
IDEPRIA: A CASE tool for rapid

prototyping of Rich Internet

Applications

Vı́ctor Manuel Cajes González

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2017

Abstract
Rich Internet Applications (RIAs) are Web applications that provide some features aimed to im-

prove the end-user experience. They can be developed by following Model-Driven Development

(MDD) approaches, which regularly provide CASE tools that permit the modelling of these appli-

cations and the possibility to transform these models into the ready-to-deploy source code of the

RIAs. This source code is typically just a prototype of the desired application, which can be used

to verify if the software requirements were met.

Many of the current MDD approaches have different advantages and drawbacks that make them

useful for many modelling use cases. However, a comparative analysis presented in this work

showed that it is still possible to improve the current approaches. Then, this master thesis devel-

oped a Domain-Specific Modelling Language (DSML) aimed for modelling RIAs, the IDEPRIA

Web CASE tool that provides support for the defined modelling language, and a Model-To-Text

transformation tool that can transform the models into the source code of the modelled RIA.

To evaluate this work, a case-study was executed by following the Think-Aloud protocol to check

if CASE tools that have some specific properties could be a well-suited and usable solution for

modelling and developing prototypes of RIAs. The results obtained were not conclusive because

only three participants were able to test the IDEPRIA tool during the evaluation. Nonetheless,

they all learned and used the tool on-the-fly and finished the required tasks in a reasonable amount

of time. Thus, promising results were obtained and further research in the field would be appro-

priate.

i

Acknowledgements
This work is dedicated to my family because they are always supporting me.

I would have not been able to finish this dissertation without the help and advice of my tutor, Prof.

Perdita Stevens.

The possibility of studying in the UK would have not been possible without the funding provided

by the FCO Chevening Scholarship. I am very grateful to the UK government and the FCO for

this amazing opportunity.

To comply with the terms and conditions of the FCO Chevening Scholarship, I add the following

statement to this dissertation:

“Chevening Scholarships, the UK government’s global scholarship programme, funded by the

Foreign and Commonwealth Office (FCO) and partner organisations.”

ii

Declaration
I declare that I have read and understood the University of Edinburgh’s plagiarism guidelines.

I declare that this MSc dissertation was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not been

submitted for any other degree or professional qualification except as specified.

(Vı́ctor Manuel Cajes González)

iii

Contents

1 Introduction 1

2 Background 4
2.1 Rich Internet Applications (RIAs) . 4

2.2 Model-Driven Development (MDD) . 6

3 State of the art 11
3.1 Criteria to evaluate Model-Driven Development approaches 11

3.2 Current projects for building RIAs . 13

3.3 Comparative analysis of current projects for building RIAs 15

3.3.1 First stage analysis . 15

3.3.2 Second stage analysis . 15

4 IDEPRIA: Integrated development environment for rapid prototyping of RIAs 18
4.1 The DSML supported by IDEPRIA . 18

4.2 The IDEPRIA Tool . 26

4.3 The M2T Transformation Software . 32

5 Case-study evaluation 38
5.1 Case-study design . 38

5.1.1 Rationale for the study . 38

5.1.2 Purpose of the study . 39

5.1.3 Theoretical framework . 39

5.1.4 Research question and hypotheses . 39

5.1.5 Cases and unit of analysis . 39

5.1.6 Methods of data collection . 41

5.1.7 Data source selection . 42

5.1.8 Legal, Ethical, and Professional Issues 42

iv

5.1.9 Threats . 43

5.2 Case-study execution . 46

5.2.1 Preparation for the Think-Aloud sessions 46

5.2.2 Think-Aloud sessions . 47

5.2.3 Interview sessions . 51

5.3 Case-study analysis . 54

5.3.1 Qualitative data analysis . 54

6 Conclusions 60
6.1 Summary of the work done . 60

6.2 Main contributions of this project . 62

6.3 General conclusions . 63

6.4 Suggestions for further work . 64

A Detailed RIA DSML description 66
A.1 IDEPRIA Project . 66

A.2 IDEPRIA Classes . 67

A.3 IDEPRIA Attributes . 72

B Example of a M2T configuration file 75

C Example of a JINJA2 template 76

D Consent form for the Think-Aloud sessions 77

E Think-Aloud Task definitions 79
E.1 Task 1 . 79

E.2 Task 2 . 80

E.3 Task 3 . 80

F Case-study questionnaire 81

Bibliography 85

v

Chapter 1

Introduction

The development of Web 2.0 applications became a trend due to the vast availability of Web

frameworks that facilitated the design and implementation of responsive Web interfaces [Jeon and

Lee, 2007]. The evolution of the Web browsers and the improvement of these Web frameworks

were a combination that simplified the development of Rich Internet Applications (RIAs). RIAs

are Web applications that share features that are aimed at improving the whole end-user Web

experience [Fraternali et al., 2010]. The most characteristic features of the RIAs were: the ability

to avoid reloading the entire web page after each user request; the drag and drop facilities provided

by Web browsers; the minimization of the Web server’s response time; and multimedia animations

[Busch and Koch, 2009].

Over the last ten years, the Model-Driven Development (MDD) approach has been used by soft-

ware developers in the construction process of Web applications. MDD makes use of models as

main artefacts to build the Web applications [Bozzon et al., 2006]. Also, far from trivial modifi-

cations and extensions have been made to existing MDD methodologies to allow the modelling

of specific RIA elements, including presentation behaviours, distribution of the processing bet-

ween the client and the server, flexible management of events, and communication [Fraternali

et al., 2010]. Then, the complexity of these RIA features became the reason that caused trouble

to developers while modelling RIAs.

Fast prototyping is a cost-effective and quick way to produce a minimum viable version of a

software system that could be useful for some purpose (e.g.: requirements validation), which can

then be transformed and refactored until it reaches the wanted version of the software [Bernardi

et al., 2014]. Fast prototypes of RIAs can be developed by converting the models to source

code using an MDD approach and in this way developers can discuss these prototypes with other

1

Chapter 1. Introduction 2

non-developer stakeholders of the project. Also, a very useful property is that the automatically

generated prototype can be used as a starter source code for the final RIA that is wanted.

One of the main disadvantages of the well-known Model-Driven Development OOH4RIA approach

to build RIAs is the time that the developers have to invest to learn the approach and the provided

tool before they can obtain useful results [Martı́nez et al., 2013]. The problem could be the mul-

tiple models required to develop just a single Web application and the fact that the developer has

to understand how these different types of models are related. To support the importance of this

problem, we can infer that the OOH4RIA is targetted at single software developers rather than

multiple ones per project because the authors mention at least three times that “the designer” is

the one that should accomplish a given task [Meliá et al., 2008].

The industry standard language for modelling is the Unified Modeling Language (UML), which

has been widely used to model Web Applications [Fowler and Scott, 2000]. One of the many

reasons1 to use UML is because “it’s the only software design notation that you can expect your

peers to be familiar with”, which means that an average software engineer will be able to build

and understand a UML model without much trouble. Also, a Web survey revealed that the UML

class diagram was the one that provides more new information (when compared to other UML

diagrams) and the most frequently used among many developers [Dobing and Parsons, 2006].

UML class diagrams have a characteristic that allows the automatic derivation of an object-

relational schema [Golobisky and Vecchietti, 2005], and thus, this feature can be exploited by

M2T transformation tools to generate the source code of the Web application that is aimed at

storing persistently instances of the each of the possible UML classes available in a given UML

class diagram. From this diagram, it is feasible for an M2T transformation tool to generate

the four basic functions of persistent storage (CRUD): create, read, update, delete [Albert et al.,

2011]. These four functions could be implemented as Web services2 in the back-end to provide

support to the front-end of the RIA. Also, as the goal is to obtain just a RIA prototype as fast

as possible, then much customization of the RIA front-end is not required, and thus, the develo-

per will make a better use of the time by modelling important aspects of the system rather than

modelling look and feel aspects of the RIA front-end.

To summarize, given a UML class diagram, it is possible to use an M2T transformation tool

to automatically generate the source code of the Web services that are implemented in a back-

end application to provide the four CRUD functions, a RIA front-end application by using RIA

1 Reason to use and do not use UML: https://saturnnetwork.wordpress.com/2010/10/22/five-
reasons-developers-dont-use-uml-and-six-reasons-to-use-it/

2 https://www.w3.org/standards/webofservices/

https://saturnnetwork.wordpress.com/2010/10/22/five-reasons-developers-dont-use-uml-and-six-reasons-to-use-it/
https://saturnnetwork.wordpress.com/2010/10/22/five-reasons-developers-dont-use-uml-and-six-reasons-to-use-it/
https://www.w3.org/standards/webofservices/

Chapter 1. Introduction 3

frameworks to provide a Web graphical user interface, and the data access objects that will make

possible to persistently store instances of the models by using a database engine. Then, the com-

bination of the front-end, database schema, and back-end together are the desired RIA prototype.

Given the previous facts and ideas, this master project is about designing and developing a CASE

tool to allow software developers model RIAs by requiring only one familiar extended UML class

diagram, so then an M2T transformation software can transform those models into a ready-to-

deploy source code of the modelled software. Also, the tool is focused on rapid prototyping,

which means that this CASE tool will be able to generate a testable version of the modelled

software so it can be used by the stakeholders of the project for discussing detailed aspects of the

requirements.

The goal of this master thesis is to provide a Web CASE tool that: removes the requirement of

having to install one or more software components to start modelling by developing the CASE

tool as a Web application (which just requires a Web browser); solves the problem of having

developers spending much time learning how to model the different type of required models in

current available MDD approaches and then learning how to link the elements between them;

that provides specific design elements aimed to simplify the modelling of prototypes of RIAs by

requiring just one extended and probably familiar UML Class Diagram.

Finally, the hypothesis is that: “A CASE tool that just requires one familiar diagram could be a

well-suited and usable solution for developing rapid prototypes of Rich Internet Applications”.

A case-study was performed to analyse this hypothesis, which resulted in promising results but

without being able to confirm or proof the statement.

This dissertation is structured in the following way: Chapter 2 provides a detailed background of

the RIA and MDD concepts that the reader show know to understand the solution the problem

that this master thesis is trying to solve. Chapter 3 shortly describes the current approaches

available in the literature, what are their advantages and drawbacks, and why a new proposal

could still contribute to the state of the art of MDD approaches aimed to simplify the development

of RIAs. Chapter 4 describes in great detail the three elements designed and implemented as a

solution: the Domain-Specific Modelling Language, the IDEPRIA Web CASE tool, and the M2T

transformation software. Chapter 5 shows the design, execution and results obtained in the case-

study. Finally, the last chapter provides concluding remarks, additional observations, unsolved

problems, and further work that could be done in the area.

Chapter 2

Background

This chapter provides a summary of the theory related to the aforementioned topics in the Intro-

duction section. The first section describes the Rich Internet Applications (RIAs) to show to the

reader why are they important when developing Web applications.

The second section summarises the Model-Driven Development (MDD) approach and what are

its main advantages and disadvantages. Also, the importance of UML is emphasized and how it

can be extended to define Domain-Specific Modelling Languages (DSMLs) that could be used as

part of a MDD approach.

2.1 Rich Internet Applications (RIAs)

Rich Internet Applications are defined as “web applications, which use data that can be processed

both by the server and the client. Furthermore, the data exchange takes place in an asynchronous

way so that the client stays responsive while continuously recalculating or updating parts of the

user interface.” [Busch and Koch, 2009]. Moreover, Rich Internet Applications refers to a set of

ideas and frameworks that intend to add new features to the hypertext-based Web to improve the

whole user Web experience [Fraternali et al., 2010].

In the previous Web 1.0, the Web clients (e.g.: Web browsers) just requested data from Web

servers when needed, which were the ones that hold all the data. On the other hand, RIAs can

store information in the Web clients [Fraternali et al., 2010], which could allow RIAs to run in

offline mode without even having a connection to the Web server. For instance, the W3Schools

4

Chapter 2. Background 5

website provides a tutorial on “How to use the Web local storage”1, which shows how developers

can build Web applications that use Web local storage. Additionally, a feature of the RIAs is that

they enable moving part of the computation from the server to the client [Fraternali et al., 2010],

and this is very important because:

1. the web servers will have more available resources to serve more request or perform other

tasks because the clients now can perform part of the computation.

2. there will be a reduced latency in the clients because now they can perform some tasks

without asking a Web server. For instance, sorting a table by a given column without

requesting anything to the server.

3. fewer requests from the Web clients to the Web servers implies less overall bandwidth

consumption.

RIAs bring the possibility to Web servers to send a message to a client without having to wait

for a Web client request [Fraternali et al., 2010]. This is a way to save bandwidth and computing

resources of Web servers because it provides a solution to the pull requests. For instance, a given

server could have a bad performance if many Web clients start making pull requests to check for

some updates (even if there are no updates), instead of just having the server pushing updates

individually to clients interested in receiving such updates.

Another useful capability of the RIAs is their flexibility, which allows a single web page to have

multiple sub-pages that can handle user events rather than having the Web server handling user

events and requiring the reloading of the entire web page to display a little change [Fraternali

et al., 2010]. This improves the user experience because the user does not have to wait for the

Web server’s response. However, this might incur in an extra complexity for the RIA font-end

developers because the Web client:

1. should handle local events received from the Web graphical user interface.

2. needs to parse the message received to execute the appropriate callback.

3. have to apply changes to the GUI to show the new system status to the user.

Figure 2.1 shows an example2 of a RIA that makes use of many of the features previously men-

tioned. At the bottom left of the image, you can see a start menu that only uses client-side

computing to display a menu with many possible actions available to the user without contacting

1 W3Schoools local storage: http://www.w3schools.com/html/html5_webstorage.asp
2 RIA Example: http://docs.sencha.com/extjs/4.2.4/extjs-build/examples/desktop/desktop.

html

http://www.w3schools.com/html/html5_webstorage.asp
http://docs.sencha.com/extjs/4.2.4/extjs-build/examples/desktop/desktop.html
http://docs.sencha.com/extjs/4.2.4/extjs-build/examples/desktop/desktop.html

Chapter 2. Background 6

the server. Also, at the centre of the image, you can see a table that displays information that was

loaded from the back-end but without having to request from the server the entire web page.

Figure 2.1: Example of a Rich Internet Application.

2.2 Model-Driven Development (MDD)

A model is “an abstract representation of a specification, a design or a system, from a particular

point of view” [Stevens, 2006]. One way to define models is by using a modelling language,

which is a graphical way of representing the various models built while designing a software sys-

tem [Stevens, 2006]. A modelling language normally provides a set of elements (word, sentences,

graphics) that are used to define the syntax (which establishes if a given model is valid or not) and

the semantics (the meaning of a valid model) [Stevens, 2006].

Model-Driven Development is an industry term for round-trip engineering of working software

source code using CASE modelling tools [Ambler and Lines, 2012, p. 328]. This is a software

development approach, in which the models are the core artefacts of the software being developed

Chapter 2. Background 7

because they are then transformed into the source code of the modelled software system with the

help of a Model-to-Text transformation software [Marco Brambilla, 2017].

One important reason to choose the Model-Driven Development approach instead of code-centric

approach for developing a given software system is the productivity improvement that could be

achieved [Selic, 2003]. There are case studies that show that MDD approaches allowed developer

teams to finish 2.6 [Krogmann and Becker, 2007], 8.0 [Kapteijns et al., 2009], and 10.1 [Martı́nez

et al., 2012] times faster than the teams that developed the same software following a code-centric

approach. However, [Selic, 2003] emphasises the fact that if an erroneous state of the generated

source code is detected, then it is difficult to trace the error and find the exact component of the

model that contains the error, which could add extra delays to the project.

Additionally, one useful feature of the MDD approach is that the model artefacts obtaining du-

ring the modelling phase are related much closer to the problem domain rather than the underlying

implementation of the software wanted [Selic, 2003]. This is because developers can get a ready-

to-deploy source code of the application that could be written in many different programming

languages, that use a wide variety of frameworks, and even with the ability to work with vari-

ous database engines. Nevertheless, to achieve this, developers first have to learn how to make

syntactically and semantically correct models that can then be transformed into source code.

The Object Management Group (OMG)3 is an open membership, international, and nonprofit

technology standards consortium, which put a lot of effort into designing and developing the

standard modelling language: The Unified Modeling Language (UML)4. This language is very

important for the Model-Driven Development because “UML is a language for constructing”,

which means that the model forward engineering technique can be applied to UML models to

transform models into the source code of the modelled software [Booch, 2005].

Domain-Specific Modelling Languages (DSMLs) are graphical languages that address the needs

of specific software domains [Marco Brambilla, 2017]. These languages do not force to the users

to study General-Purpose Modelling Languages (GPML) that might contain irrelevant elements

for the domain of study, while at the same time DSMLs provide proper modelling abstractions

that are very related to the domain [Marco Brambilla, 2017].

There are mainly two ways of designing and defining a DSML [Marco Brambilla, 2017]:

1. Defining an entirely new DSML: requires the definition of the abstract syntax (the struc-

ture of the language), the concrete syntax (specific representations of the modelling com-

3 Object Management Group (OMG): http://www.omg.org/
4 UML specifications: http://www.omg.org/spec/UML/

http://www.omg.org/
http://www.omg.org/spec/UML/

Chapter 2. Background 8

ponents) and the semantics (the meaning of the elements) [Marco Brambilla, 2017]. For

example, MetaEdit+ Modeler5 permits the definition of the modelling language, and then

the usage of the modelling language to build domain specific models.

2. Extending an existing General-Purpose (GPML): simpler than defining a whole new

DSML because elements of the GPLM can be reused [Marco Brambilla, 2017]. Also,

UML provides extensibility features through stereotypes, constraints, tagged values and

profiles [Marco Brambilla, 2017].

