talking’ to remind you to talk. I can’t
answer any questions during the session, but I’ll happily answer them at the end.

Task 1

Open the kai+jpto-eq.cpi definitions file and generate the ODEs for the Kai, and save the file. Now
generate them for the KaiPTO process. Finally, edit the CPI definition file by inserting ‘test’ on the
very last line, and verifying that the changes have been written to disk.

Task 2

Open the abcd.cpi definitions file and simulate the process using the ode15s solver, and with an
end time of 2. What is the value of B at time 1? Save the graph to the desktop. Now simulate the
process using the ode23t solver. What is the value of B at time 1? Save the graph to the desktop.

Appendix F

GUI Support Documentation

95

CPiME Support Documentation

Luke Paul Buttigieg

August 2017

Contents
1 Introduction 2

2 Background Reading 2

3 Downloading CPiME 2

4 Command Line Interface 2

5 Graphical User Interface 3
5.1 Opening the Application . 3
5.2 GUI Layout . 4
5.3 Editing CPi Model Definition Files 4
5.4 Viewing ODEs . 7
5.5 Simulating a Process . 8
5.6 Comparing Processes . 10
5.7 Analysing Solutions . 12

6 Bibliography 15

1

1 Introduction
Welcome to the Continuous Pi-Calculus [1] MATLAB [2] Extension [3] (henceforth
CPiME) Support Documentation. This document primarily describes how to use the
functionality found in the Command Line Interface (CLI) and Graphical User Interface
(henceforth GUI).

2 Background Reading
We have included a list of Continuous Pi-Calculus papers which you can consult if you
need to understand the syntax and semantics of Continuous Pi-Calculus, or need further
information about CPiME [1][4][5][6][3].

3 Downloading CPiME
You can download the CPiME Source Code directly from GitHub [7] from https:
//github.com/continuouspi/cpiwb. The extension source code is found in
the matlab_extension directory. You need to be in this directory in MATLAB to
use any of the CPiME functionality.

4 Command Line Interface
The CLI offers quick, direct access to the CPiME functionality. You can load an
interactive interface by typing cpime in the MATLAB Command Window, as seen in
Figure 1. Additional CLI-specific help can be accessed by typing help, including a
list of available functions.

Figure 1: The CPiME [3] interactive CLI.

You can also call nine function files directly, bypassing the interactive CLI and integ-
rating them in data processing pipelines. For example, to call theanalyse_ode_solutions
function, type analyse_ode_solutions in the MATLAB Command Window.
All the callable files are found in the matlab_extension directory and end with
a .m file extension. There is one exception: the gui.m file should not be used for
direct access, as this file is used by the GUI. Files inside the private directory are
not intended for direct calling.

2

You can access specific CPiME function file support documentation using the
standard MATLAB CLI support documentation function, help [8]. An example is
shown in Figure 2.

Figure 2: Using the inbuilt MATLAB help [8] functionality to return information
about the analyse_ode_solutions function.

5 Graphical User Interface
The GUI offers a visual way of using the CPiME functionality and could help newer or
less technical users. Nearly all the CLI functionality is available through the GUI.

Contextual Help Information [9] is available for all GUI elements. Simply hover
over a GUI element to see the associated tool-tip, as in Figure 6.

5.1 Opening the Application
You can launch the GUI by typing gui in the MATLAB Command Window. The
default landing page is the "Edit Model" screen, as seen in Figure 2.

Figure 3: The default landing page is the "Edit Model" screen.

3

5.2 GUI Layout
You can access different screens by clicking on the different menu buttons along the
top, such as "Edit Model" and "View ODEs". The current screen title can be seen in
the upper left corner, such as "Edit Model" in Figure 3. Some screens have an "Open"
button which is used to open files and a "Refresh" button which is used to refresh the
currently loaded file. The "Edit Model" screen has a "Close" button, which is used to
close the currently open file.

There is a status string in the bottom left which updates depending on how CPiME
is being used.

5.3 Editing CPi Model Definition Files
CPiME offers a text editor which can be used to edit CPi Model Definition files.
Currently, new model definition files cannot be created using CPiME.

1. Ensure you are on the "Edit Model" screen by clicking on the "Edit Model" menu
button. The GUI should look like Figure 3.

2. Click on the "Open" button to display the "File Selector" Dialog Box, as seen in
Figure 4. The dialog only shows files with the .cpi file extension by default.

3. Click on the file you want to open to select it, and then click "Open".

4. The file contents will be displayed in the "Edit Model" window, as seen in Figure
5. The file path will be displayed in the file path bar.

5. You can write the changes to disk by clicking the "Save" button. The status string
will update to "Ready" when the files contents have been written to disk, as in
Figure 6.

