

A Robust Control Approach

for Rocket Landing

Reuben Ferrante

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2017

iii

 Abstract

The high cost of rocket technology has led to system reusability developments, particularly

in the field of first stage rockets. With the motivation of decreasing production costs,

successful vertical rocket landing attempts by SpaceX and Blue Origin have led the path

for autonomous recovery and reusability of rocket engines. Such a feat can only be

accomplished by complex control algorithms executing in real-time aboard the rocket. This

project aims to develop a vertical rocket landing simulation environment where algorithms

based on classical control and machine learning can be designed and evaluated.

After developing the simulated environment in Python using a robust physics engine known

as Box2D, two control algorithms were designed; once classical control method and the

other from the optimal control domain. The classical control Proportional Integral

Derivative (PID) controller served as a benchmark, whereas Model Predictive Control

(MPC) makes use of an optimizer to find the best performing action to take based on an

objective function. Two Reinforcement Learning algorithms were then designed with the

aim of automatically developing the required control without explicitly defining the

dynamics of the system. These methods, known formally as Function Approximation Q-

Learning and Deep Deterministic Policy Gradients (DDPG) provided a contrasting

approach to the PID and MPC controllers. While the classical controllers achieve

acceptable performance, the Artificial Intelligent counterparts, specifically the DDPG

converged to a more stable and consistent rocket landing.

iv

Acknowledgements

I would like to thank my supervisor, Dr. Zhibin Li, for his patience, guidance, and insights

throughout this project.

Without the financial help provided by the Endeavour Scholarship Scheme (Malta), this

research wouldnôt have been possible. I thank them for giving me this invaluable

opportunity.

v

The research work disclosed in this publication is partially funded by the

Endeavour Scholarship Scheme (Malta). Scholarships are part-financed

by the European Union - European Social Fund (ESF) -

Operational Programme II ï Cohesion Policy 2014-2020

ñInvesting in human capital to create more opportunities and promote the well-being of

societyò.

European Union ï European Structural and Investment Funds

Operational Programme II ï Cohesion Policy 2014-2020

ñInvesting in human capital to create more opportunities

 and promote the well-being of societyò

Scholarships are part-financed by the European Union -

European Social Funds (ESF)

Co-financing rate: 80% EU Funds;20% National Funds

vi

Declaration

I declare that the work presented in this thesis is my own and has been personally

composed, except where it is explicitly stated otherwise in the text. This work has not been

submitted for any other degree or professional qualification except as specified in the title

page.

(Reuben Ferrante)

vii

Table of Contents

1 Introduction ... 1

1.1 Objectives and Contributions .. 2
1.2 Problem Definition .. 3

2 Background ... 5

2.1 Launch Vehicle Reuse .. 5
2.2 Thrust Vector Control ... 5
2.3 The Landing Site ... 6
2.4 Control Algorithms ... 7

2.4.1 System Representation .. 7
2.4.2 Proportional Integral Derivative Controller .. 9
2.4.3 Optimal Control .. 10
2.4.4 Linear Quadratic Regulator ... 11
2.4.5 Model Predictive Control .. 12

2.5 Reinforcement Learning ... 14
2.5.1 Discrete State-Action Q-Learning... 15

2.6 Conclusion .. 17

3 Simulation Environment .. 18

4 Methodology .. 20

4.1 Mathematical Derivation... 20
4.2 PID Controller Design .. 23

4.2.1 Design by Root Locus ... 24
4.3 MPC Controller Design .. 28

4.3.1 Linearization ... 28
4.3.2 Design ... 30
4.3.3 Trajectory Generation ... 31

4.4 Linear Function Approximation Q-Learning .. 33
4.5 Deep Deterministic Policy Gradient ... 36

4.5.1 Architecture ... 37
4.5.2 Algorithm .. 38

4.6 Conclusion .. 40

5 Evaluation and Discussion.. 41

5.1 Tests .. 41
5.2 Test Measures ... 42
5.3 Test Conditions ... 43
5.4 PID Results ... 44
5.5 MPC Results ... 47

5.5.1 Effect of Costs Q and R .. 47
5.5.2 Effect of Time and Control Horizons.. 48

viii

5.5.3 Conclusion .. 50
5.6 Linear Function Approximation Q-Learning Results 52
5.7 DDPG Results ... 57

5.7.1 Models ... 57
5.7.2 Learning .. 58
5.7.3 Trajectory Comparison between Models 1 and 2 61

5.8 Section Conclusion ... 62

6 Improvements and Future Work ... 65

7 Conclusion ... 66

8 References .. 68

1

1 Introduction

This project concerns itself with the multidisciplinary subject of reusable space

systems, specifically first stage rockets. Vertical take-off and landing (VTOL) of a

rocket is a very primitive field which exploits the reusability of the launch vehicle

used to transport highly valuable payloads, such as satellites, into space. Work on

reusable launch systems is motivated by economic and material reasons; a significant

cost reduction is attained by reusing the first stage rocket hardware [1], [2]. On top

of this, improved scalability, as well as increased launch frequency are two positive

by-products of this reusability.

Since the subject of VTOL of a rocket is still in its infancy, there is very little to no

published material on specific topics, such as control methods used. Moreover, these

industries are subject to sensitive military information which prevents any

publications. Therefore, some references to exemplary non-technical methods and

plans are made from respectable leaders in the industry who spearheaded the subject,

such as Space Exploration Technologies Corporation (SpaceX).

The first successful relaunch of a previously used rocket was performed by SpaceX

with the Falcon 9 rocket [3] on March 30th, 2017. It is important to point out that not

the entire rocket is reused. As an example, SpaceXôs Falcon 9 rocket is made up of

two main stages [4], excluding the payload that fits on top of the second stage. The

first stage houses the clustered rocket engines as well as the aluminium-lithium alloy

tanks, whereas the second stage contains a single engine to drive the payload to the

desired orbit. After separation, the first stage is propelled back to earth in a controlled

manner as shown in Figure 1 [1].

Main Engine

Cut-off

Stage Separation

Second Stage

Ignition

Lift -off

Launch Site

Second Stage Engine Cut-off

Payload Separation

Boost-back

Burn

Re-entry Burn

Grid Fins

Deploy

Landing Burn

Landing Legs Deploy

Soft Touch Down

Landing Barge

Figure 1 SpaceX Falcon 9 Launch Profile [1]

Fairing Separation

2

The focus of this thesis was on the very last stage: designing controllers to land the

rocket on the barge with the main firing engine without exceeding any hardware

limits or running out of fuel. In other words, this work assumed that all previous

stages of the rocket were successful and that the rocket was guided to within

reasonable proximity (200 meters) of the landing area, having a relative downward

velocity similar to that experienced in real life.

Tests conducted by SpaceX and Blue Origin [5] successfully show the use of the

main engine, grid fins as well as cold gas Nitrogen thrusters to land the first stage

rockets, each used to a different extent and in different stages. Gimbaled thrust [6] is

also used as part of the control. Together with the main and side thrusters, gimbaled

thrust will form the backbone of the mathematical model of the rocket in this thesis.

1.1 Objectives and Contributions

The main objective of the project is to design and compare classical and optimal

control algorithms with machine learning algorithms with increasing sophistication.

Since designing stable closed loop controllers for non-linear and multivariable

systems is non-trivial, the Artificial Intelligence (AI) approach represents an

unsupervised way to tackle such complex problems. To this end, two control

approaches, as well as two AI approaches were designed and implemented.

Before designing any controller, a vertical rocket simulation environment was

developed in Python 3.5 using the physics engine Box2D [7]. This environment

allows for not just landing simulations, but also launches and trajectory tracking.

Therefore, contributions from this thesis include:

¶ Simulation environment in Python 3.5

¶ Implementation of:

o Proportional Integral Derivative (PID) controller

o Model Predictive Control (MPC) method on the linearized problem

o Linear function approximation Q-Learning controller

o Deep Deterministic Policy Gradient (DDPG) controller

¶ A thorough comparison between methods from both domains.