The UML extension that provides support for a specific domain is defined in the UML Profile

Diagram, which defines the packages of related and coherent extensibility elements (also known

as UML Profiles) [Marco Brambilla, 2017]. The stereotypes were defined in UML to extend

meta-classes to add additional semantics to the meta-class concept [Marco Brambilla, 2017]. A

stereotype can be defined by specifying this properties [Marco Brambilla, 2017]:

• Base meta-class: specifies the element that is going to be extended. For instance, the UML

meta-class Class can be extended to define a stereotype named WebTable, which then a

developer will be able to use it in a given modelling project to represent a real Web table

that would show information.

• Constraints: particular rules and semantics that apply to a given stereotyped element.

• Tagged values: tag-value pair that might be attached to a stereotype. These values are very

useful to add extra information to an element, that can be used later by the M2T software

to generate a source code with a specific behaviour.

• Icon: the visual appearance of the stereotyped element. This icon is very useful because

allow developers to recognize modelling elements by just looking at the icon of the element

without having to access the details of that element.

Figure 2.2 shows an example of a UML Profile taken from [Marco Brambilla, 2017] that allows

the modelling of Enterprise Java Beans (EJB) concepts. In the example, the defined stereotype

Bean extends the UML meta-class Component, and the other stereotypes, Entity and Session, ex-

tend from the stereotype Bean. The tagged value state was attached to the Session stereotype, and

this possible values that this state tag could take are defined in the StateKind data type enumera-

tion: stateless and stateful. In addition, the reader can find another example of how to define and

use UML Profiles in [Fuentes and Vallecillo, 2004].

For Model-Driven Development purposes, once the Domain-Specific Modelling Language is de-

5 MetaEdita+ Modeler: http://www.metacase.com/mep/

http://www.metacase.com/mep/

Chapter 2. Background 9

Figure 2.2: Example of a UML Profile. Image source: [Marco Brambilla, 2017]

fined, the appropriate semantics should be defined so each modelling element can have a well-

defined meaning, which then will be used by a model-to-text transformation software to transform

the models into the source code of the modelled application.

Nowadays, there are mainly two ways of performing code generation, through programming

languages, and through M2T transformation languages [Marco Brambilla, 2017]. The code gen-

eration approach through programming languages is simple and can be achieved by writing a

program in a general-purpose programming language that interrogates the model and writes out

generated code [Marco Brambilla, 2017]. Nevertheless, this approach has several drawbacks:

• “intermingled static/dynamic code”: there is no separation and differentiation of static code

(e.g.: code that does not depend on any model and is generated always exactly), and dy-

namic code (e.g.: code generated for a custom class of the model).

• “non-graspable output structure”: the output structure is embedded into the code generator

that contains as well static/dynamic code. Then, it is hard to visualise the output locations

of the static/dynamic generated source code files.

• “missing declarative query language”: this leads to many iterators, loops, type casts and

conditions that lead to unnecessarily huge amounts of lines of code in the generator.

• “missing reusable base functionality”: every time that a new output is desired, the source

code of the generator needs to be changed.

To eliminate the previously mentioned disadvantages, transformation languages have been de-

veloped for generating text from models [Marco Brambilla, 2017]. This approach separates static

and dynamic code by using templates, which are a blueprint that is made of dynamic parts that will

be filled with information from the models and static text shared by all artefacts [Marco Bram-

Chapter 2. Background 10

billa, 2017]. Thus, the templates contain static text and placeholders (meta-markers) that are

going to be interpreted by the template engine to produce the desired output [Marco Brambilla,

2017]. Also, the templates allow the explicit representation of the structure of the output and the

use of a declarative query language by using meta-markers, which are aimed to query information

stored in the models [Marco Brambilla, 2017]. Finally, one of the most important advantages of

this approach is the “reusable base functionality”, which allows the generation of multiple po-

ssible outputs by just using configuration files that guide the M2T translation process, without

having to change the source code of the generator [Marco Brambilla, 2017].

Figure 2.3: Template-based M2T transformation. Image source: [Marco Brambilla, 2017]

Figure 2.3, which was taken from [Marco Brambilla, 2017], shows the template-based M2T trans-

formation process that begins with input source models and predefined templates that are fed to

the template engine, which then generates the appropriate output source code. The same template

can be used for many models and vice-versa to obtain the desired output.

To summarise all the concepts discusses in this section, UML is the standard language for mo-

delling, which can be extended by defining UML Profiles. These UML Profiles define model

elements that could be used for the domain of the Rich Internet Applications. Then, developers

can use these UML extensions to model specific Rich Internet Applications, which then can be

transformed into the source code of the application by using a M2T transformation software.

Chapter 3

State of the art

This chapter analyses multiple Model-Driven Development approaches aimed at developing Rich

Internet Applications. The first section describes the criteria that could be used to evaluate these

approaches and also explains why these criteria are meaningful for the goal of this master thesis.

The second section lists many of the MDD approaches for RIAs and then describes the compa-

rative analysis performed to understand the advantages and disadvantages of these approaches.

Finally, the third section shows the results of the comparative analysis performed between the

MDD approaches, and presents a short conclusion.

3.1 Criteria to evaluate Model-Driven Development approaches

The criteria that could be used to evaluate MDD approaches for RIAs and their importance are:

• Licenses and pricing: some MDD approaches would just provide a free CASE tool like

[Meliá et al., 2008], which uses the Eclipse Modeling Framework (EMF)1. However, there

is another approach called Appcelerator Titanium2, which requires payments every month

to obtain access to the tool. Then, the cost of the tool may be a problem that could restrict

the access to a specific MDD approach.

• Usability of the CASE tool provided: MDD approaches very often provide tools that should

be used to model a specific software. These tools might hamper the entire development

1 Eclipse Modeling Framework: https://www.eclipse.org/modeling/emf/
2 Appcelerator Titanium Pricing: https://www.appcelerator.com/pricing/

11

https://www.eclipse.org/modeling/emf/
https://www.appcelerator.com/pricing/

Chapter 3. State of the art 12

process if they are not usable, and thus, developers might just decide to not follow a given

approach for being too complex and difficult to obtain something working.

• Use of UML diagrams: As UML is the standard language for modelling, then MDD

approaches that define their own language will probably incur a longer learning curve be-

cause developers will have to first learn the language, and then learn how to make specific

models with that language.

• Number of types of models required: a significant number of required models would pro-

bably mean that more details of the given application can be modelled and described. For

example, [Bernardi et al., 2014] does not provide a way to model the user behaviour within

any of the three possible models that should be made with that approach, in contrast to the

[Moreno et al., 2008] that allows modelling the user behaviour in one of the six possible

models that should be built. Nevertheless, the downside of having many models includes

the fact that developers will have to understand all those models and how they should be

linked to each other to model the specific application, and that might also introduce extra

delays in the process.

• Availability of Web Modelling Tools: the already mentioned Web trend removes the need

of installing software in the computer by allowing to run applications in Web browsers

[Breeding, 2012]. Then, there are MDD tools that can be used entirely in Web browsers,

like AppFlower3. However, there are as well approaches that require the Eclipse Modelling

Framework software to be installed locally on the computers that are going to be used to

model the software system [Meliá et al., 2008].

• Platforms of the generated applications: RIAs can be developed with many different client

libraries (e.g.: Dojo, OpenRico) and server libraries (e.g.: Python Django4, Java Spring-

MVC5) [Fraternali et al., 2010]. Then, it would be a great feature for a given MDD

approach to have the ability to generate Rich Internet Applications that could be made of di-

fferent combinations of programming languages, back-end and front-end frameworks, and

support to multiple database engines. This is because, for instance, developers of a given

company might have experience in Python but not in Java, then, they might not choose a

given MDD approach because the RIA that is going to be generated from the models will

necessarily be made of source codes written in Java (and they do not know Java).

• Extensible template-based M2T transformations: as described in the previous chapter of

3 AppFlower: http://www.appflower.com/
4 Python Django Framework: https://www.djangoproject.com/
5 Java Spring Framework: https://projects.spring.io/spring-framework/

http://www.appflower.com/
https://www.djangoproject.com/
https://projects.spring.io/spring-framework/

Chapter 3. State of the art 13

this dissertation, [Marco Brambilla, 2017] explains the reasons why template-based M2T

transformations are better than programming languages based M2T transformations. To

remember, the benefits of the template-based M2T transformations include the separation

of static and dynamic code, the explicit definition of the output structure, the features of

the declarative query languages, and the reusable base functionality [Marco Brambilla,

2017]. These criteria evaluate if a given approach follows or not the recommended M2T

transformation technique.

3.2 Current projects for building RIAs

The idea of having a CASE tool that allows the modelling and generation of prototypes of RIAs

is not new but is important to show to the reader the advantages and limitations of the current

approaches in order to understand the motivation of this master thesis.

Nowadays, there are many projects that allow developers to build RIAs. A well-maintained list

of projects can be found in this Wikipedia entry on “RIA frameworks”6. Due to the fact that there

are many of these projects, to perform the comparative analysis of these projects, a two-stage

protocol has been defined in the following way:

• First stage: in this stage, all the projects that do not provide a CASE tool that could allow

the modelling and generation of prototypes of RIAs will be discarded.

• Second stage: in this stage, the remaining projects will be compared using the criteria

mentioned in the previous section: licenses, costs, usage or not of UML, the number of

types of models required, availability of Web modelling tools, possibles output platforms,

and the extensibility through template-based M2T transformations. Also, I did not make

any usability evaluation on the projects because of the amount of time that doing it properly

would have taken.

To determine whether a given project satisfies a given criterion, I used the information (descrip-

tions, images, screen captures, descriptive videos, tutorial videos) provided on their respective

official websites.

To begin, the alphabetically sorted list of projects to analyse and a brief description of them are:

• Adobe Flex: software development kit that allows the development and deployment of

6 RIA frameworks: http://en.wikipedia.org/wiki/List_of_rich_Internet_application_
frameworks

http://en.wikipedia.org/wiki/List_of_rich_Internet_application_frameworks
http://en.wikipedia.org/wiki/List_of_rich_Internet_application_frameworks

Chapter 3. State of the art 14

RIAs that use Adobe Flash.

Website: http://www.adobe.com/products/flex.html

• AmpleSDK: JavaScript framework aimed to simplify the development of multi-platforms

Web applications.

Website: http://www.amplesdk.com/

• AngularJS: JavaScript framework maintained by Google developers that simplify deve-

lopment of RIAs and even mobile Web applications.

Website: https://angularjs.org/

• Appcelerator: platform that provides a CASE that allows developers to design and build

Web applications that can run on desktop and mobile devices.

Website: http://www.appcelerator.com/

• Cappuccino: open-source framework designed to simplify the development of Web appli-

cations that should look similar to OSX desktop applications.

Website: http://www.cappuccino-project.org/

• Dojo Toolkit: framework for building multi-platform Web applications.

Website: http://dojotoolkit.org/

• eXtensible Enterprise Objects (XEO): framework and CASE tool aimed to provide su-

pport to the Model-Driven Architecture (MDA) methodology.

Website: http://www.xeoframework.org/

• ExtJS: JavaScript framework that simplify the development of RIAs.

Website: http://www.sencha.com/products/extjs/

• Google Web Toolkit: collection of open-source frameworks that allow Web developers

build complex Web applications in Java.

Website: http://www.gwtproject.org/

• JavaFX: Java framework that allows the development of RIAs in the Java programming

language that can run on multiples different platforms.

Website: http://javafx.com/

• OOH4RIA CASE Tool: CASE tool aimed at the design and generation of RIAs.

Website: http://suma2.dlsi.ua.es/ooh4ria

• OpenLaszlo: open-source platform that allow the development of RIAs.

Website: http://www.openlaszlo.org/

http://www.adobe.com/products/flex.html
http://www.amplesdk.com/
https://angularjs.org/
http://www.appcelerator.com/
http://www.cappuccino-project.org/
http://dojotoolkit.org/
http://www.xeoframework.org/
http://www.sencha.com/products/extjs/
http://www.gwtproject.org/
http://javafx.com/
http://suma2.dlsi.ua.es/ooh4ria
http://www.openlaszlo.org/

Chapter 3. State of the art 15

• PhoneGap: framework that simplifies the development of mobile applications that follow

the recommendations of the W3C.

Website: http://www.phonegap.com/

• Qooxdoo: framework that allows the development of complex Web GUIs.

Website: http://qooxdoo.org/

• SproutCore: open-source JavaScript framework. Its goal is to simplify the development

of Web applications that look similar to traditional desktop applications.

Website: http://www.sproutcore.com/

• Vaadin: open-source framework that allow the development of Java RIAs.

Website: https://vaadin.com/

• wCMF: open-source framework and CASE that allow the design and model of object-

oriented Web applications.

Website: http://wcmf.sourceforge.net/

3.3 Comparative analysis of current projects for building RIAs

3.3.1 First stage analysis

In this stage, the projects that do not provide a CASE tool that allow the modelling of prototypes

of RIAs will be discarded. After retrieving information from the project’s respective websites,

the discarded projects are Adobe Flex, AmpleSDK, AngularJS, Dojo Toolkit, ExtJS, Google Web

Toolkit, JavaFX, OpenLaszlo, PhoneGap, Qooxdoo, SproutCore, Vaadin.

The remaining projects that can proceed to the second stage of analysis are Appcelerator, Cap-

puccino, OOH4RIA, XEO, wCMF.

3.3.2 Second stage analysis

The Table 3.3, Table 3.2, and the Table 3.1 show a summary of the information retrieved from the

five projects that provide a CASE tool that allows developers to design and build RIAs.

http://www.phonegap.com/
http://qooxdoo.org/
http://www.sproutcore.com/
https://vaadin.com/
http://wcmf.sourceforge.net/

Chapter 3. State of the art 16

Criteria OOH4RIA

License Apache 2.0

Pricing Free

Use of UML Use of UML models.

Output platforms Google Web Toolkit (GWT) Java back-end and GWT

JavaScript front-end.

Web CASE tool No Web CASE provided. An Eclipse-based tool is pro-

vided.

Types of models required Do not require models. A drag-and-drop interface is pro-

vided to create HTML elements.

Template-based M2T Yes.

Table 3.1: Comparison of projects to build RIAs - Part 1

Criteria XEO wCMF

License Free: GPL v3.0, and Paid private

version.

LGPL v2.0

Pricing Free restricted version. Paid (un-

known amount) full version.

Free

Use of UML Do not use UML. Use a custom no-

tation.

Use of UML models.

Output platforms Java EE back-end server, ExtJS

front-end client

PHP back-end server and basic

HTML front-end client.

Web CASE tool No Web CASE provided. An

Eclipse-based tool is provided.

Web CASE is provided.

Types of models
required

Entity model, Logic model, and

View model.

Entity model, View model and

Access Control model.

Template-based
M2T

No. No.

Table 3.2: Comparison of projects to build RIAs - Part 2

Chapter 3. State of the art 17

Criteria Appcelerator Cappuccino

License Private LGPL v2.1

Pricing 99 USD per month Free

Use of UML Do not use UML or any custom

model notation.

Do not use UML or any custom

model notation.

Output platforms JavaScript-based applications for

Windows, Android, iOS

PHP-Python-Ruby back-end

servers and Objective-J front-end

client.

Web CASE tool No Web CASE provided. An

Eclipse-based tool is provided.

No Web CASE provided. A

XCode plugin is provided to edit

the HTML view.

Types of models
required

Do not require models. A

starter source code is provided with

drag-and-drop support to add new

HTML components.

Do not require models. A drag-

and-drop interface is provided to

create HTML elements.

Template-based
M2T

No. Yes.

Table 3.3: Comparison of projects to build RIAs - Part 3

Given the previous comparative tables, I am going to emphasise two important conclusions:

1. No project meets all criteria.

2. No project was intended for one UML class diagram only: the main goal of this master

thesis is to evaluate the usability of a CASE tool that just requires one single and familiar

UML class diagram to obtain a RIA prototype.

To conclude, with a simple comparative analysis, I identified that the usability evaluation that this

master thesis wants to perform still has a chance to contribute to the state-of-the-art in the field of

CASE tool for designing and building RIAs.

Chapter 4

IDEPRIA: Integrated development

environment for rapid prototyping of RIAs

This chapter describes all the core components of the CASE tool developed for this master thesis,

the Integrated Development Environment for Prototypes of Rich Internet Applications (IDEPRIA).

The first section shows the Domain-Specific Modelling Language (DSML) defined by extending

UML to permit the modelling of the domain of the Rich Internet Applications. The detailed

description of each of the defined design elements can be found in Appendix A.

The second section briefly describes the most time-consuming part of this master thesis, which

was the design and development of the CASE tool that allows to developers modelling Rich

Internet Applications.

Finally, the third section describes the Model-to-Text (M2T) transformation software that was

integrated into the IDEPRIA CASE tool. This is the software that parses and reads a given

modelling project and then transforms it to a RIA source code.

4.1 The DSML supported by IDEPRIA

Remembering from the Chapter 2, Domain-Specific Modelling Languages are graphical lan-

guages that provide elements that permit the design and development of specific domains, which

in this case are the domain of the Rich Internet Applications.

There are mainly two ways of designing and defining a Domain-Specific Modelling Language,

18

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 19

by defining a completely new Domain-Specific Modelling Language or by extending an existing

General-Purpose Modelling Language (refer to Chapter 2 for background information). For this

master thesis, the final decision was to define the IDEPRIA Domain-Specific Modelling Language

as an extension of the Unified Modelling Language (UML). The reasons that justify this decision

are:

• The use of tools like MetaEdit+ Modeler, which allows the definition of the DSML for the

RIA domain using a custom notation and then the possibility to use the same MetaEdit+

Modeler tool to design RIAs, are not appropriate for this master thesis. This is because

the goal of this project is to evaluate if the developed IDEPRIA Web CASE tool can be

a well-suited MDD solution for developing prototypes of RIAs, and there is no point in

having defined the DSML with a tool that restricts the usage of the DSML to the same

tool. In other words, it is not possible for the IDEPRIA tool to use the language defined in

MetaEdit+ (or any other CASE tool that behaves like this one).

• UML is the standard for modelling, and its notation is expected to be known by an average

software engineer. Extending the UML implies that at least the common UML elements

will still be present in the DSML that is wanted for modelling RIA elements. Then, most

developers would probably not have to learn a whole new custom notation for modelling

RIAs.