6. Click on the "Close" button to close the open file. You will see a dialog box to
confirm whether you want to close the file, as in Figure 7. The screen will look
like Figure 3 again if you click "Yes" on the dialog box.

4

Figure 4: After clicking "Open", select a file to open in "Edit Model" screen.

Figure 5: Editing a model definition file’s contents in the "Edit Model" screen.

Figure 6: Click on the "Save" button to write any changes to disk. The status string will
revert back to "Ready" on the "Edit Model" screen.

5

Figure 7: Close a file by clicking on the "Close" button. A confirmation dialog box will
be displayed.

6

5.4 Viewing ODEs
You can view the first-order ordinary differential equations (henceforth ODE(s)) which
CPiME is using in the "View ODEs" screen.

1. Navigate to the "View ODEs" screen by clicking on the "View ODEs" button in
the menu bar, as seen in Figure 8. Any file selection made in a previous window
will carry over to this screen.

2. Click on the "Open" button to display the "File Selector" Dialog Box, similar to
that seen in Figure 4. The dialog only shows files with the .cpi file extension
by default.

3. Click on the file you want to open to select it, and then click "Open".

4. The file contents will be displayed in the "View ODEs" window, as seen in Figure
9. The file path will be displayed in the file path bar.

5. You can click on the "Edit" Button if you need tomodify the CPiModel Definition
file. This will take you to the "Edit Model" screen.

6. Select the process you are interested in using the drop-down list. In Figure 9, this
drop-down list contains a process called "Pi".

7. Click on the "Generate" button to convert the CPi Model definition in ODEs. The
status string will change to "Generating ODEs". This process could take a while,
depending on the complexity of the model.

8. The ODEs are displayed in the "Generated ODEs" text box, as in Figure 10.

9. You can save the generated ODEs by clicking on the "Save" button. This will
display the standard MATLAB "Save File" dialog box, which will allow you to
insert a file name and choose a disk location for the file.

Figure 8: This is the "View ODEs" screen before a file is loaded in it.

7

Figure 9: This is the "View ODEs" screen displaying a model definition file’s contents.

Figure 10: This is the "View ODEs" screen displaying the generated ODEs. You can
save the ODEs by clicking on the "Save" button.

5.5 Simulating a Process
You can use CPiME to plot a graph of the ODEs generated from the model definition
files. Numerical solutions are also displayed.

1. Navigate to the "Simulate Process" screen by clicking on the "Simulate Process"
button in the menu bar, as seen in Figure 11. Any file selection made in a previous
window will carry over to this screen.

2. Click on the "Open" button to display the "File Selector" Dialog Box, similar to
that seen in Figure 4. The dialog only shows files with the .cpi file extension
by default.

3. Click on the file you want to open to select it, and then click "Open".

8

4. The file contents will be displayed in the "CPi Model" text area. The file path
will be displayed in the file path bar.

5. You can click on the "Edit" Button if you need tomodify the CPiModel Definition
file. This will take you to the "Edit Model" screen.

6. Select the process you are interested in using the drop-down list. This is similar
to what is seen in Figure 9: this drop-down list contains a process called "Pi".

7. You can change the settings found in the "Simulation Settings" as required. You
can select a different MATLAB ODE solver [10] and the start and end time.

8. Click on the "Simulate" button to convert the CPi Model definition in ODEs, plot
a graph of them and display numerical solutions. The status string will change
to "Simulating Process". This process could take a while, depending on the
complexity of the model.

9. The graph plot and numerical solutions are displayed in separate windows, as in
Figure 12.

10. You can reset the "Simulation Settings" to their default values by clicking on the
"Reset" Button.

Figure 11: This is the "Simulate Process" screen before a file is loaded in it.

9

Figure 12: This is the "Simulate Process" screen displaying a model definition file’s
contents and a graph plot of its ODEs. The numerical solutions will be shown on a
separate window.

5.6 Comparing Processes
You can use CPiME to compare up to four processes with each other by plotting graphs
of the ODEs generated from the model definition files. Graphs can be plotted on the
same graph figure, or on separate ones. Numerical solutions are not displayed in this
case.

1. Navigate to the "Compare Processes" screen by clicking on the "Compare Pro-
cesses" button in the menu bar, as seen in Figure 13. Any file selection made in
a previous window will carry over to this screen and populate the first process
settings.

2. Click on the "Open" button to display the "File Selector" Dialog Box, similar to
that seen in Figure 4. The dialog only shows files with the .cpi file extension
by default.

3. Click on the file you want to open to select it, and then click "Open".

4. The file contents will be displayed in the "CPi Model" text area. The file path
will be displayed in the miniaturised file path bar.

5. You can click on the "Edit" Button if you need tomodify the CPiModel Definition
file. This will take you to the "Edit Model" screen.

6. Select the process you are interested in using the drop-down list. This is similar
to what is seen in Figure 9: this drop-down list contains a process called "Pi".

