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Abstract

The high cost of rocket technology has led to system reugatehielopments, particularly

in the field of first stage rockets. With the motivation of decreasing production costs,
successful vertical rocket landing attempts by SpaceX and Blue Origin have led the path
for autonomous recovery and reusability of rockagines. Such a feat can only be
accomplished by complex control algorithex@cuting in reatime aboardhe rocketThis

project aims to develop\eertical rocket landing simulation environment whalgorithms

based on classicabntroland machine leaing can bedesigned and evaluated.

After developing the simulated environménPythonusing a robust physics engikeown

as Box2D two control algorithms were designed; once classical control method and the
other from the optimal control domain. Thatassical controlProportional Integral
Derivative (PID) controller served as a benchmark, wherddsdel Predictive Control
(MPC) makes use of aaptimizerto find the best performing action to take based on an
objective function. Two Reinforcement Leargialgorithms were then designed with the
aim of automatically developing the required control without explicitly defirtimgy
dynamics of the systenThese methods, known formally as Function Approximatien Q
Learning and Deep Deterministic Policy Gradie(BDPG) provided a contrasting
approach to thePID and MPC controllersWhile the classicalcontrollers achieve
acceptable performance, the Artificial Intelligent counterpaspecifically the DDPG
converged to aore sableand consisternbcket landing
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1 Introduction

This projectconcerns itself with the mudtisciplinary subject of reusable space
systems, spdfically first stage rockets. Vertical tak&f and landing (VTOL) of a
rocket is a veryprimitive field which exploits theeusabilityof the launch vehicle
used totransporthighly valuable payloadsuch as satellitegto space. Work on
reusable laurttsystems is motivated by econoraicd material reasons significant
costreductionis attainedoy reusingthe first stageockethardwarg1], [2]. On top

of this, improved scalabilityas well as increased launch frequency are two positive
by-products of thigeusability

Since tle subject oV TOL of a rocketis still in its infancy, there is very little to no
published madrial on specific topics, such as control methods udedkover, these
industries are subject to sensitive military information which prevents any
publications.Therefore, some references to exemplary-tewhnical methods and
plans are made from respdataleaders in the industry who spearheaded the subject,
such asSpace Exploration Technologies Corporaii§paceX).

The first successful leunch of a previously used rocket was performed by SpaceX
with the Falcon 9 rockdg8] on March 3@, 2017 It is important to point out that not
the entie rocket is rased. Asanexmp | e, Spac e Xobismadeaup a o n
two main stagept], excluding the payloathat fits on top of theecondstage The

first stage houss the clustered rocket engireeswell as the aluminiwtithium alloy
tanks whereas the second stage contains a simgjiee to drive the payload to the
desired orbitAfter separation, the first stage is propelled back to earth in a controlled
manner as shown fRigurel [1].
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Figure 1 SpaceX Falcon 9 Launch Profilg]
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The focus of this thesimason the very last stagdesigning controllers to larttie
rocketon the bargevith the main firing enginavithout exceedingany hardware

limits or running out of fuelln other wordsthis work assumed that all previous
stages of the rocket were successful and that the rocket was guided to within
reasonable proximity (200 meters$ of the landing area, having a relative downward
velocity similar to that experienced in real life.

Tests conducted b8paceX and Blue Origifb] successfully show the use of the
main engine, grid fins as well aold gas Nitrogerthrustersto land the first stage
rockets, each used to a different extent and in different stagebaledthrust[6] is

also used as part of thentml. Together with the main and side thrusters, gimbaled
thrust will form the backbone of the mathematical model of the rocket in this thesis.

1.1 Objectivesand Contributions

The main objective of the projectis to design anccompare classical and optimal
control algorithmawith machine learning algorithnvgith increasing sophistication
Since designingstable closed loop controllers fononlinear and multivariable
systems is noirivial, the Artificial Intelligence (Al) approach representsn
unsupervisd way to tackle such complex problems. To this end, twatrol
approachesas well as two Al approachesredesigned and implemented.

