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Abstract

Probabilistic programming languages provide a concise and abstract way to specify prob-

abilistic models, while hiding away the complicated underlying inference algorithm. How-

ever, those languages are often either not efficient enough to use in practice, or restrict

the range of supported models and require understanding of how the compiled program

is executed. Work in the programming languages community addresses this by attempt-

ing to use techniques such as program analysis and program abstraction, to improve the

efficiency of the inference method used. However, such techniques have been restricted

mainly within the community, and have not been applied to real-world probabilistic pro-

gramming languages that have a large user-base.

This work seeks ways in which programming language and static analysis techniques can

be used to improve the increasingly mature probabilistic language Stan. We design and

implement SlicStan — a probabilistic programming language that uses methods from the

programming languages community in a novel way, to allow for more abstract and flexible

Stan models. We show with examples the functionality of SlicStan, and report compiler

performance results to show that our method is practical. This work demonstrates that

black-box efficient inference can be the result of joint efforts between programming lan-

guage and machine learning researchers.
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Chapter 1

Introduction

Machine learning has been growing faster and faster in the last couple of decades. We have

witnessed huge advances in the areas of statistics, robotics, natural language processing,

artificial intelligence, and many others, thanks to this increasingly growing field. In many

cases such advances are due to the development of algorithms for probabilistic inference,

and of programming languages that compile abstract model specifications for inference

automatically [Wood et al., 2014, Lunn et al., 2000, Goodman et al., 2012, Minka et al.,

2014, Gelman et al., 2015, Mansinghka et al., 2014]. Such probabilistic programming

languages act as a high-level platform for users who are not statistics experts. They

abstract away the details of the underlying inference algorithm, and provide a clean and

concise syntax for probabilistic modelling.

Even though probabilistic programming has reached a point in which it can be applied

to real-world problems, it still faces a lot of challenges. Implementing efficient inference

algorithms that are applicable to a large number of different probabilistic models is hard.

Languages that allow for a wide range of complex programs are forced to use less-efficient,

more general-purpose inference methods. On the other hand, efficient inference algorithms

usually make assumptions about the underlying model, which in turn imposes limits on

the probabilistic language’s expressiveness. Current languages face a trade-off between

speed and accuracy of inference, and range of supported models and usability.

Stan [Gelman et al., 2015] is one such probabilistic programming language. Its nature

is imperative, and programs compile to an efficient Hamiltonian Monte Carlo (HMC)

inference algorithm [Neal et al., 2011]. The language is increasingly used for real-world

scalable projects in statistics and data science (for example, Facebook’s Prophet [Taylor

and Letham, 2017]). Moreover, as programs are written in standalone files, and can be

compiled using any of the available Stan interfaces,1 the language is a convenient way to

share and reproduce results of statistical models. Stan makes practical inference possible

by (1) having syntax that allows separations between variables playing different roles in

the HMC algorithm; (2) restricting the range of supported models to fixed-sized models

that define a differentiable joint probability density function; and (3) adopting an adaptive

version of HMC, which does not require algorithm parameters to be hand-tuned.

1To date those include command line, R, Python, MATLAB, Julia, Stata, and Mathematica interfaces.
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2 CHAPTER 1. INTRODUCTION

Even though increasingly mature, and very powerful, Stan sacrifices some of its usability

and flexibility to make automatic inference possible. In this dissertation, we motivate,

design, and implement SlicStan — a probabilistic programming language that compiles

to Stan. SlicStan uses static analysis and programming language techniques to allow

models compiled for HMC inference to be more abstract and flexible. The rest of this

chapter states the contributions of this work, also outlining the structure of the rest of

the dissertation (§ 1.1), and finishes with a short review of related work (§ 1.2).

1.1 Contributions and Outline

SlicStan is novel in two ways:

(1) It uses information flow analysis and type inference to automatically determine the

role that each program variable plays in HMC inference, and thus to eliminate the

need to have program blocks as in Stan.

(2) It introduces user-defined functions that allow for new model parameters to be

declared as local variables. Programs can then be translated to Stan, by statically

unrolling calls to user-defined functions.

Below, we demonstrate SlicStan’s functionality with an example. The Stan pro-

gram (right) uses program blocks to specify the role of each variable and statements

(parameters, transformed parameters, model), and contains no function calls. Slic-

Stan (left) uses two function calls to the user-defined function my normal to express the

same model.2 It does not contain any annotations as to what block a variable belongs to.

SlicStan

def my normal(real m, real s) {

real x raw ∼ normal(0, 1);

return s * x raw + m;

}

real y = my normal(0, 3);

real x = my normal(0, exp(y/2));

Stan

parameters {

real y raw;

real x raw;

}

transformed parameters {

real y;

real x;

y = 3.0 * y raw;

x = exp(y/2) * x raw;

}

model {

y raw ∼ normal(0, 1);

x raw ∼ normal(0, 1);

}

2The translated to Stan program is syntactically different to the original Stan program shown here,

but it is semantically equivalent. We revisit this example in § 5.3, where we give more details.
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A detailed explanation of Stan’s syntax, as well as specifics about its underlying inference

algorithm and the role of program blocks, is presented in the next chapter, Chapter 2.

Chapter 3 motivates and describes the idea behind SlicStan. As mentioned earlier, Slic-

Stan translates to Stan. This process is described in full by Chapter 4, but in short,

translation is done in three steps:

(1) Typechecking: the SlicStan program is checked for type errors, and the HMC role

of each variable is deduced.

(2) Elaboration: calls to user-defined functions are statically unrolled.

(3) Transformation: variable declarations and statements are shredded into different

blocks, based on the roles deduced by typechecking, to produce the final Stan trans-

lation of the original program.

Chapter 5 shows examples of programs that demonstrate the functionality of SlicStan,

together with results reporting on the performance of the language’s compiler.

1.2 Related Work

Today, there exists a range of probabilistic programming languages and systems. Stan’s

syntax, for example, is initially inspired by that of BUGS [Lunn et al., 2000], which uses

Gibbs Sampling to perform inference. Other languages include Anglican [Wood et al.,

2014], Church [Goodman et al., 2012] and Venture [Mansinghka et al., 2014], which all

focus on expressiveness of the language and range of supported models. They provide

clean syntax and formalised semantics, but use less efficient, more general-purpose infer-

ence algorithms. On the other end of the spectrum, there is the Infer.NET framework

[Minka et al., 2014], which uses the efficient variational inference algorithm Expectation

Propagation, but allows a limited range of models to be specified. More recently, there

was also the introduction of the Python library Edward [Tran et al., 2016], which supports

a wide range of efficient inference algorithms and model criticism methods, but also has

a limited range of supported models and lacks the conciseness and formalism of some of

the other systems.

The rest of this section addresses mostly related work done within the programming

languages community. A more extensive overview of the connection between probabilistic

programming and programming language research si given by Gordon et al. [2014b].

1.2.1 Static Analysis for Probabilistic Programming Languages

Our work aligns most closely with the body of work on static analysis for probabilistic

programs.

Such work includes several papers that attempt to improve efficiency of inference. For

example, R2 [Nori et al., 2014] applies a semantics-preserving transformation to the prob-

abilistic program, and then uses a modified version of the Metropolis–Hastings algorithm
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that exploits the structure of the model. This results in a more efficient Metropolis–

Hastings sampling, which can be further improved by slicing the probabilistic program

to only contain parts that a relevant to estimating some target probability distribution

[Hur et al., 2014]. R2 designs and uses its own probabilistic language, however slicing is

shown to work with other languages, in particular Church and Infer.NET.

Another related work is that of Claret et al. [2013], who present a new inference algorithm

that is based on data-flow analysis. Their approach is applicable to boolean probabilistic

programs — programs where variables can only be of a boolean type.

The PSI system [Gehr et al., 2016] analyses probabilistic programs using a symbolic

domain, and outputs a simplified expression representing the posterior distribution. PSI

uses its own modelling language, and the method has not been applied to other already

existing languages.

1.2.2 Usability of Probabilistic Programming Languages

Another group of related work is that done in terms of usability for probabilistic program-

ming languages, and focuses on making inference more accessible.

Contributions in this area include introducing visual aids for the programmer in the

form of graphical models expressing the underlying probabilistic program. WinBUGS

[Lunn et al., 2000] and Vibes [Bishop et al., 2002] allow a model to be expressed either

in a textual language (BUGS language/XML script) or pictorially, via a graphical user

interface. Gorinova et al. [2016] create a development environment, which shows live,

edit-triggered visualisations of an Infer.NET probabilistic model written by the user, but

does not allow models to be specified graphically.

In other work, Gordon et al. [2014a] implement a schema-driven probabilistic program-

ming language, Tabular, which brings the power of probabilistic modelling to spreadsheets,

by allowing programs to be written as annotated relational schemas. Fabular [Borgström

et al., 2016a] extends this idea by incorporating special syntax for hierarchical linear

regression inspired by R and its lme4 package [Bates et al., 2014]. Finally, BayesDB

[Mansinghka et al., 2015] introduces BQL — a Bayesian Query Language. Users can

write SQL-like queries to answer their statistical questions about the data, and write

probabilistic models in a minimal meta-modelling language.

Nori et al. [2015], and more recently Chasins and Phothilimthana [2017], have a more

data-driven approach to usability of probabilistic programs, that is they synthesise pro-

grams from relational datasets. Nori et al. [2015] require the user to write a “sketch”

program, which captures some of what the intended probabilistic model is, but contains

“holes”. These holes are substituted for actual code, after analysis of the data. Chasins

and Phothilimthana [2017] extend this approach by automating the “sketching” of the

program, although they must restrict the format of the input dataset to implement this

idea.
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1.2.3 Formalisation of Probabilistic Programming Languages

There has been extensive work on the formalisation of probabilistic programming lan-

guages syntax and semantics. For example, a widely accepted denotational semantics for-

malisation is that of Kozen [1981]. Other work includes formalisation of domain-theoretic

semantics [Jones and Plotkin, 1989], measure-theoretic semantics [Borgström et al., 2011],

operational semantics [Borgström et al., 2016b], and more recently, categorical formalisa-

tion for higher-order probabilistic programs [Heunen et al., 2017]. In this dissertation, we

define the semantics of SlicStan in terms of Stan. Giving the language formal semantics

is out of the scope of this dissertation, however we consider it an interesting direction for

future work.
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Chapter 2

Probabilistic Programming with

Stan

This chapter outlines the theoretical and practical background of SlicStan. Firstly, § 2.1

briefly describes some of the basic syntax of the Stan programming language. To under-

stand how to optimise their probabilistic programs, Stan users need to also have some

insight on the way inference is implemented by Stan’s compiler. A high-level introduction

to the default inference algorithm, NUTS [Hoffman and Gelman, 2014], is presented in

§ 2.2, while § 2.3 highlights with examples how a Stan program can be optimised. As

part of the main work of this dissertation, we also formally define the syntax of a subset

of the Stan language, and state what a well-formed Stan program is (§§ 4.3.1).

2.1 Modelling Language

Stan [Gelman et al., 2015] is a probabilistic programming language, whose syntax is sim-

ilar to that of BUGS [Lunn et al., 2000], and aims to be close to the model specification

conventions used in publications in the statistics community. This section outlines the

basic syntax and structure of a Stan program, and gives an example demonstrating most

of the relevant to this dissertation language structures. Some syntactic constructs and

functionality (such as constraint data types, random number generation, penalized maxi-

mum likelihood estimation, and others) have been omitted. A full language specification

can be found in the official reference manual [Stan Development Team, 2017].

2.1.1 Overview

Stan is imperative and compiles to C++ code. It consists of program blocks (§§ 2.1.2),

which contain sequences of variable declarations and statements. Statements themselves

involve expressions, which can be constants, variables, arithmetic expressions, array ex-

pressions, function calls, and others.

The meaning of a Stan program is the joint probability density function P (x1, . . . , xn)

it defines (up to a constant), where x1, . . . , xn are the parameters of the model. The

7
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execution of a Stan program consists of drawing samples from this joint density.

A full example of a Stan program is shown in Figure 2.1.

Data Types and Declarations

All variables in Stan must be declared before use, and their types must be specified. This

is done in a similar to C++ way. For example, the following will declare a single floating

point variable x:

real x;

The language supports the following basic types: int, real, vector, row vector,

matrix and an array of any type can be created. Linear algebra objects (vector, row

vector and matrix) have real elements. The size of vectors, row vectors, matrices and

arrays must be specified when declaring a variable of such type:

real x[10]; // real array of size 10

vector[N] y; // vector of size N

matrix[N, 4] m[3]; // array of 3 matrices of shape (N,4)

Statements

As mentioned in the beginning of this section, Stan is an imperative language. Thus,

unlike BUGS where the program describes a Bayesian Network in a declarative fashion,

statements are executed in the order they are written, and define the target log probability

density function. Stan shares statements similar to those of other imperative languages

— assignments, for and while loops, and if statements:

for (n in 1:N) {

if (x[n] > 0) y[n] = x[n];

else y[n] = 0;

}

In addition, Stan also supports a sampling statement:

y ∼ normal(0, 1);

Despite its name, a sampling statement in Stan does not actually perform any sampling

when executed. The code above means that the variable y has a standard normal distri-

bution in the probabilistic model we are defining. As the semantics of a Stan program is

the log probability function it defines, a sampling statement is essentially an increment

of this target log density:

log Pi+1(y, x1, . . . , xn) = log Pi(y, x1, . . . , xn) + log N (y | 0, 1)

where logPi(y, x1, . . . , xn) is the accumulated log density at the ith step of the execution.

Stan also allows this increment to be done manually, by accessing a special target variable:

target += normal lpdf(y | 0, 1);
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2.1.2 Program Blocks

A full Stan program consists of 7 blocks, all of which are optional. The blocks (if present)

must be in the following order, and are used to declare a particular set of variables and

statements:

• functions: contains the definitions of user-defined functions (§§ 2.1.3).

• data: contains declarations of the variables, whose value will be fed externally before

inference is performed.

• transformed data: contains declarations of known constants and allows for prepro-

cessing of the data.

• parameters: contains declarations of the parameters of the model.

• transformed parameters: contains declarations and statements defining transfor-

mations of the data and parameters, that are used to define the target density.

• model: contains local variable declarations and statements defining the target log

probability density function.

• generated quantities: contains declarations and statements that do not affect the

sampling process, and are used for post-processing, or predictions for unseen data.

Figure 2.1 shows an example of a full Stan program. In this example, we are interested

in inferring the mean µy and variance σ2
y of an array of independent and identically

distributed variables y. The program can be read as follows:

(1) In the model block, we specify that y comes from a normal distribution with mean

µy and standard deviation σy, and give prior distributions to the parameters (de-

clared in parameters) µy and τy.

(2) In the transformed parameters block, we define y’s standard deviation σy in terms

of y’s precision τy.

(3) Similarly, we define the variance in terms of the transformed parameter σy in

generated quantities.

(4) Finally, we declare the data items that will be specified before inference in the data

block, and define the constants α and β in the transformed data block.

Declaring some of the variables in another block could also result in a valid Stan program

(e.g. α, β, and σ2 can be all defined in the transformed parameters block), however this

might impact performance. More details about what block a variable should be defined

in, in order to optimise a Stan program, is given in § 2.3.
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Gamma(α, β)

τy

σyµy

σy = 1
/√

τyN (µµ, σµ)

N (µy, σy) vy = σ2
y

vyyn

n = 1, ..., N

data {

int N;

real y[N];

real mu mu;

real sigma mu;

}

transformed data {

real alpha = 0.1;

real beta = 0.1;

}

parameters {

real mu y;

real tau y;

}

transformed parameters {

real sigma y;

sigma y = pow(tau y, -0.5);

}

model {

tau y ∼ gamma(alpha, beta);

mu y ∼ normal(mu mu, sigma mu);

y ∼ normal(mu y, sigma y);

}

generated quantities {

real variance y;

variance y = sigma y * sigma y;

}

Figure 2.1: An example of a probabilistic model written in Stan (on the right), and its

corresponding factor graph (on the left). Example adapted from Stan’s Reference Manual

[Stan Development Team, 2017, p. 101].
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2.1.3 User-defined functions

User-defined functions are supported, and they can be defined in the functions block.

Functions must carry a name with a special suffix in the cases where the function accesses

the accumulated log probability ( lp), or implements a probability function ( lpdf, lpmf),

or a random number generator ( rng).

Due to Stan’s requirement that all parameters of the model should be declared in the

parameters block, those user-defined functions are constrained, in the sense that they

cannot define new parameters. In some cases, allowing parameters to be created within

functions could lead to a more compact and easy to read program. Examples of such

desirable functions, which cannot be implemented in the current version of Stan, are

given in § 2.3.

2.2 Inference in Stan

The meaning of a Stan program is the joint probability density function it defines (up to

a constant), or in other words, P (D,θ), where D is the data and θ is the parameters of

the model. For example, the model specified in Figure 2.1 defines the density:

P (y, µy, τy) = Gamma(τy | α, β)×N (µy | µµ, σµ)×N (y | µy, σy)

= Gamma(τy | 0.1, 0.1)×N (µy | µµ, σµ)×N
(

y | µy,
1
√
τy

)
with µµ and σµ being given unmodelled data, and Gamma(x | α, β) and N (x | µ, σ) being

the gamma and the Gaussian distribution respectively.