7. Click on the "2" "Process" radio button to select the file and process for the second
process you would like to compare.

8. If you want to compare more than 2 files, change the "Processes" drop-down list
value in the "Comparison Settings" area to a higher number.

10

9. Continue selecting files until all processes are selected.

10. You can now modify the "Comparison Settings" as required. You can select a
different MATLAB ODE solver [10] and the start and end time. You can also
change whether to display the plotted graphs on the same Figure by selecting
the "Together" option in the "Plot" drop-down list. Otherwise, display them
separately by selecting the "Separately" option.

11. Click on the "Compare" button to convert the CPi Model definitions in ODEs,
and plot graphs of them. The status string will change to "Comparing Processes".
This process could take a while, depending on the complexity of the models.

12. The graph plots will be displayed once the process has finished executing.

13. You can clear the file selection and reset the "Comparison Settings" to their
default values by clicking on the "Reset" Button.

Figure 13: This is the "Compare Processes" screen before a file is loaded in it.

11

Figure 14: This is the "Compare Process" screen displaying the model definition file’s
contents for the first selected file. You can select a another file by using the "Process"
radio buttons.

Figure 15: You will see this error if you do not select a file for all the processes you
want to compare.

5.7 Analysing Solutions
You can use CPiME to check whether LBC [4] queries are true or false for the ODEs
generated from the model definition files.

1. Navigate to the "Analyse Solutions" screen by clicking on the "Analyse Solutions"
button in the menu bar, as seen in Figure 16. Any file selection made in a previous
window will carry over to this screen and populate the first process settings.

2. Click on the "Open" button to display the "File Selector" Dialog Box, similar to
that seen in Figure 4. The dialog only shows files with the .cpi file extension
by default.

3. Click on the file you want to open to select it, and then click "Open".

12

4. The file contents will be displayed in the "CPi Model" text area. The file path
will be displayed in the file path bar.

5. You can click on the "Edit" Button if you need tomodify the CPiModel Definition
file. This will take you to the "Edit Model" screen.

6. Select the process you are interested in using the drop-down list. This is similar
to what is seen in Figure 9: this drop-down list contains a process called "Pi".

7. You can change the "End Time" to a value other than the default value of 1.

8. Type in the LBC query you would like to test, or type in example for a list of
examples, as seen in Figure 17.

9. Click "Test" to check whether the query is true or false for the selected CPi Model
Process, as seen in Figure 18.

10. You can clear the file selection and reset the "Comparison Settings" to their
default values by clicking on the "Reset" Button.

Figure 16: This is the "Analyse Solutions" screen before a file is loaded in it.

13

Figure 17: This is the "Analyse Solutions" screen displaying the model definition file’s
contents for the first selected file.

Figure 18: After typing in the LBC query, click the "Test" button to check whether the
query is true or false for the selected CPi Model Process.

14

6 Bibliography
[1] M. Kwiatkowski and I. Stark, “The continuous π-calculus: A process algebra for

biochemical modelling,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
5307 LNBI, pp. 103–122, 2008.

[2] Mathworks Inc., MATLAB and Statistics Toolbox Release R2016b. Natick,
Massachusetts, United States: The MathWorks, Inc., 2016.

[3] T. R. Rhodes, “MATLAB Extension for the Continuous π -Calculus,” Ph.D.
dissertation, The University of Edinburgh, 2017.

[4] C. J. Banks and I. Stark, “A logic of behaviour in context,” Information
and Computation, vol. 236, no. 2014, pp. 3–18, 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.ic.2014.01.009

[5] A. McCrae, “CPi-IDE: A GUI for Continuous Pi Calculus,” Ph.D. dissertation,
The University of Edinburgh, 2014.

[6] C. Banks, “CPi Calculus Workbench GitHub Repository,” 2016. [Online].
Available: https://github.com/chrisbanks/cpiwb

[7] S. F. Conservancy, “Git,” 2017. [Online]. Available: https://git-scm.com/

[8] Mathworks Inc., “Add Help for Your Program - MATLAB &
Simulink - MathWorks United Kingdom,” 2017. [Online]. Available: https:
//uk.mathworks.com/help/matlab/matlab_prog/add-help-for-your-program.html

[9] C. Walley and B. Vedachalam, “Contextual help information,” 2002. [Online].
Available: https://www.google.com/patents/US20020091993

[10] Mathworks Inc., “Choose an ODE Solver,” 2017. [Online]. Available:
https://uk.mathworks.com/help/matlab/math/choose-an-ode-solver.html

15

Bibliography

[1] Mathworks Inc., MATLAB and Statistics Toolbox Release R2016b. Natick,
Massachusetts, United States: The MathWorks, Inc., 2016.