The rest of the thesis is organized as follows: Section 2 presents related work done

on some of the control algorithms that are explored, as well as important rocket

related details that must be addressed. Section 3 gives a brief overview of the

developed simulation environment. Section 4 presents the problem as well as

technical background on the algorithms that were adopted. It also describes the

methodology of the models and establishes the baseline that was implemented for

the rest of the models to be compared with. This is followed by the evaluation and

comparison with the improvements and conclusion drawing final remarks in

Sections 6 and 7 respectively.

3

1.2 Problem Definition

Consider Figure 2 below, illustrating the rocket landing on a barge.

Let

Ὂ ὓὥὭὲ ὝὬὶόίὸὩὶ ὊέὶὧὩ

Ὂ ὙὭὫὬὸ ὝὬὶόίὸὩὶ ὊέὶὧὩ

Ὂ ὒὩὪὸ ὝὬὶόίὸὩὶ ὊέὶὧὩ

Ὂ Ὂ Ὂ

— ὃὲὫὰὩ ὦὩὸύὩὩὲ ὸὬὩ ᾀ ὥὼὭί ὥὲὨ ὸὬὩ ὰέὲὫὭὸόὨὭὲὥὰ ὥὼὭί έὪ ὸὬὩ ὶέὧὯὩὸ

• ὃὲὫὰὩ ὦὩὸύὩὩὲ ὸὬὩ ὔέᾀᾀὰὩ ὥὲὨ ὸὬὩ ὰέὲὫὭὸόὨὭὲὥὰ ὥὼὭί έὪ ὸὬὩ ὶέὧὯὩὸ

ὰ ὒέὲὨὭὫόὸὨὭὲὥὰ ὰὩὲὫὸὬ ὦὩὸύὩὩὲ ὸὬὩ ὅὩὲὸὩὶ έὪ ὋὶὥὺὭὸώ ὅὕὋ ὥὲὨ Ὂ

ὰ ὒέὲὫὭὸόὨὭὲὥὰ ὰὩὲὫὸὬ ὦὩὸύὩὩὲ ὸὬὩ ὅὕὋ ὥὲὨ ὊȟὊ

ὰ ὔέᾀᾀὰὩ ὰὩὲὫὸὬ

ά ὙέὧὯὩὸ Ὀὶώ ὓὥίίὊόὩὰ ὓὥίί

ὼ ὌέὶὭᾀέὲὸὥὰ ὖέίὭὸὭέὲ έὪ ὸὬὩ ὙέὧὯὩὸ

ᾀ ὠὩὶὸὭὧὥὰ ὖέίὭὸὭέὲ έὪ ὸὬὩ ὙέὧὯὩὸ

 ὙὩὥὰ ὅέὲίὸὥὲὸ

Figure 2 Vertical Rocket Landing Model

4

As explained in the introduction, the main controls of the rocket are the:

¶ Main engine thrust, Ὂ

¶ Side Nitrogen gas thrusters, ὊȟὊ

o Summarized in a single input Ὂ Ὂ Ὂ

¶ Nozzle angle, .

The objective is to land the rocket in a controlled manner such that the final state of

the rocket at landing is as close to a target state as possible. This will later be defined

numerically in a utility function. The inputs, defined as ό ὊȟὊȟ• have the

following constraints:

π ὔ Ὂ φτψφ ὔ

ρσπ ὔ Ὂ ρσπ ὔ

ρυ • ρυ

These constraints are scaled (1:30) estimates for the first stage rocket of Falcon 9

during landing [4], [8]. Except for the position of the center of gravity (COG), the

simulation was developed to reflect real life conditions where possible, including

dimensions and force magnitudes. In the simulation, the COG was higher than in

real rockets, making control harder.

Let the state of the rocket dynamics at any time be defined by ●░
ὼȟὼȟᾀȟᾀȟ—ȟ— and the final state by ●Ⱳ. For a successful landing, ●Ⱳ must be

within the following numerical thresholds, defined by ●Ⱳ□╪●:

ὒὩὪὸ ὄὥὶὫὩ ὉὨὫὩὼ ὙὭὫὬὸ ὄὥὶὫὩ ὉὨὫὩ

ς άȾί ὼ ς άȾί

ᾀ ὄὥὶὫὩ ὌὩὭὫὬὸ

ᾀ π άȾί

ρπ — ρπ

ςȾί — ςȾί

Therefore, a cost can be imposed on the final state, defined as:

ὐ ὼ ὼ

where is a φ ρ weighting matrix and ὼ is the desired final state. This

formally defines a successful landing, such that ὐ lies within a threshold. The closer

ὐ is to 0, the better the landing. The cost associated with the states will be formally

defined in Section 5.2.

5

2 Background

Vertical rocket landing has only been practically explored in the last few years.

Given that this is a multidisciplinary topic, a brief background on thrust vectoring,

different aspects of the rocket, the barge, and control methods is necessary, with

special attention given to the latter.

2.1 Launch Vehicle Reuse

The motivations of launch vehicle re-use are two-fold: saving of the first stage engine

and structure leading to significant economic savings. However, there can be

different types of recovery systems, dependent on the type of launch vehicle. Ragab

et al. [9] review the different techniques used. They highlight that propellant and

gases contribute less than 5% of the first stage cost of the rocket, further cementing

the argument for recovery. However, they do mention that simpler recovery, such as

with the use of parachutes, is more cost effective than booster fly back. At the same

time, the landing accuracy of simpler methods is measured in miles, whereas with

vertical rocket landing it is measured in meters.

After separation of the first and second stages, reduction of translational velocity is

necessary. Blue Origin achieves this both passively with brake fins, as well as

actively by re-starting the main engine, powered by liquid Hydrogen and liquid

Oxygen [5]. On the other hand, Falcon 9 uses its grid fins for re-entry

manoeuvrability before switching on its engines again [4]. It also achieves

controllability using main engine gimballing and cold gas Nitrogen thrusters [8]. The

latter two are included in this projectôs mathematical model as illustrated in Figure

2.

2.2 Thrust Vector Control

Thrust vectoring will be the main control method to keep — as close to π as possible,

keeping the rocket upright whilst still following a reference trajectory. Vectoring

refers to the gimballing action of the engine or the flexibility of the nozzle, where

the nozzle direction is changed relative to the COG of the rocket. Since the direction

of the nozzle dictates the angle at which thrust is exerted, a torque about the COG is

created if • π as shown in Figure 3 [10]. In reality, the nozzle is moved along 3-

dimensions with actuators. Since the simulation developed in this thesis is in 2-

dimensions, only a single rotational movement is needed.

6

The nozzle itself can take many forms, and the generated thrust magnitude and

profile are directly dependent on the shape of the nozzle. Thrust reduction and

increased wake turbulence can result from a sub-optimal nozzle profile [6], [11],

however, this project will assume ideal thrust profiles utilizing a single flexible

nozzle joint [9]. Hence, the gimbal can be represented by a rotary ball joint at the

lower end of the rocket. The flow of the thrust will be assumed to act along a single

directional vector, Ὂ.

2.3 The Landing Site

Simple recovery methods with parachutes were used to collect launch vehicles from

the ocean, however, no first stage rocket had landed on an ocean barge before. Falcon

9 successfully did this on April 18th, 2014 [12] in a historic landing.

The rocketôs take-off location is usually from the east coast of the United States,

having an abundance of area away from civili zation. However, if the first stage is to

be recovered, not enough fuel can be carried by the rocket for the first stage to make

it back to land. Even then, it would be a dangerous endeavour. For this reason,

SpaceX opted to use a floating platform in the Pacific Ocean.

The bargeôs landing area measures approximately 74 by 52 meters and is navigated

with 4 diesel-powered thrusters and a Global Positioning System for self-navigation

[13]. Given this setting, landing a rocket on a self-navigated barge presents a control

problem on its own, especially since sudden weather changes can cause disturbances

in the bargeôs position and angle. For this reason, the floating platformôs position

and angle relative to the horizontal plane are variables in the simulation and can be

adjusted for testing purposes and included in the mathematical model.

Figure 3 Thrust Vector Control of a Rocket [10]

7

2.4 Control Algorithms

Closed-loop control systems [14] are the pivot on which such landings are made

possible. Both classical control and Artificial Intelligence (AI) techniques rely on

state variables to analyze the error with respect to an ideal state and execute

corrective measures. A controllerôs job is to perform these actions in a stable and

controlled manner.