Executing a Stan program consists of generating samples from the posterior distribution

P (θ | D), as a way of performing Bayesian inference. In the example above, that is

finding the posterior P (µy, τy | y).

Currently, Stan supports the following ways to perform inference:

• Asymptotically exact Bayesian inference using Hamiltonian Monte Carlo (HMC)

[Neal et al., 2011], a Markov Chain Monte Carlo (MCMC) method, or its “adaptive

path lengths” extension — the No-U-Turn Sampler (NUTS) [Hoffman and Gelman,

2014].

• Approximate inference using Automatic Differentiation Variational Inference

(ADVI) [Kucukelbir et al., 2016].

This dissertation is focused on improving Stan’s syntax, in order to be able to compile

models to Stan code, which results in a more efficient exact inference using the default al-

gorithm — NUTS. The rest of this section, therefore, gives a brief introduction to Markov

Chain Monte Carlo sampling (§§ 2.2.1), as well as the particular MCMC methods that

Stan uses — Hamiltonian Monte Carlo and the No-U-Turn Sampler (§§ 2.2.2). Finally,

§§ 2.2.3 outlines the way a Stan model is run to perform inference.
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2.2.1 Markov Chain Monte Carlo (MCMC)

Monte Carlo methods aim to sample from a target probability distribution P (x). Having

obtained a collection of samples {xn}Nn=1, we can then approximate expectations of any

function φ(x) under that distribution, by taking:

〈φ(x)〉P (x) =

∫
φ(x)P (x) dx

≈ 1

N

N∑
n=1

φ(xn)

(2.1)

Inference implemented using Monte Carlo methods consists of obtaining a representative

collection of samples of the posterior distribution P (θ | D), and treating this collection

as an approximation of the distribution itself.

The idea behind Markov Chain Monte Carlo methods (introduced by Metropolis et al.

[1953], and reviewed by Neal [1993] and Murray [2007]) is to obtain those samples by

transitioning on a Markov chain, which is designed such that in the limit of infinitely

many transitions, the samples obtained will be from the target probability distribution,

or P (θ | D) in the case of inference. In other words, suppose we define the probability of

obtaining a collection of samples {θn}Nn=1 to be the following Markov chain:

Q(θ1, . . . ,θN) = Q(θ1)
N∏
n=2

Q(θn | θn−1)

Suppose also, that the stationary distribution Q∞(θ) of the Markov chain exists, and that

we have proven that Q∞(θ) = P (θ | D). Now, due to the chain converging towards its

stationary distribution, drawing samples from P (θ | D) by forward-sampling from the

Markov chain Q(θn | θn−1), will result in asymptotically exact inference. In other words,

in the presence of infinitely many samples, MCMC inference will be exact.

This raises the question of how many samples we need to obtain in practice, in order to ap-

proximate the posterior well. The number varies hugely, depending on the precise MCMC

method used, and the nature of the distribution. For example, Metropolis–Hastings [Hast-

ings, 1970], which is one such MCMC method used primarily for multivariate, complex

distributions, will obtain a potential sample point θ∗, by taking a (random) step near

the current sample point θn. It will then accept or reject θ∗ based on some acceptance

ratio, and take θn+1 = θ∗ if θ∗ is accepted, and θn+1 = θn otherwise. If the stepsize of

this random walk is small, then it will take us a long time to “explore” the distribution,

and obtain an effective collection of samples. Furthermore, it can be problematic to ex-

plore certain distributions, such as multimodal distributions, as we might never “step far

enough” to reach a region close to another mode. On the other hand, if the stepsize is

large, a random step is more likely to result in a low-probability proposal sample point,

which in turn is likely to be rejected. The acceptance rate will drop, and it will, once

again, take us a large number of iterations to obtain an effective collection of samples.



2.2. INFERENCE IN STAN 13

Figure 2.2: Twenty iterations of the random-walk Metropolis–Hastings method, and of the

Hamiltonian Monte Carlo method. The target density is a 2D Gaussian distribution with

marginal standard deviations of one and a high correlation of 0.98. Metropolis–Hastings

takes small, target distribution-independent steps, while Hamiltonian Monte Carlo takes

larger steps in the directions of the gradient, resulting in a better density exploration.

Figure taken from Neal et al. [2011].

2.2.2 Hamiltonian Monte Carlo (HMC)

and the No-U-Turn Sampler (NUTS)

As previously stated in the beginning of § 2.2, Stan uses two MCMC sampling methods —

Hamiltonian Monte Carlo, and an adaptive tuning version of it: the No-U-Turn Sampler.

Those two are outlined in turn below.

Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC) [Neal et al., 2011] is an MCMC method, which attempts

to reduce the problematic random walk behaviour described in the previous section, by

making use of information about the target distribution’s gradient. HMC augments the

probability space with momentum variables, to sample by performing Hamiltonian dy-

namics simulation. This method makes it possible to propose a sample potentially dis-

tant from the current one, yet having a high acceptance probability. Figure 2.2 compares

Metropolis–Hastings and Hamiltonian Monte Carlo on a single example, illustrating the

importance of reducing random walk behaviour when using MCMC methods.

An intuition about the way HMC works is the following: Suppose that P (x) is a differ-

entiable probability density function. Imagine the negative log of P (x) as a surface, and

a single sample from the distribution, x being a frictionless puck placed on the surface.

The potential energy of that puck, E(x), is the height of the surface up to an additive
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constant:

E(x) = − logP (x)− logZ

The kinetic energy of the puck is a function of its momentum p:

K(p) =
1

2m
‖p‖2

where m is the mass of the puck, and ‖p‖ is the magnitude of p.

Given an initial “push” in some direction, the puck slides on the surface, with:

• its potential energy E(x) increasing and kinetic energy K(p) decreasing, when going

up a slope, and

• its potential energy E(x) decreasing and kinetic energy K(p) increasing, when going

down a slope.

In a perfectly simulated system with a frictionless puck, the Hamiltonian, defined as a

function of the position x and the momentum p, stays constant:

H(x,p) = E(x) +K(p)

Hamiltonian Monte Carlo samples from the joint density PH(x,p) = e−H(x,p)

ZH
, by simulat-

ing the “sliding puck” physical system. Marginalising over p gives us:∫ +∞

−∞
PH(x,p) dp =

∫ +∞

−∞

1

ZH
e−E(x)e−K(p) dp

=
1

Z
e−E(x)

∫ +∞

−∞

Z

ZH
e−K(p) dp

= P (x)

Thus, assuming the simulation is perfect, the location of that puck at some point in time

will be a sample from the distribution of interest.

In very simple terms, HMC then works by simply picking an initial sample x0, and then

adding a new sample as follows:

(1) Place the puck at the position of the current sample xn.

(2) Choose a Gaussian initial momentum p to give to the puck.

(3) Simulate the physical system for some time τ .

(4) Set the candidate sample x∗ to the position of the puck at the end of the simulation.

(5) Accept / reject the candidate sample based on a Metropolis acceptance ratio.1

1This step would not be needed if the simulation of the system were numerically perfect. In practice, we

need to discretise time, and move in a straight line between individual time-steps. Therefore a simulation

of the physical system is only approximate.
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Hamiltonian Monte Carlo has proven its success in practise, including when used with

Hierarchical models [Betancourt and Girolami, 2015], which are of particular importance

to Stan. Not surprisingly, Stan’s development team chooses HMC as the underlying

inference algorithm. Implementing the algorithm, however, involves tuning several hy-

perparameters — a non-trivial, often difficult and model-dependent step. The default

for Stan No-U-Turn Sampler automatically sets some of those parameters, and therefore

allows for an easier use of Stan for the programmer.

The No-U-Turn Sampler

To implement Hamiltonian Monte Carlo that samples from a distribution P (x) = e−E(x)

Z
,

one needs to:

• Know how to compute the gradient ∂E
∂x

∣∣∣
x=x∗

at any point x∗. Stan uses automatic

differentiation to do that.

• Choose the mass m that defines the kinetic energy K(p). In the general case, the

mass is a matrix Σ, so K(p) = 1
2
pTΣ−1p and p ∼ N (0,Σ).

• Choose a small time-interval ε — the time discretisation.2

• Choose the number of time-steps, L, to be taken to complete each simulation.3

The quantities Σ, ε and L are the parameters of the algorithm. As shown by Neal

et al. [2011] and Hoffman and Gelman [2014], HMC efficiency is highly sensitive to those

parameters. For example, a small L will result in a candidate sample close to the current

one, increasing sample correlation. A large L, on the other hand, will result in slower

sampling, as the algorithm will spend longer simulating a trajectory for each sample.

Moreover, the simulation might result in a U-turn of the fictional puck, in which case

continuing it is unnecessary, and it might even lead to a complete re-tracing of the steps,

sending the puck back to where it started from.

The No-U-Turn Sampler (NUTS) [Hoffman and Gelman, 2014] is an HMC algorithm

that chooses the path length L on the fly, by creating a trajectory of candidate points,

and sampling from those points, taking care to preserve the necessary properties of the

Markov chain for MCMC sampling to work. NUTS also tunes the step size ε to match

some target acceptance-rate δ (the default value is δ = 0.8). Finally, the mass matrix Σ is

automatically set during NUTS’s warm-up phase — a sampling phase, obtained samples

from which are later discarded — to account for possible correlations between parameters.

Thanks to NUTS, Stan is able to perform efficient inference on hierarchical models, with-

out any hand-tuning needed to be done by the programmer.

2Also called “step size”.
3Also called “path length”.
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Algorithm 1: Vanilla HMC applied to a Stan program.1

Arguments: d, the data // Read data block variables

Returns: (M,T,Q), a set of samples

1:

2: td = td(d) // Compute transformed data variables

3: for all s ∈ 1 : S do // Loop over samples

4: p ∼ N (0,Σ) // Sample initial momentum

5: H = pTp
2

+ E(θn) // Evaluate the Hamiltonian

6:

7: θ∗ = θn // Start from current sample

8: for all τ ∈ 1 : L do // Take L leapfrog steps

9: p = p− ε
2
× ∂E(θ)

∂θ

∣∣∣
θ=θ∗

// Make a half-step in p

10: θ∗ = θ∗ + ε× Σ−1p // Update the parameters

11: p = p− ε
2
× ∂E(θ)

∂θ

∣∣∣
θ=θ∗

// Find new gradient (involves

12: // computing the transformed parameters,

13: // and executing the model block),

14: // and make a half-step in p

15:

16: H∗ = pTp
2

+ E(θ∗) // Re-evaluate the Hamiltonian

17: δH = H∗ −H
18: if (δH < 0) ∨ (rand() < e−δH) then // Decide whether to accept or reject

19: accept = true // the candidate sample θ∗

20: else accept = false

21:

22: if accept then θn+1 = θ∗

23: else θn+1 = θn

24:

25: M = M ∪ {θn+1} // Add θn+1 to the set of sampled parameters

26: T = T ∪ {tp(θn+1)} // Add transformed parameters to the samples

27: Q = Q ∪ {g(θn+1)} // Compute and include generated quantities

28:

29: return (M,T,Q)

1 The pseudo-code was adapted from “Information Theory, Inference and Learning Algorithms”

[MacKay, 2003, p. 388] for illustrative purposes. It excludes details of the actual algorithm used

by Stan, such as transformations of constrained variables, gradient computation, parameter

tuning, and others. The full source-code of Stan is available online at https://github.com/

stan-dev/stan, and a sketch of the way a compiled program is executed is given in the manual

[Stan Development Team, 2017, p. 115].

https://github.com/stan-dev/stan
https://github.com/stan-dev/stan
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2.2.3 Execution of a Stan Program

Going back to Stan’s syntax, this subsection outlines how code written in Stan transforms

to an efficient Hamiltonian Monte Carlo algorithm. Algorithm 1 shows a vanilla HMC

pseudo-code, with information about executing lines of code from different Stan blocks,

in order to sample from the desired probability density.

The first step is loading the data, as declared in the data block, into memory. Then

the statements in the transformed data block are executed to calculate the transformed

data variables. For each sample, the algorithm executes a certain number of leapfrog

steps — the simulation of the sliding puck physical system. Each leapfrog step is a small

move of the puck in the direction of its momentum, and a respective small change of

its momentum in the direction of its gradient. The target density is defined in terms of

the data, transform data, parameters, and transformed parameters. Re-evaluating the

gradient of this target density requires executing the transformed parameters block to

re-calculate the transformed parameters (as they are defined in terms of the now updated

parameters). After the simulation is complete, a Metropolis acceptance ratio is computed

to decide if the sample should be accepted or rejected. Then the generated quantities

block is executed for every sample.

Table 2.1 summarises how frequently statements in different block are executed. It is

clear that equivalent Stan programs, in which variables have been declared and defined in

different blocks, can have huge differences in performance — the data is transformed only

once (per execution), while the algorithm spends most of its time in the inner, leapfrog

loop, where the transformed parameters and model blocks are executed. It is therefore

wasteful to define a variable that is a transformation of the data, or a generated quantity,

in the transformed parameters block.

Block Execution

data —

transformed data Per chain

parameters —

transformed parameters Per leapfrog

model Per leapfrog

generated quantities Per sample

Table 2.1: Execution of program blocks in Stan. Adapted from [Betancourt, 2014].

We address this and other issues in the development of SlicStan.

2.3 Optimising Stan Code

The specifics of the underlying inference algorithm of Stan, Hamiltonian Monte Carlo

sampling, leave a lot of room for optimisations of the source code of a probabilistic model,

that will lead to more efficient sampling. This section outlines a few code optimisation
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techniques that are of importance to this dissertation. A more detailed list of optimisation

techniques is presented in ch. 26 of Stan’s Manual [Stan Development Team, 2017].

2.3.1 Program Blocks

First of all, as explained in §§ 2.2.3, the way variables’ definitions are sliced between

blocks has an impact on the performance of the compiled Stan program. Therefore, it is

important to ensure that each variable is defined in the optimal block. In short:

• Constants and transformations of data (variables defined as data or transformed

data), should be placed in the transformed data block.

• Variables that are defined in terms of data and parameter variables, but do not

take part in the probability density’s definition (i.e. for a variable q there are no

statements such as q ∼ foo(...) or x ∼ foo(q, ...)), should be defined in the

generated quantities block.

• Only variables that cannot be defined as transformed data or generated quantities

should be defined in the transformed parameters block.

2.3.2 Reparameterisation

When the mass matrix Σ is fixed, as it is the case for the current version of Stan, Hamilto-

nian Monte Carlo uses a first-order approximation to the posterior. This means that if the

posterior has a difficult geometry, which cannot be approximated well without taking into

account its curvature, Stan’s sampler may become slow, and even not sample from the

correct density. Such geometries can occur, for example, when the posterior has strong

non-linear correlations, as in the example described below. For such situations, the Stan

Development Team [2017] suggests attempting to reparameterise the model, so that the

HMC parameters’ space becomes flatter.4 The rest of this section demonstrates the “dif-

ficult geometries” problem with an example, and presents an efficient reparameterisation,

which makes sampling more efficient.

Neal’s Funnel

One pathological example is the Neal’s Funnel example, which was chosen by Neal [2003]

to demonstrate the difficulties Metropolis–Hastings runs into when sampling from a dis-

tribution with strong non-linear correlations. The probability density this model defines

is over a 9-dimensional vector x and a variable y, such that:

y ∼ N (0, 3)

x ∼ N (0, e
y
2 I)5

4Alternatively, Riemannian Manifold Hamiltonian Monte Carlo (RMHMC) [Girolami et al., 2009]

overcomes the difficult geometries problem by making the mass matrix position-dependent. However,

RMHMC is very expensive computationally, therefore harder to use in practise.
5Here 0 is the zero vector, and I is the identity matrix.
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The density has the form of a 10-dimensional funnel (thus the name “Neal’s Funnel”),

with a very sharp neck, as shown in Figure 2.3c. Due to its fixed mass matrix and

first-order posterior approximation, Hamiltonian Monte Carlo has trouble sampling from

this distribution. Figure 2.3a demonstrates this by plotting 24, 000 samples drawn using

Stan’s sampler, and using the following straightforward way to specify the model in Stan:

parameters {

real y;

vector[9] x;

}

model {

y ∼ normal(0, 3);

x ∼ normal(0, exp(y/2));

}

It can be seen that the sampler has trouble obtaining samples from the neck of the funnel.

This is because both the step-size ε, and the mass matrix Σ are set during warm-up, and

stay constant when drawing actual samples. This works well in cases of linear correlations

between parameters, where the curvature of the probability density is constant, but x and

y here are non-linearly correlated. Choosing the step-size and mass matrix to work well

in the body, means that it will be difficult to explore the neck, while optimising those

parameters for the neck, will result in an inefficient exploration of the body.

A more efficient model can be specified in Stan, by reparameterisation — samples can be

drawn from independent standard normal variables, and x and y obtained from those:

parameters {

real y raw;

vector[9] x raw;

}

transformed parameters {

real y;

vector[9] x;

y = 3.0 * y raw;

x = exp(y/2) * x raw;

}

model {

y raw ∼ normal(0, 1); // implies y ∼ normal(0, 3)

x raw ∼ normal(0, 1); // implies x ∼ normal(0, exp(y/2))

}

Even though longer and less readable, this model performs much better than the straight-

forward one. Figure 2.3b shows 24, 000 samples drawn using Stan’s sampler, but this time

using the more efficient model specification above.