[2] M. Kwiatkowski and I. Stark, “The continuous π-calculus: A process algebra for
biochemical modelling,” Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
5307 LNBI, pp. 103–122, 2008.

[3] T. R. Rhodes, “MATLAB Extension for the Continuous π -Calculus,” Ph.D.
dissertation, The University of Edinburgh, 2017.

[4] C. Banks, “CPi Calculus Workbench GitHub Repository,” 2016. [Online].
Available: https://github.com/chrisbanks/cpiwb

[5] B. Martin and B. Hanington, “Cognitive Walkthrough,” in Universal Methods of
Design. Rockport Publishers, 2012, pp. 32–33.

[6] ——, “Heuristic Evaluation,” in Universal Methods of Design. Rockport Pub-
lishers, 2012, pp. 98–99.

[7] ——, “Think Aloud,” in Universal Methods of Design. Rockport Publishers,
2012, pp. 180–181.

[8] ——, “Interviews,” inUniversal Methods of Design. Rockport Publishers, 2012,
pp. 102–103.

[9] ——, “Personas,” in Universal Methods of Design. Rockport Publishers, 2012,
pp. 132–133.

[10] A. Marcus, “Metaphor design for user interfaces,” in CHI 98 conference summary
on Human factors in computing systems. ACM, 1998, pp. 129–130.

[11] W. Lidwell, K. Holden, and J. Butler, “Affordance,” in Universal Principles of
Design. Rockport Publishers, 2010, pp. 22–23.

[12] C. Walley and B. Vedachalam, “Contextual help information,” 2002. [Online].
Available: https://www.google.com/patents/US20020091993

[13] W. Lidwell, K. Holden, and J. Butler, “Gutenberg Diagram,” in Universal Prin-
ciples of Design. Rockport Publishers, 2010, pp. 118–119.

111

https://github.com/chrisbanks/cpiwb
https://www.google.com/patents/US20020091993

112 Bibliography

[14] S. Coren and J. S. Girgus, “Principles of perceptual organization and spatial
distortion: The gestalt illusions,” Journal of Experimental Psychology: Human
Perception and Performance, vol. 6, no. 3, pp. 404–412, 8 1980.

[15] D. Spinellis, “An Implementation of the {H}askell Language,” Imperial College,
London, UK, Tech. Rep. June, 1990.

[16] Mathworks Inc., “Choose an ODE Solver,” 2017. [Online]. Available:
https://uk.mathworks.com/help/matlab/math/choose-an-ode-solver.html

[17] ——, “Create a figure window,” 2017. [Online]. Available: https:
//uk.mathworks.com/help/matlab/ref/figure.html

[18] ——, “MATLAB SimBiology,” 2017. [Online]. Available: https://uk.
mathworks.com/products/simbiology.html

[19] IntiQuan GmbH, “IQM Tools,” 2017. [Online]. Available: http://www.intiquan.
com/iqm-tools/

[20] Mathworks Inc., “Self-Paced Training - MATLAB and Simulink,” 2017.
[Online]. Available: https://uk.mathworks.com/services/training/online.html

[21] D.M.Ritchie, “TheDevelopment of theCLanguage,” The SecondACMSIGPLAN
Conference on History of Programming Languages, vol. 28, no. 3, pp. 201–208,
1993. [Online]. Available: http://doi.acm.org/10.1145/154766.155580%5Cnhttp:
//dl.acm.org/citation.cfm?doid=155360.155580

[22] D. Bolchini, A. Finkestein, and P. Paolini, “Designing usable bio-information
architectures,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 5613
LNCS, no. PART 4, pp. 653–662, 2009.

[23] C. Macaulay, D. Sloan, X. Jiang, P. Forbes, S. Loynton, J. R. Swedlow, and
P.Gregor, “Usability and user-centered design in scientific software development,”
IEEE Software, vol. 26, no. 1, pp. 96–102, 2009.

[24] S. Morrison-Smith, C. Boucher, A. Bunt, and J. Ruiz, “Elucidating the role and
use of bioinformatics software in life science research,” Proceedings of the 2015
British HCI Conference on - British HCI ’15, pp. 230–238, 2015. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2783446.2783581

[25] J. Barker and J. Thornton, “Software engineering challenges in bioinformatics,”
Proceedings. 26th International Conference on Software Engineering, pp. 12–15,
2004. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.
htm?arnumber=1317409

[26] D. Tran, C. Dubay, P. Gorman, and W. Hersh, “Applying task analysis to describe
and facilitate bioinformatics tasks,” Studies in Health Technology and Informatics,
vol. 107, pp. 818–822, 2004.