Before designing any controller, a vertical rocket simulation environment was
developedin Python 3.5using the physicengine Box2D[7]. This environment
allows for not just landing simulations, but also launches and trajectory tracking.
Therefore, contributions from this thesis include:

1 Simulation environment in Python 3.5
1 Implementation of:
o0 Proportional Integral Derivative (PID) contier
0 Model Predictive Control (MPC) method on the linearized problem
0 Linear function approximation-Qearningcontroller
0 Deep Deterministic Policy Gradient (DDPG) controller
1 A thorough comparison between methods from both domains.

The rest of thehesisis organized as followsSection 2 presents related work done
on some of the control algorithms that are explored, as well as important rocket
related details that must be addressed. Sectigives a brief overview of the
developed simulation environmente@ion 4 presents the problem as well as
technical background on the algorithms that were adojpteaiso describes the
methodologyof the models and establishes the baselinewhaimplemented for

the rest of the models to be compared with. This isvad bythe evaluation and
comparisonwith the improvements andcconclusion drawing final remarkm
Sections 6 and 7 respectively



1.2 Problem Definition

ConsiderFigure2 below, illustratingthe rocket landing on laarge.
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Figure 2 Vertical Rocket Landing Model
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As explained in the introduction, the main controls of the roaftesthe:

1 Main engine thrustO
 Side Nitrogen gas thrustef®R0O

0 Summarizd in asingle inputdO O O
1 Nozzle angle, .

The objective is to land the rocket in a controlled masneh that théinal state of

the rocket at landinig as close to a target state as possible. This will later be defined
numerically ina utility function The inputs, defined a8 "OROR have the
following constraints

mdo O @1 Yho
poit 'O poaoin

puv * puL

These constraints asealed(1:30) estimates for the first stage rocket of Falcon 9
during landing[4], [8]. Exceptfor the positionof the centerof gravity (COG), the
simulation was developed to reflect real life conditions where possible, including
dimensions and force magnitudes. In the simulation, the COG was higher than in
real rockets, making control harder.

Let the state of the rocket dynamics at any timbe defined bye:

G b ha h—h— andthe final state by, For a successful landing,,must be

within the following numerical thresholddefined byb\,m“:

0 QOWWI WQQW YO OI WQQQ
call w can
a o0 QQWQ

a man
pm — pm
¢hni — ¢h

Therefore, a&ost can be imposed on tfieal state, defined as
01 @

where] is a@ p weighting matrixand ® is the desired final stat& his
formally defines awccessful landing, such thaties within a thresholdThe closer
is to 0, the better the landinfhe st associated with the statwill be formally
definedin Section5.2



2 Background

Vertical rocket landing has only been practically explored in the last few years.
Given that this is a multidisciplinary topic,baief background orhrust vectoring,
different aspects of the rket, the barge, and control methoidsnecessarywith
special attentiogivento the latter

2.1 Launch Vehicle Reuse

The motivations of launch vehicle-tese are twdold: saving of the first stage engine

and structureleading to significant economic savings. However, there can be
different types of recovery systems, dependent on the type of launch vehicle. Ragab
et al.[9] review the different techniques wseThey highlight that propellant and
gases contribute less than 5% of the first stage cost of the rocket, further cementing
the argument for recovery. However, they do mention that simpler recovery, such as
with the use of parachutes, is more cost effedtnan booster fly back. At the same
time, the landing accuracy of simpler methods is measured in miles, whereas with
vertical rocket landing it is measuredneters

After separatiorof the first and seconstagesreductionof translationalelocityis

necessaryBlue Origin achieves this both passively with brake fins, as well as

actively by restarting the main engine, powered by ligidgdrogen and liquid

Oxygen [5]. On the other handFalcon 9 uses its grid fins for -emtry
manoeuvrability before switching on its engines agdi4]. It also achieves
controllability using main engine gimballing and cold gas Nitrogen thry&krshe

| atter two are included iasillustrated $fFigpre oj ect 6 s
2.