In classical control, these states must be bound by a well-defined mathematical

model, whereas in AI input variables are defined loosely since the method has no

knowledge of what the variables represent. This underlines the difference in the

approaches of creating a controller. Classical control follows a set of rules and

known methodology that have been widely used and tested, whereas AI techniques,

such as Reinforcement Learning (RL), are less structured.

This section introduces the background required for understanding the material from

both domains.

2.4.1 System Representation

The design of classical controllers requires a model to be defined in a certain

standardized format. In control theory, functions known as transfer functions are

used to characterize the input-output relationships of the system defined by

differential equations [15].

Consider a linear time-invariant system defined by the following differential

equation:

ὥ
Ὠώ

Ὠὸ
ὥ
Ὠ ώ

Ὠὸ
Ễ ὥώ ὦ

Ὠ ὼ

Ὠὸ
ὦ
Ὠ ὼ

Ὠὸ
Ễ ὦὼ

Where ὲ ά, ώ is the output of the system, ὼ is the input and ὥȣ , ὦȣ are their

respective coefficients. The transfer function of the system is defined as the ratio of

the Laplace transform of the output to the input under zero initial conditions.

Formally:

Ὃί
flέόὸὴόὸ

flὭὲὴόὸ

ᾀὩὶέ ὭὲὭὸὭὥὰ ὧέὲὨὭὸὭέὲί

ὣί

ὢί

ὦέί
ά ὦρί

ά ρ Ễ ὦά
ὥέίὲ ὥρίὲ ρ Ễ ὥὲ

8

The Laplace transform is a convenient operation that allows the input-output

relationship to be represented algebraically. A typical closed loop Single Input

Single Output (SISO) system can be represented as shown in Figure 4.

As complexity increases, systems typically become Multiple Input Multiple Output

(MIMO) problems, at which point such a representation becomes too limiting.

Therefore, the linearized mathematical model in this project is represented in state

space form [16].

The state vector was previously defined as ὼ whilst the input vector was defined as

ό. Using state space, the dynamics of a linear system can be calculated for any time

ὸ ὸ. The system can be defined by:

ὛὸὥὸὩίȡ ὼ ὼȟὼȟȣȟὼ

ὕόὸὴόὸȡ ώ ώȟώȟȣȟώ

Ὅὲὴόὸȡό όȟȣȟό

ὼὸ Ὢὼȟόȟὸ

ώὸ Ὣὼȟόȟὸ

If the system is non-linear, as is the rocket VTOL, then it must be linearized about

an operating point using Taylor series expansion [17]. Otherwise, it can be written

directly in the following shorthand notation:

ὼ ὃὼ ὄό

ώ ὅὼ Ὀό

Where ═ is the state matrix, ║ is the input matrix, ╒ is the output matrix and ╓ is the

direct transmission matrix, which is usually 0. State space allows for a concise

representation of a system, exposing all the dynamic relationships in well-defined

matrices. Moreover, whereas Figure 4 models a SISO system, state feedback can be

used by designing a ὑ matrix that together with a reference state commands the plant

Feedback

H(s)

Plant Transfer

Function

G(s)

Controller +
_

E(s), error

R(s), reference

input C(s), output

B(s), feedback signal

Figure 4 Single Input Single Output Closed-Loop System

U(s)

9

through its input as shown in Figure 5. The SISO model in Figure 4 was used to

implement 3 decoupled PIDs to control ό in the benchmark model and is outlined in

Section 4.2. State feedback was used for more advanced optimal control as shown in

Section 4.3.

2.4.2 Proportional Integral Derivative Controller

A Proportional Integral Derivative (PID) controller is an intuitive controller that is

suitable for SISO systems shown in Figure 4. The PID is a simple yet effective

controller that computes the proportional, integral and derivative of the difference

between the output and the reference input (error) and outputs a control signal

depending on the defined PID coefficients [18]. The input-output relationship is

defined as:

όὸ ὑὩὸ ὑ ὩὸὨὸὑ
ὨὩὸ

Ὠὸ

Taking the Laplace transform leads to:

Ὁί

Ὗί

ί

ὑί ὑί ὑ

Fine-tuning of ὑȟὑ and ὑ has been refined in the continuous time domain,

frequency domain, and even discrete time domain. These parameters are designed

based on the desired response to a step input. The response is characterised by the

rise time, settling time, bandwidth and overshoot. Well-known methods for tuning

are the Ziegler-Nichols rules [19] and root locus [20]. A system may require certain

timing and damping characteristics which impose design criteria during the design

+
+

-K

● ═● ║◊
◐ ╒● ╓◊

+
+

▄, error

►, reference

state ◐, output ◊, input

●

▀, disturbance

Figure 5 State feedback system. The state vector x is used together with the reference state to control

the plant. The disturbance, d, can manifest itself at any point in the process but is shown in the

feedforward loop.

10

process. As an example, it is imperative that a chemical process does not experience

any overshoots, but must be critically damped.

A second order system is typically used as an approximation for many systems

because of its balance between complexity and ease of design. The following transfer

function represents a closed-loop second order system:

Ὃί
ὑ

ί ς‒

Where is the natural frequency of the system and ‒ is the damping factor. Yang

et al. [21] designed a second order PID controller calibrated by trial and error on a

thrust vectored nozzle. The authors also highlight the effect that the individual PID

constants have on the system, particularly stressing the need to balance the transient

response with steady-state errors and oscillations.

The proportional term, ὑ tends to make short transients and caters for the present

error as well as to decrease the steady state error. The integral term allows for the

elimination of steady state errors but increases the order of the system, potentially

rendering it unstable. On the other hand, ὑ leads to faster rise times and increases

the systemôs bandwidth. The PID is used as a benchmark controller in this project

and the design is described in detail in Section 4.2.

2.4.3 Optimal Control

Even though the PID is widely used to control simple systems, it does not guarantee

optimal control or stability. Furthermore, problems with coupled variables and

MIMO systems increase the complexity and make the manual-tuning of a PID a

naïve approach. To this end, the field of optimal control is introduced. The Linear

Quadratic Regulator (LQR) and MPC are two such controllers in this field. In this

project, LQR was used as a stepping stone for MPC.

As opposed to manual tuning of constants, optimal controllers minimize a cost

function with constraints associated with the state and input in order to iteratively

compute the optimal control strategy. A general optimization problem takes the

following form [22]:

άὭὲὭάὭᾀὩ

ίόὦὮὩὧὸ ὸέ

Ὢὼ

Ὢὼ πȟὭ ρȟȣȟά

Ὣ ὼ πȟὭ ρȟȣȟὴ

11

Where Ὢὼ represents the objective function and the constraints represent inequality

and equality constraints respectively. This is a convex program if the objective

function and constraints are both convex, satisfying the inequality:

Ὢὼ ώ Ὢὼ Ὢώ

Not all problems are solved equally; different classes of optimization problems, such

as least squares, linear programs or quadratic programs may use different optimizers

to obtain a solution using the least amount of computing power. Moreover, non-

convex problems require more time to ignore local optima and reach a global

solution [22].

2.4.4 Linear Quadratic Regulator

For a model given by ὼ ὃὼ ὄό, the LQR seeks to find a feedback matrix ὑ

that leads to optimal control by minimizing a quadratic cost defined as ὐ

 ᷿ ὼὗὼ όὙόὨὸὼὗὼ [23] where ὗṍπ, ὗ ṍπ and Ὑṋπ (positive

semi-definite and positive definite respectively). The symmetric matrix ὗ

represents the cost given to the final state.

ὗ represents the penalty given to the distance between the state and target, whilst Ὑ

is the penalty paid to execute the actions. Therefore, ὐ represents a trade-off between

state accuracy and action penalty [24]. Low values of Ὑ indicate that the controller

has more flexibility in executing the actions. Moreover, ὗ and Ὑ must be balanced

to achieve the required transient response as well as steady state error, a process

requiring a certain degree of trial and error [23].

Note that this method requires a linear system. This suggests that the matrix ὑ can

be found analytically to achieve the feedback control law ό ὑὼ. In fact, there

are many ways to derive ὑ, most notably the dynamic programming approach. By

differentiating ὐ with respect to ό over a single time step, the following solution is

derived for the continuous time case:

ό Ὑ ὄὖὼ

Where ὖ is the solution of the algebraic Riccati equation [23]. It can be shown that

this solution achieves desirable control characteristics and robustness [25]. Note that

a distinction must be made between continuous and discrete time LQR, since they

lead to slightly different solutions.