https://uk.mathworks.com/help/matlab/math/choose-an-ode-solver.html
https://uk.mathworks.com/help/matlab/ref/figure.html
https://uk.mathworks.com/help/matlab/ref/figure.html
https://uk.mathworks.com/products/simbiology.html
https://uk.mathworks.com/products/simbiology.html
http://www.intiquan.com/iqm-tools/
http://www.intiquan.com/iqm-tools/
https://uk.mathworks.com/services/training/online.html
http://doi.acm.org/10.1145/154766.155580%5Cnhttp://dl.acm.org/citation.cfm?doid=155360.155580
http://doi.acm.org/10.1145/154766.155580%5Cnhttp://dl.acm.org/citation.cfm?doid=155360.155580
http://dl.acm.org/citation.cfm?doid=2783446.2783581
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1317409
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1317409

Bibliography 113

[27] L. Preeyanon, A. B. Pyrkosz, and C. T. Brown, “Reproducible bioinformatics
research for biologists,” Implementing Reproducible Research, p. 185, 2014.

[28] R. T. Javafery H., Seffah A., “Making Bioinformatics Tools User-Centered,”
COMMUNICATIONS OF THE ACM, vol. 47, no. 11, pp. 59–63, 2004.

[29] N. Al-Ageel, A. Al-Wabil, G. Badr, and N. AlOmar, “Human Factors
in the Design and Evaluation of Bioinformatics Tools,” Procedia
Manufacturing, vol. 3, no. Ahfe, pp. 2003–2010, 2015. [Online]. Available:
http://dx.doi.org/10.1016/j.promfg.2015.07.247

[30] D. Bolchini, A. Finkelstein, V. Perrone, and S. Nagl, “Better bioinformatics
through usability analysis,” Bioinformatics, vol. 25, no. 3, pp. 406–412, 2009.

[31] B. Mirel, “Supporting cognition in systems biology analysis: findings on users’
processes and design implications.” Journal of Biomedical Discovery and Col-
laboration, vol. 4, p. 2, 2009.

[32] D. J. Mayhew, “The usability engineering lifecycle,” CHI ’99 extended abstracts
on Human factors in computing systems - CHI ’99, p. 147, 1999. [Online].
Available: http://portal.acm.org/citation.cfm?doid=632716.632805

[33] P. Senadheera, M. Kumarasinghe, P. Perera, J. Wattewidanage, and T. K. Weeras-
inghe, “Identification of User-Friendly Bioinformatics Tools for Courses in Open
and Distance Learning,” IJODeL, vol. 2, no. 2, pp. 31–38, 2016.

[34] K. Pavelin, J. A. Cham, P. de Matos, C. Brooksbank, G. Cameron, and C. Stein-
beck, “Bioinformatics meets user-centred design: A perspective,” PLoS Compu-
tational Biology, vol. 8, no. 7, 2012.

[35] B. Mirel and Z. Wright, “Heuristic Evaluations of Bioinformatics Tools: A De-
velopment Case,” Human-Computer Interaction, Pt I, vol. 5610, pp. 329–338,
2009.

[36] P. de Matos, J. A. Cham, H. Cao, R. Alcántara, F. Rowland, R. Lopez, and
C. Steinbeck, “The Enzyme Portal: a case study in applying user-centred
design methods in bioinformatics,” BMC Bioinformatics, vol. 14, no. 1, p. 103,
2013. [Online]. Available: http://bmcbioinformatics.biomedcentral.com/articles/
10.1186/1471-2105-14-103

[37] J. Bartlett and T. Neugebauer, “Supporting Information Tasks with User-Centred
System Design : The development of an interface supporting bioinformatics
analysis,” Galperin, vol. 1, no. Galperin 2006, pp. 1–12, 2006.

[38] T. D. Erickson, “Working with interface metaphors,” Baecker et al, vol. 11, p.
147, 2000.

[39] M. Wertheimer, “Gestalt Theory,” A Source Book of Gestalt Psychology,
vol. 11, no. 1, pp. 1–11, 1938. [Online]. Available: http://www.jstor.org/stable/
40982002http://content.apa.org/journals/bul/22/5/261

http://dx.doi.org/10.1016/j.promfg.2015.07.247
http://portal.acm.org/citation.cfm?doid=632716.632805
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-103
http://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-14-103
http://www.jstor.org/stable/40982002 http://content.apa.org/journals/bul/22/5/261
http://www.jstor.org/stable/40982002 http://content.apa.org/journals/bul/22/5/261

114 Bibliography

[40] T. Taylor, “How to Use the Gestalt Principles for Visual Storytelling
#PoDV,” 2014. [Online]. Available: http://www.fusioncharts.com/blog/2014/03/
how-to-use-the-gestalt-principles-for-visual-storytelling-podv/

[41] T. Yeh, T.-H. Chang, B. Xie, G. Walsh, I. Watkins, K. Wongsuphasawat,
M. Huang, L. S. Davis, and B. B. Bederson, “Creating Contextual Help
for GUIs Using Screenshots,” in Proceedings of the 24th Annual ACM
Symposium on User Interface Software and Technology, ser. UIST ’11.
New York, NY, USA: ACM, 2011, pp. 145–154. [Online]. Available:
http://doi.acm.org/10.1145/2047196.2047214

[42] J. Nielsen, “Usability inspection methods,” in Conference companion on Human
factors in computing systems. ACM, 1994, pp. 413–414.