2.2 Thrust Vector Control

Thrust vectoringvill bethe maincontrolmethod to keep-as close tat as possible
keeping the rocket upright whilst still followingraference trajectoryectoring
refers to the gimballing action of the engimethe flexibility of the nozzlewhere
thenozzledirection is changed relative to tB®Gof the rocket. Since the direction
of thenozzledictates thengle at which thrust is exertedtorque about theOGis
created if  Tras shown irFigure3 [10]. In reality,the nozzle is moved along 3
dimensionswith actuators. Since theimulation developedh this thesis is in 2
dimensionspnly a single rotational movement is negde
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Figure 3 Thrust Vector Control of a Rockgt0]

The nozzle itself can take many forms, and the generated thrust magnitude and
profile are directly dependent on the shape of the noZileist reductionand
increased wakeéurbulencecan result from a subptimal nozzle profild6], [11],
however, this project will assume ideal thrust profiles utilizing a single flexible
nozzle joint[9]. Hence the gimbalcan be repregnted by a rotary ball joint at the
lower end of the rockefThe flow of the thrust will be asswed to act along a single
directionalvector, "O.

2.3 The Landing Site

Simple recovery methodsgith parachutes were used to collect launch vehicles from
the ocearhoweverno first stage rocket had landed on an ocean barge before. Falcon
9 successfully did this on April $¥82014[12] in a historic landing.

The r o &eoH bcaton igusuallyfrom the east coastf the United States
having an abundana# area away frorgivili zation However, if the first stage is to
be recovered, not enough fuel can be catviethe ocketfor the first stageo make
it back to land. Even then, it would be a dangeremdeavar. For this reason,
SpaceX opted to use a floating platform in Baeific Ocean.

The bargeds | anding ar eameesandisnaeigak appr oxi mat
with 4 dieselpowered thrusters and a Global Positioning System fonseifjation

[13]. Given this setting, landing a rockat a seHnavigated barge presents a control

problem on its own, especially since sudden weather changes cadistwdances

in the bargebts pgwgittihdms amredsamgl € he fl oatin
and angle relative to the horizontal plaare variables ithe simulation and can be

adjusted for testing purposasdincluded in the mathematical model.



2.4  Control Algorithms

Closedloop control system§l4] arethe pivot on which such landiegire made

possible.Both classicalcontrol and Artificial Intelligence (Altechniques rely on

state variabledo analye the error with respect to an ideal state and execute

corrective measured control |l erds job is to perform th
controlledmanner.

In classical controlthese states must be bound dwell-defined mathematical
model, whereas in Al input variables atefined looselysince the method has no
knowledge of what the varialdeepresentThis underlines the difference in the
approaches of creating a controll@lassical controfollows a ®t of rules and
known methodology that have been widely used and tested, whereas Al techniques,
such as Reinforcement Learning (R&je less structured

This section introduces theckground requirefibr understanding the material from
both domains.

2.4.1 System Representation

The design of classical controllers requires a model to be defined in a certain
standardized format. In control theory, funcédmown astransfer functionsare

used to characterize the inpuitput relationships of the system definbg
differential equationgl5].

Consider a linear timsvariant system defined by thillowing differential
equation:

L0 0 o . .. . 0wn ,Q w
w W E ow w— W=

® ® D D ww

[Th

Where¢ @, wis the output of the systemis the input and g ,&)8 are their
respective coefficients. The transfer function of the syssedefined as theatio of
the Laplace transform of the output to the input under zero initial conditions.
Formally:

ffledonoo

_‘ﬂ' Qe n O¢(QQ‘|"§X‘5 QO NHRQO QE ¢ i
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The Laplace transform is a convenient operation that allows the-onpoit
relationship ® be represented algebraically. typical closed loopSingle Input
Single Output (SISO3ystem can be repsented as shown Kigure4.

R(s), refeence

input E(s), error U(s) | Plant Transfer | C(s), output
—— »  Controller Function >
G(s)

B(s), feedback signal

Feedback
H(s)

Figure 4 Single Input Single Output Closégop System

As complexity increasesystems typically become Multiple Input Multiple Output
(MIMO) problems at which point such a representation becomes too limiting.
Therefore, thdinearized mathematical model in this project is representeddte
spaceform [16].