• Finally, there is no need to reinvent the wheel by defining a new custom notation that would

probably have again many of the common elements that are available in a General-Purpose

Modelling Language like UML. These common elements are for instance: classes and

modules, relations and associations, members and attributes, among others.

Given the previous decision, it is important to mention that there are many free/paid tools that can

be used to define UML Profiles in order to extend UML to allows modelling of specific domains.

Some of these tools are Eclipse Papyrus, MagicDraw UML, StarUML, among others. Also, as all

that is needed at this stage is just a formalization of the modelling language that will be supported

by the IDEPRIA tool, it does not matter which tool is used to define the DSML. Thus, I just

chose Eclipse Papyrus because it is freely available and it is more than enough to define a UML

extension for the domain of the Rich Internet Applications.

To define the UML Profile for IDEPRIA with the Eclipse Papyrus tool, I followed the online

tutorial that is published on the Eclipse Papyrus website1. Due to the dimensions of the paper of

1 Papyrus Tutorial for UML Profiles: http://www.eclipse.org/papyrus/resources/
PapyrusUserGuideSeries_AboutUMLProfile_v1.0.0_d20120606.pdf

http://www.eclipse.org/papyrus/resources/PapyrusUserGuideSeries_AboutUMLProfile_v1.0.0_d20120606.pdf
http://www.eclipse.org/papyrus/resources/PapyrusUserGuideSeries_AboutUMLProfile_v1.0.0_d20120606.pdf

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 20

this dissertation, the UML Profile was split into multiple parts so the images can fit properly. Also,

this summary provides just a brief summarised description of the UML Profile to avoid forcing the

reader to read the detailed description of all the defined modelling elements (stereotypes, tagged

values, associations). The reader should refer to Appendix A to access to the detailed description

and justification of each of the modelling elements that are going to be shown in this section.

Figure 4.1: UML Profile - Package

To begin, Figure 4.1 shows the definition of

the stereotype Project, which extends from

the UML meta-class Package. This Project

stereotype represents a single modelling dia-

gram to which could be added modelling el-

ements (e.g.: classes, attributes, associations)

to design a RIA. Appendix A.1 explains all the

tagged values shown in this figure.

Figure 4.2 shows the definition of the core

stereotype NormalClass, which extends from

ClassIDEPRIA in order to provide gen-

eral purpose functionality to RIA elements.

There is another stereotype that extends from

ClassIDEPRIA, the VideoClass stereotype,

which represents a Web video player that

could be added to any given diagram. Also,

there are eight required stereotypes (User,

UserProfile, Profile, Action, ProfileAction,

Person, Shortcut, Module) that extend from ReservedClasses and provide basic features that are

normally given in frameworks that allow the construction of RIAs. For example, the website of

the framework Django (Python) on “User authentication”2 explains how that framework could

be used to give a way to the users to authenticate to the system. Additionally, the website of the

framework Spring (Java) on “Spring Security”3 shows the required steps to authenticate users on

a given Spring Web project. Sometimes, these basic features might not be required in RIAs, but it

could be very useful to have them ready to be used in case of needing them in the future without

having to change the source code of the application. Appendix A.2 shows the importance and

detailed description of the stereotypes and tagged values shown in this figure.

2 Django authentication: https://docs.djangoproject.com/en/1.11/topics/auth/
3 Spring security: https://spring.io/guides/gs/securing-web/

https://docs.djangoproject.com/en/1.11/topics/auth/
https://spring.io/guides/gs/securing-web/

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 21

Figure 4.2: UML Profile - Classes

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 22

Figure 4.3: UML Profile - Attributes - Part 1

Furthermore, extensions from the UML Property meta-class have been defined to provide spe-

cific semantics to attributes of classes. Firstly, Figure 4.3 shows the definition of the stereotype

AttributeIDEPRIA, to which could be attached tagged values that allows a developer to customise

basic aspects of any application. For instance, the allowNull tagged value is a boolean that deter-

mines if a given attribute instance in a modelling project could have ever have or not a null value.

This is very important because, for example, the database schema that is going to be generated

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 23

for this RIA should define if these specific attribute can have null values or not. The detailed

description and the importance of these tagged values can be found on Appendix A.3.

Figure 4.4: UML Profile - Attributes - Part 2

Figures 4.4, 4.5, 4.6 define extensions to the stereotype AttributeIDEPRIA, which was shown in

Figure 4.3. Mostly, these stereotypes are the ones used as tagged values attached to the stereotypes

that extend from the ReservedClass stereotype. They are very useful because they determine

specific behaviours of RIAs, for instance, the UserPassword stereotype that extends from the

UserAttribute is very important because it tells to the M2T transformation software that this

attribute should be encrypted before it gets saved to the database and also that this field should

match the password of a given user that is trying to log-in to the RIA. Appendix A.2 provides a

description and justification of all the required stereotypes shown in these figures.

Stereotypes can be defined with a specific icon, which might be useful for developers to recognise

that a given attribute is configured by just looking at the icon of the modelling element. Figure

4.7 shows an example of a ClassIDEPRIA created with the IDEPRIA tool. The stereotypes that

have customised icons are:

• ClassIDEPRIA: this stereotype is graphically represented with the empty white square, that

has a green header with the name of the instance on it. In the example, the “Files” white

box with green header and rounded buttons in the four corners that allow end-users to resize

the box.

• AttributeIDEPRIA: the icon is a green arrow pointing towards the right. In the example, the

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 24

Figure 4.5: UML Profile - Attributes - Part 3

Figure 4.6: UML Profile - Attributes - Part 4

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 25

Figure 4.7: UML Profile - Custom Icons

green arrow that is to the left of the “size” attribute.

• AttributeIDEPRIA when isPrimaryKey is true: The primary key attributes are displayed

with a gold key icon. In the example, the gold key at the left of the “id” attribute.

• AttributeIDEPRIA when isForeignKey is true: The foreign key attributes are displayed with

a red key icon. In the example, the red key at the left of the “user owner” attribute.

• allowNull: the icon is a grey arrow pointing towards the right. In the example, the grey

arrow that is to the left of the “url” attribute.

Figure 4.8: UML Profile - Associations

Finally, Figure 4.8 shows the last extensions made in the

UML Profile, the PicketComboBox and the PickerWin-

dowsSelector, both which extend from the Association

UML meta-class. The PicketComboBox stereotype will

make the RIA provide an HTML combo box to pick one

of many possible instances of the association-end class.

The text that is going to be displayed on each entry avai-

lable on the combo box is the value of the memberIden-

tifier attribute of the class (see NormalClass on Figure

4.2 for more information). On the other hand, the Pick-

erWindowsSelector stereotype will provide a new search

window that will have form fields that will permit the ap-

plication of filters that will facilitate to the end-user the

task of finding a specific instance of the associated class.

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 26

4.2 The IDEPRIA Tool

The developed CASE tool was named “Integrated Deve-

lopment Environment for Prototypes of Rich Internet Applications (IDEPRIA)” because it was

built with the intention to simplify the design and development of prototypes of RIAs. IDEPRIA

was designed to provide modelling support of some aspects of UML Class Diagrams, and more

important, modelling support for the UML Profile that was described in the previous section of

this chapter. However, due to time constraints for this master thesis, this tool was not designed

to allow developers design all the possible UML elements described in the UML specification

[O. M. G., 2004].

Also, as this master thesis intends to evaluate the usability of this Web CASE tool as a tool to

design and build fast prototypes of RIAs, in this section are going to be mentioned as well the

literature usability patterns followed to provide the best possible user experience to the end-users

of IDEPRIA.

First, the architecture of the IDEPRIA tool follows a simple client-server pattern. The technolo-

gies and frameworks were used to build the tool were:

• Server (back-end): hosts and serves the HTML/CSS/JavaScript front-end files, provides

the Web services for the front-end Web application, and it is the responsible for storing

persistently the data using a database engine.

– Python v2.7: a multi-platform programming language that provides portability so that

the back-end can run on any of the many platforms supported by this programming

language.

Website: https://www.python.org/

– Tornado v4.5: a Python web framework that uses non-blocking network I/O, which

easily allows to the back-end to scale up to hundreds of open connections.

Website: http://www.tornadoweb.org/

– DjangoORM v1.5: a Python middleware that allows to the back-end server to use a

generic API to perform CRUD operations on many possibles database engines. Then,

the source code of the back-end is not dependent on a specific database, which pro-

vides the flexibility to change the database engine in the future, without having to

change the source code that handles database operations.

Website: https://www.djangoproject.com/

http://www.tornadoweb.org/

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 27

– BCrypt v3.1: a Python password hashing framework with some properties that protect

from fast-hardware password cracking implementations.

Website: https://github.com/pyca/bcrypt/

– Jinja v2.7: a Python template engine that is used by the M2T transformation software

to generate the source code of the Rich Internet Application.

Website: http://jinja.pocoo.org/

– MySQL-python v1.2.5: a Python framework that provides support to the DjangoORM

to make API calls to the MySQL Database Engine.

Website: https://github.com/farcepest/MySQLdb1

– PsycoPG v2.7: a Python framework that provides support to the DjangoORM to make

API calls to the PostgreSQL Database Engine.

Website: http://initd.org/psycopg/

• Client (front-end): the Web application that provides to developers a Web graphical user

interface to design their own RIA prototypes.

– KineticJS v4.5: a JavaScript framework that simplifies the development of web appli-

cations that interacts with the HTML5 Canvas. This is the core framework used by

the front-end, which allows to developers to design their models.

Website: https://github.com/ericdrowell/KineticJS/

– ExtJS v4.2: a JavaScript framework aimed to simplify the development of data-intensive,

cross-platform Rich Internet Applications. This framework was used to create the

window of IDEPRIA that allow developers to customise their modelling.

Website: https://www.sencha.com/products/extjs/

– CodeMirror v2.3: a JavaScript framework that provides an elegant web source code

editor. This was added at the end of the project as an extra feature, which allows de-

signers to view and modify SQL triggers that can be attached to the generated source

code at the generation stage.

Website: http://codemirror.net/mode/javascript/

There might be another technologies and frameworks that can provide the same or even better

features than the ones previously mentioned. However, this master thesis does not intend to eva-

luate which technology or framework is the best one, so choosing any of those that just works is

enough for this master thesis. Particularly, the main reason to choose the previously mentioned

frameworks is that I already had experience on those frameworks before beginning the develop-

https://github.com/farcepest/MySQLdb1
http://initd.org/psycopg/

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 28

ment of the CASE, which allowed me to save person-hours for more important aspects of this

research.

Figure 4.9: IDEPRIA Tool - Modelling example.

Figure 4.9 shows an example of a modelling of a RIA prototype with the IDEPRIA tool. At simple

sight, you can see the icons of the IDEPRIA classes with its respective IDEPRIA attributes. The

UML associations are represented by using the UML standard black arrow notation between

classes. It is important to emphasise that the classes can be resized and relocated by dragging-

and-dropping the grey circles located at the corners of each of the classes and by dragging-and-

dropping the green headers of the classes, respectively. Also, the attributes can be reordered by

dragging-and-dropping the attribute icon to the desired position within the class.

At the left upper corner of Figure 4.9, there is a menu named Actions that provides the following

features:

• Save project: persistently saves to the project so that it can be closed and continued later.

• Project properties: displays a window that allows the developer to configure the name of the

project, the size of the HTML5 canvas, and if the project should be periodically auto-saved.

• Configure AppMenu Tree: this option will allow the developer to configure a directory

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 29

structure of the classes, which will finally be the structure that the RIA will use to display

the menu items for the different modelled classes.

• M2T generate application: displays a screen to the user that requires them to choose the

desired output platform for the RIA that is going to be generated. Currently, there is only

one possible output platform, but the IDEPRIA tool was designed to easily provide more

output platforms in the future.

• My generated applications: the complete list of generated applications. Then, the develo-

pers can have access to all the different versions of the models that were transformed into

the source code of the modelled RIA.

• Export model as PNG: creates a base 64 PNG image of the HTML5 canvas that contains

the current design of the project. Sometimes is very useful to have an image of the design

so it can be printed in a big and easy to analyse paper.

• Exit: closes the project and redirects the user to the initial project selector page.

Furthermore, there are two important interfaces provided by the IDEPRIA tool, which allow the

customisation of the IDEPRIA classes and the IDEPRIA attributes, respectively. First, Figure

4.10 shows an example of the interface provided to customise a given class. At the top, it is

possible to set the name of the class and to choose which IDEPRIA stereotype should be applied

to the class. Additionally, it is possible to define the position of that class on the HTML5 canvas

and its size (width and height) in pixels.

Figure 4.10 shows the interface provided to developers to customise the application that is going

to be generated. The designer can specify the width, height, generateCRUD, layoutType, is-

ManyToMany, memberIdentifier, memberPrivacy, videoSource, videoType tagged values of the

ClassIDEPRIA, NormalClass and VideoClass, that were already described in the previous sec-

tion with Figure 4.2.

From the usability point of view, this interface follows the “Error prevention” usability heuristic

recommended by [Nielsen, 1993]. For example, it does not allow developers to set the videoLink

and videoSource values unless the class has attached the HTML5 Video stereotype. Also, it only

allows developers to choose an UserID stereotyped attribute as a possible value for the mem-

berPrivacy tagged value, that is displayed with the label “Restrict instances to the authenticated

UserID attribute”.

Figure 4.11 shows the interface provided to customise attributes. At the top, this window provides

HTML elements that allow developers to attach tagged values to the AttributeIDEPRIA. At the

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 30

Figure 4.10: IDEPRIA Tool - Properties of an IDEPRIA Class.

bottom of the image, there is a form that allows setting the tagged values and stereotypes that are

going to be used by the M2T software to customise the RIA that is going to be generated. Addi-

tionally, the example shows an attribute that is a foreign key associated with the User attribute of

the Users class, and also, that the RIA will provide a searcher interface to permit to the end-user

to find a specific Users instance.

Notwithstanding the fact that there are too many (twenty) form elements in Figure 4.11, the

similarity Gestalt principle, that establishes that objects that look similar should be presented as a

group, has been followed to improve the user experience [Koffka, 1935]. At the top, all the check

boxes are grouped at the right, and the other combo and text boxes that look similar are grouped

to the left. Similarly, at the bottom, the four combo boxes are grouped in the upper section, while

all the other six check boxes are located and aligned together at the bottom.

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 31

Figure 4.11: IDEPRIA Tool - Properties of an IDEPRIA Attribute.

The Nielsen's “consistency” heuristic recommendation can be clearly confirmed by a single ins-

pection of Figures 4.10 and 4.11 [Nielsen, 1993]. Also, the icons described in the previous section

were added in order comply with the “recognition rather than recall” Nielsen's heuristic. This is

very useful because end-users do not have to remember which attributes are or not primary/for-

eign keys, or if they can have or not null values because they can recognise them at any moment

by just looking at the canvas.

Finally, Figure 4.12 shows how can be obtained the ready-to-deploy source code of the prototype

of the modelled RIA. The developer has to choose which output platform, and then, after pressing

the “Generate” button, a download link with the zip file containing the source code will appear.

Also, to make it clear to the reader how this source code generation occurs in practice, the next

section of this chapter will describe the M2T software implemented exclusively to transform the

models into the source code.

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 32

Figure 4.12: IDEPRIA Tool - Application Generator.

4.3 The M2T Transformation Software

The model-to-text transformation software is the part of the IDEPRIA tool that reads, process

and then generates the source code of the RIA prototype that was designed by the developer. This

software was designed by keeping in mind always the flexibility, which means that the software

can be adapted to possible future changes in their requirements. This property is very important

for the M2T software because it would be undesirable to have to modify its core source code

every time we wanted to add a new output platform.

Remembering from the Chapter 2, there are mainly two ways of performing code generation,

through programming languages, and also through M2T transformation languages. Given the

drawbacks explained of the programming languages based approach, and the benefits provided by

the template-based approaches, I decided to build a template-based M2T transformation software

to make IDEPRIA able to transform the DSML models into source code.

The literature review also showed that there are too many template engines, and more specifically

for the Python programming language (used to build IDEPRIA), the Python community itself

provides a website4 where they list more than fifty templates engines that work with Python.

Even though that possibly many of the engines listed on that website will be enough to perform

the code generation required by IDEPRIA, I decided to use the template engine JINJA25 because

it was already used in the past for a scientific evaluation and it was remarked for its ease of use

and flexibility [Orban, 2011].

4 Python template engines: https://wiki.python.org/moin/Templating
5 JINJA 2 template engine: http://jinja.pocoo.org/

https://wiki.python.org/moin/Templating
http://jinja.pocoo.org/

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 33

Now that the chosen M2T transformation approach and the template engine have been justified,

the developed M2T transformation software is going to be described to show to the reader the

process that generates the source code of the prototype of the modelled RIA. Summarizing, the

transformation process has five stages:

1. Receive input parameters: the M2T transformation software requires two parameters: the

identifier of both, the desired output platform and the UML class diagram. These are

mandatory parameters because otherwise, the translator would not know what models to

transform, and what kind of output to generate.

2. Model parsing and configuration parsing: given the identifier of the diagram as input, the

M2T transformation software loads it from the database and parses to an internal repre-

sentation so that the data structure and its contents can be later fed to the template engine.

Additionally, given the identifier of the output platform as input, the configuration file that

guides the M2T transformation software is loaded from disk and parsed.

3. Static files duplication: first, a temporary output folder is created to put all the static files

and generated source files. Then, the configuration of the chosen output platform could

state that there are static files that should just be copied to a given destination inside the

temporary folder. If this is the case, the static files are duplicated from the source location

to the destination folder specified in the configuration.

4. Dynamic files transformation: the M2T transformation software iterates over each entry of

the configuration file, and for each entry, the entire UML diagram is processed. At the end

of the processing of each configuration entry, zero, one or many source code files could be

generated, depending on which options were set in each entry.