Neal’s Funnel is an extreme, but typical example of the correlations that priors in hier-

archical models could have. Neal [2003] suggests that x1 to x9 can be random effects for

9 subjects, and y — the log of the variance of those effects. If we don’t have enough
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(a) 24, 000 samples obtained from 6 runs of

Stan’s sampler (default settings) for the non-

efficient form of the Neal’s Funnel model.

(b) 24, 000 samples obtained from 6 runs of

Stan’s sampler (default settings) for the effi-

cient form of the Neal’s Funnel model.

(c) The actual log density of Neal’s Funnel example. Darkest regions

are of high density, with log density greater than −8, while grey regions

have log density of less than −128.

Figure 2.3
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informative data, the posterior will be of similar shape to that of the prior, i.e. it will be a

10 dimensional funnel with a very sharp neck. At the same time, it is sometimes difficult

to detect problems with sampling from models with a problematic posterior. Problems

such as that of Neal’s Funnel could easily be left undetected in a real-world hierarchical

model. Thus, such reparameterisations occur often, sometimes many times per model.

In practice, there exist many forms of reparameterisation that could lead to improved

efficiency. Some examples are shown in Chapter 5 to demonstrate the usability of SlicStan.

A large collection of examples is also given in Stan’s Reference Manual [Stan Development

Team, 2017].

2.3.3 Vectorisation

Earlier in this chapter (§§ 2.2.3) we outlined the way a Stan program is executed. Going

back to Algorithm 1’s pseudo-code, we see that the gradient of the target probability

density at the current sample point needs to be evaluated as often as at every leapfrog

iteration. This computation is both frequent and expensive, and Stan spends the majority

of its execution time to implement it. Therefore, reducing the time required for the

gradient to be evaluated can lead to drastic improvements in the time taken to perform

inference.

Stan uses reverse-mode algorithmic differentiation to compute the gradient, which, ac-

cording to Stan’s Reference Manual, is done in two steps:

(1) Construct the expression graph that is used to define the target probability function.

(2) Evaluate the gradients by backpropagating partial derivatives along the expression

graph.

The gradient computation time does not directly depend on the number of parameters

of the model, but only on the size of the graph, or in other words — on the number of

sub-expressions defining the target density. One way to reduce the gradient computation

time is then to reduce the number of sub-expressions by vectorising statements where

possible.

Suppose, for example, that we have a vector of N independent variables x, s.t. ∀n ∈
{1, . . . , N}.xn ∼ N (0, 1). This can be written as a for loop:

vector[N] x;

for (n in 1:N){

x[n] ∼ normal(0, 1);

}

However, using the more concise form of vectorised function application that Stan sup-

ports, will result in less sub-expressions, and therefore smaller graph. The code below

results in an equivalent program, but faster gradient computation, and therefore, infer-

ence:
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vector[N] x;

x ∼ normal(0, 1);

Arguments can also be lifted to vectors, for example if we wanted the N variables x to

have different means:

vector[N] x;

vector[N] mu;

x ∼ normal(mu, 1);

Implementing the above as a for loop, stating y[i] ∼ normal(mu[i], 1) for each i, will

again result in an equivalent, but less efficient, Stan program.

Finally, arithmetic operations in Stan are also overloaded to work on vector and matrix

objects. This means even more drastic reduction of sub-expressions in the target proba-

bility density. Below is an example taken from Stan’s Reference Manual, illustrating two

ways of writing an equivalent Linear Regression model, with N outcomes y, and K pre-

dictors xn for each outcome n. The model on the left defines the outcomes and predictors

as arrays, and uses for loops to define the distribution each yn comes from. The model

on the right uses linear algebra objects and operations.

The code on the right-hand side is not only more concise, but it also results in a more

efficient inference algorithm.

data {

int K;

int N;

real X[K, N];

real y[N];

}

parameters {

real beta[K];

}

model {

for (n in 1:N) {

real gamma;

gamma = 0;

for (k in 1:K)

gamma = gamma + X[n, k] *

beta[k];

y[n] ∼ normal(gamma, 1);

}

}

data {

int K;

int N;

matrix[N, K] X;

vector[N] y;

}

parameters {

vector[K] beta;

}

model {

y ∼ normal(X * beta, 1);

}

.



Chapter 3

Aims, Contributions, and Approach

If we could imagine the perfect probabilistic programming language, it would be one

where the programmer specifies a probabilistic model, without knowing anything about

inference, yet that model is compiled to an efficient and optimised inference algorithm.

In practise, this is very difficult. As a consequence, current probabilistic languages face

a trade-off between usability and efficiency. Looking at one such popular and efficient

language — Stan — we can identify several design choices made to make compilation to a

Hamiltonian Monte Carlo sampling algorithm possible, at the expense of requiring more

work or expertise from the programmer.

The goal of this project is to improve probabilistic programming by enhancing Stan by,

for example, introducing new language constructs to facilitate different families of models,

or using programming language techniques to reduce the work for the programmer. We

identify the following weakness of Stan:

(1) Lack of compositional syntax

One major design choice, made in order to make compilation to an efficient Hamil-

tonian Monte Carlo algorithm possible, is the presence of program blocks (§§ 2.1.2).

Data needs to be defined in one particular block, parameters in another; blocks

must appear in order; and changing the block a variable is defined in could result

in a semantically equivalent, but less or more efficient program. Stan allows a wide

range of models to be defined in its modelling language, but requires knowledge, or

at least insight, about the specifics of the underlying inference algorithm. Moreover,

the presence of blocks makes it difficult to reason about a program as a composition

of other Stan programs, which also may affect usability.

(2) Inflexible user-defined functions

The block structure of Stan’s modelling language makes it difficult to implement

flexible user-defined functions. In particular, user-defined functions in Stan cannot

declare new parameters, making them inapplicable to a large set of desirable trans-

formations (such as model reparameterisation). A recent talk by Gelman [2017] also

calls for improving Stan in a direction allowing for more readable, understandable

models that support better modulation and encapsulation.

23
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(3) No dedicated mixture models syntax

Stan’s underlying inference algorithm (Hamiltonian Monte Carlo) uses information

about the gradient of the target density function, as previously discussed in § 2.2.

This means that the probability density defined by Stan models needs to be differ-

entiable, which makes the use of discrete parameters difficult. As a consequence,

even though one can specify a mixture model in Stan, discrete parameters must be

marginalised over by hand, by directly accessing the accumulated log probability

density function (see §§ 2.1.1).

(4) No dedicated hierarchical regression models syntax

The original aim of Stan is to apply Bayesian inference to hierarchical (multilevel)

linear models. Currently, a hierarchical model as simple as a multilevel linear re-

gression requires the user to explicitly model different datapoints, using for loops

and array indexing (see Appendix A). Although intuitive to the imperative pro-

grammer, this syntax leads to a lengthy and hard-to-read model specifications, as

well as to code prone to errors.

3.1 Contributions

Towards point (1), we design the SlicStan language, which allows the interleaving of

declarations and statements involving variables that would belong to different program

blocks if the program was written in Stan. Excluding the program blocks, the syntax is

similar to a subset of Stan. We make use of information flow analysis and type inference

to deduce a level type of each variable (§§ 4.2.3). Using this information we are then able

to translate a SlicStan program to a Stan program, by shredding variable declarations

and statements into different program blocks.

Towards point (2), we extend SlicStan to support more flexible user-defined functions.

Using the level type information obtained as described above, we are able to translate a

SlicStan program to a Stan program in two steps:

(1) Elaboration (§§ 4.3.2) of the SlicStan program into a core SlicStan program that

does not contain any blocks or function calls.

(2) Transformation (§§ 4.3.3) of the core SlicStan program into Stan.

To give an example of a SlicStan program, consider the model from §§ 2.1.2. We are able

to translate the SlicStan program on the next page (left), to a well-formed, equivalent to

that from Figure 2.1, Stan program (right):
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SlicStan

data int N;

data real[N] y;

data real mu mu;

data real sigma mu;

real alpha = 0.1;

real beta = 0.1;

real tau y ∼ gamma(alpha, beta);

real mu y ∼ normal(0, 1);

real sigma y = pow(tau y, -0.5);

y ∼ normal(mu y, sigma y);

real variance y = pow(sigma y, 2);

Stan

data {

real mu mu;

real sigma mu;

int N;

real y[N];

}

transformed data {

real alpha = 0.1;

real beta = 0.1;

}

parameters {

real mu y;

real tau y;

}

transformed parameters {

real sigma y = pow(tau y,-0.5);

}

model {

tau y ∼ gamma(alpha, beta);

mu y ∼ normal(0, 1);

y ∼ normal(mu y, sigma y);

}

generated quantities {

real variance y = pow(sigma y,2);

}

An initial design towards point (3) has been drafted, and the underlying idea has been

partially tested (§§ 4.5.3). We leave point (4) for future work.

The rest of this dissertation mainly focuses on our contribution towards point (1) — the

automation of variable and statement assignments to blocks in Stan — and point (2) —

the introduction of more flexible user-defined functions.

3.2 Approach

We look back at Stan’s program blocks definitions (§§ 2.1.2) in attempt to formalise their

usage. We define each block to have one of 3 levels as follows:

• The data and transformed data blocks are at level data.

• The parameters, transformed parameters, and model blocks are at level model.
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• The generated quantities block is at level genquant

Knowing that blocks must appear in order in a Stan program, and that each block can only

access variables defined in itself, or a previous block, we can see that information flows

from data through model to genquant, but not in the reverse order. For example, a

transformed parameter (level model) can be defined in terms of a transformed data vari-

able (level data), but cannot be defined in terms of a generated quantity (genquant).

Now suppose we take a sequence of statements and variable declarations, where each

variable is annotated with one of the 3 levels data, model, or genquant. We formalise

the question of whether or not this sequence can be split into Stan blocks that obey the

ordering from above, as an information flow analysis problem.

3.2.1 Secure Information Flow Analysis

Information flow is the transfer of information between two variables in some process. For

example, if a program contains the statement y = x + 1, then information flows from x to

y. Static analysis techniques concerning the flow of information are especially popular in

the security community, where the goal is to prove that systems do not leak information.

Secure information flow analysis has a long history, summarised by Sabelfeld and Myers

[2003], and Smith [2007]. It concerns systems where variables can be seen as having one

of several security levels. For example, there could be two security levels:

• low — such variables hold low security, public data.

• high — such variables hold high security, secret data.

We then want to disallow the flow of secret information to a public variable, but allow

other flows of information. That is, if L is a variable of security level low, and H is a

variable (or an expression) of security level high, we want to forbid statements such as

L = H, but allow:

• L = L

• H = H

• H = L

Formally, the levels form a lattice,1 where

low ≤ high

Secure information flow analysis is then used to ensure that information flows only up-

wards that lattice. This is also known as the noninterference property — confidential

data may not interfere with public data.

1A lattice is a partially ordered set (L,≤), where every two elements of L have a unique least upper

bound and a unique greatest lower bound.
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3.2.2 Information Flow Analysis of a SlicStan program

The key idea behind SlicStan is to use information flow analysis to find the “level” of

variables in a probabilistic model, in order to translate the model to a Stan program that

is optimised for Hamiltonian Monte Carlo inference.

We define the lattice {{data,model,genquant},≤}, where

data ≤ model ≤ genquant

We then implement SlicStan’s type system (§ 4.2) according to Volpano et al. [1996], who

show how to formalise the information flow problem as a type system, and prove that

a well-typed program has the noninterference property. In other words, we implement

the language and its type system, such that in a well-typed SlicStan program, informa-

tion flows from variables of level data, through those of level model, to those of level

genquant, but never in the opposite direction.

Going back to §§ 2.2.3, and Table 2.1, we identify another ordering on the level types,

which orders them in terms of performance. Code associated with variables of level data is

executed only once, code associated with variables of level genquant — once per sample,

and if the variables are of level model — once per leapfrog (many times per sample).

This means that there is the following ordering of level types in terms of performance:

data < genquant < model

We implement type inference (§§ 4.2.3), following the typing rules of SlicStan’s type

system, to obtain a level type for each variable in a SlicStan program, so that:

• the hard constraint on the information flow direction data ≤ model ≤ genquant

is enforced, and

• the choice of levels is optimised with respect to the performance ordering data <

genquant < model.

Having inferred a level type for each program variable, we can use the following rules to

determine what block of a Stan program a declaration of a variable x, and statements

associated with it, should belong to:

• x is of level data

– x has not been assigned to — x belongs to the data block.

– x has been assigned to — x belongs to the transformed data block.

• x is of level model

– x has not been assigned to — x belongs to the parameters block.

– x has been assigned to — x belongs to the transformed parameters block.

• x is of level genquant

– x belongs to the generated quantities block.

The full set of formal rules that specify how a SlicStan program is translated to a Stan

program, is given in §§ 4.3.3.
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3.2.3 Extending SlicStan with User-defined functions

As discussed previously, due to Stan’s block system, the functionality of its user-defined

functions is constrained. More specifically, it is possible to define local variables, and it

is also possible to increment the log probability target variable in Stan, for example:

void normal 5 lp(real x){

real m = 5;

x ∼ normal(m, 1);

}

is a legal Stan function. However, reparameterisation by using a function is not possible

if it involves the declaration of a new parameter. For example:

real normal m lp(real m){

real x;

x ∼ normal(0, 1);

return (x + m);

}

will result in a runtime initialisation error if called, as x is not a parameter, meaning

that x must be initialised, which is not. Even if we initialise x after declaring it in the

body of normal m, we can only call the function from the model block, and thus we can

only use its return value locally within the same block. A reparameterisation such as the

one shown in the Neal’s Funnel example (§§ 2.3.2) cannot be expressed in terms of the

user-defined functions that Stan currently supports.

As SlicStan is not constrained to have its variable declarations in particular blocks, it is

also able to support more flexible user-defined functions. We extend SlicStan’s syntax,

typing rules, and translation rules accordingly, and demonstrate that SlicStan programs

containing flexible2 user-defined functions translate to well-formed Stan programs. Repa-

rameterising Neal’s Funnel using functions is then possible, with the code below being a

well-typed SlicStan program expressing it:

def my normal(real m, real s){

real xr;

xr ∼ normal(0, 1);

return s * xr + m;

}

real y = my normal(0, 3);

real z = my normal(0, exp(y * 0.5));

2Compared to functions in the current version of Stan. There are still limitations, for example recursive

functions are not supported.



Chapter 4

Design and Implementation of

SlicStan

This chapter describes in detail the design of SlicStan — a probabilistic programming

language inspired by Stan, which attempts to improve on Stan’s usability, while still

producing optimised inference code. We use static analysis techniques to reason about

what class (e.g. data, parameter) a variable belongs to, and thus show that Stan’s block

syntax is not a necessary element needed for the program to be compiled for Hamiltonian

Monte Carlo inference. Moreover, eliminating the need for the programmer to structure

their code in program blocks allows us to introduce more flexible user-defined functions.

In short (with Chapter 3 giving a longer overview) SlicStan aims to improve probabilistic

programming by using existing programming language techniques, and in particular —

information flow analysis. This requires formalising the language’s syntax (§ 4.1), and

specifying typing rules (§ 4.2), which can be used to infer the level types of variables.

SlicStan can then be translated to optimised Stan code (§ 4.3). A parser, type-checker and

compiler for SlicStan were implemented in F# (§ 4.4), with Chapter 5 demonstrating the

capabilities of this language implementation. We also discuss and provide a preliminary

design of a few additional features (§ 4.5).

4.1 Syntax of SlicStan

SlicStan’s syntax follows closely that of (a subset of) Stan, excluding the presence of

program blocks. In this section, we give a formal syntax, and informal semantics of the

language.

A SlicStan program is a sequence of function definitions Fn, and a single statement S:

Syntax of a SlicStan Program

P ::= F1, . . . , FN , S N ≥ 0 SlicStan program

The building blocks of a SlicStan statement are expressions, l-values, and distributions.

29
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Expressions cover most of Stan’s expressions, including variables, constants, arrays and

array elements, and function calls. One difference with Stan is that in SlicStan a difference

is made between a call to a primitive function (f), and a call to a user-defined function

(Fe), as those are treated differently during the type-inference and translation stages.

Similarly, there is a difference between a primitive distribution (d), and a user-defined

distribution (Fd). L-values denote actual locations in memory.

Syntax of Expressions, Distributions, and L-Values:

E ::= expression

x variable

c constant

[E1, ..., EN ] array

E1[E2] array element

f(E1, . . . , EN) primitive expression function call1

Fe(E1, . . . , EN) user-defined expression function call

D ::= parametric distribution

d(E1, . . . , EN) primitive distribution function call

Fd(E1, . . . , EN) user-defined distribution function call

L ::= L-value

x variable

L[E] array element

SlicStan supports only a subset of Stan’s statements. For example, SlicStan does not

currently support for or while loops, nor if statements. The assignment (L = E), model

(E ∼ D), and sequence (S1;S2) statements have the same meaning as in Stan, with only

l-values (L) appearing on the left-hand side of an assignment.

Syntax of Statements

S ::= statement

data τ x;S data declaration

L = E assignment

E ∼ D model

S1;S2 sequence

Fv(E1, . . . , EN) void function call

{Tx;S} block statement

skip skip

There are two statements that are different to those of Stan. Firstly, the data declaration

statement declares a new variable, stating explicitly that the value of this variable won’t

be known at compile time, but it will be received as an input in order to run the program.