The state vector was previously definedwasghilst the input vector was defined as
0. Using state space, the dynamics bfhear system can bealculatedor any time
0 0 .The system can be defined by:

YO OGUQ i @ o /B
060 mod oo hd
‘0¢ "gp 0 6 B MO

wo Qv
wo  "Qajoh

If the system isiontlinear, as is theocket VTOL, then it must be linearized about
an operatingoint using Taylor series expansif¥]. Otherwise, it carbe written
directly in the following shorthandotation

w 0woo
w 0w 0o

Where=is the state matriy| is the input matrix,ris the output matrix ang is the
direct transmission matrix, whicis usuallyO. State space allows fa concise
representation of a system, exposing all the dynanatiaeships in weldefined
matrices. Moreover, where&ggure4 models a SISO system, state feedback can be
used by designinga matrix that together with a reference state commands the plant



through its inputes shown inFigure5. The SISO model ifrigure4 was used to
implement 3 decoupled PIDs to contéoin the benchmark model and is outlined in
Sectiord.2 State feedback was used for more advanced optimal constobas in
Section4.3.

B jisturbance

»; reference
state meror 7y 0.input —e |0 «, output

K <

Figure 5 State feedback system. The state vectoused together with the reference state to co
the plant. The diturbanced, can manifest itself at any point in the process but is shown in the
feedforward loop.

2.4.2 Proportional Integral Derivative Controller

A Proportional Integral Derivative (PID) controller is an intuitive controller ihat
suitable forSISO systems shown iRigure 4. The PID is a simple yet effective
controller that computes the proportional, integral and derivafitkeodifference

between theoutput and the reference inpwripr) and outputs a control signal
depenling on the defined PID coefficienfd8]. The inputoutput relationship is

definedas

60 0QO0 U QoQo v

Qo
Taking the Laplace transforl@adsto:

O i
Y i O i Oi 0

Finetuning of 0 Y and 0 has been refined ithe continuous time domain,
frequency domainand even discrete time domairhese parameters are designed
based on the desired response to a step input. The response is characterised by the
rise time,settling time, bandwidth and overshodtell-known method for tuning

are the ZiegleNichols ruleg19] androotlocus[20]. A system may require certain

timing and damping characteristics which impose design criteria durirdgetign



process. A an examplet is imperativethat a chemical process does not experience
anyovershoots, but must be critically damped.

A second order system is typically used as an approximation for many systems
because of its balance between compyeatnd easef design. The following transfer
function representaclosedloop second order system:

07

Oi p
I S 1

Wherg is the natural frequency of the system atid the damping factoiYang

et al.[21] designed a second ordelD controller calibrated by trial and erron a

thrust vectoed nozzle The authors also highlit the effect that the individual PID
constants have on the system, particularly stressing the need to balance the transient
response with steaetate errors and oscillations.

The proportional termy tends to make short transients and catersh®ipresent

error as well aso decrease thsteady state erromheintegral term allows for the
elimination of steady state errors but increases the order of the system, potentially
rendering it unstable. On the other haid,leadsto faster riseitnes and increases

t he syst e mdhe PID & nsddvas d behchmark controller in this project
and the design is described in detaibiection4.2

2.4.3 Optimal Control

Even though the PID is widely used to control simpkteamsjt does not guarantee
optimal control or stability.Furthermore problems withcoupled variables and
MIMO systemsincrease the complexity andakethe manuatuning ofa PID a
naiveapproachTo this end, the field of optimal control is introduc@the Linear
Quadratic Regulator (LQR) and MPC are tawachcontrollersin this field. In this
project, LOR was used as a stepping stone for MPC

As opposed tomanual tuning of constanteptimal controllers minimize a cost
function with constraintsaassocated with the tte and input in order to iteratively
computethe optimalcontrol strategyA general optimization problem takes the
following form [22]:

a Q¢ Qa MQw

[ 60@E Qo mhQ pM M
Qo ™Q pM M

10



Where’Qw represents the objective function and the constraints represent inequality
and equality constraints respectivelyhis is a convex program if the objective
functionand constraints are both convex, satisfying the inequality:

Q of w | Qw TQw®

Not all problems are solved equally; different classexptimizationproblems, such
as least squares, limeprograms or quadratic programay use different optimizers
to obtain a solutiorusing the least amount eébmputng power. Moreover, non
convex problems require more time ignore local optima andreacha global
solution[22].