[43] ——, “Ten usability heuristics,” 2005.

[44] W. Lidwell, K. Holden, and J. Butler, “Consistency,” in Universal Principles of
Design, 2010, pp. 56–57.

[45] ——, “Development Cycle,” in Universal Principles of Design, 2010, pp. 78–79.

[46] J. Nielson, “Trip report,” ACM SIGCHI Bulletin, vol. 22, no. 2, pp. 20–25, 11
1990. [Online]. Available: http://doi.acm.org/10.1145/122475.122479

[47] P. Thomas, H. Matuschek, and R. Grima, “Intrinsic noise analyzer: A software
package for the exploration of stochastic biochemical kinetics using the system
size expansion,” PLoS ONE, vol. 7, no. 6, 2012.

[48] A. Darwiche and M. Goldszmidt, “On the Relation between Kappa Calculus and
Probabilistic Reasoning,” ArXiv e-prints, 2 2013.

[49] V. Danos, J. Feret, W. Fontana, R. Harmer, and J. Krivine, “Rule-Based
Modelling of Cellular Signalling,” in CONCUR 2007 – Concurrency Theory:
18th International Conference, CONCUR 2007, Lisbon, Portugal, September
3-8, 2007. Proceedings, L. Caires and V. T. Vasconcelos, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2007, pp. 17–41. [Online]. Available:
https://doi.org/10.1007/978-3-540-74407-8_3

[50] Harvard Medical School, “KaSim of The Kappa Language,” 2017. [Online].
Available: http://dev.executableknowledge.org

[51] W. Lidwell, K. Holden, and J. Butler, “Alignment,” in Universal Principles of
Design. Rockport Publishers, 2010, pp. 24–25.

[52] S. Teller, Data Visualization with D3.Js. Packt Publishing, 2013.

[53] B. Eich, “JavaScript at ten years,” ACM SIGPLAN Notices, vol. 40, no. 9, p. 129,
2005.

[54] Microsoft Corp, “Visual Stochastic Pi Machine,” 2008. [Online]. Available:
https://www.microsoft.com/en-us/research/project/stochastic-pi-machine/

http://www.fusioncharts.com/blog/2014/03/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
http://www.fusioncharts.com/blog/2014/03/how-to-use-the-gestalt-principles-for-visual-storytelling-podv/
http://doi.acm.org/10.1145/2047196.2047214
http://doi.acm.org/10.1145/122475.122479
https://doi.org/10.1007/978-3-540-74407-8_3
http://dev.executableknowledge.org
https://www.microsoft.com/en-us/research/project/stochastic-pi-machine/

Bibliography 115

[55] L. Phillips Andrew Cardelli, G. Castagna, and G. Castagna, “A graphical repres-
entation for biological processes in the stochastic pi-calculus,” Lecture Notes in
Computer Science, vol. 4230, pp. 123–152, 2006.

[56] L. Moroney, Introducing Microsoft Silverlight: PRO-Developer. Microsoft
Press, 2007.

[57] W. Lidwell, K. Holden, and J. Butler, “Hick’s Law,” in Universal Principles of
Design. Rockport Publishers, 2010, pp. 120–121.

[58] Microsoft Corp, “User Interface Principles,” 2017. [Online]. Avail-
able: https://msdn.microsoft.com/en-us/library/windows/desktop/ff728831(v=
vs.85).aspx#the_basic_principles_of_proper_ui

[59] B. L. Rogers and B. Chaparro, “Breadcrumb navigation: Further investigation of
usage,” Usability News, vol. 5, no. 2, pp. 1–7, 2003.

[60] W. Bailey, B. Dillon, M. Labarge, J. Taylor, K. Gill, D. S. Lloyd, and W. M.
Person, “Ribbon-style user interface for a software application,” 2008. [Online].
Available: https://www.google.com/patents/US20080244440

[61] Microsoft Corp, “Microsoft Office,” 2017. [Online]. Available: https:
//www.office.com/

[62] W. Lidwell, K. Holden, and J. Butler, “80/20 Rule,” in Universal Principles of
Design, 2010, pp. 14–15.

[63] A. McCrae, “CPi-IDE: A GUI for Continuous Pi Calculus,” Ph.D. dissertation,
The University of Edinburgh, 2014.