This statement is essentially equivalent to stating that the variable it declares is in Stan’s

1If f is a binary operator, e.g. “+”, we write it in infix.
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data block. This declaration is needed, in order to distinguish data from parameters in

the probabilistic program, as both of those are unknown at compile time. Secondly, the

block statement defines a new variable, together with its type and scope. The base types

τ , and full types T take values as described in the next section.

Finally, a function definition consists of an identifier f , a list of arguments and their types

Ti ai, a statements S, and a return value E, D, or void.

Syntax of Function Definitions

F ::= function definition

def f(T1 a1, . . . , TN aN) S return E expression return type definition

def f(T1 a1, . . . , TN aN) S return D distribution return type definition

def f(T1 a1, . . . , TN aN) S void return type definition

Both build-in and user-defined functions are associated with function signatures 〈~τ → τ〉,
where ~τ abbreviates τ1, . . . , τN .

4.2 Typing of SlicStan

This section introduces the type system of SlicStan. It presents the declarative (§§ 4.2.1),

and algorithmic (§§ 4.2.2) typing rules of the language, and it shows how the latter are

used to implement type inference (§§ 4.2.3).

Types T in SlicStan range over pairs (τ, `) of a base type τ (which can be any of Stan’s

(unconstrained) types), and a level type ` — one of data, model, or genquant. Arrays,

vectors and matrices are sized, with n,m ≥ 0.

Types, and Type Environment:

` ::= level type

data data, transformed data

model parameters, transformed parameters

genquant generated quantities

n,m ::= size

τ ::= base type

real | int | vector[n] | matrix[n,m] | basic types

τ [n] array

T ::= (τ, `) type: base type and level

Γ ::= x1 : T1, . . . , xN : TN xn distinct typing environment

4.2.1 Declarative Typing Rules

Each judgment of the type system is with respect to a typing environment Γ, which is

defined to be a mapping from variable names to their full types, as above. We define
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the following typing judgments for expressions, l-values, distributions, and statements

respectively:

Judgments of the Type System:

Γ ` E : (τ, `) expression E has type (τ, `)

Γ ` L : (τ, `) l-value L has type (τ, `)

Γ ` D : (τ, `) distribution of a variable of type (τ, `)

Γ ` S : ` statement S assigns only to level ` and above

A top-level SlicStan program consists of a typing environment Γ and a statement S such

that Γ ` S : data. This means, that S can contain assignments to variables at level data

and above.

We now present the full set of declarative typing rules, which follow closely those of the

secure information flow calculus defined by Volpano et al. [1996], and more precisely, its

summary by Abadi et al. [1999]. The information flow constraints are enforced using the

subsumption rules (ESub), (DSub), and (SSub), which together allow information to

only flow upwards the data ≤ model ≤ genquant lattice.

The rules for expressions and l-values follow a standard pattern, with two exceptions.

One is the presence of the vectorised relation V in the (EPrim) and (ECall) rules.

The relation is defined as stated in Definition 1, and aims to legalise vectorised calls to

functions in SlicStan, in a similar way to what is currently supported in Stan. Secondly,

in (ECall), and later (DCall) and (VCall), we use an extended signature for the

user-defined function Fe : (τ1, `1), . . . , (τN , `N) → (τ, `), which includes level types. This

is in order to allow for more flexible type-inference later.

Typing Rules for Expressions:

(ESub)

Γ ` E : (τ, `) ` ≤ `′

Γ ` E : (τ, `′)

(Var)

Γ, x : T ` x : T

(Const)

ty(c) = τ

Γ ` c : (τ,data)

(Arr)

Γ ` En : (τ, `) ∀n ∈ 1..N

Γ ` [E1, ..., EN ] : (τ [ ], `)

(ArrEl)

Γ ` E1 : (τ [ ], `) Γ ` E2 : (int, `)

Γ ` E1[E2] : (τ, `)

(EPrim)(f : τ1, . . . , τN → τ)

Γ ` En : (τ ′n, `) ∀n ∈ 1..N V(~τ → τ, ~τ ′ → τ ′)

Γ ` f(E1, . . . , EN) : (τ ′, `)

(ECall)(Fe : (τ1, `1), . . . , (τN , `N)→ (τ, `))

Γ ` En : (τ ′n, `n) ∀n ∈ 1..N V(~τ → τ, ~τ ′ → τ ′)

Γ ` Fe(E1, . . . , EN) : (τ ′, `)

Typing Rules for L-Values:

(LVar)

Γ, x : T ` x : T

(LArrEl)

Γ ` L : (τ [ ], `) Γ ` E : (int, `)

Γ ` L[E] : (τ, `)
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Definition 1. Let V(〈~τ → τ〉, 〈~τ ′ → τ ′〉) be a predicate on pairs of type signatures, such

that it is true if and only if the type signature 〈~τ → τ〉 can be lifted to the type signature

〈~τ ′ → τ ′〉. Formally, V(〈~τ → τ〉, 〈~τ ′ → τ ′〉) is true if and only if:

[~τ = ~τ ′ ∧ τ = τ ′ ] ∨ [∃k.Q(k, ~τ , ~τ ′) ∧ L(k, τ, τ ′) ]

Where Q(k, ~τ , ~τ ′) = Q(k, τ1, . . . , τN , τ
′
1, . . . , τ

′
N) is a predicate which is true if and only if

for all pairs of types τn and τ ′n, it’s either the case that τ ′n is the type τn lifted, or the two

types are equal. Formally:

Q(k, ~τ , ~τ ′) = ∀n.L(k, τn, τ
′
n) ∨ τn = τ ′n

And L(k, τ, τ ′) is a predicate defined on types, which is true whenever τ ′ is a lifted version

of τ of size k. Formally:

L(k, τ, τ ′) = ( τ ′ = τ [k] ) ∨
( τ = real ∧ τ ′ = vector[k]) ∨
∃m. ( τ = vector[m] ∧ τ ′ = matrix[m, k])

Similarly to the rules for expressions, the rules for densities include vectorisation through

V and extended signatures for user-defined densities Fd : (τ1, `1), . . . , (τn, `n)→ (τ, `).

Typing Rule for Distributions:

(DSub)

Γ ` D : (τ, `) ` ≤ `′

Γ ` D : (τ, `′)

(DPrim)(d : τ1, . . . , τn → τ)

Γ ` Ei : (τ ′i , `) ∀i ∈ 1..n V(~τ → τ, ~τ ′ → τ ′)

Γ ` d(E1, . . . , En) : (τ ′, `)

(DCall)(Fd : (τ1, `1), . . . , (τn, `n)→ (τ, `))

Γ ` Ei : (τ ′i , `i) ∀i ∈ 1..n V(~τ → τ, ~τ ′ → τ ′)

Γ ` Fd(E1, . . . , En) : (τ ′, `)

The rules for statements have two focal points: the (Model) and (Block) rules. As

described previously, the model statement E ∼ D can be seen as an increment to the

target variable that holds the accumulated log probability density function. This variable

is in its nature of level model — it can only be accessed in Stan’s model block. The

assignment to this variable must be a statement of level model too, and thus we can

only typecheck Γ ` E ∼ D : model. Generated quantities (level genquant) cannot,

by definition, affect the target density, meaning that both E and D must be at most at

model level.

The (Block) rule concludes a judgment involving the definition of a variable x with

scope S through a block statement. We differentiate between the cases where x has been

assigned to in S, and the cases when it has not. This is determined by the assigned set

A(S) (Definition 2). Unassigned variables, in both Stan and SlicStan, are either unknown
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(at compile time) data, parameters of the model, or unused generated quantities. However,

data must be specified using the data declaration statement, (data τ x;S), meaning that

unassigned variables declared using a block statement must be of at least level model.

That is either x ∈ A(S) or model ≤ `, as stated by (Block).

Typing Rules for Statements:

(SSub)

Γ ` S : `′ ` ≤ `′

Γ ` S : `

(Assign)

Γ ` L : (τ, `) Γ ` E : (τ, `)

Γ ` (L = E) : `

(Model)

Γ ` E : (τ,model) Γ ` D : (τ,model)

Γ ` (E ∼ D) : model

(Block)

Γ, x : (τ, `) ` S : `′ (model ≤ `) ∨ x ∈ A(S)

Γ ` {(τ, `)x;S} : `′

(Data)

Γ, x : (τ,data) ` S : `

Γ ` (data τ x;S) : `

(Seq)

Γ ` S1 : ` Γ ` S2 : `

Γ ` (S1;S2) : `

(Skip)

Γ ` skip : `

(VCall)(Fv : (τ1, `1), . . . , (τN , `N)→ (void, `))

Γ ` En : (τ ′n, `n) ∀n ∈ 1..N V(~τ → void, ~τ ′ → void)

Γ ` Fv(E1, . . . , EN) : `

Definition 2 (Assigned set A(S)). A(S) is the set that contains the names of variables

that have been assigned to within the statement S. It is defined recursively as follows:

A(x = E) = {x}
A(E ∼ D) = ∅
A({Tx;S}) = A(S) \ {x}
A(data τ x;S) = A(S)

A(S1;S2) = A(S1) ∪ A(S2)

A(skip) = ∅
A(Fv(E1, . . . , En)) = ∅

4.2.2 Algorithmic Typing Rules

In this section, we present the algorithmic typing rules that SlicStan’s bidirectional type

checker implements.

Bidirectional type checking [Pierce and Turner, 2000] is a technique for developing a simple

and efficient type checking algorithm, that produces informative type error messages. The

key idea behind the method is to define two separate typing relations — one for type

checking (←), and one for type synthesis (→). Throughout the algorithm, we use the

former when we expect an expression or statement to have a certain type, while we use

the latter to try and synthesise that type in case we do not know it.
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In the case of SlicStan, this gives rise to the following judgments of the type system:

Judgments of the Algorithmic Type System:

Γ ` E → (τ, `) expression E synthesizes type (τ, `)

Γ ` E ← (τ, `) expression E checks against type (τ, `)

Γ ` L→ (τ, `) l-value L synthesizes type (τ, `)

Γ ` D → (τ, `) distribution D synthesizes type (τ, `)

Γ ` D ← (τ, `) distribution D checks against type (τ, `)

Γ ` S → `,Γ′ statement S synthesizes type level `,

and defines the set of variables Γ′

Γ ` S ← ` statement S checks against type level `

To specify the algorithmic rules, we use the fact that the 3 level types, data, model,

genquant, and their partial order ≤, form a lattice (§ 3.2), and define:

• `1 t `2 to be the unique least upper bound of `1 and `2,

• `1 u `2 to be the unique greatest lower bound of `1 and `2,

•
⊔I
i=1 `i = (((`1 t `2) t `3) t ...) t `I , and

•
dI
i=1 `i = (((`1 u `2) u `3) u ...) u `I .

The algorithmic rules then follow closely the declarative ones, with (ESwap), (DSwap),

and (SSwap) testing for subsumption. The interest here is mainly on the rules for calls to

user-defined functions: (Synth ECall), (Synth DCall), and (Synth VCall). Each

of them ensures the subtyping is:

• Contravariant in the arguments of the function. This is done by including the

premise `′i ≤ `i in each rule, where `i is the level of the ith argument of the function,

and `′i is the level of the ith expression passed as an argument to the function.

• Covariant in the return type of the function, which is done by the presence of the

swap rules.
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Algorithmic Typing Rules for Expressions:

(ESwap)

Γ ` E → (τ, `′) `′ ≤ `

Γ ` E ← (τ, `)

(Synth Var)

Γ(x) = T

Γ ` x→ T

(Synth Const)

ty(c) = τ ` = data

Γ ` c→ (τ, `)

(Synth Arr)

Γ ` En → (τn, `n) τn = τ ∀n ∈ 1..N

Γ ` [E1, ..., EN ]→ (τ [ ],
⊔
n `n)

(Synth ArrEl)

Γ ` E1 → (τ1, `1) τ1 = τ [ ] Γ ` E2 → (τ2, `2) τ2 = int

Γ ` E1[E2]→ (τ, `1 t `2)

(Synth EPrim)(f : τ1, . . . , τN → τ)

Γ ` En → (τ ′n, `n) ∀n ∈ 1..N V(~τ → τ, ~τ ′ → τ ′)

Γ ` f(E1, . . . , EN)→ (τ ′,
⊔
n `n)

(Synth ECall)(Fe : (τ1, `1), . . . , (τN , `N)→ (τ, `))

Γ ` Ei → (τ ′n, `
′
n) `′n ≤ `n ∀n ∈ 1..N V(~τ → τ, ~τ ′ → τ ′)

Γ ` Fe(E1, . . . , EN)→ (τ ′, `)

Algorithmic Typing Rules for L-Values:

(Synth LVar)

Γ(x) = T

Γ ` x→ T

(Synth LArrEl)

Γ ` L→ (τL, `L) τL = τ [ ] Γ ` E → (τE, `E) τE = int

Γ ` L[E]→ (τ, `L t `E)

Algorithmic Typing Rule for Distributions:

(DSwap)

Γ ` D → (τ, `′) `′ ≤ `

Γ ` D ← (τ, `)

(Synth DPrim)(d : τ1, . . . , τN → τ)

Γ ` En → (τ ′n, `n) V(~τ → τ, ~τ ′ → τ ′) ∀n ∈ 1..N

Γ ` d(E1, . . . , EN)→ (τ ′,
⊔
n `n)

(Synth DCall)(Fd : (τ1, `1), . . . , (τN , `N)→ (τ, `))

Γ ` En → (τ ′n, `
′
n) `′n ≤ `n ∀n ∈ 1..N V(~τ → τ, ~τ ′ → τ ′)

Γ ` Fd(E1, . . . , EN)→ (τ ′, `)
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The algorithmic typing rules for statements S contain one more detail that is not present in

the declarative ones — the “return” environment Γ, which contains the variables declared

in S, together with their types. This detail is needed in order to correctly synthesise

user-defined functions’ signatures, as shown below.

Algorithmic Typing Rules for Statements:

(SSwap)

Γ ` S → `′,Γ′ ` ≤ `′

Γ ` S ← `

(Synth Assign)

Γ ` L→ (τ, `) Γ ` E ← (τ, `)

Γ ` (L = E)→ `,∅

(Synth Model)

Γ ` E → (τ, `) ` ≤ model Γ ` D ← (τ,model)

Γ ` (E ∼ D)→ model,∅

(Synth Block)

Γ, x : T ` S → `,Γ′ (model ≤ `) ∨ x ∈ A(S)

Γ ` {Tx;S} → `, (Γ′, x : T )

(Synth Data)

Γ, x : (τ,data) ` S → `,Γ′

Γ ` (data τ x;S)→ `, (Γ′, x : (τ,data))

(Synth Seq)

Γ ` S1 → `1,Γ1 Γ ` S2 → `2,Γ2

Γ ` (S1;S2)→ `1 u `2, (Γ1,Γ2)

(Synth Skip)

` = genquant

Γ ` skip→ `,∅

(Synth VCall)(Fv : (τ1, `1), . . . , (τN , `N)→ (void, `))

Γ ` En → (τ ′n, `
′
n) `′n ≤ `n ∀n ∈ 1..N V(~τ → τ, ~τ ′ → τ ′)

Γ ` Fv(E1, . . . , EN)→ `,∅

Finally, a SlicStan program, which consists of a list of function definitions F1, . . . , FN ,

and a main body S, typechecks if:

• All user-defined functions Fi typecheck, and

• S assigns to variables of level data and above.

Algorithmic Typing Rule for Function Definitions:

(Synth VDef)

a1 : T1, . . . , aN : TN ` S → `,Γ

∅ ` defFV (T1 a1, . . . , TN aN) S → (T1, . . . , TN → (void, `))

(Synth EDef)

a1 : T1, . . . , aN : TN ` S → `,Γ a1 : T1, . . . , aN : TN ,Γ ` E → τ, `′

∅ ` defFE(T1 a1, . . . , TN aN) S return E → (T1, . . . , TN → (τ, `′))

(Synth DDef)

a1 : T1, . . . , aN : TN ` S → `,Γ a1 : T1, . . . , aN : TN ,Γ ` D → τ, `′

∅ ` defFD(T1 a1, . . . , TN aN) S return D → (T1, . . . , TN → (τ, `′))
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Algorithmic Typing Rule for a SlicStan Program:

(Check SlicStan)

Fi → σi ∀i ∈ 1..N ∅ ` S ← data

∅ ` SlicStan(F1, . . . , FN , S)← data

Note that in all typing rules so far, we consider the signatures σ, of both primitive and

user-defined functions, available. This is done for simplicity of the rules, as the set of

signatures stays constant during type checking / translating the program (there are no

local functions; all functions are declared as a list in the beginning of the program).

Properties of the Algorithmic Type System

Having defined the algorithmic type system, we are interested in proving its soundness

with respect to the declarative typing system from §§ 4.2.1.

Conjecture 1 (Soundness of the Algorithmic Type System). For all statements S, typing

environments Γ and Γ′, expressions E, l-values L, distributions D, base types τ , and level

types `:

(1) If Γ ` E → (τ, `), then Γ ` E : (τ, `).

(2) If Γ ` E ← (τ, `), then Γ ` E : (τ, `).

(3) If Γ ` L→ (τ, `), then Γ ` L : (τ, `).

(4) If Γ ` D → (τ, `), then Γ ` D : (τ, `).

(5) If Γ ` D ← (τ, `), then Γ ` D : (τ, `).

(6) If Γ ` S → `,Γ′, then Γ ` S : `.