5. Final compression: when the transformation ends, all the files copied/generated are com-

pressed into a zip file, than then is moved to the IDEPRIA web server so it can be down-

loaded from a Web page provided by IDEPRIA.

Before describing this M2T transformation software in more detail, it is important to emphasise

that the idea of using a configuration file to guide the transformation process and having static/-

dynamic files/templates to generate the source code, was taken from [Marco Brambilla, 2017]

and it is not a contribution of this master thesis. However, the implementation of those ideas was

developed only by myself.

Appendix B shows an example the M2T configuration file. This file that guides the transforma-

tion process is the one that permits that multiple possibles output platforms could be obtained

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 34

from a single modelled UML Class Diagram. The developer should just use this transforma-

tion software twice, by passing the two different configuration identifiers as input parameters. A

given configuration file is defined using the JSON6 format, and this notation was chosen because

it is a lightweight one that does not require a lot of tags, and because there are freely available

parsers of this notation for many different programming languages. The possible keys that a given

configuration file should have are:

• id: integer unique identifier of this configuration file. This is the field that should match

the input parameter of the M2T transformation tool in order to know which static files to

duplicate and which templates should be transformed.

• name: short description of the output that this configuration file intends to generate.

• shortname: short string that represents the name of the temporary folder that is going to

be created in order to put the generated files.

• description: HTML string that describes in detail the output that will be obtained after

running the M2T transformation software with this specific configuration file. This field is

showed in the IDEPRIA tool as a description of what is going to be obtained as output.

• static: it is an array of all the static files that should be duplicated to a relative path inside

the temporary generation folder. For instance, the images, CSS and JavaScript files of the

ExtJS framework are static files. This static might contain zero or more JSON objects that

must contain the following three keys:

– type: that specifies if it is a file or a folder (with all its contents) what should be

duplicated. Possibles values: “file”, “folder”.

– src: relative path of the source file/folder that should be duplicated.

– dst: destination folder to put the file/folder specified in src.

• templates: array of zero or more independent JSON objects that contains JINAJ2 templates

that should be processed by the template engine. Each of the objects inside this array must

have the following two keys:

– src: relative path of the template that is going to be processed.

– dst: destination file path of the file that is going to be generated after processing the

src template.

6 JSON notation: http://www.json.org/

http://www.json.org/

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 35

• permodule: array of independent templates, in which each template will be processed in

many rounds. This element allows the generation of source code files that depend on each

of the modelled classes because, in each round, a given class of the modelled diagram will

be used as input for all the templates added to this array. Each of the JSON objects of this

array must have the following keys:

– tpl: path to the JINAJ2 template that should be transformed by using as input each

class of the diagram.

– dst: destination file path of the transformed template defined in src. It is important

to mention that the string “modname” can be used as value in this dst key to specify

that this string should be replaced with the exact name of the class used to process

the template. This specification allows to the generated source code files to have the

name of the classes, which permits readable output filenames instead of filenames like

transformation1, transformation2, transformation 3, etc.

– options: array of named options that defines a specific behaviour while processing

this specific template element. Each element contains the key “name”, which could

take the following values:

* capitalise: it defines that the class name should be capitalised (set the first letter

as capital) before replacing it with the previously defined “modname”.

* excludem2m: all the NormalClass stereotyped classes that have the tagged value

isManyToMany as true will be skipped and will not be processed with this tem-

plate.

* onlym2m: all the NormalClass stereotyped classes that have the tagged value

isManyToMany as false will be skipped and will not be processed with this tem-

plate.

* readcrud: process only the classes with the tagged value generateCRUD as true

will be processed with this template.

* excludevideo: all the VideoClass stereotyped classes will be skipped and will not

be processed with this template.

* onlyvideo: only the VideoClass stereotyped classes will be processed with this

template.

The previous configuration file structure was defined in that way to minimise the amount of

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 36

information required to the developer of the file. In other words, when specifying the static files,

it is only required to specify the source and destination paths and the if the source is a file or a

folder. In the same way, when processing individual templates, only the source of the template

and the destination file path of the file that is going to be generated after processing the template.

The third possibility was added because while designing this M2T transformation software, I

detected the need to process a given same template with all the different UML classes modelled

in the diagram. Additionally, depending on some tagged values and stereotypes, only specific

UML classes should be processed with specific templates, and this is the reason why the options

array was added.

Nevertheless, many of the possible options available define that only some classes that have spe-

cific tagged values assigned should be processed, for instance, “onlym2m” means process only

classes with isManyToMany = true. Then, the fact of defining new names to represent specific tag

names with specific values may be confusing for the developer, and a better approach might be

obtained if the options array is changed to just accept stereotypes or tag names with their respec-

tive values. This approach would not require developers to learn new tag names, and it will be

a generic solution in case that new tag names or stereotypes are added to the UML profile in the

future. Also, this change would not imply a redefinition of the entire structure and can be easily

made in a future version of this software while keeping backward-compatibility by allowing the

already defined keys.

Furthermore, the JINJA2 templates are a very important part of this M2T transformation software,

because they are the ones that are processed one or multiple times to generate the files that contain

the source code of the modelled RIA. The JINAJ2 template engine provides a website7 with

an easy-to-understand documentation that describes the engine features and how those can be

achieved. For instance, the custom filters feature of JINJA2 permit calling to custom defined

Python functions from inside the templates, which means that the generated output can contain

any information that is feasible to compute with the Python programming language. An example

of a custom filter defined is the Python function “normaliseName”, which receives as input any

string, and returns a string that contains only the letters and numbers of the received string. This

function is very useful to transform an invalid variable name string to a valid one for the given

output programming language.

To make it easy for the reader to understand how these templates are transformed into source

code, Appendix C shows one of the templates used to generate a portion of the source code of the

modelled RIA.
7 JINJA 2 documentation: http://jinja.pocoo.org/docs/latest/

http://jinja.pocoo.org/docs/latest/

Chapter 4. IDEPRIA: Integrated development environment for rapid prototyping of RIAs 37

To summarise, this M2T transformation software is mainly guided by a given chosen configu-

ration file that specifies that some static files/folder should just be copied, that there are some

templates that should be processed just once while having access to the entire UML model, and

that there are templates that will be processed multiples times while having access to just one

UML class each time. Finally, when there are no more static files to duplicate, and there are no

more templates to process, it can be said that the generation of the source has finished, and that is

time to just deploy the application.

For this master thesis, there was no point in defining multiples configuration files to make able to

IDEPRIA to generate multiple versions of the same Rich Internet Applications but for different

platforms/frameworks. This is mainly because the IDEPRIA Web tool is the subject of evaluation

rather than the prototype of the Rich Internet Application that the IDEPRIA tool will generate.

Chapter 5

Case-study evaluation

The chapter describes the case-study performed to evaluate the IDEPRIA Web CASE tool devel-

oped for this master thesis. The case-study was performed by following the framework described

in [Runeson et al., 2012].

The first section of this chapter presents all the elements that were taken into account when

designing the case-study, the planning performed before commencing the case-study, the kind

of data that was collected, the strategy that was followed, the threats that could invalidate the

case-study and the countermeasures that were applied to minimise the effects of these threats.

The second section describes the execution of the designed case-study and summarises the data

collected from the Think-Aloud sessions and the interviews.

Finally, the third section shows the analysis performed on the collected data and the conclusions

of the case-study.

5.1 Case-study design

5.1.1 Rationale for the study

The reason for undertaking this case-study is to make a novel contribution to the Model-Driven

Development area. More specifically, this case-study was designed to evaluate the usability of the

IDEPRIA Web CASE tool that allows developers to design and build Rich Internet Application.

38

Chapter 5. Case-study evaluation 39

5.1.2 Purpose of the study

This case-study expects to obtain results that show that the IDEPRIA MDD tool, which just

requires one extended UML Class digram that is expected to be familiar to a person with a back-

ground in Informatics, is a well-suited and usable solution for developing prototypes of Rich

Internet Applications.

5.1.3 Theoretical framework

The theoretical framework of the case-study was already described in the “Background” chapter.

Please refer to that chapter for more information about the concepts mentioned in this case-study.

5.1.4 Research question and hypotheses

• Question 1: are Web Model-Driven Development CASE tools that require just one familiar

UML class diagram a usable solution for modelling and developing prototypes of Rich

Internet Applications?

• Hypotheses 1: IDEPRIA is a Web Model-Driven Development CASE tool that provides a

well-suited and usable solution to the need for designing and building prototypes of Rich

Internet Applications.

5.1.5 Cases and unit of analysis

According to [Runeson et al., 2012], the case-study is categorised as a Holistic Single-Case study.

It is holistic because there is only one defined context, and it is single because there is only one

unit of analysis [Runeson and Höst, 2008]. The context is the RIA prototype that was asked to the

participants to design and develop, and the unit of analysis is the Think-Aloud protocol followed

by the subjects while using the IDEPRIA tool.

5.1.5.1 The Think-Aloud protocol

The Think-Aloud protocol is a technique for examining the problem-solving skills of the partici-

pants of evaluation [Erikson and Simon, 1984]. This technique requires people to say out loud

everything that they are thinking and trying to accomplish, so they thoughts can be externalised

Chapter 5. Case-study evaluation 40

[Erikson and Simon, 1984]. This protocol has been used already many times to evaluate the

usability of software and websites (e.g.: [Bin Ahmad and Iahad, 2013], [Stefano et al., 2010]),

because it shows to the evaluator the exact steps made by the subject to accomplish a task. Then, if

a task is being difficult to achieve by too many participants, it can be concluded that the interface

provided might need to be redesigned to see if better results can be obtained.

The three participants of the case-study that followed the Think-Aloud protocol were students of

the Master of Science in Computer Science program of the University of Edinburgh. Each of the

participants was instructed in the same way and performed the same three required tasks while

following the Think-Aloud protocol.

[Wallace et al., 2002] proposed to record the audio of the Think-Aloud sessions, so it possible

to analyse the record many times to find missing problems that were not annotated during the

sessions. Before beginning the evaluation process, the three students agreed to be audio-recorded

and video-recorded and then an informed consent form was signed by them. The consent form

used is shown in Appendix D, and it is a shortly modified version of the Think-Aloud consent

form used in this doctoral thesis [Phillips, 2014].

The first task of the Think-Aloud session was the most simple one and essentially asked the

participant to use the IDEPRIA tool to create two classes, then to add some specific attributes to

each class, and finally, to add one association to from one class to the other one. This task was

aimed to help to the subject to familiarise with the tool, while at the same time I was collecting

information about the level of difficulty for the subject to accomplish the task with the IDEPRIA

tool.

The second task required to each of the three participants was about requiring the participants

to read the requirements of a quite simple Rich Internet Application, so they can then use the

IDEPRIA tool to model a possible solution to those requirements. This task is more complex

than the first one, but also the most important task of this evaluation because here they will have

first to think how to solve the problem and then they will have to interact in different ways with

the IDEPRIA tool to design their solution properly. Additionally, relevant data can be collected

from this task, such as how easy is to customise the Rich Internet Application and how usable is

the interface provided to configure properties of the classes and attributes required for solving the

requirements.

Finally, the third task was about asking the participants to generate the ready-to-deploy source

code of the Rich Internet Application that they modelled. This task was designed so I can observe

how easy is for them to generate the Rich Internet Application with the IDEPRIA tool.

Chapter 5. Case-study evaluation 41

At the beginning of the definition of this Think-Aloud protocol, there was an idea of having a

fourth task that would have asked the participants to deploy and use the Rich Internet Applica-

tion. However, this task was removed from this case-study because, as the only output platform

currently supported by the IDEPRIA tool is a RIA that uses Python for the back-end and ExtJS for

the front-end, the results of the task will be subject to much noise depending if the participants al-

ready had or not experience with those technologies. For academic purposes only, I deployed the

source code that they generated with IDEPRIA, so they can see and interact with a Web browser

the prototype of the Rich Internet Application that they have modelled.

The exact definition of each of the three summarised tasks can be found in Appendix E.

5.1.6 Methods of data collection

The first method of data collection was the direct observation in controlled environment, that was

performed with the Think-Aloud technique [Runeson et al., 2012], which was already described

in the previous sub-section.

The second method to collect data was the interview, in which the participants shared all the ideas

related to the usability of the IDEPRIA tool. The interview sessions followed the timeglass model

[Runeson et al., 2012], which means that the interviews began with open questions, then specific

questions were asked in the middle, and towards the end of the interview, an open discussion was

established again. More specifically, these are the two specific questions that were asked to the

participants:

1. Do you believe that the modelling elements provided by the IDEPRIA tool are enough
to model just prototypes of Web Applications? Why?. This question was made to under-

stand the point of view of the participants about the completeness of the designed solution,

which will contribute to well-suited tool research question of this case-study.

2. How much effort and time did it take, or do you think it would take, for you to feel
confident using the tool to build something useful?. This question was made to obtain

an average feeling of the participants about how easy was to use the tool with the available

DSML elements.

Finally, I need to mention that a paper-based questionnaire was designed and prepared to obtain

quantitative information from the participants. However, as I have only managed to get three

participants for the case-study, the results would have been statistically unreliable due to the low

Chapter 5. Case-study evaluation 42

number of samples. Then, I did not use the questionnaire in this case-study; nonetheless, it could

be beneficial for further researches with more available time and more participants willing to help.

Appendix F contains the designed paper-based questionnaire that I would have used in case

of having more participants. The questionnaire contains close-ended and open-ended questions

aimed to measure if the IDEPRIA tool was a well-suited and usable solution for designing and

developing prototypes of Rich Internet Applications. As the IDEPRIA tool provides a computing

support that permits modelling prototypes of RIAs using the modelling language described in

the previous chapter, this questionnaire also evaluates at the same time if the modelling language

designed is a well-suited and usable solution for designing and developing RIAS. [Schalles, 2013]

provides an empirical framework with a questionnaire aimed at the evaluation of the usability of

modelling languages. Then, the second page of the questionnaire is a slightly modified version of

a questionnaire provided in [Schalles, 2013, p. 59], because it provides accurate questions aimed

to understand the usability of a given modelling language.

5.1.7 Data source selection

The data was collected from participants that can be considered as good actors for the IDEPRIA

tool because they took the “Software, Design and Modelling” course at the University of Edin-

burgh, and thus, UML Class diagrams are expected to be familiar to them. This selection of

participants was made to avoid having experts as participants, which could probably manage to

use complex systems and also to avoid having students that do not know what a UML Class

Diagram is.

5.1.8 Legal, Ethical, and Professional Issues

This dissertation was written as a requirement to obtain a Master of Science degree at the Uni-

versity of Edinburgh, so all this research strictly follows the School Ethics Code and ethics re-

gulations that are defined in the documents provided at the Informatics Ethics website1 of The

University of Edinburgh.

Given that this case-study involves a Think-Aloud evaluation and that there is just a minuscule

chance of harm that could be done to the participants, after my thesis tutor approved this Think-

Aloud evaluation, the University required me to send the level one self-assessment (part C) of the

1 University ethics procedure: http://www.ed.ac.uk/informatics/research/ethics/procedure

http://www.ed.ac.uk/informatics/research/ethics/procedure

Chapter 5. Case-study evaluation 43

informatics ethics form. Then, I received an acknowledgement that enabled me to perform this

case-study as part of my thesis at The University of Edinburgh.

From the participant's points of view, before they started the evaluation, they all agree to help me

with this research by signing the consent form shown in Appendix D.

5.1.9 Threats

Case-study threats can affect the validity of the results obtained, so they should be analysed

beforehand to avoid obtaining invalid results [Runeson et al., 2012].

Tables 5.1 and 5.2 show the detected threats that could invalidate the case-study, and the counter-

measures that were taken into account to minimise the possible effect of those threats.

Chapter 5. Case-study evaluation 44

Table 5.1: Threats to the case-study and countermeasures applied - Part 1

Threats Countermeasures

Participants might not know how to

be a participant of a Think-Aloud

session.

Participants were asked if they knew the pro-

tocol and all of them knew how to do it. I re-

minded them all the important aspects of prepa-

ration for the evaluation, and that when they

stayed in silence while using the tool, I would

ask them the recommended questions [Runeson

et al., 2012]: What are you trying to achieve

now? What are you currently thinking?

Participants might stop the evalua-

tion in the middle of the process.

Try to obtain evaluation agreements from at

least three Informatics students as a backup

strategy. Provide to participants a well-suited

environment with drinks and snacks.

False interview answers from the

participants.

The results were cross-controlled with the data

collected from the Think-Aloud session and the

interview.

Different level of skills between

the three participants could provide

evaluations with opposite results.

Students of the same master program at the Uni-

versity of Edinburgh were chosen, which were

expected to have the same expertise level.

The complexity of the RIA required

to design and build for the Think-

Aloud sessions could be a problem

bigger than the usability of the IDE-

PRIA tool.

First, a simple task was asked so the partici-

pants could feel confident with the tool. The

requirements of the RIA that they should design

had an easy-expected difficulty for a Informat-

ics'master student.

Chapter 5. Case-study evaluation 45

Table 5.2: Threats to the case-study and countermeasures applied - Part 2

Threats Countermeasures

A very low number of participants

(three in total).

It was not easy to find Informatics students

that wanted to participate in the evaluation be-

cause most of them are doing their projects as

well. This particular thesis was very challen-

ging due to all the tasks that were done: deve-

lopment of CASE tool, DSML, M2T transfor-

mation software, Case-study evaluation. Then,

the results obtained in this thesis could just pro-

vide a general idea of the hypothesis that I was

trying to prove rather than a strong confirma-

tion of the hypothesis. However, the results pro-

vide a useful starting point for a future research

project.

Participants with a lack of expe-

rience with UML modelling and

the Model-Driven Development

approach.

Participants were asked beforehand if they had

at least academic experience with UML mode-

lling. Participants that do not know UML are

not suitable to take part in this case-study be-

cause the hypothesis states that UML class dia-

grams should be familiar to the developers.

Preparing a biased requirements

specification for the RIA that the

participants should develop with the

IDEPRIA tool.

This was minimised by checking with my thesis

tutor the specification previous to the execution

of the case-study evaluation.