Mohammadbagheri et al. [18] compare PID and LQR controllers on voltage-source

inverters and concluded that the rise time as well as settling time of LQR controllers

were superior to those of the simple PID. Kumar et al. [26] also design robust LQR

controllers for both stabilizing the inverted pendulum and trajectory tracking to a

12

reference input. Note that the inverted pendulum model is not that far from the rocket

landing problem, on the contrary, the mathematical models are very similar since

both tend to naturally unstable equilibrium positions. The authors showed that LQR

can optimize even with the most stringent of parameters.

The disadvantage of LQR is that the optimal feedback is independent of constraints.

This poses a problem in processes such as the rocket landing, where all inputs are

bounded. The problem can be redefined to include constraints, but more advanced

methods, such as MPC, cater for such an issue.

2.4.5 Model Predictive Control

MPC is a relatively new field in control that has only been proven useful thanks to

the increased computational power. However, it found widespread use in industry;

from precision landings [27] to trajectory planning in missiles [28]. Like LQR, MPC

solves a quadratic program by minimizing an objective function. However, unlike

LQR, it includes equality and inequality constraints, and the linearized plant

dynamics form part of these constraints. This enables the optimizer to find a solution

that is optimal for not just the present state, but also future states. The extent of

predictability is referred to as the time horizon. A generalized convex quadratic MPC

program takes the following form [29]:

ὼ represents the initial state and ὼ represents the target state at the end of

the time horizon Ὕ. This constrains the problem to converge to a desired final state.

Note that the problem can be restructured in many ways, and the choice of the utility

function, cost matrices, constraints, linearization, control horizon, prediction

horizon, sampling interval and error tolerance should be treated as hyper parameters.

As an example, the penalization of the control action όὙό in ὐ causes the objective

function to have a non-zero value even under steady state conditions, where ό might

not be zero for proper control action. Meadows et al. [30] propose to penalize the

change in actions, Ўό, instead. Garcia et al. [31] noted that a large sampling interval

causes oscillations and suggest that only the present resulting action ό is used, and

to resolve the problem again at ὸ ρ using the new state.

άὭὲὭάὭᾀὩ

ίόὦὮὩὧὸ ὸέ

ὐ ὼὗὼ όὙό

όᶰ5, ὼᶰ8

ὼ ὃὼ ὄό
ὼ ὼ

ὼ ὼ

Ὢέὶ ὸ ὸȣὝ

13

Meadows et al. [30] reported increased overshoot and faster response with longer

time horizons. Moreover, longer prediction horizons are more susceptible and

sensitive to disturbances.

Bryson et al. [32] suggest that weight values should be inversely proportional to the

maximum limit. On a contrasting note, Meadows et al. [30] found this to be too

penalizing and instead suggest to apply a penalty to constraint deviations. This would

be in accordance with general optimization theory, where instead of fixing equality

constraints and introducing more variables, a slack variable is added instead [33].

Where Ὓ is the penalty given if the control action approaches ό . For the

optimizer to find a meaningful solution, the control problem must be both observable

and controllable [34]. Figure 6 illustrates the MPC workings, showing the forecasted

state as part of the solution. It is interesting to note that MPC has been used in the

design of thrust-vectored flight [35] and also guidance and control [36]. The former

achieved better results than the static gain LQR, and similar performance to gain-

scheduled LQR, where many different LQR solutions are applied depending on the

state in which the plant is in.

i

άὭὲὭάὭᾀὩ

ίόὦὮὩὧὸ ὸέ

ὐ ὼὗὼ ЎόὙЎό Ὓ

ό ό ὼᶰ8 ,

ὼ ὃὼ ὄό
ὼ ὼ

ὼ ὼ

Ὢέὶ ὸ ὸȣὝ

Figure 6 MPC takes the current state and input and finds a solution for the optimal input based on the

required constraints and prediction horizon [55].

14

2.5 Reinforcement Learning

As opposed to explicitly defining a model, RL applies the theory of dynamic

programming to define a framework that adapts itself through episodic interaction

with an environment. The environment is typically defined as a Markov Decision

Process [37], where a set of actions are available to choose from at any state. A

general RL problem would involve a policy that takes actions, states that represent

where the agent is, and rewards that enforce good actions when in a state. The goal

is to learn the policy, the method of choosing actions, that maximizes rewards. Figure

7 illustrates this system.

The value function, ὠί, represents the expected cumulative reward that a policy

would get if it followed that policy from there onwards. Formally, let:

Ὑ ὶ

ὖ 0Òί ίȿί ίȟὥ ὥ

Ὑ Ὁὶ ȿί ίȟὥ ὥȟί ί

In linguistic terms, given action ὥ and state ί, ὖ defines the transition probabilities

of going from one state to each possible next state whilst Ὑ defines the expected

value of the next reward [38]. Ὑ represents the discounted future rewards, where

π ρ. Note that like MPC, the aim in RL is to maximize the reward and reach

an optimal solution by breaking down a multiperiod problem into smaller pieces.

╔▪○░►▫▪□▄▪◄

═▌▄▪◄ having a

policy “ίȟὥ that

maps states to

actions.

ὥὧὸὭέὲȟὥ
ὲὩὼὸ ίὸὥὸὩȟί

ὶὩύὥὶὨȟὶ

ὠz ί ÍÁØ
 ɴ

ὖίίᴂ
ὥ Ὑίίᴂ

ὥ ὠᶻίᴂ

ίᴂ

ὃὧὸὭέὲȟὥȟ
chosen greedily

(maximum

value),

randomly with

probability Ů

sampled from

Ὗπȟρ, or

otherwise.

ίᴂ can be represented by a

vector, for example, ● in the

rocket landing problem.

The reward serves as

feedback which is used to

update the policy.

Figure 7 RL problem defined by a value function, which is used to determine how good it is for an

agent to be in that state. An action is then taken and the environment reciprocates with a reward

which is then used to update the policy.

15

This notion is known as Dynamic Programming and itôs central to Bellmanôs

equation [39]:

ὠί Ὁ Ὑȿί ί

Ὁ ὶ В ὶ ί ί

 “ίȟὥ ὖ Ὑ ὠί

Where “ίȟὥ is the probability of choosing action ὥ when in state ί. Although

theoretically sound, for an update of the value function to take place, all states must

be visited. Instead, an iterative version known as Temporal Differencing (TD) [40]

makes an online update of the form:

ὠί ᴺὠί ὝὥὶὫὩὸὠί

ᴺὠί ὶ ὠί ὠί

This equation provides an updated estimate of ὠί as soon as the state is visited. It

only has one hyper parameter, Ŭ (learning rate), and can also be expanded to include

additional terms that reinforce not just the current state, but previous states that led

to a reward. This is known as TD(ɚ) [40].

2.5.1 Discrete State-Action Q-Learning

Bellmanôs equation above makes use of transition probabilities. However, what if

these were unknown? Transition probabilities imply knowledge of a model, and the

aim is to obtain a model-free framework that can learn iteratively. ὠί is a notation

for a value of a state of the optimal policy that maximizes the expected reward. On

the other hand, ὗίȟὥ represents the value of a state if action ὥ is chosen, and then

continue with that policy from that state onwards. This means that it eliminates the

need to know and execute the optimal policy, “ᶻίȟὥ, and instead, execute any

action available according to the policy at that time step. Formally, this can be written

as:

ὗίȟὥ ὶ Ὁ ὠί

This form eliminates the need for a model and can be adapted to many problems.

Sutton et al. [41] give an example with a cliff walking grid world having discrete

actions όᶰόὴȟὨέύὲȟὰὩὪὸȟὶὭὫὬὸ. The environment awards a reward of -1 for all

transitions except for the cliff region, in which a reward of -100 is given as shown in

Figure 8. They compare off-policy with on-policy Q-Learning, where the latter is

known as State Action Reward State Action (SARSA). The only difference between

these two algorithms is in the degree of greediness, as illustrated overleaf.