(7) If Γ ` S ← `, then Γ ` S : `.

We leave proving Conjecture 1 by structural induction for future work.

4.2.3 Level Type Inference

SlicStan’s compiler fully infers the level types of variables, so that no information regarding

what Stan block each of them belongs to needs to be provided by the programmer (other

than what variables will be input as data, using the data τ x;S statement). This is done

in three steps:

(1) Introducing Level Type Placeholders

Variables declared through the data statement data τ x;S are of level data. All

other variables are declared using the block statement {(τ, `x)x;S}, where `x is a
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placeholder for the actual level type of x. In SlicStan’s implementations, placehold-

ers are introduced by the language’s parser, when constructing the abstract syntax

tree of the program (see § 4.4). Note that the base type of x needs to be specified

— SlicStan does not at the moment implement type inference for the base types τ .

(2) Constraint Generation

Constraint generation is done by applying the algorithmic typing rules to a program

with level type placeholders, and emitting an inequality constraint every time a check

needs to be done on unknown level types. For example, suppose that we want to

infer the level types of x and y in the following statement:

S = {(real, `x)x, {(real, `y) y, x = 5; y = x}}

Starting from the conclusion ∅ ` S ← data, we apply the rules (SSwap), 2×
(Synth Block), (Synth Seq), to obtain the constraints:

• data ≤ `x from applying (Synth Assign) and (ESwap) to

x : (real, `x), y : (real, `y) ` x = 5→ `x

• `x ≤ `y from applying (Synth Assign) and (ESwap) to

x : (real, `x), y : (real, `y) ` y = x→ `y

(3) Resolving the Constraints

In most programs, there exist several possible solutions that satisfy the generated

constraints. We would like to resolve them with respect to the program efficiency

ordering described previously — taking variables to be at level data where possible,

results in a faster Stan code than taking them to be at level genquant, which in

turn is faster than taking them to be at level model:

data < genquant < model

We seek the most efficient assignment of level types to variables in three phases:

(a) Find the highest possible level for each variable, with respect to the given

constraints and the partial order on levels ≤.

(b) Find the lowest possible level for each variable, with respect to the given con-

straints and the partial order on levels ≤.

(c) For each variable, choose the lowest of the two levels, with respect to the

efficiency order <.

Looking back a the S = {(real, `x)x, {(real, `y) y, x = 5; y = x}} example, we firstly

find `x = genquant, `y = genquant, then `x = data, `y = data, and finally we

chose the “lower” with respect to < of the two assignments: `x = data, `y = data.
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4.3 Translation of SlicStan to Stan

To implement translation to Stan, we firstly formally define the syntax of a subset of the

Stan language, and state what a well-formed Stan program is (§§ 4.3.1). Translating a

SlicStan program into a Stan program is then done in two steps:

(1) Elaboration of the SlicStan program into a core SlicStan program that does not

contain any blocks or calls to user-defined functions (§§ 4.3.2).

(2) Translation of the elaborated program into Stan (§§ 4.3.3).

4.3.1 Formalisation of Stan

We define Stan’s expressions, l-values, distributions and statements to be equivalent to

those of a core SlicStan language, that does not have data statements, blocks, or user-

defined-function calls. In other words, the building blocks of the subset of Stan we will

work with are as below:

Syntax of Stan’s Language Constructs:

E ::= expression

x variable

c constant

[E1, ..., En] array

E1[E2] array element

f(E1, . . . , En) expression function call

D ::= distribution

d(E1, . . . , En) distribution function call

L ::= l-values

x variable

L[E] array element

S ::= statement

L = E assignment

E ∼ D model

S1;S2 sequence

Stan’s (unconstrained) types τ are exactly equivalent to the base types in SlicStan. The

typing environment Γ is, as before, a mapping between variable names and (Stan) types:

Types in Stan

n,m ::= size

τ ::= type

real | int | vector[n] | matrix[n,m] | τ [n]
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Apart from expressions, l-values, distributions, and statements, Stan’s programs also

contain declarations of variables. In the subset of Stan we choose (no declarations of

local variables are possible), variable declarations must appear before statements in the

program blocks. Therefore, we can say that a Stan program consists of 6 blocks, each

with a typing environment or a typing environment and a statement associated with it:

data { Γd }

transformed data { Γ′d S ′d }

parameters { Γm }

transformed parameters { Γ′m S ′m }

model { Γ′′m S ′′m }

generated quantities { Γq Sq }

In Stan, this typing environment will be a finite mapping between variable names and

Stan types τ , however we extend this definition to allow for more convenient notation, by

extending it to be a SlicStan typing environment. We also define the relation Γ ` `, to

mean that all variables in Γ are of level `.

Definition 3. If Γ = x1 : (τ1, `1), . . . , xN : (τN , `N) is a typing environment, Γ ` ` if and

only if ∀i ∈ 1..N.(`i = `).

Finally, given a Stan program P of the above form, we define it to be well-formed, written

`Stan P , in terms of the declarative typing relation Γ ` S : `, as follows:

(1) Γd ` data

(2) Γ′d ` data and Γd,Γ
′
d ` S ′d : data

(3) Γm ` model

(4) Γ′m ` model and Γd,Γ
′
d,Γm,Γ

′
m ` S ′m : model

(5) Γ′′m ` model and Γd,Γ
′
d,Γm,Γ

′
m,Γ

′′
m ` S ′′m : model

(6) Γq ` genquant and Γd,Γ
′
d,Γm,Γ

′
m,Γq ` Sq : genquant

The rest of this section explains how a (well-typed) SlicStan program is translated to a

well-formed Stan program, in two steps: elaboration and transformation.

4.3.2 Elaboration

A SlicStan program F1, . . . , FN , S is elaborated to a pair 〈Γ, S ′〉 of a context Γ and

a SlicStan statement S ′, where S ′ does not contain any data declarations, blocks or

function calls. In other words, S ′ is also a legal Stan statement. The context Γ is a typing

environment containing all variables that are bound in S ′, together with their type.

The elaboration relation ⇓ is defined on pairs between an expression, l-value, distribution,

statement, or a program, and a pair 〈Γ, S〉, 〈Γ, S.E〉, 〈Γ, S.L〉, or 〈Γ, S.D〉. The

construct after the dot plays the role of a return type, and is used, together with the

preceding statement S, to statically unroll all calls to user-defined functions.
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Elaboration Relation

E ⇓ 〈Γ, S.E ′〉 expression elaboration

L ⇓ 〈Γ, S.L′〉 l-value elaboration

D ⇓ 〈Γ, S.D′〉 distribution elaboration

S ⇓ 〈Γ, S ′〉 statement elaboration

F ⇓ 〈A,Γ, S.R〉 function definition elaboration

— R can be E, D, or void

The context Γ globalises the scope of each variable. This is done to avoid complications

that arise with the scope of local variables in the cases when a user-defined function is

being unrolled. Furthermore, in the subset of Stan we defined, all variables are globally

scoped, thus keeping the original scope of the variables is not necessary. Future work,

however, might include extending the supported subset of Stan to include local variables,

so that there is more flexibility, when using SlicStan, in deciding which variables are

printed during inference.2 This work will also have to take care of keeping information

about variables’ scope in the elaboration phase.

All elaboration rules make use of the context in a straightforward way — checking for

overlapping variable names in the premise (e.g. Γ1∩Γ2 = ∅), and merging contexts in the

conclusion (Γ1 ∪Γ2). The constraint Γ1 ∩Γ2 = ∅ can always be satisfied by α-converting

statements and expressions using a suitable choice of local variable names. For simplicity,

we ignore explanations about the α-conversion and the context Γ hereafter.

To demonstrate the meaning of the different elaboration pairs, it is best to focus on one of

the user-defined-function-call elaboration rules. Take for example (Elab ECall). This

rule takes a call to a user defined function FE(E1, . . . , EN), which returns an expression

EF , and turns it into a sequence ot statements SE1 ; a1 = E ′1; . . . ;SEN
; aN = E ′N ;SF , paired

with the return expression EF . Each statement SEi
is the result statement of elaborating

Ei, and ai = E ′i assigns the result expression E ′i to the argument ai of the function FE.

Finally, SF is the body of the function FE. To illustrate this with a code example, suppose

we have the following SlicStan program (ignoring variable declarations):

def my normal(m, s){

xr ∼ normal(0, 1);

return m + xr*s;

}

x = my normal(10, 0.5);

Using (Elab ECall) and (Elab Assign) to elaborate x = my normal(10,0.5), we get:

m = 10;

s = 0.5;

xr ∼ normal(0, 1);

x = m + xr*s;

2Stan does not save information about local variables. The output of running inference on a Stan

program contains samples of the parameters, transformed parameters, and generated quantities only.
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Elaboration Rules for Expressions:

(Elab Var)

x ⇓ 〈∅, Skip.x〉

(Elab Const)

c ⇓ 〈∅, Skip.c〉

(Elab Arr)

Ei ⇓ 〈Γi, Si.E ′i〉 ∀i ∈ 1..N
⋂N
i=1 Γi = ∅

[E1, . . . , EN ] ⇓ 〈
⋃N
i=1 Γi, S1; . . . ;SN .([E

′
1, . . . , E

′
N ])〉

(Elab ArrEl)

E1 ⇓ 〈Γ1, S1.E
′
1〉 E2 ⇓ 〈Γ2, S2.E

′
2〉 Γ1 ∩ Γ2 = ∅

E1[E2] ⇓ 〈Γ1 ∪ Γ2, S1;S2.(E
′
1[E ′2])〉

(Elab EPrim)

Ei ⇓ 〈Γi, Si.E ′i〉 ∀i ∈ 1..N
⋂N
i=1 Γi = ∅

f(E1, . . . , EN) ⇓ 〈
⋃N
i=1 Γi, S1; . . . ;SN .f(E ′1, . . . , E

′
N)〉

(Elab ECall)

Ei ⇓ 〈ΓEi
, SEi

.E ′i〉 FE ⇓ 〈AF ,ΓF , SF .EF 〉 AF = {ai : Ti | i ∈ 1..N} AF ∩ (
⋂N
i=1 Γi) ∩ ΓF = ∅

FE(E1, . . . , EN) ⇓ 〈AF ∪ (
⋃N
i=1 Γi) ∪ ΓF , SE1 ; a1 = E ′1; . . . ;SEN

; aN = E ′N ;SF .EF 〉

Elaboration Rules for L-Values:

(Elab LVal)

x ⇓ 〈∅, Skip.x〉

(Elab LArrEl)

E ⇓ 〈Γ, S.E ′〉
L[E] ⇓ 〈Γ, S.(L[E ′])〉

The rest of the rules for expressions and l-values are straightforward — recursively elab-

orating each language construct, making sure there is no overlap between variable names

by applying α-renaming when necessary, and combining the results.

(Elab DCall) and (Elab VCall) follow the pattern of (Elab ECall), but for calls

of user-defined distributions and user-defined void functions respectively. (Elab Data)

and (Elab Block) make sure to add the newly declared variable to the global scope,

and otherwise remove the scope of that variable.

Elaboration Rules for Distributions:

(Elab DPrim)

Ei ⇓ 〈Γi, Si.E ′i〉 ∀i ∈ 1..N
⋂N
i=1 Γi = ∅

f(E1, . . . , EN) ⇓ 〈
⋃N
i=1 Γi, S1; . . . ;SN .f(E ′1, . . . , E

′
N)〉

(Elab DCall)

Ei ⇓ 〈ΓEi
, SEi

.E ′i〉 FD ⇓ 〈AF ,ΓF , SF .DF 〉 AF = {ai : Ti | i ∈ 1..N} AF ∩ (
⋂N
i=1 Γi) ∩ ΓF = ∅

FD(E1, . . . , EN) ⇓ 〈AF ∪ (
⋃N
i=1 Γi) ∪ ΓF , SE1 ; a1 = E ′1; . . . ;SEN

; aN = E ′N ;SF .DF 〉
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Elaboration Rules for Statements:

(Elab Assign)

E ⇓ 〈Γ, S.E ′〉 x /∈ Γ

x = E ⇓ 〈Γ, S;x = E ′〉

(Elab Model)

D ⇓ 〈Γ, S.D′〉 x /∈ Γ

x ∼ D ⇓ 〈Γ, S;x ∼ D′〉

(Elab Block)

S ⇓ 〈Γ, S ′〉 x /∈ Γ

{Tx;S} ⇓ 〈{(T, x)} ∪ Γ, S ′〉

(Elab Data)

S ⇓ 〈Γ, S ′〉 x /∈ Γ

data τ x;S ⇓ 〈{x : (τ,data)} ∪ Γ, S ′〉

(Elab Seq)

S1 ⇓ 〈Γ1, S
′
1〉 S2 ⇓ 〈Γ2, S

′
2〉 Γ1 ∩ Γ2 = ∅

S1;S2 ⇓ 〈Γ1 ∪ Γ2, S
′
1;S ′2〉

(Elab Skip)

Skip ⇓ 〈∅, Skip〉

(Elab VCall)

Ei ⇓ 〈ΓEi
, SEi

.E ′i〉 FV ⇓ 〈AF ,ΓF , SF 〉 AF = {ai : Ti | i ∈ 1..N} AF ∩ (
⋂N
i=1 Γi) ∩ ΓF = ∅

FV (E1, . . . , EN) ⇓ 〈AF ∪ (
⋃N
i=1 Γi) ∪ ΓF , SE1 ; a1 = E ′1; . . . ;SEN

; aN = E ′N ;SF 〉

The final set of elaboration rules is that of function definitions. The three rules (one for

each type of function) follow a similar pattern — the body of the function, and the return

value are elaborated, and their resulting contexts combined with the set of arguments.

Elaboration Rules for Function Definitions:

(Elab VDef)

S ⇓ 〈ΓS, S ′〉 A ∩ ΓS = ∅ A = {a1 : T1, . . . , aN : TN}
def FV (T1 a1, . . . , TN aN) S ⇓ 〈A,ΓS, S ′〉

(Elab EDef)

S ⇓ 〈ΓS, SS〉 E ⇓ 〈ΓE, SE.E ′〉 A ∩ ΓS ∩ ΓE = ∅ A = {a1 : T1, . . . , aN : TN}
def FE(T1 a1, . . . , TN aN) S return E ⇓ 〈A,ΓS ∪ ΓE, SS;SE.E

′〉

(Elab DDef)

S ⇓ 〈ΓS, SS〉 D ⇓ 〈ΓD, SD.D′〉 A ∩ ΓS ∩ ΓD = ∅ A = {a1 : T1, . . . , aN : TN}
def FD(T1 a1, . . . , TN aN) S return D ⇓ 〈A,ΓS ∪ ΓD, SS;SD.D

′〉

Properties of the Elaboration Relations

Having defined the elaboration relation ⇓, we want to prove type preservation with respect

to the declarative typing system from §§ 4.2.1.

Conjecture 2 (Type Preservation of ⇓). For all typing environments Γ and Γ′, expres-

sions E and E ′, l-values L and L′, distributions D and D′, statements S and S ′, and level

types `:

(1) If Γ ` E : (τ, `) and E ⇓ 〈Γ′, S.E ′〉, then Γ,Γ′ ` E ′ : (τ, `) and Γ,Γ′ ` S : `
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(2) If Γ ` L : (τ, `) and L ⇓ 〈Γ′, S.L′〉, then Γ,Γ′ ` L′ : (τ, `) and Γ,Γ′ ` S : `

(3) If Γ ` D : (τ, `) and D ⇓ 〈Γ′, S.D′〉, then Γ,Γ′ ` D′ : (τ, `) and Γ,Γ′ ` S : `

(4) If Γ ` S : ` and S ⇓ 〈Γ′, S ′〉, then Γ,Γ′ ` S ′ : `.

We leave proving Conjecture 2 by structural induction for future work.

4.3.3 Transformation

Transformation is the last step taken in the translation of SlicStan to Stan. This step

takes a pair of a context Γ and an elaborated (free of calls to user-defined functions,

blocks, and data declarations) SlicStan statement S. This pair is then transformed to a

Stan program P , where P is of the form given in §§ 4.3.1:

P = data{Γd }
transformed data{Γ′d S ′d }
parameters{Γm }
transformed parameters{Γ′m S ′m }
model{Γ′′m S ′′m }
generated quantities{Γq Sq }

This is done in two steps: (1) transformation of the context Γ to a Stan program P1

containing declarations of the variables in Γ (Γ ⇓S P1), and (2) transformation of the

elaborated SlicStan program S to a Stan program P2 (S ⇓Γ P2).

Transformation Relations

Γ ⇓S P variable declarations transformation

S ⇓Γ P statement transformation

〈Γ, S〉 ⇓T P top-level transformation

We combine (see definition Definition 4) the resulting programs of the previous two to get

the final Stan program. In other words, given a pair 〈Γ, S〉, we use the (Trans Pair)

rule as follows:

(Trans Pair)

Γ ⇓S P1 S ⇓Γ P2

〈Γ, S〉 ⇓T P1;P2

The rest of this subsection presents the transformation rules associated with the relations

⇓S and ⇓Γ. In the cases where particular blocks are not mentioned, the missing blocks are

considered empty. In the cases where only a typing environment/statement is mentioned

for some block that contains both, the one missing is considered empty/Skip. In other
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words, by writing, for example, transformed data{x : (τ,data)}, we refer to the full

Stan program:

P = data{} transformed data{x : (τ,data) Skip}
parameters{} transformed parameters{}
model{} generated quantities{}

The transformation rules for declarations take a SlicStan typing environment Γ and split

it into the typing environments for each Stan block. Variables are being “assigned” to

different blocks based on their level, and whether or not they appear on the left hand side

of an assignment.