The participants and I were not

native English speakers so there

was the possibility of miss-

interpretations on what they

understood as requirements of the

Think-aloud tasks and on what I

understood when they talked aloud.

The definitions of the tasks were checked be-

forehand with an informatics English native

speaker. The audio and video recordings were

the solutions to this, because I was able to go

through them many times to understand what

they were trying to do at any given moment.

Chapter 5. Case-study evaluation 46

5.2 Case-study execution

This section describes the prior preparation made for the Think-Aloud sessions and then summa-

rises each of the three sessions. Then, this information is analysed to obtain the results of the

evaluation. Also, it is important to mention that a quantitative analysis was not performed due to

a small number of participants (results would have been statistically unreliable).

5.2.1 Preparation for the Think-Aloud sessions

The whole evaluation process took place at one of the University students' accommodation study

room, which was booked in advance to avoid any possible interruptions. As students spend much

time in the library and classrooms, the study room provided a familiar environment that made it

easier for them to be comfortable. Drinks and snacks were provided before, during and after the

evaluation in case they felt hungry or thirsty.

An Apple Mac OSX Sierra laptop with a Chrome Web browser version 59.0 was provided to the

participants so they can accomplish the Think-Aloud tasks. For audio/video recording purposes, a

GoPro Hero 5 Black camera (with microphone) was used to record each session. I used a paper-

based notepad to takes notes on both, the difficulties that they had while using the CASE tool and

the tasks that they accomplished easily without much trouble.

Before the beginning of each session, the IDEPRIA tool and the GoPro microphone/camera were

tested to ensure that everything works properly during the evaluation. Then, a printed version

of the tasks was given to each of the participants, so they could start working on the tasks, one

after another. None of the participants met each other at any given moment during the evaluation,

because they all were scheduled for different date/times.

As mentioned in Chapter 4, the defined DSML has some requirements that the modelling must

comply with. To simplify this process, when starting a new project with the IDEPRIA CASE

tool, the tool generates a starting model with all the required elements, so the developers do not

have to worry or even know about them. A brief instruction on these was given to the participants

before the beginning of the tasks. Otherwise, they would not know what were the classes that

were already available at the beginning of tasks.

Chapter 5. Case-study evaluation 47

5.2.2 Think-Aloud sessions

All the participants are students pursuing a Master of Science in Computer Science at the Uni-

versity of Edinburgh, and they confirmed that they had experience on modelling UML Class

Diagrams. They finished the Software Design and Modelling course at the University, so they

have experience with the Model-Driven Development approach because they had generated Java

source code with one of the tools that they had used in the course.

5.2.2.1 Think-Aloud session of the first participant

In the first task, the participant moved the mouse to the Actions menu to try to add the first

class, but he could not find a way to add a class from that menu. Then, after thinking for about

20 seconds, he finally tried the right-click button on the canvas and found the menu item that

allowed him to create a class. The participant easily put the name of the class in the appropriate

box, and then he wondered what were the stereotypes available, and just skip that section. Then,

he looked to all the other elements available to customise the class, and he had no problems with

them. However, he mentioned that the confirmation screen that appeared after each successful

action was annoying because he had to click on the “OK” button each time. Also, he mentioned

that it was very uncomfortable the fact of having to close the interface that allowed him to create

a class to start adding attributes to that class.

Later, when the task required him to create an attribute, he easily found the appropriate menu

by right-clicking on the class that he had created. The interface provided was confusing to him

because he did not know what was the length field, which had an initial value of zero. Then,

after seeing the possible data types, he realised that the length was for the amount of characters or

digits of the current attribute. Once he understood this, he added and configured all the attributes

easily.

Another problem was raised when he tried to add an association because he was expecting the

CASE to require him to choose the other class to associate with, and the tool required him to

choose the data type and length for the associated member again. Finally, the last part of the task

required him to configure the association attribute to have automatically the ID of the authenti-

cated user, and he first opened the properties interface of that attribute, and then started looking

for a valid configuration. Then, when he reached the end of the interface, he found the check box

that should be ticked to set the isUserCreator stereotype.

In the second task, the participant started looking at each of the starter classes and attributes, and

Chapter 5. Case-study evaluation 48

when he saw the Users class he understood that some of these classes already solved the log-in

requirement. However, he did not know what were for the Modules and Shortcuts classes. Also,

when he was adding the attributes and classes to solve the tasks, he mentioned that it was a bit

awkward having to choose, for instance, the data type VARCHAR for an attribute that was required

to be a short string, according to the definition of the task. Additionally, he suggested that the

Person class should be renamed to UserPersonalInformation or something different because it

was confusing the fact of having two similar classes, Users and Persons.

Later, when the task asked him to configure specific behaviours, like the auto-setting of the crea-

tion date of the submissions, he was easily able to set up that kind of specifications. Then, when

he created the many-to-many association between users and courses, he properly configured the

isManyToMany stereotype, but he did not why the CASE showed him the option to put the is-

ManyToManyOwner as a customization of the associated attributes. Finally, to solve the video

player requirement, he remembered from the first task that he had seen a Video stereotype, so

he was able to configure the class properly. He suggested that video player stereotyped classes

should have a customised video to identify them more easily.

In the last task, he clicked at the Actions menu, then clicked on the “M2T generate application”

menu item, and then he requested the generation of the RIA. At that moment, an error appeared to

the participant because the classes did not have a value on the memberIdentifier required tagged

value. The participant left the current interface and then set a valid member identifier to each of

the created classes. Then, he requested the generation of RIA and downloaded the compressed

zip file to finish the last task of the Think-Aloud session.

5.2.2.2 Think-Aloud session of the second participant

This participant started the first task by clicking on the Actions, and then he found no way there

to add a class. Then, he continued looking at everything on the screen for 37 seconds and just

then he found the appropriate menu by pressing the right-click mouse button. Then, he added

easily the first class without even reading the entire screen. Later, to insert the first attribute, he

did not have much trouble because he understood from the beginning what were the data types,

length, decimal and default value field. However, he was confused about the fact of having to

tick or not the isUnique stereotype for the ID attribute of the User, given the fact that the attribute

was already ticked as a primary key. After thinking a little about it, he did not tick the check

box. While trying to see the maximum number of characters for a field, he complained about the

HTML spinner that allows to increase/decrease the numeric length field. Also, he forgot to set

Chapter 5. Case-study evaluation 49

the data type of the name attribute of the User class, and the CASE tool did not show him an error

about the mis-configuration when he saved the changes. The second class was easily created by

the participant.

To create the first association, he easily found the “Add association” menu item, but he was

very confused because the title of the interface provided to add the association was “Attribute

properties” rather than “Association properties”, and also because it was the same interface that

he had used when creating previous attributes. After seeing that title, he first though that there was

a bug with the CASE that did not show him the appropriate interface to create the association.

Then, he closed the interface and tried to add again the association, and as the same interface

appeared again, he assumed that he has to just look better to that interface to achieve the task.

Finally, he found at the end of the interface the two combo boxes that allowed him to define the

association by choosing the associated class and attribute.

He started the second task by looking at the User class, and after seeing that the username and

password attributes were there, he just assumed that the log-in feature was already done. Then,

he created first three empty classes Course, Submission, Membership; then he created the asso-

ciations between the Membership class and both, the Course and User classes. Later, he added

the association between the User and the Submission class to have a way to identify which user

submitted the assignment and for which course. He accomplished this task easily, and then re-

membered about the many to many check box that he had seen, so he opened the Membership

properties interface and ticked the isManyToMany stereotype. However, he did not tick the is-

manyToManyOwner check box of any of the foreign attributes created for the associations.

Furthermore, to make the system set the current user as the uploader of the submission and the

current system date/time as the one for the submission, he easily opened the properties interface

of both attributes and then found and tick the appropriate check boxes. For the video player

requirement, he did not know how to model it. Then, he first looked at the Actions menu, and as

he did not found a solution there, then he created a class just because there were no other options.

Subsequently, after clicking on the stereotypes combo box, he realised that the video player was

just a stereotype that should be attached to a given class. To finish, he chose the mp4 video type

and copied the source URL of the video.

Finally, the last task was easily accomplished by him because he had already seen the “M2T

generate application” menu item in the Actions menu. In that menu, he chose to generate the

RIA built with the Python programming language, then he read the description and clicked on

the button to generate the RIA. The missing member identifier error appeared (as it appeared to

Chapter 5. Case-study evaluation 50

the first participant), so he closed that interface and then changed the member identifier values of

all the classes that he had created. Finally, he was able to generate and download the compressed

RIA source code.

5.2.2.3 Think-Aloud session of the third participant

The third participant was a woman, which started by saying that the only possible available action

is to open the Actions menu, but there she did not find the option to create a new class. She kept

looking at the interface, and after some time she gave up, and I had to intervene to explain to her

that there were options that would appear after pressing the right-click mouse button. She was all

right with that but shared the idea that in Web applications the right-click is not a very common

because she normally uses the right-click mouse button to see available options provided by the

Web browser rather than to see options provided by the website.

Later, she was able to start the creation of the first class, but she was confused about the stereo-

types that were available to select, so she just left the default value to avoid making a mistake.

She was also confused about the data types because the definition of task asked her a “variable

length characters” and there was not a “string” type available. She guessed and picked the “VAR-

CHAR” data type (which is the appropriate one), and then, she easily understood that in the length

field she had to put the maximum number of characters that the attribute could have. Later, she

complained about the spinner because it was very complicated to click the upper arrow due to its

small size. Later, while creating the attribute for the identifier of the class, she was very happy

about the fact that the interface did not allow her to check the primary key check box when the

chosen data type for the attribute was not valid for a primary key (e.g.: a TEXT data type can not

be a primary key because the underlying database engines will not permit to index that kind of

large text fields). Then, before saving the new attribute, she was confused about the fact that the

button to save the attribute had the text “Save member” instead of “Save attribute”.

Later, she was wondering if she had to do anything special to customise the url attribute as a file

upload HTML form element. So, after looking at the properties interface of that attribute, she

decided to tick the appropriate “File-upload path field” check box. Then, she got to the part in

which an association had to be created. She found the option very easily by right-clicking on

the class, but then she was confused because the title of the provided interface was “Attribute

properties”, which was not the “Association”. However, even with that bug, she just continued

and tried to set the appropriate values of the association by choosing the correct values at the

foreign class and foreign attribute. After that, she easily understood which check box to check

Chapter 5. Case-study evaluation 51

make the system store the currently authenticated user as the creator of the “Files” instance.

For the second task, she looked at all the starter classes provided by IDEPRIA as an initial RIA

project, and she easily understood what was for the elements: Users, Persons, Profiles, Actions,

and its associations. However, she did not understand the purpose of the Modules and Shortcuts

classes. For the first part, after she saw the username and password attributes in the Users class,

she just assumed that the authentication requirement was already solved. After that, she started

solving the modelling problem by creating the appropriate Courses and Submissions classes.

Then, she easily creation the association to the already existing Users class. She did not add

a class to represent the membership of a user of a given course, and mentioned that by evaluating

to which courses a given user had sent submissions, it could be possible to know to which courses

a given user belongs to.

To assign the stereotypes isCreationDate and isUserCreator, she knew that she had to go to the

properties interface of the “submission date” and “uploader” attributes, respectively. In each

interface, she detailed went through all the possible customisation elements, and she easily found

which check box to tick for each attribute. For the file upload path, she already has done it before

in the first task, so she set the appropriate isFileUploadPath stereotype very fast.

Furthermore, to create the video player, she already knew that she had to add the HTML5 Video

stereotype to a given class, but she did not know to which one. Then, she just created a new

class for the video player and set the appropriate stereotype, video type and source URL. After

saving the class, she looked at the class and thought that something was wrong because the class

just showed an empty box with nothing inside, so she expressed that a better icon for Video

stereotyped classes would be great.

Finally, for the last task of generating the RIA, she had the same “missing attribute identifier”

problem that the previous two participants had. Then, she returned to the modelling screen and

fixed all the attribute identifier of all the classes that she had created, and then she was able to

generate and download the RIA.

5.2.3 Interview sessions

To remember to the reader, these were the two specific interview questions: 1. Do you believe

that the modelling elements provided by the IDEPRIA tool are enough to model just prototypes

of Web Applications? Why?; 2. How much effort and time did it take, or do you think it would

take, for you to feel confident using the tool to build something useful?

Chapter 5. Case-study evaluation 52

5.2.3.1 Interview to the first participant

The first participant started by saying that the associations in UML are between two classes, and

that is was weird having to create an attribute when he was trying to create an association. Ho-

wever, he said that the association that IDEPRIA allows you to create is a directed association

because it has an arrow icon. Then, he mentioned that for directed associations, it makes more

sense the attribute creation because it should be possible to specify the field that should be refer-

enced to the associated class. Nonetheless, he emphasised that IDEPRIA should not ask the data

types or anything else than just the attribute of the associated class.

For the first question, he said that rather than asking if there were enough design elements, I

should ask if there are not too many due to all the reserved modelling elements, e.g.: Users,

Profiles, Actions, among others. However, even though that these all elements are required by

the modelling, as the IDEPRIA project already provides all of them as an initial project, he

emphasised that he did not have to create any of them. He mentioned that he knows that some very

well-known frameworks for developing Web applications, such as Django, also provides some of

these features in new projects. Then, he said that these starter models could be advantageous just

to have them even if we do not use them at first because later we might need them.

Later, he added to the first answer that the file upload path field and the possibility to make

instances dependent on the authenticated user that created them are great features that are not

only useful for Web applications but to any type of applications as well. Then, after he saw the

generated RIA, he was amazed by the quality and the beautiful aspect of the RIA, because he

emphasised that he did not spend much time customising the RIA. Then, he concluded that for

prototypes of Web applications, this is great because in a prototype developers just want to check

if the requirements were meet with the created models, without having to spend much time in

modelling how the final application should look like.

For the second question, he just stated that as he finished the three tasks in less than 77 minutes,

he concluded that the tool is following the right path and that after fixing the issues detected

(usability and missing helping information), it could become a great tool in the future.

5.2.3.2 Interview to the second participant

This participant began mentioning that the tool looked good because there were no so many op-

tions available (just an Actions menu), and thus, it is hard to become lost with the tool. Also, he

mentioned that he had used Eclipse Papyrus and that it was very annoying because there were

Chapter 5. Case-study evaluation 53

so many menus with so many possible options and explorers (project explorer, model explorer,

overviews) at any moment, which made him a really complicated task know where to begin.

However, he mentioned that the right-click menu provided by IDEPRIA is hidden and that the

right-click menus in Web environments are common for Web browsers'actions rather than appli-

cations'actions.

The participant answered to the first question by saying that, for modelling prototypes RIAs,

there were a good average number of modelling elements. Nonetheless, he mentioned that there

are many elements missing that could be needed for the modelling of full RIAs, including Web

breadcrumbs, modelling of how to navigate between the different interfaces of the classes, and

how to display complex data structures such as graphs/trees.

For the second question, this participant was very happy because he was able to finish all the

Think-Aloud tasks in approximately 60 minutes. This was possible because, after just finishing

reading the three tasks, he thought that the second task was more challenging than the first one.

Also, he emphasised that when he used Eclipse Papyrus in the past, that tool took him about three

days to have some code generation working, and with IDEPRIA he generated the application

with just three clicks in less than two minutes. Nonetheless, he still believes that some tooltips or

helping information would be great in IDEPRIA because it is kind of difficult to know what are

for all the reserved stereotypes.

Finally, in the last open part of the interview I mentioned him that this tool only required him just

one diagram to be able to generate a RIA prototype, and when I was talking, he interrupted me to

mention that the minimalist approach of IDEPRIA (not so many options available and requiring

just one single diagram) is one of its best characteristics because that makes possible to easily

have something working without being lost in the process.

5.2.3.3 Interview to the third participant

The last participant started by mentioning that it is urgent for the IDEPRIA tool to have, at least in

the Actions menu, the options to add classes/attributes/associations because the menu that appears

after pressing the right-click mouse button is hidden and there was no way for her to know how

to add the first class.

Then, she answered the first question by saying that is very difficult to know if all the design

elements provided are or not enough for developing prototypes of RIAs because there might be

different needs for different requirements of RIAs. However, she said that having so many design

Chapter 5. Case-study evaluation 54

elements for all the possible requirements would decrease the usability of the tool because it

would be very difficult for developers to choose the right design element for a given case. Finally,

she concluded that the elements that she was able to set and customise during the modelling were

appropriate and that what she saw in the generated RIA exceeded her expectations.

In the second questions, she answered that with the IDEPRIA tool she had way better results than

with her previous experience with the Eclipse Papyrus modelling tool. Moreover, she said that she

was able to finish the tasks of the Think-Aloud session in about 90 minutes, but a task of similar

difficulty took her almost two days to finish it with Eclipse Papyrus. Also, she emphasised that

IDEPRIA have usability issues, but the tool can still be used easily because there are no many

options available all the time (in contrast with Eclipse Papyrus).

Furthermore, she said that the “missing identifier” error that appeared while she was trying to

generate the RIA was annoying because the “Generate RIA” interface allowed her to select the

output platform for the RIA, and just then the error appeared. In other words, she stated that the

interface should not allow her to do that given the fact that she will have to close in all cases that

interface to go and fix the error.

5.3 Case-study analysis

5.3.1 Qualitative data analysis

First, I checked that the data collected from the Think-Aloud sessions and the interviews are

not contradictory, to avoid using data that could invalidate the results. Then, after reading the

summaries of both, Think-Aloud sessions and interview sessions, I can confirm that the data

collected from both sources are not contradictory.

Then, after viewing again the videos recorded during the Think-Aloud sessions and reading the

notes taken at the interview sessions, it is evident that the participants experience many usability

issues while they were using IDEPRIA to solve the requested tasks. However, not all the usability

issues detected have the same severity level, and that is the reason why I decided to create the

following three categories to group the issues:

1. Low severity: usability issues that can be easily fixed, and probably with an obvious solu-

tion. These issues still permit to developers continue the modelling without much trouble.