[64] Mathworks Inc., “Private Functions - MATLAB & Simulink - MATLAB United
Kingdom,” 2017. [Online]. Available: https://uk.mathworks.com/help/matlab/
matlab_prog/private-functions.html

[65] ——, “Add Help for Your Program - MATLAB & Simulink
- MathWorks United Kingdom,” 2017. [Online]. Available: https:
//uk.mathworks.com/help/matlab/matlab_prog/add-help-for-your-program.html

[66] T. Seemann, “Ten recommendations for creating usable bioinformatics command
line software,” GigaScience, vol. 2, p. 15, 2013. [Online]. Available:
http://www.gigasciencejournal.com/content/2/1/15

[67] F. d. V. Leprevost, V. C. Barbosa, E. L. Francisco, Y. Perez-Riverol, and P. C.
Carvalho, “On best practices in the development of bioinformatics software,”
Frontiers in Genetics, vol. 5, no. 10, pp. 1451–1455, 7 2014. [Online]. Available:
http://journal.frontiersin.org/article/10.3389/fgene.2014.00199/abstract

[68] Balsamiq Studios LLC, “Balsamiq Mockups,” 2017. [Online]. Available:
https://balsamiq.com/products/mockups/

https://msdn.microsoft.com/en-us/library/windows/desktop/ff728831(v=vs.85).aspx#the_basic_principles_of_proper_ui
https://msdn.microsoft.com/en-us/library/windows/desktop/ff728831(v=vs.85).aspx#the_basic_principles_of_proper_ui
https://www.google.com/patents/US20080244440
https://www.office.com/
https://www.office.com/
https://uk.mathworks.com/help/matlab/matlab_prog/private-functions.html
https://uk.mathworks.com/help/matlab/matlab_prog/private-functions.html
https://uk.mathworks.com/help/matlab/matlab_prog/add-help-for-your-program.html
https://uk.mathworks.com/help/matlab/matlab_prog/add-help-for-your-program.html
http://www.gigasciencejournal.com/content/2/1/15
http://journal.frontiersin.org/article/10.3389/fgene.2014.00199/abstract
https://balsamiq.com/products/mockups/

116 Bibliography

[69] W. Lidwell, K. Holden, and J. Butler, “Ockham’s Razor,” in Universal Principles
of Design, 2010, pp. 172–173.

[70] ——, “Fitts’ Law,” in Universal Principles of Design. Rockport Publishers,
2010, pp. 98–99.

[71] ——, “Symmetry,” in Universal Principles of Design. Rockport Publishers,
2010, pp. 234–235.

[72] ——, “Confirmation,” in Universal Principles of Design. Rockport Publishers,
2010, pp. 54–55.

[73] ——, “Flexibility-Usability Tradeoff,” in Universal Principles of Design. Rock-
port Publishers, 2010, pp. 102–103.

[74] J. Nielsen and T. K. Landauer, “A Mathematical Model of the Finding
of Usability Problems,” in Proceedings of the INTERACT ’93 and CHI
’93 Conference on Human Factors in Computing Systems, ser. CHI ’93.
New York, NY, USA: ACM, 1993, pp. 206–213. [Online]. Available:
http://doi.acm.org/10.1145/169059.169166

[75] CIAT, “genebank4 Pic by Neil Palmer (CIAT). Plant samples in the gene bank at
CIAT’s Genetic Resources Unit, at the institution’s headquarters in Colombia,”
2010. [Online]. Available: https://www.flickr.com/photos/ciat/4331057760/

[76] A. Arkagorodsky, “File:Software engineering intern.png - Wikipedia,” 2008.
[Online]. Available: https://en.wikipedia.org/wiki/File:Software_engineering_
intern.png

[77] Mathworks Inc., “Creating a GUI with GUIDE - Video - MAT-
LAB,” 2017. [Online]. Available: https://uk.mathworks.com/videos/
creating-a-gui-with-guide-68979.html

[78] ——, “MATLAB App Designer - MATLAB,” 2017. [Online]. Available:
https://uk.mathworks.com/products/matlab/app-designer.html

[79] M. Inc., “Graphics Support in App Designer - MATLAB & Simulink -
MathWorks United Kingdom,” 2017. [Online]. Available: https://uk.mathworks.
com/help/matlab/creating_guis/graphics-support-in-app-designer.html

[80] S. F. Conservancy, “Git,” 2017. [Online]. Available: https://git-scm.com/

[81] W. M. Vagias, “Likert-type Scale Response Anchors. Clemson International In-
stitute for Tourism,” & Research Development, Department of Parks, Recreation
and Tourism Management, Clemson University, 2006.