Transformation Rules for Declarations:

(Trans Data)

Γ ⇓S P x /∈ A(S)

Γ, x : (τ,data) ⇓S data{x : (τ,data)};P

(Trans TrData)

Γ ⇓S P x ∈ A(S)

Γ, x : (τ,data) ⇓S transformed
data {x : (τ,data)};P

(Trans Param)

Γ ⇓S P x /∈ A(S)

Γ, x : (τ,model) ⇓S parameters{x : (τ,model)};P

(Trans TrParam)

Γ ⇓S P x ∈ A(S)

Γ, x : (τ,model) ⇓S transformed
parameters {x : (τ,model)};P

(Trans GenQuant)

Γ ⇓S P
Γ, x : (τ,genquant) ⇓S generated

quantities{x : (τ,genquant)};P

(Trans Empty)

∅ ⇓Γ ∅

Finally, the transformation rules for statements take an elaborated SlicStan statement

S, and split it into the statements associated with each Stan block. Assignments are

placed in transformed data, transformed parameters, or generated quantities, based

on the level of the left-hand side of the assignment ((Trans AssignData), (Trans

AssignParam),and (Trans AssignGenQuant)). All sampling statements are placed

in the model block (Trans Model).
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Transformation Rules for Statements:

(Trans AssignData)

Γ ` L→ (τ,data)

L = E ⇓Γ
transformed

data {L = E}

(Trans AssignParam)

Γ ` L→ (τ,model)

L = E ⇓Γ
transformed
parameters {L = E}

(Trans AssignGenQuant)

Γ ` L→ (τ,genquant)

L = E ⇓Γ
generated
quantities{L = E}

(Trans Model)

x ∼ D ⇓Γ model{x ∼ D}

(Trans Seq)

S1 ⇓Γ P1 S2 ⇓Γ P2

S1;S2 ⇓Γ P1;P2

(Trans Skip)

Skip ⇓Γ ∅

Expressions, l-values and distributions are not transformed, as in an elaborated SlicStan

statement they are equivalent to Stan’s expressions, l-values and distributions.

Definition 4. Sequence of Stan programs P1;P2

Let P1 and P2 be two Stan programs, such that for i = 1, 2:

Pi = data{Γ
(i)
d }

transformed data{Γ
(i)′

d S
(i)′

d }
parameters{Γ(i)

m }
transformed parameters{Γ(i)′

m S(i)′

m }
model{Γ(i)′′

m S(i)′′

m }
generated quantities{Γ(i)

q S(i)
q }

The sequence of P1 and P2, written P1;P2 is then defined as:

Pi = data{Γ
(1)
d ,Γ

(2)
d }

transformed data{Γ
(1)′

d ,Γ
(2)′

d S
(1)′

d ;S
(2)′

d }
parameters{Γ(1)

m ,Γ(2)
m }

transformed parameters{Γ(1)′

m ,Γ(2)′

m S(1)′

m ;S(2)′

m }
model{Γ(1)′′

m ,Γ(2)′′

m S(1)′′

m ;S(2)′′

m }
generated quantities{Γ(1)

q ,Γ(2)
q S(1)

q ;S(2)
q }

Properties of the Transformation Relations

Having defined the transformation relation ⇓T , we want to prove type preservation with

respect to the declarative typing system from §§ 4.2.1.
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Conjecture 3 (Type Preservation of ⇓T ). For all typing environments Γ, statements S,

where S does not contain any blocks or calls to user-defined functions, level types `, and

Stan programs P :

If Γ ` S : ` and 〈Γ, S〉 ⇓T P , then `Stan P

We leave proving Conjecture 3 by structural induction for future work.

4.4 Implementation

This section briefly outlines how the rules described so far were implemented to produce

the SlicStan compiler, which takes as input a plain text SlicStan source file (.slic), and

outputs a Stan source code file (.stan). All components of the compiler were implemented

in F#, which was chosen for its algebraic datatypes and functional syntax that allow for

straightforward deep embedding of SlicStan into F#.

Parsing

The SlicStan lexer and parser were generated using the FsLexYacc library3 — a library

for Lex/Yacc family lexer/parser generators tools for F#. The parser takes as an input

a plain text source file of a SlicStan program, and (provided that no syntax error occurs)

generates an abstract syntax tree (AST), which is a well-typed F# expression. For each

variable declaration in the source file, if a level type for the variable is not specified, the

parser generates a unique level type placeholder for this variable.

Type Checking and Type Inference

After the AST has been generated, it is passed to the typecheck function, which applies the

rules from §§ 4.2.2 to typecheck the program, producing constraints where the level types

are unknown. It then follows the procedure described in §§ 4.2.3 to resolve those con-

straints, and returns a SlicStan syntax tree expression, where the level type placeholders

are replaced by their respective inferred levels.

Translation

The, now fully typed, SlicStan AST is passed to the elaborate function, which applies

the rules described in §§ 4.3.2 elaborating the program to a user-defined-function-call-free

statement. The result is pipelined to the translate function, which in turn applies the

rules from §§ 4.3.3, returning a Stan AST.

Finally, the Stan AST is pretty-printed to a .stan source file, which can be compiled and

ran using any of the supported Stan interfaces.4

3FsLexYacc: http://fsprojects.github.io/FsLexYacc/
4Compilation has been tested only using PyStan — the Python interface to Stan — however Stan

programs are portable across interfaces: http://mc-stan.org/users/interfaces/

http://fsprojects.github.io/FsLexYacc/
http://mc-stan.org/users/interfaces/
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4.5 Design of Extensions

So far this chapter has focused on the aspects of SlicStan that have been implemented

and tested. Additional features have been considered, the preliminary design of which we

present here. Those features have not been implemented, and are not part of the language

that is discussed in this dissertation.

4.5.1 Direct Access to the Log Probability Distribution

One functionality that Stan provides is incrementing the accumulated target log proba-

bility density directly. As previously mentioned in §§ 2.1.1, writing x ∼ normal(m, s) in

Stan is equivalent to writing target += normal lpdf(x | m, s). This syntax can be very

convenient when a Jacobian adjustment needs to be made, due to a non-linear change of

variables.5

Suppose, for example, that a variable X has density pX(x). We are interested in finding

the density pY (y) of a variable Y = f(X), where f is invertible. To preserve probability

mass, we want:

pX(x) |dx| = pY (y) |dy|

for small corresponding dx and dy. This gives us:

pY (y) = pX(x)

∣∣∣∣dxdy
∣∣∣∣

= pX
(
f−1(y)

) ∣∣∣∣ ddyf−1(y)

∣∣∣∣
If we want to implement the above in Stan, we might write f−1(y) ∼ pX , which will be

equivalent to target += log pX(f−1(y)). We still need to apply the Jacobian adjustment

by directly adding it to the log probability function: target += log
∣∣∣ ddyf−1(y)

∣∣∣.
Adding a way to directly access the target variable in SlicStan will make it possible to

perform non-linear change of variables. The language can be extended to support this, by

adding a new statement allowing access to the log probability density, and implementing

a few additional typing and translation rules:

(LogProb)

Γ ` E : (τ,model)

Γ ` target +=E : model

(Elab LogProb)

E ⇓ 〈Γ, S.E ′〉
target +=E ⇓ 〈Γ, S; target +=E ′〉

(Trans LogProb)

target +=E ⇓Γ model{target +=E}
5Note that in the reparameterisation examples shown previously, the change of variables is linear

(e.g. y = σx + µ, were x ∼ N (0, 1)), thus the Jacobian is constant with respect to the parameters, and

adjustment is not needed.



50 CHAPTER 4. DESIGN AND IMPLEMENTATION OF SLICSTAN

4.5.2 User-defined Functions Vectorisation

One powerful feature of Stan, both in terms of usability and efficiency, is that of vectorised

expressions. As outlined in §§ 2.3.3, Stan’s expressions can be vectorised (similarly to

NumPy’s broadcasting6), so that writing x ∼ normal(0,1);, where x is a vector of size

N, is semantically equivalent to for (n in 1:N){x[n] ∼ normal(0,1);}.

Currently, an attempt to vectorise a call to a user-defined function in SlicStan will type-

check, but the translation rules (§ 4.3) lack the necessary type context to implement this

vectorisation correctly. For example, consider the user-defined function my normal that

implements reparameterisation of a variable drawn from a standard Gaussian distribution:

def my normal(real m, real s){

real xr ∼ normal(0, 1);

return m + s*xr;

}

If we attempt to elaborate the statement vector[N] x ∼ my normal(10, 0.5), we get:

real m = 10;

real s = 0.5;

real xr ∼ normal(0, 1);

vector[N] x = m + s*xr;

This will result in an illegal Stan program, as the expression x = m + s*xr; has a vector

on the left-hand side, and a scalar on the right-hand side. Even if such statement can

be vectorised in Stan, we will still be transforming the same xr parameter for each x[n],

whereas what we probably intend when writing vector[N] x ∼ my normal(10, 0.5), is:

real m = 10;

real s = 0.5;

vector[N] xr ∼ normal(0, 1);

vector[N] x = m + s*xr;

We consider extending the elaboration rules of SlicStan, so that vectorisation of user-

defined function can be implemented. For example, the elaboration relation ⇓, can be

extended to carry a type context Γ (necessary in order to check if a vectorised call is being

made, and to obtain array sizes), and a “size” of the vectorisation N :

Extended Elaboration Relation

Γ ` E ⇓N 〈Γ′, S.E ′〉 expression elaboration

Γ ` L ⇓N 〈Γ′, S.L′〉 l-value elaboration

Γ ` D ⇓N 〈Γ′, S.D′〉 distribution elaboration

Γ ` S ⇓N 〈Γ′, S ′〉 statement elaboration

Γ ` F ⇓N 〈Γ′, S.R〉 function definition elaboration

— R can be E, D, or void

6See https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html

https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html
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4.5.3 Mixture Models

Chapter 3 listed a few possible directions of work on the Stan modelling language, one

of which was about mixture models — models where a variable x can be drawn from

one of several different distributions. For example, suppose that we have two Gaussian

distributions, both of a unit variance, and for each i = 1, 2, the ith distribution is centred

at some µi. Suppose also that x is drawn from the ith such Gaussian:

p(x | i) = N (x | µi, 1)

If i — the label of the Gaussian that x was drawn from — comes from a Bernoulli(π)

distribution, the join probability density of x and i is:

p(x, i) = p(x | i)p(i)

Sampling directly from such a density is not possible in Stan, as it is not differentiable

with respect to the discrete parameter i. However, we can sample from the marginal

distribution of x:

p(x) = p(x | i = 1)p(i = 1) + p(x | i = 2)p(i = 2)

= πN (x | µ1, 1) + (1− π)N (x | µ2, 1)

To write this in Stan, we need to directly access the target probability density, incre-

menting it with log p(x):

target += log( pi * exp(normal lpfd(x | mu1, 1))

+ (1-pi) * exp(normal lpfd(x | mu2, 1)) )

Or using the numerically stable log mix function:

target += log mix( pi, normal lpfd(x | mu1, 1),

normal lpfd(x | mu2, 1) );

We suggest the introduction of additional language constructs to allow for mixture models

to be expressed more naturally. For example, in such binary cases, SlicStan can be ex-

tended to support an if-then-else statement, where the conditioning can be with respect

to a (boolean) distribution:

S ::= ... | if(D) S1 else S2 probabilistic if statement

Stan supports if statements, however they can depend only on an expression E. Extending

SlicStan with syntax for probabilistic if statements allows us to write the program:

data vector[2] mu;

data real pi;

real x;

if(bernoulli(pi)) x ∼ normal(mu[1], 1);

else x ∼ normal(mu[2], 1);
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And translate to Stan as follows:

data {

vector[2] mu;

real pi;

}

parameters {

real x;

}

model {

real target0;

real logprob1;

real logprob2;

// copy of the log likelihood at start

target0 = target();

// run first branch, which increments target

x ∼ normal(mu[1], 1);

logprob1 = target() - target0;

target0 = target();

// run second branch, which increments target

x ∼ normal(mu[2], 1);

logprob2 = target() - target0;

target += log mix (pi, logprob1, logprob2) - logprob1 - logprob2;

}

We tested this usage of the target variable to work as expected, and can be extended

with case(i ∼ D)S syntax, with D being a discrete distribution. However, we have not

measured how the manipulation of the target in this way impacts performance. Further

studying of the problem is required to determine if such an approach will be useful in

practice, and if more efficient solutions exist.



Chapter 5

Demonstration and Analysis

In this chapter, we demonstrate and discuss the functionality of SlicStan. We compare

several Stan code examples, taken from Stan’s Reference Manual [Stan Development

Team, 2017] and Stan’s GitHub repositories,1 with their equivalent written in SlicStan,

and analyse the differences.

The focus is on three comparison points — abstraction, code refactoring, and code reuse.

We firstly show that SlicStan allows for a more powerful abstraction of the underlying

probabilistic model, due to the absence of program blocks (§ 5.1). Secondly, we demon-

strate the advantages of the more compositional syntax, when code refactoring is needed

(§ 5.2). The last comparison point shows the usage of more flexible user-defined functions,

and points out a few limitations of SlicStan (§ 5.3).

In the last section of this chapter (§ 5.4), we also report results on how SlicStan’s compiler

performance scales with the size of the program.

5.1 Abstraction

This section works through two examples to demonstrate one of the core ideas behind

SlicStan — the lack of program blocks. We claim that SlicStan’s blockless syntax provides

a better abstraction for the underlying probabilistic models, as it does not require the

programmer to know the specifics of the Hamiltonian Monte Carlo sampling algorithm.

5.1.1 Opening Example

In Chapter 3, we showed a simple probabilistic model written in both SlicStan and Stan.

We revisit this example overleaf, to compare more closely the syntax of the two languages.

On the left is that same piloting example written in SlicStan, and on the right — in Stan.

Note that translating this SlicStan snippet results in precisely the same Stan program,

as the hand-optimised program taken from the manual (up to ordering of declarations

within blocks), and we therefore present only the latter here.

1https://github.com/stan-dev
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Looking at the code, one thing is immediately evident: SlicStan’s program is shorter than

that of Stan. This is not an isolated example — SlicStan’s expressions and statements are

very similar (identical if no user-defined functions are present) to those of Stan. However,

unlike Stan, there are no block definitions, and more lines can be combined. In particular,

parameter declarations can appear together with a modelling statement (∼) associated

with them (lines 8 and 10 of SlicStan versus lines 12, 13, 19 and 20 in Stan).

Moreover, the lack of blocks in SlicStan, makes it more flexible in terms of order of

statements. The code here is written to be close to the original Stan code, with only

the definition of sigma y coming in-between the modelling statements for mu y and y to

demonstrate that flexibility. This particular model, however, can be expressed in SlicStan

by using any ordering on the statements, as long as variables are not used before they are

declared. In Stan this is not always possible, and might result in closely related statements

being far away from each other in the code (e.g. the definition of sigma y in line 16, and

its use to model y in line 21).

SlicStan

1 data int N;

2 data real[N] y;

3 data real mu mu;

4 data real sigma mu;

5

6 real alpha = 0.1;

7 real beta = 0.1;

8 real tau y ∼ gamma(alpha, beta);

9

10 real mu y ∼ normal(0, 1);

11

12 real sigma y = pow(tau y, -0.5);

13 y ∼ normal(mu y, sigma y);

14

15 real variance y = pow(sigma y, 2);

Stan

1 data {

2 real mu mu;

3 real sigma mu;

4 int N;

5 real y[N];

6 }

7 transformed data {

8 real alpha = 0.1;

9 real beta = 0.1;

10 }

11 parameters {

12 real mu y;

13 real tau y;

14 }

15 transformed parameters {

16 real sigma y = pow(tau y,-0.5);

17 }

18 model {

19 tau y ∼ gamma(alpha, beta);

20 mu y ∼ normal(0, 1);

21 y ∼ normal(mu y, sigma y);

22 }

23 generated quantities {

24 real variance y = pow(sigma y,2);

25 }

Example adapted from [Stan Development Team, 2017, p. 101].
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An important observation is that with SlicStan there is no need to understand where

and how different statements are executed in order to perform inference. The SlicStan

code is translated exactly to the hand-optimised Stan code, as specified by the manual,

without any annotations from the user, apart from what the input data to the model is.

In Stan, however, an inexperienced Stan programmer might have attempted to define the

transformed data variables alpha and beta in the data block, which would result in a

program that does not compile. And even more subtly — they could have defined alpha,

beta and variance y all in the transformed parameters block, in which case the program

will compile to (semantically) the same model, however it won’t be optimised (see § 2.3).

5.1.2 Seeds

To demonstrate what was discussed above with one more example, we take the “Seeds”

example introduced by Lunn et al. [2012, p. 300] in “The BUGS Book”. In this example,

we have I plates, with plate i having a total of Ni seeds on it, ni of which have germinated.

Moreover, each plate i has one of 2 types of seeds x
(i)
1 , and one of 2 types of root extract x

(i)
2 .