2. Medium severity: usability issues that do not have an obvious solution because they might

Chapter 5. Case-study evaluation 55

be solved in different ways. Nonetheless, the developers understand the issue and can

continue working with the tool.

3. High severity: usability issues that do not permit to developers to use a given interface or

design element because they do not know what is that for. Also, to this category belongs

all the usability issues that do not allow to developers to continue using the tool for solving

a given problem.

Given the previous categories, the next listing describes all the usability issues detected during

the evaluation, the severity levels of each of them, and possible alternative solutions that could be

applied to solve those issues.

Low severity usability issues:

1. • Issue description: successful confirmation dialogue message that appears after saving-

/editing a class/attribute/association is frustrating because it requires to developers to

click on the “OK” button each single time.

• Alternative solution: remove the dialogue message when there are no errors, then,

the users will just assume that the element has been successfully saved. However,

if an error is detected, a dialogue message with the error should be displayed so the

developer can make the appropriate change.

2. • Issue description: No possibility to add attributes to classes from the interface pro-

vided to create/edit classes. Then, the developers have to close the current class inter-

face, go to the modelling canvas, right-click on the class, and then click again on the

menu item to add an attribute/association.

• Alternative solution: Instead of just providing a “save button” that just saves the ele-

ment and then closes the interface to customise that element, it could be a good idea

to have a shortcut button as well that changes the interface to the one that permits the

creation of attributes.

3. • Issue description: the “Users”and “Person” stereotyped classes are sometimes con-

fusing because developers do not know which one to use to represent a given user of

the system.

• Alternative solution: rename of the stereotyped class “Person” to “UserPersonalInfor-

mation”, because that is a more clear name for its purposes. Then, the only obvious

choice for users of the system would be the “Users” stereotyped class.

Chapter 5. Case-study evaluation 56

4. • Issue description: the icon provided to Video players are the same than the ones

provided for classes, and that does not help developers to recognise by just looking at

them.

• Alternative solution: creating a new icon similar to a video player, and replace the

standard class icon with this new one for classes that were stereotyped with the Video-

Class stereotype.

5. • Issue description: error of invalid model appears after selecting the desired output to

generate the prototype of the Rich Internet Application. Then, there is no point in

letting developers choose a given output if an error will eventually appear later.

• Alternative solution: this should be a process with two stages, in which the first one

should be automatic by showing the errors (if any) to the developer. Then, if no errors

were detected, it should be able to proceed to the second stage, in which the developer

can choose the appropriate output platform.

6. • Issue description: attributes can have the four possible boolean combinations of the

primary key and unique boolean fields. This is wrong because by definition a primary

key is unique.

• Alternative solution: if a developer mark a given field as primary key, it should auto-

matically mark the attribute as unique without even giving the possibility to developers

to change that fact.

7. • Issue description: the HTML spinner provided to change the length of an attribute

are difficult to use between their arrows are very little and close to each other, which

makes developers miss-clicking the appropriate arrow or the arrow at all.

• Alternative solution: change to a simple text input box that allows only numeric char-

acters between a given range.

8. • Issue description: the interface provided to create an association has as a title “Attri-

bute properties”.

• Alternative solution: the title should be renamed to “Association properties”.

9. • Issue description: the button to save the properties of a given attribute contained the

text “Save member”, rather than “Save attribute” or just “Save”.

• Alternative solution: Member is a term that is sometimes used in Java, but not for

modelling with UML. Then, that text should be changed to just “Save”.

Chapter 5. Case-study evaluation 57

Medium severity usability issues:

1. • Issue description: confusing default values on the fields provided to customise a given

class/attribute/association. For instance, the length field has a default value of zero

always.

• Alternative solution: never provide a default value of 0 for any field and set the diffe-

rent default values depending on the data type selected. For example, 250 for strings,

11 for integers, 25 for long integers, and so on.

2. • Issue description: the interface to create the association and the one to create an attri-

bute are the same. Then, it is not necessary to ask many fields (length, decimals, data

type) for associations because those values can be automatically obtained from the

associated foreign class and attribute

• Alternative solution: a new interface to create the association should be provided,

without asking developers for fields that can be automatically obtained.

3. • Issue description: too many possible data type values for attributes and difficulty to

understand the names of these data types.

• Alternative solution: all the currently provided data types should be analysed to see

if all of them are required. Instead of providing so many options for strings (CHAR,

VARCHAR, TEXT, LONG TEXT), it could just be better to have (STRING FIXED

LENGTH, STRING UNLIMITED LENGTH), which might end up being more un-

derstandable to developers because of the presence of the word “String” in the name.

Additionally, the length and decimal fields should be disabled for the unlimited one,

and the length field should be enabled and required for the fixed length version.

4. • Issue description: when the developers make a wrong configuration of a design ele-

ment or when they forgot to specify a required field (e.g.: data type of the attribute),

there is no any information shown about the error.

• Alternative solution: do not allow to save the design element when an error is detected.

Instead, show the error to the developer at that moment, and ask him to make the

appropriate change (e.g.: “please set a valid data type for the attribute”).

5. • Issue description: difficult to know at first sight how to model a video player. The only

current way is to specify the stereotype “HTML5 Video” while creating/modifying a

given class.

Chapter 5. Case-study evaluation 58

• Alternative solution: Create one more option in the Actions and in the right-click

options menu that permits the creation of video players by asking just the video type

and the video source, without asking many of the other common elements available

for traditional classes.

High severity usability issues:

1. • Issue description: the list of options that appear after pressing the right-click mouse

button is not easy not find. Moreover, for web applications, the options that appear

after pressing the right-click are normally related to Browsers'actions, rather than Web

applications'actions.

• Alternative solution: add menu items to the already available Actions menu. These

menu items should permit the creation of the core design elements: classes, attributes,

associations. Also, for access to the properties interfaces of the classes and attribu-

tes, a small “edit” icon can be added to these elements to avoid having to perform

necessarily a right click on them.

2. • Issue description: some fields of the interfaces that allow to customising the class-

es/attributes/associations could not be understood by the developers. For instance:

the length field of an attribute, or the isManyToManyOwner stereotypes.

• Alternative solution: provide a tooltip icon next to each of the labels of the fields.

Then, if the developer put the mouse over those icons, a help information screen will

show up to the developer to explain what it is for and a simple usage example.

3. • Issue description: some predefined stereotyped classes (e.g.: shortcuts and modules)

can not be easily understood by the developers when they see them.

• Alternative solution: provide a tooltip with an “information icon” that would display

information about those stereotypes when the developers put the mouse over those

icons.

The reader can see that the evaluation performed identified seventeen usability issues. Nine of

them belongs to the low severity group, five of them to the medium severity group, and only three

of them to the high severity group. These are significant issues that make it difficult to use the

IDEPRIA tool. The third participant could not even continue at the beginning of the task due to

hidden right-lick menu option. Nonetheless, even with all these usability issues, the participants

expressed in the interviews that they were able to successfully finish the tasks in a reasonable

time.

Chapter 5. Case-study evaluation 59

Some of the participants even compared their modelling experience with other modelling tools

(e.g.: Eclipse Papyrus) that they had used and then concluded that the simplicity of IDEPRIA

is one of its best attributes. Also, they said that this simplicity is due to the appropriate average

number of modelling elements provided by the tool, and the fact that there are not so many

available options at every single moment.

Some of the participants emphasised that starter classes and features provided by an initial IDE-

PRIA modelling project could save person-hours because these are features that are typically

required while developing Web applications, for instance, the users class with the login and re-

gister features. Additionally, they said that it was pretty amazing the RIA that they obtained from

the models that they had created.

To summarise the results obtained, the tool has at least seventeen usability issues, and there can

be more than have not been detected. The three participants were able to finish the tasks that

were assigned to them in a reasonable time, which means that they were able to learn and use the

modelling elements to build a prototype of a Rich Internet Application. Also, three participants

are not enough to prove the hypothesis, but I can conclude that the IDEPRIA tool, which has

been developed from the scratch, obtained promising results because it was successfully used

by three of its target users to develop a prototype of a Rich Internet Application without much

trouble. Then, it might worth trying applying the solutions to the detected issues, and continue

performing further evaluations to see if better results could be obtained in the future.

Chapter 6

Conclusions

This final chapter shows to the reader remarks of what I have achieved in this master thesis and

some suggestions of what could still be done to continue this research.

The first section presents a summary of this research and the work done during the development

of this project.

The second section describes the general conclusions obtained mainly from the feedback and

analysis of the case-study evaluation.

The third section lists the main contributions of this master thesis.

Finally, the fourth section provides suggestions for further work that could contribute to the state

of the art of the research area of this master thesis.

6.1 Summary of the work done

First, this research started with a review of the literature related to Rich Internet Applications and

Model-Driven Development. After reviewing them, I was able to understand the importance of

the prototypes of Rich Internet Applications, and how the development of this kind of application

could be improved and accelerated by following different possible Model-Driven Development

approaches.

I reviewed the state of the art of the current MDD approaches and its CASE tools. The information

was not only obtained from formal sources of the literature, but also from each of the websites

of the tools, which explained how the CASE tools worked and for which purposes they were

60

Chapter 6. Conclusions 61

appropriate for. Then, I realised a simple comparative analysis between these tools, whose result

was that none of the tools met all the criteria that were previously defined. After this results, I

concluded that a new MDD Web CASE tool for developing prototypes of RIAs could still be a

good way to contribute to the state-of-the-art.

Later, the more time-consuming part of this project started: the design and development of the

Web CASE tool and its ability to generate a ready-to-deploy prototype of a RIA. Summarising,

the project is the combination of these four software components:

1. The Domain-Specific Modelling Language: the modelling language created to permit the

modelling of prototypes of RIAs. This new modelling language was defined using UML

Profiles, which are just an extension of the standard UML. The Profile UML defined in-

cludes more than 100 design elements created with Eclipse Papyrus, including stereotypes,

enumerations, literals and tagged values.

2. The Web CASE tool: the software tool named IDEPRIA, which was developed to pro-

vide support for the design elements defined in the Domain-Specific Modelling Language.

The development of this tool included the back-end developed in Python with the Tornado

framework, and also the front-end, which used mainly the KineticJS framework to manip-

ulate the HTML5 Canvas. The final version of CASE tool consists of 71 files that contain a

little more than 10.000 lines of code that I wrote in JavaScript, Python, HTML, CSS, SQL.

This count number does not include any framework or external package.

3. The Model-to-Text transformation software: the software that transforms a given mo-

delling project into a given output source code. This was integrated into the CASE tool,

so the Web interface could provide a way to the end-users to generate the modelled RIA.

This software consists of 4 files that contain around 250 lines of code in Python. This count

number does not include any framework or external package.

4. Templates for a ready-to-deploy Rich Internet Application: as the CASE tool provided

had to be able to generate a RIA, I had to first develop a sample and working application to

transform it into generic templates that could then be used by the M2T software to generate

the modelled RIA. This sample application included the development of a Python back-end

and a front-end that used the ExtJS framework. The final template obtained to generate the

RIAs consists in 56 files that contain a little more than 5.100 lines of code that I wrote in

JavaScript, Python, HTML, CSS. This count number does not include any framework or

external package, but it includes some lines of code taken from the ExtJS website for the

front-end of the RIA.

Chapter 6. Conclusions 62

The number of design elements of the DSML and total lines of numbers of the other three com-

ponents was provided to show to the reader an approximation of the amount of work performed.

Also, the CASE tool, the M2T transformation software, the templates for the RIA, and all the

libraries and frameworks together consist of 334 files that contain 490.494 lines of code. All the

previously mentioned source lines of code counts were calculated using “CLOCK”1.

Once finished the development of the four core components, I started the design of the case-study,

which was executed to evaluate the work done and to see if the hypothesis could be verified.

The case-study was developed by following the case-study framework described in [Runeson

et al., 2012]. The case-study was mainly about having Informatics students using the tool to

accomplish some tasks while following a Think-Aloud protocol. At the end of each of the Think-

Aloud sessions, the participants had a timeglass style interview with me.

All the results obtained from the Think-Aloud sessions and interviews were summarised and anal-

ysed to validate the status of the hypothesis defined at the beginning of this master thesis.

6.2 Main contributions of this project

I performed a global analysis of this master thesis, and I concluded that these were the main

contributions:

1. A summary of the background of the topics related to Rich Internet Applications and

Model-Driven development.

2. A simple comparative analysis of current MDD approaches and tools that permit the design

and development of Rich Internet Applications.

3. A Web CASE tool that allows the modelling and development of Rich Internet Applications

by requiring just one extended UML Class Diagram.

4. A Model-to-Text transformation software that permits the transformation of models that

were created with the defined Domain-Specific Modelling Language, into a set of source

code files and static libraries that together represent a prototype of the modelled Rich Inter-

net Application.

5. A case-study evaluation which showed that even when the IDEPRIA Web CASE tool does

not provide the best possible user experience, average Informatics students were able to use

1 CLOC - counter of lines of code: http://cloc.sourceforge.net/

http://cloc.sourceforge.net/

Chapter 6. Conclusions 63

the tool for modelling and building a simple Rich Internet Application in a reasonable time.

This fact does not prove the hypothesis, but it is a promising result that can be used as a

baseline for further related researches.

6.3 General conclusions

RIAs are a great solution for developing Web software systems because they provide features

that improve the overall end-user experience. The development of this kind of Web applications

can be accelerated by following Model-Driven Development approaches, which often provide

CASE tools that can transform models into the source code of these Web applications. During

this master thesis, I was able to see the advantages and drawbacks of many currently available

MDD approaches aimed to simplify the development of RIAs. All of these are different in many

ways, which makes them an appropriate solution for some specific problems. However, after

performing a comparative evaluation, I detected that some evaluation criteria were not met by all

of them, including: numbers of models required, availability of a Web CASE tool, possibility to

generate many possible outputs from one model, and others that were mentioned in Chapter 3.

During the development of the case-study evaluation, I discovered that the first version of my Web

CASE tool had 17 usability issues. Most of these issues did not cause a really bad impact, and

their solutions are straightforward, e.g.: removing the dialogue with the confirmation message

that appears after saving a class/attribute. However, there were a few issues that could have

a bigger impact, for instance, at first they did not know what were the “reserved” stereotypes,

and as there was no helpful information that explained what they were for, the participants just

avoided those stereotypes.

Notwithstanding all the usability issues that I detected in IDEPRIA, all the three participants

were able to successfully finish the modelling tasks that they were asked for in the Think-Aloud

sessions. Additionally, they were able to finish the three tasks in reasonable times. In other

words, the IDEPRIA tool, even with all its detected problems, provided at least the minimum

features that permitted to the participants learn and use the tool to solve a simple modelling case

in a reasonable amount of time. Also, the three participants were able to see and use the RIA

prototype that was generated from their models.

Furthermore, as a result of the interviews, I was able to confirm that the participants enjoyed

the fact they just had to create one modelling project that looked pretty similar to a UML Class

Diagram. They mentioned that it was the first time that they were able to create a UML model

Chapter 6. Conclusions 64

within a Web environment, and they, as potential future real-end users of the tool, believe that the

minimalist style of IDEPRIA is one of their best qualities, because they said that they had tried

other CASE tools in which they do not even how to start because of the many available options

at any given moment.

I would like to emphasise that, as IDEPRIA is a new tool developed from the scratch, it is the

first time that it has been used as a part of a case-study evaluation. Also, as stated in the previous

chapter, promising results were obtained, and I conclude that it is worth trying solving the minor

issues and proposing new alternatives to the more important usability issues that were detected to

obtain even better results the next time.

6.4 Suggestions for further work

Given the literature reviewed, the implementations of the CASE tool and the results obtained

during this master thesis journey, this section describes possibles further works that could be

done in to contribute to this research area.

First, all the usability problems that were detected during the Think-Aloud sessions should be

analysed in depth to propose the appropriate changes that could improve the IDEPRIA tool. The

case-study evaluation was performed only with three participants due to the amount of work that

took the development of the four core elements of this project and the time constraints of this

master thesis, then, it is vital to perform more sessions to obtain results that could lead to a more

robust conclusion.

Given the fact that there are too many possible elements that could be provided by a DSML aimed

for the modelling of RIAs, it could be a great idea to prepare an online Web-based survey to ask to

software developers, that have experience with modelling and Web development, to rank which

Web elements they believe that should be possible to model and customise with a given MDD

CASE tool. The results of these survey can be used to refactor the developed Domain-Specific

Modelling Language.

Mobile applications are as well another kind of applications that could be developed by following

a MDD approach. Given the fact that the IDEPRIA tool is already able to generate the back-

end API of the RIA, it could be a great further work to create templates that could transform

the models into into source code of mobile applications (iOS, Android, WindowsPhone, among

others) that interacts with the already provided back-end API. Also, the DSML could be extended

Chapter 6. Conclusions 65

(or even a new DSML could be created from scratch) to provide design elements aimed at the

modelling and development of mobile applications.

Additionally, there is another approach that might be combined with what I have done for this

master thesis: Model-based Test-Driven Development (MbTDD). Model-based testing is a tech-

nique that permits the automatic generation of highly qualitative tests for a given system, which

could reduce the number of bugs, the testing duration, and the testing costs [Mou and Ratiu,

2012]. It could be interesting to evaluate the possibility of adding test modelling elements to the

DSML to provide support for the automatic generation of ready-to-deploy testing components of

the developed RIA. [Baerisch, 2010] describes how Domain-Specific Modelling Testing could be

implemented in practice.

Finally, the fact that the IDEPRIA tool only provides support to one user at a time to edit a given

modelling project categorises it as a single-user CASE. Single-user CASE tools have become a

productivity bottleneck because it does not provide interfaces for simultaneous editing of models

by a collaborative team [Red et al., 2014]. Then, it could be an exciting project to evaluate the

possibility of having multiples users modifying a given modelling project at the same time. Then,

if the advantages are worth trying, the IDEPRIA CASE tool could be redesigned and refactored

to provide a real-time collaborative modelling feature.