16

Sutton et al. reported that SARSA achieves higher rewards than Q-Learning. After a

few episodes, Q-Learning learns the optimal policy, that which walks along the edge

of the cliff. Due to the Ů-greedy action selection, sometimes this can result in falling

off the cliff. Interestingly, in SARSA, the policy chooses to take the longer but safer

path. The authors go on to suggest that Ů be annealed for the two algorithms to

converge.

Notice that this example represents discrete states with discrete actions. The state is

left to the designerôs choice. Although not specified, in the Cliff Walk example this

can be represented by the grid in which the agent is currently in, for instance

representing each square with a binary number. This leads to the tabular

representation shown in Figure 9.

The problem with such a formulation is known as the curse of dimensionality [42],

where the number of states or actions make the problem infeasible. Such is the case

in this project, where the actions ό ɴ ὊȟὊȟ• are all continuous. One limiting

solution is to discretize both states and actions, however, this is not scalable. To this

Figure 8 Cliff walk example [41], where the aim is to arrive to point G without falling off the cliff. A

reward of -1 is given for each transition, whereas -100 is given for walking on the cliff.

On-Policy Q-Learning (SARSA):

Off-Policy Q-Learning:

ὗίȟὥ ᴺὗίȟὥ ὶ ὗί ȟὥ ὗίȟὥ

ὗίȟὥ ᴺὗίȟὥ ὶ ÍÁØὗί ȟὥ ὗίȟὥ

Figure 9 Tabular (2D array) representation of the state-action function, Q(s,a) with optimistic

initialisation of the action Right. This initialization will lead to action Right being picked more

frequently initially, contributing to faster learning.

1 2 3 n-1 n

Left 0 0 0

Right 0.1 0.1 é é é 0.1

Up 0 0 Q(s, a=up) 0

Down 0 0 Q(s, a=down) 0

States accesed using binary representation

States

A
c
ti
o
n
s

é

17

end, Lillicrap et al. [43] formulated a continuous framework based on deep learning

which was implemented in this project.

2.6 Conclusion

In this section, theory and examples related to the methods implemented in this

project were introduced. The VTOL problem relies on controllers, and each

introduced algorithm solves a shortfall presented in the preceding ones.

PID, LQR, MPC, and RL were the four control methods that were discussed. The

PID is the simplest and most intuitive method, using the proportional, integral and

derivative of the error with respect to a reference in order to drive the process.

However, the PID is suitable for SISO systems. Therefore, where multivariable,

coupled and non-linear systems are presented, the PID can only be implemented to

a limited extent on the linearized and decoupled plant. This leads to inaccuracies and

sub-optimal control. PIDs are tackled as a baseline in Section 4.2.

Unlike PID controllers, LQRs use the state space to find the optimal feedback matrix

ὑ. Moreover, whereas the PID acts on the error, the LQR acts on the state. This

state is still evaluated with respect to an equilibrium point since any non-linearities

need to be linearized for an LQR to be designed. The general form of LQR does not

include constraints and the designed LQR will only be optimal at the linearized state.

The shortfall of LQR in dealing with constraints as well as different conditions led

to MPC, where the problem is formed as an objective function with constraints. MPC

finds the correct input to take by minimizing a cost function with respect to the states

and actions. Like LQR, the cost function is quadratic, but it is not solved analytically.

Instead, an optimizer is used to find a solution to the objective function. This is also

done whilst respecting constraints and following a trajectory. This means that

whereas PIDs and LQRs only consider the current state, MPC can incorporate the

model in the constraints and simulate future states; enabling it to pick the best actions

that maximize not just the current reward, but also future rewards. The derivation of

LQR that led to the implementation of MPC is detailed in Section 4.3.

Recall that the general form of the MPC still needs a well-defined model where the

state is found analytically or is estimated. The notion of rewards is further extended

to RL, where the MPC framework is reformulated in an iterative and model-free

framework that interacts with the environment. Feedback is given as a reward value

as opposed to an error. Like MPC, it is derived from Bellmanôs equations and seeks

to find the best policy that maximises future rewards. RL can take on many forms,

but discrete state-actions prove to be limiting in control applications. To this end, a

state-action approximator as well as a continuous-domain and relatively new method

is applied to the VTOL problem and are discussed in Sections 4.4 and 4.5.

18

3 Simulation Environment

The environment is built in Python 3.5 and depends on the use of Box2D [7], [44].

Box2D is a physics engine that supports rigid body simulations. It was originally

intended for games, however, it can also be used for light simulations not requiring

state of the art accuracy used in critical applications.

Bodies in the environment are built using basic shapes and objects such as polygons,

rigid bodies (defined as being as hard as diamond), fixtures (having attributes such

as density, friction), physical constraints, joints, joint motors (specifying torque), and

finally the world which contains all the defined objects.

Box2D is tuned for meters, kilograms, seconds and radians. Since the rocket is

modeled after Falcon 9 [4] and the dimensions are quite large, all units are divided

by a scaling factor (1:30) as suggested by the author of Box2D. The physics engine

is meant to take care of collisions and physics related calculations with a user-defined

frequency. In this case, each time-step was set to be 1/60 s, or updating with a

frequency of 60Hz. Upon passing an action to the simulation as a ρσ array

ὊȟὊȟ•, corresponding forces are applied to the respective body. As an example,

a force equivalent to Ὂ ρ would result in a force Ὂ

ὊȢὓὃὍὔͅὉὔὋὍὔὉὖͅὕὡὉὙ applied to the bottom of the nozzle. Ὂ and Ὂ values

are normalized, whereas the angle • is not.

Two types of bodies are defined in Box2D; static and dynamic. The former is meant

to be indestructible, defined as having zero mass. On the other hand, dynamic bodies

are meant for collisions, forces and general dynamics. All rocket parts are defined to

be dynamic bodies, whereas the barge and sea are static. The nozzle is fixed with the

lower part of the main rocket body by a revolute joint. The revolute joint is given a

motor with a specified torque, having a certain delay. In this case, the torque was

defined large enough such that the angle is driven in real-time with little to no delay.

The legs are also defined as dynamic bodies and are connected via a revolute joint

with the rocket. Angle constraints of υ and a torque were given to the joints to

simulate a spring once in contact with the ground. Forces are applied at ωπ with

respect to the defined body at the relative coordinates. Since visuals need to represent

the physics simulation and body coordinates, all simulation dynamics are updated on

the actual defined objects in the physics engine. As an example, the ὼȟώ position

of the rocket can be accessed with: ὰὥὲὨὩὶȢὴέίὭὸὭέὲ and this is then used to render

the rocket. Particles are used to represent forces. This is done for visual aid and is

very useful for verifying controls visually. However, rendering is not required for

the physics simulation to take place. Finally, the environment is meant to reset to the

defined initial conditions if the rocket tilts by more than συ with respect to the ᾀ
axis or touches the outside boundary. All the above is summarized in Figure 10 and

Figure 11.

19

Figure 10 Actual simulation executing a control algorithm. Visuals are needed to correctly verify that

the simulation is being executed as intended.

Figure 11 Rocket defined from multiple dynamic bodies. Particles are used as visual aid to represent

forces being applied.

20

4 Methodology

This section includes the implemented algorithms with detailed derivations and

methods. Reference is frequently made to theory outlined in the Background section.

A brief but necessary mathematical derivation is first presented. The baseline PID

controller design is then explained, followed by LQR theory which leads to MPC.

Model free RL is then introduced, starting with discrete action function

approximation Q-Learning, followed by the final model using DDPG, which tackles

the vertical rocket landing problem in a continuous manner.

4.1 Mathematical Derivation

The problem and nomenclature were introduced under Problem Definition in Section

1.2, specifically Figure 2. Support legs were omitted from the diagram for

clarification purposes.

The Nitrogen gas thrusters allow for more complex but stable control. However, their

force can be fixed to 0 if required, simplifying the model. On the same line, the angle

and position of the barge were fixed in this project, but are included as variables in

the environment to reflect the possible changes that might arise.