We are interested in modelling the number of germinated seeds based on the type of seed

and root extract, which we do in two steps. Firstly, we model the number of germinated

seeds with a Binomial distribution, whose success probability is the probability of a single

seed germinating:

ni ∼ Binomial(N, pi)

Next, we model the probability of a single seed on plate i germinating as the output of a

logistic regression with input variables the type of seed and root extract:

pi = σ(α0 + α1x
(i)
1 + α2x

(i)
2 + α12x

(i)
1 x

(i)
2 + β(i))

In the above, α0, α1, α2, α12 and β(i) are parameters of the model, with β(i) allowing for

over-dispersion (see §§ 5.2.2).

The next page shows the “Seeds” model written in SlicStan (left) and in Stan (right).

The Stan code was adapted from the example models listed on Stan’s GitHub page. The

SlicStan version translates to an identical (up to ordering within blocks) Stan program,

therefore only the original Stan program is shown here.

As before, we see that SlicStan’s code is shorter than that of Stan. It also allows for more

flexibility in the order of declarations and definitions, making it possible to keep related

statements together (e.g. lines 14 and 15 of the example written in SlicStan). Once again,

SlicStan provides more abstraction, as the programmer does not have to specify how each

variable of the model should be treated by the underlying inference algorithm. Instead it

automatically determines this when it translates the program to Stan.
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“Seeds” in SlicStan

1 data int I;

2 data int[I] n;

3 data int[I] N;

4 data vector[I] x1;

5 data vector[I] x2;

6

7 vector[I] x1x2 = x1 .* x2;

8

9 real alpha0 ∼ normal(0.0,1000);

10 real alpha1 ∼ normal(0.0,1000);

11 real alpha2 ∼ normal(0.0,1000);

12 real alpha12 ∼ normal(0.0,1000);

13

14 real tau ∼ gamma(0.001,0.001);

15 real sigma = 1.0 / sqrt(tau);

16

17 vector[I] b ∼ normal(0.0, sigma);

18 n ∼ binomial logit2(N, alpha0

19 + alpha1 * x1

20 + alpha2 * x2

21 + alpha12 * x1x2

22 + b);

“Seeds” in Stan

1 data {

2 int I;

3 int n[I];

4 int N[I];

5 vector[I] x1;

6 vector[I] x2;

7 }

8

9 transformed data {

10 vector[I] x1x2 = x1 .* x2;

11 }

12 parameters {

13 real alpha0;

14 real alpha1;

15 real alpha12;

16 real alpha2;

17 real tau;

18 vector[I] b;

19 }

20 transformed parameters {

21 real sigma = 1.0 / sqrt(tau);

22 }

23 model {

24 alpha0 ∼ normal(0.0,1000);

25 alpha1 ∼ normal(0.0,1000);

26 alpha2 ∼ normal(0.0,1000);

27 alpha12 ∼ normal(0.0,1000);

28 tau ∼ gamma(0.001,0.001);

29

30 b ∼ normal(0.0, sigma);

31 n ∼ binomial logit2(N, alpha0

32 + alpha1 * x1

33 + alpha2 * x2

34 + alpha12 * x1x2

35 + b);

36 }

Example adapted from https://github.com/stan-dev/example-models/.

2Stan’s binomial logit distribution is a numerically stable way to use a logistic sigmoid in combination

with a Binomial distribution.

https://github.com/stan-dev/example-models/
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5.2 Code Refactoring

This section demonstrates with two examples how the removal of program blocks can lead

to a an easier to refactor code. In both cases we start from a simpler model, motivate the

changes to be done, and describe what the refactored program looks like.

5.2.1 Regression with and without Measurement Error

We begin with another example taken from Stan’s Reference Manual: linear regression

with and without accounting for measurement error. The initial model we have is a simple

Bayesian linear regression with N predictor points x, and N outcomes y. The model has

3 parameters — the intercept α, the slope β, and the amount of noise σ. We then have:

y ∼ N (α1 + βx, σI)

If we want to account for measurement noise, we need to introduce one more vector

of variables xmeas, which represents the measured predictors (as opposed to the true

predictors x that we use to model y). We postulate that the values of xmeas are noisy

(with standard deviation τ) versions of x:

xmeas ∼ N (x, τI)

The next page shows those two models written in SlicStan (left) and Stan (right). Ignoring

all the lines/corrections in red gives us the initial regression model — the one that does

not account for measurement errors. The entire code, including the red corrections, gives

us the second regression model — the one that does account for measurement errors. We

see that transitioning from model one to model two requires the following corrections:

• In SlicStan:

– Delete the data keyword for x (line 2).

– Introduce anywhere in the program statements declaring the measurements

xmeas, their deviation τ , the now parameter x, and its hyperparameters µx, σx
(lines 11–17).

• In Stan:

– Move x’s declaration from data to parameters (line 5 and line 9).

– Declare xmeas and τ in data (lines 3–4).

– Declare x’s hyperparameters µx and σx in parameters (lines 10–11).

– Add statements modelling x and xmeas in model (lines 18–19).

We see that performing this refactoring requires the same amount of code in SlicStan

and Stan. However, in SlicStan these changes interfere much less with the code already
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written — we can add the statements that extend our model anywhere we like in the code

(as long variables are declared before they are used). In Stan, on the other hand, we need

to modify each block separately. This example demonstrates a successful step towards our

original aim of making Stan more compositional — composing separate programs/adding

program extensions is easier in SlicStan.

Regression in SlicStan

1 data int N;

2 data vector[N] x;

3 data vector[N] y;

4

5 real alpha ∼ normal(0, 10);

6 real beta ∼ normal(0, 10);

7 real sigma ∼ cauchy(0, 5);

8

9 y ∼ normal(alpha + beta*x, sigma);

10

11 real mu_x;

12 real sigma_x;

13 x ∼ normal(mu_x, sigma_x);

14

15 data real tau;

16 data vector[N] x_meas

17 ∼ normal(x, tau);

Regression in SlicStan

1 data {

2 int N;

3 vector[N] x_meas;

4 real tau;

5 vector[N] x;

6 vector[N] y;

7 }

8 parameters {

9 vector[N] x;

10 real mu_x;

11 real sigma_x;

12

13 real alpha;

14 real beta;

15 real sigma;

16 }

17 model {

18 x ∼ normal(mu_x, sigma_x);

19 x_meas ∼ normal(x, tau);

20 y ∼ normal(alpha + beta*x, sigma);

21

22 alpha ∼ normal(0, 10);

23 beta ∼ normal(0, 10);

24 sigma ∼ cauchy(0, 5);

25 }

Example adapted from [Stan Development Team, 2017, p. 202].
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5.2.2 Cockroaches

We conclude the demonstration of SlicStan’s features with one more example comparing

the process of code refactoring in SlicStan and Stan. The “Cockroaches” example is

described by Gelman and Hill [2007, p. 161], and it concerns measuring the effects of

integrated pest management on reducing cockroach numbers in apartment blocks. They

use Poisson regression to model the number of caught cockroaches yi in a single apartment

i, with exposure ui (the number of days that the apartment had cockroach traps in it),

and regression predictors:

• the pre-treatment cockroach level ri;

• whether the apartment is in a senior building (restricted to the elderly), si; and

• the treatment indicator ti.

In other words, with β0, β1, β2, β3 being the regression parameters, we have:

yi ∼ Poisson(ui exp(β0 + β1ri + β2si + β3ti))

After specifying their model in the way described above, Gelman and Hill simulate a

replicated dataset yrep, and compare it to the actual data y to find that the variance

of the simulated dataset is much lower than that of the real dataset. In statistics, this

is called overdispersion, and is often encountered when fitting models based on a single

parameter distributions,3 such as the Poisson distribution. A better model for this data

would be one that includes an overdispersion parameter λ that can account for the greater

variance in the data.

The next page shows the “Cockroach” example before and after adding the overdisper-

sion parameter, in both SlicStan (left) and Stan (right). Like in the previous subsec-

tion, ignoring the lines in red gives us the first model (the one that does not account for

overdispersion), while adding them gives us the second model (the one with the additional

parameter λ). Once again, we see that modifying the model to account for overdisper-

sion requires adding a similar number of statements in both languages. However, those

statements can be added anywhere in the program (as long as it’s before the statement

modelling y, which depends on λ). Stan, on the other hand, introduces an entire new to

this program block — transformed parameters — to calculate the deviation σ from the

precision hyperparameter τ .

3In a distribution specified by a single parameter α, the mean and variance both depend on α, and

are therefore not independent.
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“Cockroaches” in SlicStan

1 data int N;

2 data vector[N] exposure2;

3 data vector[N] roach1;

4 data vector[N] senior;

5 data vector[N] treatment;

6

7 vector[N] log expo = log(exposure2);

8

9 vector[4] beta;

10

11 real tau ∼ gamma(0.001, 0.001);

12 real sigma = 1.0 / sqrt(tau);

13 vector[N] lambda∼normal(0, sigma);

14

15 data int[N] y

16 ∼ poisson log4(log expo + beta[1]

17 + beta[2] * roach1

18 + beta[3] * treatment

19 + beta[4] * senior

20 + lambda);

“Cockroaches” in Stan

1 data {

2 int N;

3 vector[N] exposure2;

4 vector[N] roach1;

5 vector[N] senior;

6 vector[N] treatment;

7 int y[N];

8 }

9 transformed data {

10 vector[N] log expo = log(exposure2);

11 }

12 parameters {

13 vector[4] beta;

14 vector[N] lambda;

15 real tau;

16 }

17 transformed parameters {

18 real sigma = 1.0 / sqrt(tau);

19 }

20 model {

21 tau ∼ gamma(0.001, 0.001);

22 lambda ∼ normal(0, sigma);

23 y ∼ poisson log4(log expo + beta[1]

24 + beta[2] * roach1

25 + beta[3] * treatment

26 + beta[4] * senior

27 + lambda);

28 }

Example adapted from https://github.com/stan-dev/example-models/.

5.3 Code Reuse

In this section, we demonstrate the usage of more flexible user-defined functions in Slic-

Stan, which allow for better code reuse, and therefore can lead to shorter, more readable

code. The examples to follow focus on one particular kind of operation important to

hierarchical models and MCMC inference — model reparameterisation. This concept was

already outlined in §§ 2.3.2, but here we describe it in more detail, and show how SlicStan

addresses it.
4Stan’s poisson log function is a numerically stable way to model a Poisson variable where the Poisson

event rate is of the form eα for some α.

https://github.com/stan-dev/example-models/


5.3. CODE REUSE 61

Reparameterising a model means expressing it in terms of different parameters, so that

the original parameters can be recovered from the new ones. For example, in the Neal’s

Funnel model described earlier (§§ 2.3.2), the model parameters are changed from x and

y to the standard normal parameters xraw and yraw, and the original parameters are

recovered using shifting and scaling. This reparameterisation is a special case of a more

general transform introduced by Papaspiliopoulos et al. [2007].

In Stan, centred parameterisation is more natural to write, and also more interpretable.

However, as the Neal’s Funnel example demonstrates, in some cases, especially when

there is little data available, using non-centred parameterisation could be vital to the

performance of the inference algorithm. The centred to non-centred parameterisation

transformation is therefore common to Stan models, and is extensively described in Stan’s

Manual as a useful technique.

The code example below shows how a (centred) Gaussian variable x ∼ N (µ, σ) is

parametrised in Stan (right). As this transformation involves introducing a new parame-

ter xraw, this cannot be done by defining a function in Stan. SlicStan, on the other hand,

introduces more flexible user-defined functions, which are not constrained by the presence

of program blocks. Reparameterising the model to a non-centred parameterisation can

then be implemented by simply calling the function my normal (left).

“Non-centred Parameterisation” in

SlicStan

1 def my normal(real m, real s){

2 real x raw ∼ normal(0, 1);

3 return s * x raw + m;

4 }

5

6 real mu;

7 real sigma;

8 real x = my normal(mu, sigma);

“Non-centred Parameterisation” in

Stan

1 parameters {

2 real mu;

3 real sigma;

4 real x raw;

5 }

6 transformed parameters {

7 real x = sigma * x raw + mu;

8 }

9 model {

10 x raw ∼ normal(0, 1);

11 }

5.3.1 Neal’s Funnel

Next, we demonstrate how this applies to the Neal’s Funnel model. Using the reparame-

terisation function my normal twice, the non-centred SlicStan program (left) is only longer

than its centred version (real y ∼ N (0, 3); real x ∼ N (0, ey/2)), due to the presence of

the definition of the function. In comparison, Stan requires defining the new parame-

ters xraw and yraw (lines 2,3), moving the declarations of x and y to the transformed

parameters block (lines 6,7), defining them in terms of the parameters (lines 8,9), and

changing the definition of the join density accordingly (lines 12,13).
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“Neal’s Funnel” in SlicStan

1 def my normal(real m, real s) {

2 real x raw ∼ normal(0, 1);

3 return s * x raw + m;

4 }

5 real y = my normal(0, 3);

6 real x = my normal(0, exp(y/2));

“Neal’s Funnel” in Stan

1 parameters {

2 real y raw;

3 real x raw;

4 }

5 transformed parameters {

6 real y;

7 real x;

8 y = 3.0 * y raw;

9 x = exp(y/2) * x raw;

10 }

11 model {

12 y raw ∼ normal(0, 1);

13 x raw ∼ normal(0, 1);

14 }

Example adapted from [Stan Development Team, 2017, p. 338].

Unlike the previous example, SlicStan translates to a different program than the original

Stan program given in the manual. We present the “translated” Neal’s Funnel model,

as outputted by the SlicStan compiler on the next page. We notice a major difference

between the two Stan programs — in one case the variables of interest x and y are de-

fined in the transformed parameters block, while in the other they are defined in the

generated quantities block. In an intuitive, centred parameterisation of this model, x

and y are in fact the parameters. Therefore, it is much more natural to think of those

variables as transformed parameters when using a non-centred parameterisation. How-

ever, as previously described in § 2.3, variables declared in the transformed parameters

block are re-evaluated at every leapfrog, while those declared in the generated quantities

block are re-evaluated at every sample. This means that even though it’s more intuitive

to think of x and y as transformed parameters (original Stan program), declaring them

as generated quantities where possible results in a better optimised inference algorithm in

the general case. As SlicStan assigns variables to different blocks automatically, it allows

for faster code to be written with less effort.

Figure 5.1 visualises the samples drawn from 3 different specifications of the Neal’s Funnel

model: the non-efficient specification that uses centred parameterisation (Figure 5.1a),

the efficient specification as presented in Stan’s manual (Figure 5.1b), and the translated

from SlicStan version (Figure 5.1c). We see that the translated program, even though

syntactically different from the program given in the manual, is also able to sample well

from the neck of the funnel. Performance-wise, we do not observe a significant difference

between the two implementations. We draw 10 million samples in 1000 runs from each of

the original and the translated models. The mean time for a run of the original model is

0.146±0.005 seconds, and the mean time for a run of the translated model is 0.150±0.003

seconds.5

5The error bar denotes 2 standard deviations from the mean.
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(a) Non-efficient form. (b) Efficient form (manual). (c) Translated from SlicStan.

Figure 5.1: 24, 000 samples obtained from 6 runs of Stan’s sampler (default settings) for

different Stan programs defining the Neal’s Funnel model. The code for both (a) and (b)

are taken from Stan’s Reference Manual, while (c) is the Stan program resulting from

translation of the model written in SlicStan.

“Neal’s Funnel” translated to Stan

1 transformed data {

2 real m;

3 real mp;

4 m = 0;

5 mp = 0;

6 }

7 parameters {

8 real x raw;

9 real x rawp;

10 }

11 model{

12 x raw ∼ normal(0, 1);

13 xr rawp ∼ normal(0, 1);

14 }

15 generated quantities {

16 real s;

17 real sp;

18 real x;

19 real y;

20 s = 3;

21 y = (s * x raw + m);

22 sp = exp(y * 0.5);

23 x = (sp * x rawp + mp);

24 }
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SlicStan gives the programmer the opportunity to write shorter, more concise code, and

to reuse parts of it, which in turn can lead to making fewer mistakes. However, there are

several advantages of the original Stan code, that the translated from SlicStan Stan code

does not have.

The first advantage is that the original version is considerably shorter than the translated

one. This is due to the lack of the additional variables m, mp, s, and sp, which, in the

translated code, are a consequence of the elaboration step described in §§ 4.3.2. When

using SlicStan, the produced Stan program acts as an intermediate representation of

the probabilistic program, meaning that the reduced readability of the translation is not

necessarily problematic. However, the presence of those additional variables does not

only make the program less readable, but can, in some cases, lead to a slower inference

algorithm. This problem can be tackled by introducing standard optimising compilers

techniques, such as variable and common subexpression elimination.

Furthermore, we see that the translated code is not ideally optimised — the variable

s could have been placed in the transformed data block. This happens, because type

inference in SlicStan is done before elaboration of the program, and thus the type levels

of functions’ arguments and local variables are deduced on the function level. The call

my normal(0, exp(y/2)) forces the second argument of my normal, s, to be of at least

level model, and thus level genquant is deduced. This causes all variables produced in

place of s as part of the elaboration process to be of level genquant, including s = 3.

Finally, we notice the names of the new parameters in the translated code — x raw

and x rawp. Those names are important, as they are part of the output of the sampling

algorithm. Unlike Stan, with the user-defined-function version of Neal’s funnel, in SlicStan

the programmer does not have control on the names of the newly introduced parameters.