Appendix A

Detailed RIA DSML description

This appendix describes in detail and justifies all the modelling elements included in the Domain-

Specific Modelling Language shown in Chapter 4. This information was put in this appendix so

the reader can refer to this information just when needed.

A.1 IDEPRIA Project

This section describes the stereotype Project, which extends from the UML meta-class Project.

This Project stereotype, shown in Figure 4.1, represents a project in which a RIA can be modelled

using the IDEPRIA tool, and has attached the following tagged values:

1. projectID: integer identifier of a given project.

2. creationDate: the creation date of the project.

3. autoSave: boolean that determines if a given project should be saved automatically.

4. autoSaveSeconds: the number of seconds that should be waited before automatically saving

the project again. This value is only used if the autoSave attribute is true.

5. width: the width of the HTML5 canvas in which the end-user design the project.

6. height: the height of the HTML5 canvas in which the end-user design the project.

66

Appendix A. Detailed RIA DSML description 67

A.2 IDEPRIA Classes

This section describes the stereotypes that extend from the UML meta-class Class, which are

shown in Figure 4.2. The abstract stereotype ClassIDEPRIA, from which extends all the other

stereotypes, represents a simple extension of a UML class, but which has attached the following

tagged values:

1. classID: integer identifier of a given ClassIDEPRIA.

2. windowsWidth: the width of the section of the RIA that will be generated, that will permit

to end-users operate with instances of this stereotype.

3. windowsHeight: the height of the section of the RIA that will be generated, that will permit

to end-users operate with instances of this stereotype.

There are two specialisation stereotypes that extend from the stereotype ClassIDEPRIA:

1. VideoClass: this stereotype is defined to simplify the modelling of Web video players,

so the M2T software can generate windows that allow end-users to play/stop a given video

inside the RIA. This stereotype requires two tagged values to work: the videoSource, which

should contain the URL to the video so it is possible to know which video should be played;

and the videoType, so the Web client (e.g.: Web browser) can properly play a specific type

of video. This stereotype was added because multimedia elements are a core feature of the

RIAs [Busch and Koch, 2009].

2. NormalClass: a general purpose stereotype that can be used to specify some behaviours by

attaching to it the following tagged values:

• memberIdentifier: reference to an IDEPRIA attribute. This tagged value specifies

which attribute contains the content that identifies a given instance of the Normal-

Class. This is very useful when choosing associations within the RIA, e.g.: when

using a Web combo box. For instance, if a class User can have many Product ins-

tances associated, and the products should be displayed in a combo box, then, the

attribute name of the class Product should be the memberIdentifier of the class Pro-

duct to display the value contained in the attribute name in the Web combo box.

• memberPrivacy: a stereotyped NormalClass can have zero, one or more UserID attri-

butes. The designer can optionally pick one of them to be the attribute that defines

the user who owns a given instance of the NormalClass. Then, if this tagged value is

set, an authenticated user in the generated application will be able to modify, read or

Appendix A. Detailed RIA DSML description 68

delete only the instances that were previously created by the same authenticated user.

This definition was added because it might be useful for RIAs that should have class

instances with restricted user permissions.

• layoutType: a basic customization of the RIA that defines in how many columns

should appear all the HTML form elements that will allow a given end-user to create

or update a given instance of the class. The possibles values are defined in the Class-

LayoutType enumeration: one, two or three columns of HTML form elements.

• isManyToMany: The many-to-many (M2M) cardinality refers to a relationship bet-

ween two classes, in which any of the instances of one class can be associated to any

of the instances of the other class, and vice-versa. This attribute should be set to true

only if the class contains two IDEPRIA attributes that are tagged with isForeignKey

equal to true. This attribute was added because the M2T software needs to know

the M2M classes to create a specific RIA front-end interface so that the end-user can

manage that relationship within the application.

• generateCRUD: If this tag is true, then, the M2T will generate a RIA interface that

will allow to end-users the management of the instances of the class. Otherwise, only

the persistent database schema for the class will be generated, excluding the Web

services and Web user interfaces. This could be useful for RIAs that needs to store

information in the database but without providing a particular Web interface to the

end-user.

Additionally, Figure 4.2 shows the definition of the abstract stereotype ReservedClass, which

extends from NormalClass and it is used as a generalisation of all the required stereotypes to

design a fully working RIA. The following listings describe the required stereotypes that extend

from ReservedClass, and each one of its corresponding required IDEPRIA attributes. Before

beginning the description, it is important for the reader to know that the IDEPRIA attributes that

are used in Figure 4.2, are defined in Figures 4.3, 4.4, 4.5, 4.6. However, the IDEPRIA attributes

are going to be described now to make it easier for the reader to understand the relationship that

each of them has with all the stereotypes that extend from ReservedClass.

1. User: stereotype to represent the users that will be able to log-in into the RIA and use the

application as an authenticated user. These are the ten attributes of this stereotype, which

are a reference to extensions of the AttributeIDEPRIA stereotype:

• userID: the unique identifier of each User instance.

Appendix A. Detailed RIA DSML description 69

• username: the string username that the RIA end-user will use to log-in into the gene-

rated RIA.

• password: the string password that the RIA end-user will use to log-in into the gene-

rated RIA.

• isAdmin: the boolean that determines if the user instance is an administrator of the

system or just a typical user. If a user instance has a true value in this attribute, then,

that user will have no restrictions when executing Web services that might require

special permissions.

• wallpaper: the URL that points to the wallpaper image that will appear in the RIA

to the logged user. This attribute was added just so the end-users can customise a bit

more the appearance of the RIAs.

• stretchWallpaper: the boolean that defines if the wallpaper image should be stretched

or not before showing it to the logged user. This attribute was added just so the end-

users can customise a bit more the appearance of the RIAs

• isEnabled: the boolean that determines if a given user is or not enabled to use the

RIA. If an instance has a false value, then, that user instance will not be able to log-in

into the RIA. This attribute was added because it could be very useful for a system

administrator to restrict the access to the RIA to a particular end-user.

• registrationDate: the date in which the end-user entered to the system for the first

time. This attribute was added because sometimes it could be useful to know when

users start using the RIA.

• theme: the string name of the look and feel used that should be used for a particular

user. Useful for users to customise the way the RIA looks by just changing this value.

Currently, there is only one theme called neptune.

• language: the ISO 639-1 standard1 code of the preferred language of the user. This

attribute was added to provide to the users an easy way to change the preferred lan-

guage once new languages are available in the system. Currently, for testing purposes,

the two languages supported are: English (code: “en”) and Spanish (code: “es”).

2. Person: stereotype to represent the personal information of a given User. This stereotype

was added to provide flexibility to future possibles users' personal information that could

1 Standard ISO 639-2: https://en.wikipedia.org/wiki/List_of_ISO_639-2_codes

https://en.wikipedia.org/wiki/List_of_ISO_639-2_codes

Appendix A. Detailed RIA DSML description 70

be required, so if a new user information is required in the future, then just the Person

should be affected without modifying the User, which contains sensitive information like

the password of the user. All of its three attributes are a reference to stereotyped IDEPRIA

attributes that represents:

• personID: the unique identifier of each Person instance.

• personName: the string full name of the person.

• personUser: the system User that owns the information of this person.

3. Profile: stereotype to represent the different profiles that one of more users could have in the

RIA. Different users can belong to different profiles, and each profile allows the possibility

of execution of one or more actions. All of its two attributes are a reference to stereotyped

IDEPRIA attributes that represents:

• profileID: the unique identifier of each Profile instance.

• profileName: the string name of the profile, so a given system administrator can assign

a named profile to one or more users.

4. Action: stereotype to represent the Action that a given user can perform. An administrator

user can assign a set of named actions to one or more profiles. Then, if a given user belongs

to a given profile, that user will be able to run the actions enabled by that profile. All of its

three attributes are a reference to stereotyped IDEPRIA attributes that represents:

• actionID: the unique identifier of each Action instance.

• actionName: the string name to identify a given action.

• actionModule: the Module that will be affected when an user executes this action.

5. UserProfile: stereotype to represent the fact that a given user can belong to zero or more

profiles and vice-versa. Only a system administrator user can make profile assignments

to users. All of its two attributes are a reference to stereotyped IDEPRIA attributes that

represents:

• upUser: the User that belongs to the given upProfile.

• upProfile: the Profile that will give the possibility to execute a set of actions to the

upUser.

6. ProfileAction: stereotype to represent the that a given Action is allowed to be executed by

users that belong to a given Profile. All of its two attributes are a reference to stereotyped

Appendix A. Detailed RIA DSML description 71

IDEPRIA attributes that represents:

• paProfile: the Profile that that now will permit users to execute the paAction action.

• paAction: the action that should be permitted to run by users that belongs to the profile

paProfile.

7. Module: stereotype to represent the different modelled classes for a given RIA project.

One module instance will be generated by the M2T software for each of the modelled

classes, and each of these instances can be used generate the four different actions (CRUD

operations) that can then be attached to one or more profiles.

• moduleID: the unique identifier of each Module instance.

• moduleName: the name of the module.

• desktopIcon: the URL of a larger icon for the module.

• applicationIcon: the URL of the smaller icon for the module.

• jsFile: the URL of the JavaScript file that contains the front-end source code that will

allow end-users manage the instances of a given module. This was added to allow

loading of modules of the generated RIA in parts just when needed, without having to

load all the modules at the beginning of the RIA and reducing starting latency.

• clientID: the internal identification code used by the JavaScript front-end source code

to launch a given module and display it to the end-user in the Web client.

8. Shortcut: stereotype to represent shortcuts of the modules that might or not be available

in different sections of the RIAs for a given user. These shortcuts determine if a given

module of the RIA will be accessible from two different places (desktop or quick launch).

The M2T software can determine the definition of desktop and quick launch to generate the

appropriate ways that will be available to the final user to interact with a given module.

• shortcutID: the unique identifier of each Shortcut instance.

• isVisibleOnDesktop: the boolean to determine if the module icon should be visible or

not on the desktop of the RIA.

• isVisibleOnQL: the boolean to determine if the module icon should be visible or not

on the quick launch of the RIA.

• shortcutModule: the Module manager that should be displayed to the user after cli-

cking on the shortcut icon.

Appendix A. Detailed RIA DSML description 72

• shortcutUser: the User to which should be visible or not the module shortcut icon.

A.3 IDEPRIA Attributes

This section describes the stereotypes that extend from the UML meta-class Property, which are

shown in Figure 4.3. The abstract stereotype AttributeIDEPRIA, represents a simple extension of

a UML property to which it is possible to attach the following tagged values:

1. attributeDatatype: data type of the attribute. The possibles values are defined in the enu-

meration AttributeDatatypes. These type literals were obtained from the MySQL website2,

and the same restrictions described on each type will be applied. This will allow the persis-

tent storage of full instances in database engines like MySQL.

2. isFileUploadPath: boolean property that determines if the RIA form should display this

field as an HTML file picker that will permit a user to upload files. Then, if a file is

submitted, it will be locally stored on the back-end Web server, and this attribute will store

the URL that will permit the access to the file. This file upload feature is very useful for

file-management-oriented RIAs.

3. isManyToManyOwner: when a class has the tagged value isManyToMany equals to true,

then it is possible to define if only one of attributes owns the other one, or if they both

owns each other. This boolean is useful for the M2T software so it is possible to know

which Web services and front-end functionalities should be provided to the end-user. If

the two members, A and B, are marked as manyToManyOwners, then, the management

Web services that will be generated are CRUD operations of B instances for any given A

instance and vice-versa.

4. isModificationDate: boolean that represents that this attribute will have the current date

after an instance is created or after the modification of any of the attributes of the instance.

Then, that instance will always have the last modification date of the instance in this attri-

bute.

5. isCreationDate: boolean that represents that when an instance is created, then, that instance

will automatically have the current date in this attribute.

6. allowNull: boolean that determines if an instance of this attribute will be allowed to have

the null (empty) value.

2 MySQL data types: https://dev.mysql.com/doc/refman/5.7/en/data-types.html

https://dev.mysql.com/doc/refman/5.7/en/data-types.html

Appendix A. Detailed RIA DSML description 73

7. isPrimaryKey: boolean that determines if this attribute will be the primary key of the class,

which then will be used for many purposes, including the definition of the primary key

column of the class table.

8. isForeignKey: boolean that determines if this attribute is a foreign key from another instance.

This will be used to allow an end-user to choose which attribute instance of the foreign class

should be associated with the current class.

9. isAutoincrement: boolean that determines if the value of this attribute is going to be auto-

matically assigned by the database engine by auto-incrementing the value.

10. isUnique: boolean that establishes that two different instances of the same class could not

have the same value in this attribute.

11. attributeID: integer identifier of this attribute.

12. attributeLength: integer value that defines the size of the number data types (Integer, Tiny-

Integer, SmallInteger, BigInteger, DecimalNumber, MoneyNumber) and the length of the

string data types (Char, VarChar) shown in the AttributeDatatypes.

13. attributeDecimals: number of digits that are going to be considered as decimals of the

number. This stereotype only applies to attributes that have the attributeDatatype equals to

DecimalNumber or MoneyNumber.

14. attributeDefaultValue: this is a string value that will be used as default value for this attri-

bute, in case that no value has been provided to it when creating the instance. If the data

type of this attribute is not string, then, a casting to the proper data type will be tried.

Figures 4.4, 4.5, 4.6 define extensions to the already described stereotype AttributeIDEPRIA.

Mostly, these stereotypes are the ones used as tagged values attached to the stereotypes that

extend from ReservedClass stereotype, which were already described when explaining the Re-

servedClass stereotype. The following listing provides the name of all of them:

• ActionID, ActionName, which extend from the abstract stereotype ActionAttribute.

• ShortcutID, isVisibleOnDesktop, isVisibleOnQuickLaunch, which extend from the abstract

stereotype ShortcutAttribute.

• ProfileID, ProfileName, which extend from the abstract stereotype ProfileAttribute.

• UserID, UserName, UserPassword, UserWallpaper, UserStretchWallpaper, UserIsEnabled,

UserRegistrationDate, UserTheme, UserLanguage, UserIsadmin, which extend from the

Appendix A. Detailed RIA DSML description 74

abstract stereotype UserAttribute.

• PersonID, PersonName, which extend from the abstract stereotype PersonAttribute.

• ModuleID, ModuleName, ModuleDesktopIcon, ModuleApplicationIcon, ModuleJSFile, Mod-

uleClientID, which extend from the abstract stereotype ModuleAttribute.

Additionally, the UserID stereotype, shown in Figure 4.5, has two tagged values useful to define

the following specific behaviours:

1. isUserCreator: this represents that the UserID attribute is an attribute of a class that will

always have as value the reference to the currently authenticated user of the RIA. This

stereotype is very useful for RIAs that want to keep track of which user created a given

instance.

2. isUserModifier: similar to the isUserCreator, but now this attribute will keep track of the

last authenticated user that modified a given instance.

Appendix B

Example of a M2T configuration file

1 {
2 "id": 23,

3 "shortname": "pyextjs",

4 "name": "Python back -end + ExtJS front -end + MySQL",

5 "description": "Generates the RIA in a compressed .zip file",

6

7 "static": [{
8 "type": "folder", "src": "static/", "dst": "static/"

9 }],
10

11 "templates": [{
12 "src": "Login.jinja2", "dst": "Login.py"

13 }],
14

15 "permodule": [{
16 "tpl": "model.jinja2",

17 "dst": "models/$modname$.py",

18 "options": [{"name":"capitalize"}]
19 }]
20 }

Listing B.1: Example of a M2T configuration file.

75

Appendix C

Example of a JINJA2 template

1 CREATE SCHEMA IF NOT EXISTS ‘{{ toLower(project.name) }}‘ DEFAULT CHARACTER

SET utf8 COLLATE utf8_general_ci ;

2 USE ‘{{ toLower(project.name) }}‘ ;

3

4 -- ------------- --

5 -- FOREIGN KEYS --

6 -- ------------- --

7

8 {% for module in project.modules %}{% if module.type != "HTML5 Video" %}{%
for member in module.members %}{% for relation in member.relations

%}ALTER TABLE ‘{{ toLower(relation.memberAsoc.module.name) }}‘ ADD

CONSTRAINT ‘{{ toLower(relation.getFkName()) }}‘ FOREIGN KEY (‘{{
relation.memberAsoc.name }}‘) REFERENCES ‘{{
toLower(relation.memberOwner.module.name) }}‘ (‘{{
relation.memberOwner.name }}‘) ON DELETE CASCADE ON UPDATE CASCADE;

9 {% endfor %}{% endfor %}{% endif %}{% endfor %}

Listing C.1: MySQL Database schema - JINJA2 template

76

77

Appendix D. Consent form for the Think-Aloud sessions 78

Appendix D

Consent form for the Think-Aloud sessions
	

	

Consent	Form	
Project:	A	Model-Driven	Development	environment	for	rapid	prototyping	of	

Rich	Internet	Applications	
Researcher:	Victor	Cajes	Gonzalez	
University	Tutor:	Perdita	Stevens	
	
Researcher	address:	11	Ascham	Court,	EH8	9LQ,	Edinburgh	
Email:	s1600253@sms.ed.ac.uk							Mobile	number:	+447460670388	
	
If	you	agree,	please	tick	all	the	following	boxes:	
	

1. I	agree	to	take	part	in	the	above	study.	The	study	includes:	
a. Being	a	participant	of	a	Think-Aloud	session.	
b. Being	interviewed	about	the	Think-Aloud	session.	
c. Filling	a	questionnaire	at	the	end	of	the	interview.	

	
	

2. I	understand	that	taking	part	is	my	choice.	
I	do	not	have	to	take	part	and	I	can	stop	at	any	time.		
I	understand	that	I	do	not	have	to	give	a	reason	for	changing	my	mind.	
If	I	stop	doing	the	study,	it	will	not	affect	my	legal	rights.	

	
	

3. I	understand	that	all	the	information	collected	will	be	written	in	the	
researcher’s	master	thesis	book	and	other	possible	reports/publications.	
Also,	reports	and	publications	will	not	use	my	real	name.	
No	one	will	know	who	I	am	from	the	information	in	reports.	
	