By using Newtonôs 3rd law of motion, the free-body diagram shown in Figure 12 can

be deduced:

ὰ

 ̒

άὫ

 ̒

ὰ

ὰ

Ὂ

Ὂ

Ὂ

ὊȢÓÉÎ• —

ὊȢÃÏÓ• —

ὊȢÃÏÓ—

ὊȢÃÏÓ—

ὊȢÓÉÎ—

ὊȢÓÉÎ—

ὰ

Figure 12 Free body diagram showing all forces considered.

21

Solving for translational forces in ὼȟᾀ directions as well as rotational torque with

respect to the rocketôs COG leads to:

In the last step, small angles were assumed for simplification. Thus, ÃÏÓ•

ÃÏÓ— ρ and ÓÉÎ• •ȟÓÉÎ— —.

Torque:

ὰÃÏÓ• represents the fact that the thrust is applied to the base of the nozzle.

ά Ὂ Ὂ τ

ὐ• † υ

Equation 4 specifies that the fuel burn is directly proportional to thrust. The control

problem is a multiple input, multiple output (MIMO) system where ὊȟὊ ὥὲὨ •

represent the variable inputs that must be adjusted for the rocket to land safely at a

reference position. The independent forces applied by the cold gas thrusters at the

upper half of the rocket can be implied from Ὂ.

—ȟὼ ὥὲὨ ᾀ represent the output of the system. A suitable representation for writing a

MIMO problem is state space form:

ὼ ὃὼ ὄό

ώ ὅὼ Ὀό

άὼ ὊÓÉÎ— • ὊÃÏÓ—

ὼ
ὊÃÏÓʒÓÉÎ— ὊÃÏÓ—ÓÉÎ• ὊÃÏÓ—

ά

ὼ
Ὂ— Ὂ• Ὂ

ά
 ρ

άᾀ ὊÃÏÓ— • ὊÓÉÎ— άὫ

ᾀ
ὊÃÏÓʒÃÏÓ— ὊÓÉÎʒÓÉÎ— ὊÓÉÎ— άὫ

ά

ᾀ
Ὂ Ὂ•— Ὂ— άὫ

ά

ς

ὐ— ὊÓÉÎ• ὰ ὰÃÏÓ• ὰὊ

—
Ὂ•ὰ ὰ ὰὊ

ὐ
 σ

22

Where

ὼ ὲ ίὸὥὸὩ ὺὩὧὸέὶ

ώ ὲ έόὸὴόὸ ὺὩὧὸέὶ

ό ὶ Ὥὲὴόὸ ὺὩὧὸέὶ

ὃȟὄȟὅȟὈ ὅέὲίὸὥὲὸ άὥὸὶὭὧὩί

This formulation requires that the problem be linear time-invariant, which also

implies that ÓÉÎ—ḙ —ȟÃÏÓ —ḙρ for small angles of —. Even if this assumption

is carried on, Equations 1-3 suggest that the inputs and states are coupled and not

independent. For instance, varying Ὂ leads to changes in all states. This coupling is

not trivial and presents a difficult problem in control as the system needs to be linear

for it to be represented in state space form.

To this end, the problem can be linearized about equilibrium points if the system

operates around those points. A point is called an equilibrium point if there exists a

specific input that renders all changing states to π [45]. Formally, for a non-linear

differential equation given by:

ὼὸ Ὢὼὸȟόὸ

An equilibrium point is defined as:

ὪὼӶȟό π

Setting ὼȟᾀ and — to 0 in Equations 1-3 and solving the simultaneous equations leads

to the equilibrium input ό άὫȟπȟπ. This means that if we start the simulation at

the equilibrium point and apply ό, the system will remain at that point assuming no

external disturbances or randomness. However, starting away from ὼӶ and applying a

different ό leads to a deviation:

 ὸ ὼὸ ὼӶ

 ὸ όὸ ό

Then it follows that:

 ὸ ὪὼӶ ὸȟό ὸ

Expanding by Taylorôs theorem and ignoring high order terms leads to:

 ὸ
Ὢ

ὼ Ӷȟ
 ὸ

Ὢ

ό Ӷȟ
 ὸ

ὃ ὸ ὄ ὸ

This is called Jacobian Linearization about the equilibrium point. A controller should

work well if it is designed at this point, as long as the system operates near that point.

Both LQR and MPC make use of the linearized state space, and which is discussed

further in Section 4.3.1.

23

4.2 PID Controller Design

Recall that the PID is used for a SISO system. Therefore, we wish to transform a

SISO in the general transfer function form:

Ὃί
ὣ ί

ὢ ί

Consider taking the Laplace transform of Equation 1:

ίὢί
Ὂ ί—ί Ὂ ί•ί Ὂί

ά

ὢί in this equation represents the position in Laplace domain, which would

represent ὣ ί in the transfer function. The inputs are Ὂ ίȟὊ ίȟ•ί ,

however, ὢ ί can only represent one input at a time, hence the multi-

variability and coupling.

Methods for decoupling, such as the Relative Gain Array [46] allow a system to be

decoupled and treated as a SISO. However, since the PID is only used as a

benchmark, 3 separate PIDs were designed by taking the following assumptions for

Equations 1-3.

Equation 1

άὼ ὊÓÉÎ— • ὊÃÏÓ—

Assume that Ὂ π and small angles apply. This leads to the following

simplification:

ὢ

Ὂ

ρ

άί

However, note that Ὂ affects — significantly, as is evident from Equation 3. This

coupling becomes complicated since ὼ and — may require different conflicting

controls from Ὂ and Ὂ. This leads to the presumption that Ὂ should output a control

based on the PID error of both Ὧ— and Ὧὼ, where Ὧ and Ὧ are constants.

Moreover, both Ὂ and Ὂ should control the position ὼ.

To simplify the problem, the design of the PID took place using just one input, with

the other set to 0. Ὧ was then obtained empirically, leaving the same PID constants

that were designed. This method was also used to derive the control for Ὂ and •

and proved to work effectively.

24

Equation 2

άᾀ ὊÃÏÓ— • ὊÓÉÎ— άὫ

Using the same assumption as Equation 1, setting Ὂ π and taking the Laplace

transform:

ὤ

Ὂᴂ

ρ

άί

Where Ὂ Ὂ άὫ, i.e. an offset for άὫ is applied in practice after the PID is

designed. Since Ὂ also affects the states associated with ὼ (but to a lesser extent),

the same empirical method proposed in Equation 1 above is used to design this PID.

Equation 3

ὐ— ὊÓÉÎ• ὰ ὰÃÏÓ• ὰὊ

The final input that needs to be controlled is •. Note that ὊÓÉÎ• ὰ

ὰÃÏÓ• is the small contribution of Ὂ to the rotational moment. Also, notice the

opposing forces given by Ὂ and Ὂ as explained in Equation 1. Since • is being

controlled, all other inputs can be treated as constants, even though they are

variables. This independence assumption simplifies the problem and allows the PIDs

to be designed in a straightforward manner.

—

•

ὧ

ὐί

4.2.1 Design by Root Locus

Although an integral term brings the steady state error down to 0, it may lead to

instability due to the introduction of an additional zero. For this reason, the design

process took place on a Proportional Derivative controller which is given by:

Ὗ ί

Ὁ ί
ὑ ί

ὑ

ὑ

Consider the design on Equation 2 where the goal is to track a reference altitude

ὤί . The closed loop system can be represented as shown in Figure 13.

ρ

άί
 ὑ ί

ὑ

ὑ

+
_

Ὧ

ὤί ὤί

Figure 13 Closed loop system diagram.

Ὂ Ὁί

25

The open loop poles of the uncompensated system leads to double poles at ί

π, implying the system is constantly oscillating with no change in magnitude. We

would like to design a controller that tracks a reference input with a certain transient

behaviour and steady state error.

Let the response time be 2 seconds, implying 90% of the final steady state value

should be obtained no later than 2 seconds. Also, let the damping factor, ɕ, be 0.7,

implying a peak overshoot of 4.5% according to the equation:

ὖὩὥὯ ὕὺὩὶίὬέέὸρππȢὩ

Using the angle and magnitude criteria and root locus [47], the following PD

controller can be computed analytically:

ωȢωψρρρ ςȢχί

Together with the original transfer function, the compensated system traverses the

locus shown in Figure 14 once a PD controller is added to the system. Notice the

double pole marked in óxô at ί π. The closed loop poles occur at πȢυστπȢσσςὮ
in accordance with the design as shown in Figure 15. In the actual algorithm, the

derivative term was re-calibrated as part of the empirical tuning.