One can argue that the user was not interested in those parameters in the first place (as

they are solely used to reparameterise the model for more efficient inference), so it does

not matter that their names are not descriptive. However, if the user wants to debug

their model, the output from the original Stan model would be more useful than that of

the translated one.

5.3.2 Eight Schools

Another example that demonstrates the usage of the non-centred reparameterisation func-

tion, together with some current limitations of SlicStan, is the “Eight Schools” example

[Gelman et al., 2013, p. 119], in which eight schools study the effects of their SAT-V

coaching program. The input data is y — the estimated effects of the coaching program

for each of the 8 schools, and σ — the standard deviation of those observed effects. The

task is to specify a model which accounts for errors, by considering the observed effects

to be noisy estimates of the true coaching effects θ. Taking the noise to be Gaussian, and

θ to be a Gaussian variable with mean µ1, and deviation τI, we have:

y ∼ N (θ,σI)

θ ∼ N (µ1, τI)
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Below, we show an implementation of this model adapted from Stan’s GitHub page.

On the right, we see that the Stan code uses non-centring reparameterisation to make

sampling faster — θ is declared as a transformed parameter, obtained from the standard

normal variable η.

“Eight Schools” in SlicStan

1 def my normal(real m, real v){

2 real xr ∼ normal(0, 1);

3 return v * xr + m;

4 }

5

6 data real[8] y;

7 data real[8] sigma;

8

9 real mu;

10 real tau ∼ gamma(1,1);

11 real[8] theta;

12

13 theta[1] = my normal(mu, tau);

14 theta[2] = my normal(mu, tau);

15 theta[3] = my normal(mu, tau);

16 theta[4] = my normal(mu, tau);

17 theta[5] = my normal(mu, tau);

18 theta[6] = my normal(mu, tau);

19 theta[7] = my normal(mu, tau);

20 theta[8] = my normal(mu, tau);

21

22 y ∼ normal(theta, sigma);

“Eight Schools” in Stan

1 data {

2 real y[8];

3 real sigma[8];

4 }

5 parameters {

6 real mu;

7 real tau;

8 real eta[8];

9 }

10 transformed parameters {

11 real theta[8];

12 for (j in 1:8)

13 theta[j] = mu + tau * eta[j];

14 }

15 model {

16 tau ∼ gamma(1, 1);

17 eta ∼ normal(0, 1);

18 y ∼ normal(theta, sigma);

19 }

Example adapted from https://github.com/stan-dev/rstan/.

On the left, we see the example written in SlicStan, and once again making use of the non-

centring reparameterisation function my normal. However, in this case θ is a vector of 8

independent normal variables, thus, given that my normal works for univariate Gaussians,

we need to reparameterise each element separately. As SlicStan, in its current version,

does not support for loops, nor vectorisation of user-defined functions, the 8 function

calls need to be written one by one. This is problematic, not only because it increases the

amount of code and human effort required, but also because it cannot be implemented if

the number of schools is input-dependent. In the future, we plan to extend SlicStan to

support for loops and vectorisation of user-defined function, as further discussed in § 4.5,

which will remove the above limitation.

https://github.com/stan-dev/rstan/
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5.4 Scaling

As a final point in evaluating SlicStan, we run two experiments to study how the perfor-

mance of its compiler scales with the size of the input program. To do so, we generate

synthetic SlicStan programs of different size, by randomly choosing statements, expres-

sions, and distributions to build up the program. An example of a (short) synthetic

program, together with its translation to Stan, is shown in Appendix B.

In the first experiment (§§ 5.4.1) we generate programs that do not contain any calls to

user-defined functions. This means that in theory the elaboration step can be omitted,

however the current implementation of SlicStan does not allow this, therefore the step is

still executed (and performance results reported). In the second experiment (§§ 5.4.2), we

look at synthetic programs, which can have calls to the non-centring reparameterisation

function described earlier — my normal. In each experiment we generate 600 programs

in total — 40 programs for each of 15 program lengths chosen. The shortest program is

20 lines of SlicStan code, while the longest is 7000 lines. Each group of 40 consists of

4 subgroups of 10 programs with each subgroup having a different “number of variable

declarations” to “number of statements” ratio (from 40% statements, to 75% statements).

5.4.1 Experiment 1: No Calls to User-Defined Functions

Figure 5.2 shows the time (in milliseconds) taken for programs of different sizes, that do

not contain calls to user-defined functions, to be typechecked, elaborated and transformed

to Stan code. We see that for programs of less than 1000 lines, translation of SlicStan

to Stan is very fast — each of the three core steps takes less than 1 second. For the

typechecking and elaboration time of larger programs, we observe a linear relationship

on the log-log scale, which means a polynomial time with respect to the number of Slic-

Stan lines.6 We estimate the order of the polynomial to be approximately 2.27 and 2.35

for typechecking and elaboration respectively. Expressions and statements of elaborated

SlicStan programs are identical to those of Stan programs, therefore the last step of the

translation (transformation) involves only splitting statements and declarations into their

appropriate Stan program blocks. We see evidence for this from the figure — translation

time increases very little with the size of the input.

As this experiment does not involve programs containing calls to user-defined functions,

the size of the resulting Stan program is approximately equal to that of the source SlicStan

program. The dashed vertical line at 3610 lines of SlicStan code, which corresponds to

roughly 3610 lines of Stan code, marks the size of the largest Stan source file we found

on GitHub. We see that despite its observed polynomial behaviour, SlicStan’s compiler

can handle programs, whose translation is of the same size as the longest Stan program

we found, in under 20 seconds.

6This, of course, is an average case empirical result for the set of synthetic programs we generate, and

does not represent a worst-case scenario.
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Figure 5.2: Mean time taken for SlicStan programs, without calls to user-defined function,

to be typechecked, elaborated and transformed to Stan. The vertical bars show 2 standard

deviations from the mean on each side. Both axes are in the log domain.

5.4.2 Experiment 2: Calls to a User-Defined Function

Figure 5.3 shows the time (in milliseconds) that the SlicStancompiler took to translate

programs that contain calls to user-defined functions. For each generated program, ap-

proximately a third of the assignments contained a call to my normal on the left-hand side.

We observe a similar performance to that of Experiment 1, with one major difference —

the elaboration time grows faster (polynomial order approximately 2.73).

On average, the ratio between the source SlicStan program and the resulting Stan program

in this experiment is 0.58. This means that even though translating SlicStan programs

of the same size took less time in the previous experiment, in Experiment 2 we obtain

larger Stan programs. For example, the corresponding to the longest GitHub Stan length

(3610) SlicStan length is approximately 2096 (marked with a dashed vertical line on the

figure). SlicStan’s compiler is fast in handling programs of this size — the figure shows a

total translation time of approximately 7 seconds for a resulting Stan program of about

3610 lines.
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Figure 5.3: Mean time taken for SlicStan programs, containing calls to user-defined func-

tion, to be typechecked, elaborated and transformed to Stan. The vertical bars show 2

standard deviations from the mean on each side. Both axes are in the log domain.
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Conclusions

Similarly to ordinary programming languages, an ideal probabilistic programming lan-

guage would be expressive enough to allow for a wide variety of models to be defined, yet

abstract enough to free the programmer of the implementation details of the underlying

inference algorithm. Probabilistic inference, however, is a challenging task. As a conse-

quence, existing probabilistic languages are forced to trade off efficiency of inference for

range of supported models and usability.

The aim of this dissertation was to seek ways to apply existing programming language

techniques to probabilistic programming, in order to reduce what needs to be done by the

programmer, and allow for more abstract model specification. We achieved this by design-

ing and implementing SlicStan — a probabilistic programming language, which compiles

to Stan. SlicStan uses information flow analysis and type inference techniques to analyse

the dependencies between program variables, and deduce their taxonomy classes. This

allows the program to be compiled to Stan, which in turn uses those classes to generate

an efficient Hamiltonian Monte Carlo sampling algorithm for the particular model. Fur-

thermore, making the deduction of variable classes automatic, allows the language to be

extended with more flexible user-defined functions. In particular, SlicStan’s user-defined

functions can introduce new model parameters, which, to our knowledge, is not currently

possible in Stan.

We used examples adapted from Stan’s Reference Manual and Stan’s GitHub page to

demonstrate the functionality of SlicStan. We showed that it allows Stan programs to be

written in a shorter, more concise, and less viscous way. We also reported the time taken

for large synthetic SlicStan programs to be translated to Stan. The results showed that

the compiler is sufficiently fast to generate a Stan program longer than the longest Stan

program we found on GitHub, within less than 30 seconds.

SlicStan successfully applies programming language techniques to allow Stan programs

to be more concise, and easier to write and change. However, our work shows a more

general point: programming language and static analysis techniques can be used to aid

probabilistic inference. Such techniques have been applied to probabilistic programming

before, but our work is novel in that it aids the Hamiltonian Monte Carlo algorithm,

which is known to be efficient, but difficult to use and optimise. The Stan development

69
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team’s contribution to MCMC inference is crucial — they develop a system that uses

the adaptive NUTS to make hand-tuning the parameters of the algorithm not necessary.

We take one more step towards black-box Hamiltonian Monte Carlo inference — we

automate the process of determining variables’ taxonomy classes, and show that efficient

automatic inference can be the result of the machine learning and programming languages

communities joint efforts.

6.1 Future Work

Chapter 4 and Chapter 5 listed several limitations and possible extensions of SlicStan. For

example, we discussed the possible implementation of direct access to the accumulated

target log probability density function, as well as for loops, vectorisation of calls to user-

defined functions, and language constructs for mixture models. Future work also includes

proving properties of SlicStan’s type system, and translation rules, as well as conducting

a user study to learn more about how our language’s usability compares to that of Stan.

This section, on the other hand, discusses more general future directions of work.

Hierarchical Regression

Stan is widely used by statisticians and data scientists to build real-world hierarchical

models. Language constructs such as Stan’s for loops, are an intuitive way for the imper-

ative programmer to specify multilevel regression models. This syntax, however, leads to

long, hard-to-read programs. At his talk earlier this year, Gelman [2017] argues that in

order to have large and complicated models that are applicable to real-world problems, we

need more powerful syntax for probabilistic programming languages. He points at lmer

[Bates et al., 2014] as an example of syntax that is one step closer to bringing statistical

models the conciseness and simplicity they need, but argues that there should be an even

more simple and intuitive solution.

A possible future direction for SlicStan is to explore ways in which regression models can

be defined more concisely, and how those definitions can be translated to Stan, or other

languages.

Automatic Reparameterisation

The concept of reparameterisation was previously outlined in §§ 2.3.2 and § 5.3. We saw

the Neal’s Funnel example, where strong non-linear correlations exist between different

parameters of the probabilistic model. Sampling from such distributions using Hamil-

tonian Monte Carlo is challenging, because the distribution’s curvature varies, and it is

difficult to choose algorithm parameters (step size, path length, and mass matrix) that

work well in all regions of the density.

The Neal’s Funnel example is only one example of the difficult geometries that may arise

in hierarchical probabilistic models, and the specific non-centring Gaussian reparameteri-

sation is only one way to tackle this. Papaspiliopoulos et al. [2007] develop a more general
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framework for the parameterisation of hierarchical models, and study what parameterisa-

tion — centring or non-centring — is more effective in different situations. They conclude

that neither is uniformly effective, and that the two strategies can be combined so that

they complement each other. For example, centring and non-centring parameterisation

can be interweaved to boost MCMC, as suggested by Yu and Meng [2011].

SlicStan’s flexible functions introduce an opportunity for an easier, and more concise

implementation of parameterisation strategies, but this is not all they have to offer. Being

able to express such strategies with functions provides a way to potentially automate the

process. The compilation of a SlicStan program could be extended to apply appropriate

semantic-preserving transformations that will lead to a more efficient parameterisation of

the probabilistic model.

Program-Specific Choice of an Inference Algorithm

There exist numerous probabilistic programming languages and systems. Some of them,

like Anglican [Wood et al., 2014], focus on the ability to express arbitrary probability

distributions, no matter how complex there are. The price they pay to achieve this is

using more general-purpose inference algorithms, that often are many times slower than

optimised, special-purpose ones (on the problems that the latter can handle). Other

languages, like Stan and Infer.NET [Minka et al., 2014], focus on efficient inference, but

in most cases this means reducing the range of probabilistic models they provide support

for, or the accuracy and guarantees of inference. Stan, for example, requires the target

joint probability density of the model to be differentiable with respect to its parameters,

and cannot handle discrete latent variables. Moreover, this means that Stan cannot handle

variable-sized models (the number of parameters needs to be fixed, or be input-depended,

but cannot be random). This makes it difficult, or even impossible, to express a wide

range of probabilistic models in Stan.

This variability in the capabilities of different inference algorithms inspires another, more

general direction of future work. If we can automatically optimise a probabilistic program

for HMC inference, is it possible to analyse it and decide if HMC is the best algorithm to

use for that particular program? Can we use static analysis to decide on what the most

fitting inference approach is, and compile to a different back-end language, or straight to

an optimised algorithm, depending on the type of model this program describes?

SlicStan, in a way, uses Stan as an intermediate representation of the probabilistic pro-

gram. It would be interesting to extend the range of models SlicStan supports, and decide

on a different intermediate language to use based on the particular model. For example,

Anglican and its general purpose Sequential Monte Carlo inference algorithm, may be a

way to allow for variable-sized models to be defined, while Infer.NET and Expectation

Propagation may be an efficient way to work with models containing discrete variables.
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Appendix A

Multilevel Linear Regression

The Stan code below specifies a varying-intercept model of the (noisy) radon levels y of

N houses in J different counties. For each house i, the predictor xi has value 0 if the

radon measurement was taken in the basement, and 1 if it was taken on the ground floor.

We are interested in predicting aj — the radon level of county j. We assume that yi is a

noisy measurement of the true radon level ŷi, which in a function of the floor level of the

measurement xi, and the radon level of the county aj[i]:

yi = βxi + aj[i]

In Stan, we express this using a for loop and array indexing to specify the correct aj.

data {

int N; // number of houses

int J; // number of counties

int county[N]; // county[i] is the county house i belongs to

vector[N] x; // x[i] is the floor in which the measurement in house i is taken

vector[N] y; // y[i] is the radon measurement in house i

}

parameters {

vector[J] a; // a[i] is the radon level of county i

real beta;

real sigma a;

real sigma y;

real mu a;

}

model {

vector[N] y hat;

for (i in 1:N)

y hat[i] = beta * x[i] + a[county[i]];

a ∼ normal(mu a, sigma a);

y ∼ normal(y hat, sigma y);

}

77
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This model is described by Gelman and Hill [2007]. The Stan code is adapted from

https://github.com/stan-dev/example-models/.

https://github.com/stan-dev/example-models/


Appendix B

Synthetic Example

This appendix gives a 30 line SlicStan synthetic example, and its translation to Stan. The

example was generated in the following manner:

(1) Repeat 30 times:

(a) Choose to generate a data declaration, a non-data declaration, or a statement

with probability 1
6
, 1

3
and 1

2
respectively.

(b) If we choose to generate a data declaration, generate data real x, where x is

a fresh variable name.

(c) If we choose to generate a non-data declaration, generate real x, where x is a

fresh variable name.

(d) If we choose to generate a statement and if there are less than 3 variables

previously declared, generate Skip. If we choose to generate a statement and

if there are at least 3 variables previously declared:

i. Choose from assignment and sampling statement with probability 1
3

and
2
3

respectively.

ii. If we choose an assignment, generate an assignment to a unitary function

(sqrt, exp, or log), a binary function (+, -, *, /, or pow), or my normal with

equal probability.

iii. If we choose a sampling statement, generate a sampling statement (choose

one of the distributions normal, gamma, cauchy, beta, or uniform).

(2) The final SlicStan program is the definition of my normal concatenated with the

body generated in the previous steps.
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A synthetic SlicStan program

def my normal(real m, real v){

real xr;

xr ∼ normal(0, 1);

return (v * xr + m);

}

real a;

data real b;

real c;

real d;

data real e;

a = my normal(b, d);

real f;

a = (d - f);

d = (c - b);

d ∼ beta(b, c);

real g;

real h;

real i;

data real j;

data real k;

d = my normal(f, h);

f = (k + b);

i = log(d);

real l;

h ∼ beta(d, d);

real m;

real n;

h = pow(a,m);

real o;

n = sqrt(e);

m ∼ beta(g, n);

c = my normal(a, b);

h = exp(j);

real p;
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The SlicStan program translated to Stan

data {

real b;

real e;

real j;

real k;

}

transformed data {

real f;

real n;

f = (k + b);

n = sqrt(e);

}

parameters {

real g;

real mpp;

real xr;

real xrp;

real xrpp;

}

transformed parameters {

real a;

real c;

real d;

real h;

real m;

real mp;

real mppp;

real v;

real vp;

real vpp;

m = b;

v = d;

a = (v * xr + m);

a = (d - f);

d = (c - b);

mppp = f;

vpp = h;

d = (vpp * xrpp + mppp);

h = pow(a,mp);

mp = a;

vp = b;

c = (vp * xrp + mp);

h = exp(j);

}

model {

xr ∼ normal(0, 1);

d ∼ beta(b, c);

xrpp ∼ normal(0, 1);

h ∼ beta(d, d);

mp ∼ beta(g, n);

xrp ∼ normal(0, 1);

}

generated quantities {

real i;

real l;

real o;

real p;

i = log(d);

}
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