[82] W. Fontana, “Cellucidate,” 2009. [Online]. Available: http://fontana.med.
harvard.edu/www/Documents/WF/Pages/cellucidate.wf.htm

[83] The COBRA Toolbox developers, “The COBRA Toolbox,” 2017. [Online].
Available: https://opencobra.github.io/cobratoolbox/latest/index.html

http://doi.acm.org/10.1145/169059.169166
https://www.flickr.com/photos/ciat/4331057760/
https://en.wikipedia.org/wiki/File:Software_engineering_intern.png
https://en.wikipedia.org/wiki/File:Software_engineering_intern.png
https://uk.mathworks.com/videos/creating-a-gui-with-guide-68979.html
https://uk.mathworks.com/videos/creating-a-gui-with-guide-68979.html
https://uk.mathworks.com/products/matlab/app-designer.html
https://uk.mathworks.com/help/matlab/creating_guis/graphics-support-in-app-designer.html
https://uk.mathworks.com/help/matlab/creating_guis/graphics-support-in-app-designer.html
https://git-scm.com/
http://fontana.med.harvard.edu/www/Documents/WF/Pages/cellucidate.wf.htm
http://fontana.med.harvard.edu/www/Documents/WF/Pages/cellucidate.wf.htm
https://opencobra.github.io/cobratoolbox/latest/index.html

Bibliography 117

[84] J. Joe, S. Chaudhuri, T. Le, H. Thompson, and G. Demiris, “The use of
think-aloud and instant data analysis in evaluation research: Exemplar and
lessons learned,” Journal of Biomedical Informatics, vol. 56, pp. 284–291, 2015.
[Online]. Available: http://dx.doi.org/10.1016/j.jbi.2015.06.001

[85] C. J. Banks and I. Stark, “A logic of behaviour in context,” Information
and Computation, vol. 236, no. 2014, pp. 3–18, 2014. [Online]. Available:
http://dx.doi.org/10.1016/j.ic.2014.01.009

[86] The University of Cambridge, “Sample Consent Forms,”
2017. [Online]. Available: https://camtools.cam.ac.uk/wiki/site/
e30faf26-bc0c-4533-acbc-cff4f9234e1b/exampleconsentform.html

http://dx.doi.org/10.1016/j.jbi.2015.06.001
http://dx.doi.org/10.1016/j.ic.2014.01.009
https://camtools.cam.ac.uk/wiki/site/e30faf26-bc0c-4533-acbc-cff4f9234e1b/example consent form.html
https://camtools.cam.ac.uk/wiki/site/e30faf26-bc0c-4533-acbc-cff4f9234e1b/example consent form.html

	Introduction
	Previous Work
	Work Undertaken
	Report Structure

	Background
	Continuous Pi-Calculus
	Example

	Continuous Pi-Calculus Workbench
	MATLAB
	CPi MATLAB Extension
	Inspiration
	Functionality

	Human-Computer Interaction in Bioinformatics Software
	Poorly Designed Software
	Motivation for Improvement
	User Centred Design in Bioinformatics
	System Documentation

	User Interface Design Principles and Methods
	Interface Metaphor
	Affordance
	Gestalt Principles
	Gutenberg Diagram
	Contextual Help Information
	Usability Inspections
	Interview
	Think-Aloud Protocol
	Personas

	Planning and Methodology
	System Constraints
	Command Line Interface Constraints
	Graphical User Interface Constraints

	Work Plan

	Analysis of Existing Tools
	Intrinsic Noise Analyser
	General Observations
	Design Observations

	Kappa Calculus
	KaDE
	KaSim

	Visual SPiM
	General Observations
	Design Observations

	IQM Tools
	General Observations
	Design Observations

	MATLAB Simbio
	General Observations
	Design Observations

	CPi-IDE
	General Observations
	Design Observations

	Summary of Design Observations

	Code Re-factoring and Command Line Interface Redesign
	Inline documentation and the Private Folder
	CLI Modification

	Graphical User Interface Design and User Evaluation
	Design
	Design Choices
	Usability Inspections
	Stakeholder Influence

	Pre-Implementation User Testing
	Test Procedure
	Results
	Test Improvements

	Personas
	Emily MacDonald
	Ross McIntosh

	Graphical User Interface Implementation and User Evaluation
	Implementation
	Implementation Choices
	Differences between Mock-Up Designs and Implementation

	Interviews
	Question Structure
	Answer Analysis

	Post-Implementation User Testing
	Test Procedure
	Results
	Test Improvements

	Project Evaluation
	Background Research
	Re-factored Source Code and CLI Changes
	Design and Implementation of a GUI
	Pre- and Post-Implementation User Testing
	System Documentation and Walk-through

	Conclusion
	Achievements
	Known Issues
	Future Work
	Additional Functionality
	Interface Improvements

	Code Dependency Report
	Final Version of the Design Mock-Ups
	Sample Consent Forms
	Graphical User Interface Screen-shots
	User Testing Plans
	GUI Support Documentation
	Bibliography