The step response for ὤ is illustrated in Figure 16 overleaf. Note that this controller

was designed in the time domain. To translate it into the digital domain, the

derivative term needs to be scaled by

, which is in this case.

Figure 14 Compensated system ï open loop root locus.

26

Figure 15 Closed loop root locus showing closed loop poles and zeros.

Figure 16 Step response of the closed loop system with the PID designed to track ᾀ.

27

Having designed the z-PID controller having output Ὂ, Ὧ was set to 1, whereas Ὧ,

the term used to represent ὼ in the error function, was found empirically during the

simulation. As with any hyper parameter tuning, all other parameters of the

simulation were held constant whilst finding Ὧ. This means that • and Ὂ were held

to 0, with no initial acceleration in the ὼ direction. This enabled the rocket to descend

in a controlled manner, adjusting Ὧ until the descent was satisfactory with respect

to different ὼ initializations.

The same procedure was repeated with the other two controllers, leading to the

following algorithm:

Main Algorit hm 1 PID Control

Initialize PIDs as:

 Ὂ ὖὍὈὑ ρπȟὑ πȟὑ ρπ

 Ὂ ὖὍὈὑ υȟὑ πȢπρȟὑ φ

 • ὖὍὈὑ πȢπψυȟὑ πȢππρȟὑ ρπȢυυ

When called to perform control every seconds (default: 60Hz):

 ὼȟᾀȟὼȟᾀȟ—ȟ—ȟὰὩὪὸ ὰὩὫ ὧέὲὸὥὧὸȟὶὭὫὬὸ ὰὩὫ ὧέὲὸὥὧὸ▼◄╪◄▄

 --

 ᾀ ᾀ ᾀ πȢρὼ

 ᾀ ᾀ πȢρὼ

 ╕╔ Ὂ ȢὧέάὴόὸὩὕόὸὴόὸᾀ ȟᾀ ὑz

 --

 — — — πȢςὼ

 — πȢςὼ

 ╕╢ Ὂ ȢὧέάὴόὸὩὕόὸὴόὸ— ȟ—

 --

 — — —

 —

 ὭὪ ὥὦίέὰόὸὩὼ πȢπρ ὥὲὨ Ὠώ πȢυ

 — — πȢπφὼ

 — — πȢπφὼ

 ⱴ • ȢὧέάὴόὸὩὕόὸὴόὸ— ȟ— ὑz

 --

 ὭὪ ὰὩὪὸ ὰὩὫ ὧέὲὸὥὧὸ έὶ ὶὭὫὬὸ ὰὩὫ ὧέὲὸὥὧὸ

 Ὂ π

28

4.3 MPC Controller Design

The failure of LQR to include constraints in the general case led to inputs

experiencing values outside their intended limit. This was commented on in Section

2.4.4. To this end, MPC was proposed as a more sophisticated and robust numerical

method to solve an objective function at every step as opposed to designing a

controller at an equilibrium point. The design process is discussed in this section.

4.3.1 Linearization

Jacobian linearization was proposed as a viable numerical solution to approximate

non-linear functions using Taylorôs series expansion. Formally;

 ὸ
Ὢ

ὼ Ӷȟ
 ὸ

Ὢ

ό Ӷȟ
 ὸ

ὃ ὸ ὄ ὸ

Where:

ὃ ᶯὪ

ụ
Ụ
Ụ
ợ Ễ

ể Ệ ể

Ễ Ứ
ủ
ủ
Ủ

, ὄ ᶯὪ

ụ
Ụ
Ụ
ợ Ễ

ể Ệ ể

Ễ Ứ
ủ
ủ
Ủ

This problem can be solved in two ways; analytically or by direct computation in the

simulation. Analytically, this would be equivalent to simply performing partial

differentiation on the state equations ὼ ὼȟὼȟᾀȟᾀȟ—ȟ— and ό ὊȟὊȟ• leading

to the following representations:

ὃ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
π ρ π π π π

π π π π π

π π π ρ π π

π π π π π

π π π π π ρ
π π π π π πỨ

ủ
ủ
ủ
ủ
ủ
Ủ

, B

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ

π π π

π π π

π π π

Ứ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

Although analytically inexpensive, this method proved to be less effective than

computing the Jacobians using numerical values from the simulation itself.

Therefore, multi-threading was used to create φ φ new simulations initialized

with the exact dynamics and coordinates as the current time step. A matrix ‐Ὅ, was

used to change each successive state or input by a small amount, ‐, in either direction.

Each simulation was then run through one time step and the state was returned. Finite

differences were then used to create the entire Jacobian based on the actual resulting

values. This had the advantage of capturing unconsidered dynamics, such as the

effect of ά, and resulted in better performance than the analytical solution. The

procedure is documented in Background Algorithm 1 below.

29

In finite differences, the smaller the value of ‐, the more local and accurate the

differentiation. A somewhat conflicting result was obtained in this case. Setting Ů

such that the action under test become saturated led to better results than simply

incrementing by a small step change, such as ‐ πȢππρ. This result can be explained

by the fact that a small step change leads to a negligible change in state, resulting in

ὃ and ὄ becoming almost equal to . This effectively leads to the optimizer not

finding a solution or outputting a skewed trajectory. Testing Ů with values equivalent

[0.01, 0.1, 10, 50, 100] suggested that there is a range, which depends on the scale

(1:30) of the simulation, in which proper trajectory planning takes place. This range

was found to be between 10-100, with a value of 50 used in the simulation. This

effectively saturates actions in the case of matrix ὄȢ

Background Algorithm 1 Partial Differentiation with Finite Differences

Partial Differentiation function called, passing any simulation settings:

 ‐ ίὸὩὴ ὧὬὥὲὫὩ

 ЎίὸὥὸὩίὸὥὸὩ‐Ὅ # This results in a φφ matrix

 ЎίὸὥὸὩίὸὥὸὩ‐Ὅ

 Ὓ ὶόὲὛὭάόὰὥὸὭέὲίЎίὸὥὸὩȟὧόὶὶὩὲὸὍὲὴόὸ

 Ὓ ὶόὲὛὭάόὰὥὸὭέὲίЎίὸὥὸὩȟὧόὶὶὩὲὸὍὲὴόὸ

 ὃ
Ὢ
ὼ

Ὓ Ὓ
ς‐

 --

 ЎὭὲὴόὸὭὲὴόὸ‐Ὅ

 ЎὭὲὴόὸὭὲὴόὸ‐Ὅ

 Ὗ ὶόὲὛὭάόὰὥὸὭέὲίЎὭὲὴόὸȟίὸὥὸὩ # This results in a φσ matrix

 Ὗ ὶόὲὛὭάόὰὥὸὭέὲίЎὭὲὴόὸȟίὸὥὸὩ

 ὄ
Ὢ
ό

Ὗ Ὗ
ς‐

ὶόὲὛὭάόὰὥὸὭέὲί loops through the state and input matrices and executes a simulation

using values from each row. This results in a total of ςὔ (ὔ

ὔόάὦὩὶ έὪ ὛὸὥὸὩί independent simulations for a total of 12, each simulating just 1

step and appending the results to matrices ὃ and ὄ.

30

4.3.2 Design

Recall that a general MPC controller is given by:

The above problem presents the following challenges and design decisions:

¶ Whether to penalize the change in actions as opposed to penalizing the

actual action values.

¶ Whether to use slack variables to penalize the optimizer for choosing values

of actions or states above the constraints, or simply leave hard constraints.

¶ What value to use for the maximum error between the ideal states and the

actual states.

¶ What values to use in matrices ὗ and Ὑ;

¶ What time horizon, Ὕ, to use;

¶ What control horizon, Ὕ, to use.

A number of experiments were conducted for the first two options to find the best

solution for fixed values of ὝȟὝȟὗ and ὙȢ Once that result was established, ὗȟὙȟὝ

and Ὕ were treated as hyper parameters and are discussed in Section 5.5. The

general problem was restructured as shown below.