4. I	understand	and	consent	to	my	Think-Aloud	session	and	interview	
being	audio-recorded	and	video-recorded.	
	
	

5. I	understand	that	direct,	anonymised	quotes	from	my	interview	
may	be	used	to	illustrate	findings	in	reports	or	publications.	
	
	

6. I	understand	that	sections	of	data	collected	during	the	study	may	be	looked	
at	by	responsible	individuals	from	the	University	of	Edinburgh	or	from	
regulatory	authorities,	where	it	is	relevant	to	my	taking	part	in	the	study.	
I	give	permission	for	these	people	to	have	access	to	this	data.	
	
	

7. I	agree	to	take	part	in	the	study.	
	
	
	
	
										________________________________											___________________________	
																						Name	of	the	participant																														Signature	of	the	participant	

Appendix E

Think-Aloud Task definitions

E.1 Task 1

Create one class named “Users”, which should have the following attributes:

1. id: an integer that should be incrementally auto-allocated by the system. This is the attribute

that uniquely identifies an user of the system.

2. name: a variable length characters. The maximum possible number of characters are 80.

This is the name of the user.

Create one class named “Files”, which should have the following attributes:

1. id: an integer that should be incrementally auto-allocated by the system. This is the attribute

that uniquely identifies a file uploaded by the user.

2. filepath: a string that represents the file path of the uploaded file by the currently logged-in

user. The maximum possible number of characters are 255.

Create one association named “uploader” in the class “Files”, which should reference to the id
attribute of the Users class. In other words, the class “Files” should have an integer attribute

named “uploader” that is a Foreign Key that references to the id attribute of the Users class. Also,

when a given logged-in authenticated user creates one “Files” instance in the system, the value of

this attribute should be automatically set by the system to the id of the current authenticated user.

79

Appendix E. Think-Aloud Task definitions 80

E.2 Task 2

This task ask you to design and develop a prototype of a Rich Internet Application using the IDE-

PRIA tool. This application should allow users to join to courses, and also, to submit assignments

to those courses. The Rich Internet Application should meet the following requirements:

1. All the users of the system should be able to authenticate with their username and password

before they can start using the system. Also, it should be the possibility to identify which

users of the system are administrators and which ones are not.

2. It should be possible to store the following personal information for each of the users:

name, email, personal document number, address, phone number.

3. There should be the possibility to create/modify courses that have a string code of 10 fixed

characters that uniquely identifies them, a short string name, and a level of difficulty rep-

resented as an integer number between 1 and 10. Observations: these courses are always

active, and are not date/time dependent, so any user can join/leave the course at any mo-

ment. Also, there is not need to keep track of the specific date-time when an user joins to

or leaves from a given course.

4. The users should be able to submit assignments, which consists on an auto-increment in-

teger identifier, a title for the submission, a long text where the user can input the details

of the submission, a date-time of the submission and one string field with a maximum of

255 characters that will store the URL to one optional file that the user can upload with the

submission.

5. When an authenticated user makes a submission, the system automatically should save

the identifier of the user that made the submission and should set the current time as the

submission date-time.

6. Finally, the system should provide a video player that shows a video that explains how

to use the system. The video was already made, its format is mp4 and the URL link is:

http://www.sample-videos.com/video/mp4/480/big_buck_bunny_480p_1mb.mp4

E.3 Task 3

This task ask you to use the IDEPRIA tool to generate and download the ready-to-deploy source

code of the Rich Internet Application that you have designed.

http://www.sample-videos.com/video/mp4/480/big_buck_bunny_480p_1mb.mp4

81

Appendix F. Case-study questionnaire 82

Appendix F

Case-study questionnaire

	
IDEPRIA	Evaluation	Questionnaire	
	
Consent	statement:	This	questionnaire	is	intended	for	computer	software	developers	only.	All	the	answers	
will	be	used	in	a	dissertation	project	to	be	presented	at	the	University	of	Edinburgh.	The	answers	might	be	
published	publicly.	Please	do	not	provide	any	information	that	can	be	used	to	identify	yourself.	Feel	free	
to	not	answer	questions	if	do	not	want	to.	
	

1. What	is	your	age	in	years?	
	
	0	-	18	
	
	19	–	35	
	
	36	–	54	
	
	55+	

	
2. Have	you	already	obtained	an	informatics-related	degree?	

	
No	
	
Yes	

	
3. Have	you	ever	used	a	software	tool	to	design	an	UML	Class	Diagram?	

	
No	
	
Yes.	Please	write	the	name	of	the	tool	if	you	remember	it.	
	

__	
	

4. Have	you	ever	 followed	 the	Model-Driven	Development	approach	 to	develop	any	
kind	of	software?	This	approach	allows	you	to	obtain	the	source	code	of	the	software	
from	the	models	that	you	have	designed.	

	
No	
	
Yes	
	

5. How	difficult	were	to	you	in	average	the	definition	of	the	tasks	that	you	were	asked	
to	do	in	the	Think-Aloud	session?	

	
Very	difficult	
	
Difficult	
	
Neutral	
	
Easy	
	
Very	easy	
	

Appendix F. Case-study questionnaire 83

	
6. Please	rate	if	you	agree	or	disagree	with	the	following	statements.	

	
General	impressions																																			strongly								disagree						uncertain							agree							strongly	
																																																																												disagree																																																																								agree	

	
The	usage	of	this	tool	was	
frustrating.		
	
My	expectations	for	the	tool	were	
fulfilled.		
	
	
	
	
Model	development																																			strongly								disagree						uncertain							agree							strongly	
																																																																												disagree																																																																								agree	
	
Developing	a	model	by	using	this	tool	
was	easy.	
	
Developing	a	model	by	applying	this	tool	
was	successful.	
	
I	was	able	to	develop	the	given	scenario	
completely.	
	
I	was	able	to	develop	the	given	scenario	
accurately.	

	
It	was	frustrating	that	I	could	not	model	
some	UML	class	diagram	elements.	E.g.:	
multiplicity	of	associations,	abstractions.		
	
The	tool	must	provide	a	way	to	model	
all	the	UML	class	diagram	elements.	

	
	
	
	

Model-Driven	Development															strongly								disagree						uncertain							agree							strongly	
																																																																	disagree																																																																									agree	

	
The	tool	permits	the	modelling	of	the	
most	important	elements	of	a	prototype	
of	a	Web	Application	(WebApp).		
	
I	was	able	to	customize	the	WebApp	
as	I	wanted.	
	
The	automatically-generated	WebApp	
was	enough	for	a	“prototype”	of	the	
application	that	I	wanted.	
	
The	automatically-generated	WebApp	
prototype	was	what	I	modelled.	
	
The	automatically-generated	WebApp	
prototype	was	what	I	needed.	

	
	
	

Appendix F. Case-study questionnaire 84

	
7. How	familiar	was	to	you	the	diagram	and	modelling	elements	that	you	were	able	to	

use	and	customise	while	performing	the	Think-Aloud	session?	
	
																				not	at	all										slightly									somewhat								moderately									extremely	
																		familiar											familiar											familiar														familiar																familiar	

	
	

8. How	difficult	was	for	you	to	learn	and	use	on-the-fly	the	tool	that	required	you	only	
one	extended	UML	Class	Diagram?	
	
																																						very											difficult							uncertain										easy											very	
																														difficult																																																																												easy	

	
	

9. The	IDEPRIA	tool	allowed	you	to	generate	the	source	code	of	a	prototype	of	the	Web	
Application	from	what	you	have	modelled	in	just	one	extended	UML	Class	diagram.	
To	what	extent	do	you	agree	that	these	elements	are	enough	to	model	a	prototype	
of	a	Web	Application	that	you	might	need	to	develop	in	the	future?	
	
																																			strongly								disagree						uncertain							agree							strongly	
																														disagree																																																																									agree	

	
	

10. To	what	extent	do	you	agree	that	other	types	of	diagrams,	different	than	a	UML	Class	
diagram	or	extensions	of	it,	are	as	well	necessary	to	be	able	to	model	other	important	
aspects	that	you	might	require	for	a	prototype	of	a	Web	Application?	
	
																																			strongly								disagree						uncertain							agree							strongly	
																														disagree																																																																									agree	

	
	

11. Instead	of	having	to	learn	and	design	just	one	extended	(and	possibly	familiar)	UML	
Class	 Diagram,	 how	 desirable	 would	 be	 for	 you	 to	 have	 to	 learn	 more	 types	 of	
diagrams	individually,	then	learn	how	to	link/connect	all	the	elements	between	the	
diagrams,	and	then	having	to	actually	model	all	those	multiple	diagrams	to	design	
just	a	prototype	of	the	Web	Application	that	you	want?	

	
																					very																			undesirable											neutral										desirable														very	

																								undesirable																																																																																															desirable	
	
	

12. What	would	you	add/modify/remove	from	the	designing	elements	to	make	it	a	more	
suitable	tool	for	modelling	and	developing	just	prototypes	of	Web	Applications?	

	
__	
	
__	
	
__	
	
__	
	

	
	

Bibliography

[Albert et al., 2011] Albert, M., Cabot, J., Gómez, C., and Pelechano, V. (2011). Generating

operation specifications from uml class diagrams: A model transformation approach. Data

Knowl. Eng., 70(4):365–389.

[Ambler and Lines, 2012] Ambler, S. and Lines, M. (2012). Disciplined Agile Delivery: A Prac-

titioner’s Guide to Agile Software Delivery in the Enterprise. IBM Press, first edition.

[Baerisch, 2010] Baerisch, S. (2010). Domain-Specific Model-Driven Testing. Wiesbaden

Vieweg+Teubner.

[Bernardi et al., 2014] Bernardi, M. L., Lucca, G. A. D., and Distante, D. (2014). Model-driven

fast prototyping of rias: From conceptual models to running applications. In 2014 Interna-

tional Conference on Advances in Computing, Communications and Informatics (ICACCI),

pages 250–258.

[Bin Ahmad and Iahad, 2013] Bin Ahmad, M. A. and Iahad, N. A. (2013). Websites usability

instrument validation using think-aloud method. In International Conference of Information

and Communication Technology, pages 208–212. IEEE.

[Booch, 2005] Booch, G. (2005). The unified modeling language user guide, pages 7–15. Pear-

son Education India, first edition.

[Bozzon et al., 2006] Bozzon, A., Comai, S., Fraternali, P., and Carughi, G. T. (2006). Concep-

tual modeling and code generation for rich internet applications. In Proceedings of the 6th

International Conference on Web Engineering, ICWE ’06, pages 353–360, New York, NY,

USA. ACM.

[Breeding, 2012] Breeding, M. (2012). Cloud computing for libraries, volume 11, pages 109–

110. American Library Association.

85

Bibliography 86

[Busch and Koch, 2009] Busch, M. and Koch, N. (2009). Rich internet applications: State-of-

the-art. Technical report, Ludwig-Maximilians-Universität München.

[Dobing and Parsons, 2006] Dobing, B. and Parsons, J. (2006). How uml is used. Commun.

ACM, 49(5):109–113.

[Erikson and Simon, 1984] Erikson, K. and Simon, H. (1984). Protocol analysis : verbal reports

as data. Bradford books. MIT, Cambridge, Mass. ; London.

[Fowler and Scott, 2000] Fowler, M. and Scott, K. (2000). UML distilled: a brief guide to the

standard object modeling language, pages 1–9. Addison Wesley, Boston, MA, USA, second

edition.

[Fraternali et al., 2010] Fraternali, P., Rossi, G., and Sánchez-Figueroa, F. (2010). Rich internet

applications. IEEE Internet Computing, 14(3):9–12.

[Fuentes and Vallecillo, 2004] Fuentes, L. and Vallecillo, A. (2004). An introduction to uml

profiles. The European Journal for the Informatics Professional, 5(2):6–13.

[Golobisky and Vecchietti, 2005] Golobisky, M. F. and Vecchietti, A. (2005). Mapping uml class

diagrams into object-relational schemas. In Proceedings of Argentine Symposium on Software

Engineering, pages 65–79.

[Jeon and Lee, 2007] Jeon, J. and Lee, S. (2007). Toward a mobile rich web application – mobile

ajax and mobile web 2.0. Technical report, World Wide Web Consortium (W3C).

[Kapteijns et al., 2009] Kapteijns, T., Jansen, S., Brinkkemper, S., Houët, H., and Barendse, R.

(2009). A comparative case study of model driven development vs traditional development:

the tortoise or the hare. From code centric to model centric software engineering: Practices,

Implications and ROI, 22.

[Koffka, 1935] Koffka, K. (1935). Principles of Gestalt Psychology. Routledge & Kegan Paul

PLC.

[Krogmann and Becker, 2007] Krogmann, K. and Becker, S. (2007). A case study on model-

driven and conventional software development: The palladio editor. In Software Engineerings,

volume 106, pages 169–176. Citeseer.

[Marco Brambilla, 2017] Marco Brambilla, Jordi Cabot, M. W. (2017). Model-Driven Software

Engineering in Practice. Morgan and Claypool Publishers, second edition.

Bibliography 87

[Martı́nez et al., 2012] Martı́nez, Y., Cachero, C., and Meliá, S. (2012). Evaluating the Impact

of a Model-Driven Web Engineering Approach on the Productivity and the Satisfaction of

Software Development Teams, pages 223–237. Springer Berlin Heidelberg, Berlin, Heidelberg.

[Martı́nez et al., 2013] Martı́nez, Y., Cachero, C., and Meliá, S. (2013). Mdd vs. traditional

software development: A practitioner’s subjective perspective. Inf. Softw. Technol., 55(2):189–

200.

[Meliá et al., 2008] Meliá, S., Gómez, J., Pérez, S., and Dı́az, O. (2008). A model-driven deve-

lopment for gwt-based rich internet applications with ooh4ria. In 8th International Conference

on Web Engineering, pages 13–23.

[Moreno et al., 2008] Moreno, N., Romero, J. R., and Vallecillo, A. (2008). An Overview Of

Model-Driven Web Engineering and the Mda, pages 353–382. Springer London, London.

[Mou and Ratiu, 2012] Mou, D. and Ratiu, D. (2012). Binding requirements and component

architecture by using model-based test-driven development. In 2012 First IEEE International

Workshop on the Twin Peaks of Requirements and Architecture (TwinPeaks), pages 27–30.

[Nielsen, 1993] Nielsen, J. (1993). Usability Engineering. Morgan Kaufmann Publishers Inc.,

San Francisco, CA, USA.

[O. M. G., 2004] O. M. G., U. (2004). 2.0 superstructure specification. Technical report, OMG.

[Orban, 2011] Orban, D. (2011). Templating and automatic code generation for performance

with python. Technical report, Groupe d’études et de recherche en analyse des décisions and

the Department of Mathematics and Industrial Engineering, École Polytechnique, Montréal,

QC, Canada.

[Phillips, 2014] Phillips, A. (2014). The Usefulness of ‘Think-Aloud’ for Evaluating Question-

naires in use in the Health Domain. PhD thesis, The University of Manchester, Manchester,

UK.

[Red et al., 2014] Red, E., French, D., Hepworth, A., Jensen, G., and Stone, B. (2014). Multi-

user computer-aided design and engineering software applications. In Cloud-Based Design

and Manufacturing (CBDM): A Service-Oriented Product Development Paradigm for the 21st

Century, pages 25–62. Springer International Publishing.

[Runeson and Höst, 2008] Runeson, P. and Höst, M. (2008). Guidelines for conducting and

reporting case study research in software engineering. Empirical Software Engineering,

14(2):131.

Bibliography 88

[Runeson et al., 2012] Runeson, P., Host, M., Rainer, A., and Regnell, B. (2012). Case Study

Research in Software Engineering. John Wiley and Sons, first edition.

[Schalles, 2013] Schalles, C. (2013). Usability evaluation of graphical modeling languages an

empirical research study. Springer Gabler, Wiesbaden.

[Selic, 2003] Selic, B. (2003). The pragmatics of model-driven development. IEEE Software,

20(5):19–25.

[Stefano et al., 2010] Stefano, F., Borsci, S., and Stamerra, G. (2010). Web usability evaluation

with screen reader users: implementation of the partial concurrent thinking aloud technique.

Cognitive Processing, 11(3):263–272.

[Stevens, 2006] Stevens, P. (2006). Using UML: software engineering with objects and compo-

nents, pages 45–46. Pearson Education, second edition.

[Wallace et al., 2002] Wallace, C., Cook, C., Summet, J., and Burnett, M. (2002). Assertions in

end-user software engineering: a think-aloud study. In 2002 IEEE Computer Society Interna-

tional Symposium, pages 63–65, USA. IEEE.

	Introduction
	Background
	Rich Internet Applications (RIAs)
	Model-Driven Development (MDD)

	State of the art
	Criteria to evaluate Model-Driven Development approaches
	Current projects for building RIAs
	Comparative analysis of current projects for building RIAs
	First stage analysis
	Second stage analysis

	IDEPRIA: Integrated development environment for rapid prototyping of RIAs
	The DSML supported by IDEPRIA
	The IDEPRIA Tool
	The M2T Transformation Software

	Case-study evaluation
	Case-study design
	Rationale for the study
	Purpose of the study
	Theoretical framework
	Research question and hypotheses
	Cases and unit of analysis
	Methods of data collection
	Data source selection
	Legal, Ethical, and Professional Issues
	Threats

	Case-study execution
	Preparation for the Think-Aloud sessions
	Think-Aloud sessions
	Interview sessions

	Case-study analysis
	Qualitative data analysis

	Conclusions
	Summary of the work done
	Main contributions of this project
	General conclusions
	Suggestions for further work

	Detailed RIA DSML description
	IDEPRIA Project
	IDEPRIA Classes
	IDEPRIA Attributes

	Example of a M2T configuration file
	Example of a JINJA2 template
	Consent form for the Think-Aloud sessions
	Think-Aloud Task definitions
	Task 1
	Task 2
	Task 3

	Case-study questionnaire
	Bibliography