άὭὲὭάὭᾀὩ

ίόὦὮὩὧὸ ὸέ

ὐ ὼὗὼ όὙό

όᶰ5, ὼᶰ8

ὼ ὃὼ ὄό

ȿὼ ὼ ȿ ÅÒÒÏÒ

ὼ ὼ

Ὢέὶ ὸ ὸȣὝ

Main Algorithm 2 MPC

άὭὲὭάὭᾀὩ

ίόὦὮὩὧὸ ὸέ

ὐ ЎὼὗЎὼ όὙό Ўό πȢρὙЎό

ὼ ὃὼ ὄό
ὓὥὼ ὖέύὩὶ

φ
ό & ὓὥὼ ὖέύὩὶ

ὓὥὼ ὖέύὩὶ ό & ὓὥὼ ὖέύὩὶ

• ό ʒ •

ὼ Ὕ ὼὝ πȢπρ

ὼ ὼ

 ύὬὩὶὩ Ўὼ ὼ ὼ

Ўό ό ό

31

Note that a problem can be tested for convexity by computing the Hessian matrix

and checking if it is positive semi-definite, that is if itôs Eigen values are greater or

equal to 0. When considering the constraints mixed with the cost function, this test

becomes non-trivial. For this reason, the constraints were left to be as linear as

possible since a convex framework, ὧὺὼ, was used to solve the problem. The

Splitting Conic Solver was used for the optimization problem since it can solve

convex second-order cone programs of the type:

Experiments were conducted to find the optimal values for the hyper parameters

discussed earlier and results are discussed in Section 5.5.

4.3.3 Trajectory Generation

An ὼ was passed to the optimizer to track an ideal trajectory at every

ὼ iteration. This trajectory was computed empirically by first defining an ideal z-

profile. The target state was then computed, always starting from

ὼȟὼȟᾀȟᾀȟ—ȟ— and computing each state iteration according to

ὼ shown overleaf. This preserves the constraint ὼ ὃὼ ὄό

while providing realistic targets within the given time horizon. If instead we gave

the default values of ὼ ὄὥὶὫὩ ὼȟπȟὄὥὶὫὩ ᾀȟπȟπȟπ, the optimizer would

have tried to reach ὼ within the given horizon, which leads to an infeasible

solution.

The Z-altitude profile was structured as:

ᾀὸ ᾀ Ὡ Ȣ έὪὪίὩὸ

άὭὲὭάὭᾀὩ

ίόὦὮὩὧὸ ὸέ

ὐ ὧὼ

ὃὼ ὦ

Ὃὼ ὑὬ

ὼᶰ8

Figure 17 Altitude profile against time to land.

32

Using this graph, the target state was obtained at each time step for the specified time

horizon according to the equations shown below:

●╣╪►▌▄◄ ◄►╪▒▄╬◄▫►◐

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợὼ

ὼ ὼ

ρ Ὡ
ὼ ὼ

ᾀ ὸ ȣὝ

ᾀ Ὡz ȟȟ

— ᶻπȢσ Ὡ
— Ứ

ủ
ủ
ủ
ủ
ủ
ủ
Ủ

This target provided a sigmoid-like trajectory with respect to ὼȟᾀ as well as realistic

values for — and —, tuned using the baseline PID. As an example, using a time horizon

of 30 and a time step of 0.1, the reference trajectory specifies that the rocket should

decrease the ὼȟᾀ displacements gradually as well as correct for — over the entire

period, not just one. The reference trajectory is shown in Figures 18.

In Figure 19, the reference trajectory is shown as a black line and the optimized

trajectory returned from the optimizer is shown in red. One can notice that the

planned and target trajectories do not coincide at every point. This depends on the

Ὡὶὶέὶ value between target states and planned states. It is of utmost importance that

the constraint for the final state ὼ Ὕ ὼὝ Ὡὶὶέὶ is also included as

without this the MPC would fail to provide a reasonable trajectory.

- Optimized Trajectory

- Reference trajectory

Figures 18 & 19 Reference trajectory showing the x-z profile

(left), and the corresponding simulation (right), showing planned

(red) and target trajectories (black).

ὼᾀ Trajectory Profile. ὼ ρφȢυȢ

ὃ
ὰ
ὸ
Ὥ
ὸ
ό
Ὠ
Ὡ

ᾀ
Ⱦά
Ὡ
ὸ
Ὡ
ὶ
ί

ὼ-Position/άὩὸὩὶί

33

4.4 Linear Function Approximation Q -Learning

RL refers to the episodic learning of an agent whose goal is to maximize the return.

Different types of representations were discussed in Section 2.5, and this sub-chapter

expands on Q-learning.

Up till now, the benchmark PID and the MPC controllers were designed and their

algorithms were outlined. The PID represented a classical control approach, whereas

MPC uses a combination of state space representation with optimization methods.

Given that MPC is derived from the same theoretical background as RL, both solve

the same problem using the same framework in different ways.

Whereas MPC uses an optimizer and a known model, RL approaches the problem

from an interaction-reward point of view. In this section, the state is modeled by an

algebraic sum of weighted features. Features can include the actual state ὼ used in

MPC, binary states that are activated with a condition, transformed functions such

as ὼ ώ and any other relevant functions. The general Q-learning algorithm is

given by:

However, Background Algorithm 2 above uses discrete states and actions. On the

other hand, our problem spans both continuous states as well as actions. This

introduces the problem of the curse of dimensionality; if we try to discretize all states

and actions, ὗίȟὥ becomes infeasible.

Mnih et al. [48] chose to replace the tabular approach with a deep convolutional

neural network trained using stochastic gradient descent and a replay mechanism

which randomly samples previous transitions. The replay buffer was also used for

this project in the implementation of the DDPG algorithm discussed in Section 4.5.

The researchers effectively used the video images having a resolution of 8484 at

60Hz as input to the neural network, and output all actions as a posterior probability

of the state. The highest valued action would then be executed. Tile coding and

Background Algorithm 2 General Q-Learning

Initialize ὗίȟὥ either optimistically or randomly, in tabular form (2-dimensional array)

For every episode:

 Initialize the state ί

 Until s is the terminal state, do:

 Choose action ὥ from current state ί using an Ů-greedy policy

 Execute action ὥ and get reward, ὶ, as well as the next state, ίȭ

 ὗίȟὥ N ὗίȟὥ ὶ ÍÁØὗίȟὥ ὗίȟὥ

 ίN ίᴂ

34

Radial Basis Functions are other state representations that have proven to be

effective in certain simple continuous state problems but were side-lined for a

simpler solution in this implementation due to their scalability limitations. Note that

these solve the problem of states, but not actions.

Consider the true state-action matrix to be linearly approximated by another

weighted matrix:

ὗίȟὥ ὗίȟὥȟ

The goal is to find a representation for :that minimizes the cost function

ÍÉÎὐ Ὁ ὗίȟὥ ὗίȟὥȟ

To this end, gradient descent can be used to find the local minimum in an online

fashion:

ρ

ς
ὐɳ ὗίȟὥ ὗίȟὥȟ Ȣɳὗίȟὥȟ

Where Ŭ is the learning rate and ὗίȟὥ represents the target. The target depends on

how the problem is formed; Monte Carlo RL implies that ὗίȟὥ be equal to the

average reward at the end of the episode, whereas for temporal differencing it would

be the immediate reward following state ίȡ ὶ ὗί ȟὥ ȟ . Using such a

method, ὗίȟὥȟ still converges to the global solution if on-policy linear function

approximation is used.

The main algorithm used is shown below, with Ŭ being annealed from 0.01 to 0.001

using an exponential decay. All features are explained overleaf.

Main Algorithm 3 Linear Function Approximation Q-Learning ï Off Policy

Initialize .randomly from Ὗπȟρ with size equivalent to the number of features

For every episode:

 Until s is the terminal state, do:

 Choose action ὥ using an Ů-greedy policy, ὥὶὫάὥὼ ὗίȟὥᶰὃȟ

 Execute action ὥ and get reward, ὶ, as well as the next state, ίȭ

 ὪὩὥὸόὶὩίὦόὭὰὨ ὪὩὥὸόὶὩί όίὭὲὫ ίȟὥ

 ὗίȟὥȟ ὪὩὥὸόὶὩί

 N ὶ ÍÁØὗίȟὥȟ ὗίȟὥȟ ɳ

 ίN ίᴂ