2.4.4 Linear Quadratic Regulator

For a model given byo 0 @ 0 §theLQR seeks to finch feedbackmatrix 0
that leadsto optimal controlby minimizing a quadratic cost defined as

w0 ® O0'YOQd GO @ [23] whered 6 m, 0 & mand 'Yn 1 (positive
semidefinite and positive definite respectively The symmetric matrix0
represents the cost given to the final state.

0 representshe penalty given to the distanbetweerthe stateindtarget,whilst'Y

is thepenaltypaid to execute the actiorEhereforehrepresents a traesf between
state accuracy and action pend®¢]. Low values ofY indicate that the controller
has more flexibility in executing the actiomMdoreover,0 and'Y must be balanced

to achieve the required transient respoasevell as steady state error, a process
requiring a certainlegreeof trial and errof23].

Note that this method requiredimear system. This suggests that the maitrigan

be found analytically to achieve the feedback controldaw 0 wln fact, there
are many ways to deriwe, most notably the dynamic programming approach. By
differentiating 0 with respect t@ over a single time step, the following solution is
derivedfor thecontinuougime case

0 Y 60w

Wherel is the solution of thalgebraicRiccati equatiorf23]. It can be shown that
this solution achieves desirable control chamastics and robustnef25]. Note that
a distinction nust be made between continuous and discrete time LQR, thiege
lead to slightly different solutions.

Mohammadbaghegt al.[18] compare PID and LQR controllers on voltesyirce
inverters and concluded that the rise time as well as settling time of LQR controllers
were superior to those ofdlsimple PID. Kumar et gl26] also design robust LQR
controllers for both stabilizing thieverted pendulum and trajectory tracking to a

11



reference input. Note that the inverted pendutnodel is not that far from the rocket
landing problem, on the contrary, the mathematical models ayesirailar since
both tend tanaturally unstablequilibrium positionsThe authors showed that LQR
can optimize even with the most stringehparamegrs.

The disadvantage of LQR is that the optimal feedback is independent of constraints.

This poses a problem in processes such as the rocket landing, where all inputs are
bounded. The problem can be redefined to include constraints, but more advanced
metods, such as MPC, cater for such an issue

2.4.5 Model Predictive Control

MPC is arelatively new fieldin control thathas only been proven usethlnksto
the increasedomputational powemtHowever, it found widespread use in industry
from precision landligs[27] to trajectory planning in missil¢&8]. Like LQR, MPC
solves a quadratic program by minimizingn abjective functionHowever, unlike
LQR, it includes equality and ineqitsl constraints and thelinearized plant
dynamics form part of these constrairithis enables the optimizer to findsmlution
that is optimal for not just the presestate but also future stateFhe extent of
predictability is referred to as thimehorizon.A generalizeadonvex quadratiMPC
program takes the following forf29]:

dQE Q4 v ®»0® 06 'Y

i OO@®E O0MN5,mN8
[ ow 066
[ [
W
MED 087Y

W represents the initial state atd represents the target state at the end of
the time horizoriY. This constrains the problem to coryeto adesiredinal state.
Note that the problem can bestructuredn manyways, and the choice tieutility
function, cost matrices, constraints, linearizati@ontrol horizon, prediction
horizon sampling intervaand errottolerance should bedated as hyper parameters.
As anexample, the penalization of the control actioiYd in Ocauses the objective
function to have a nerero value eveanndersteady state conditionshered might

not be zero for proper control action. Meadows ef3l] propose to penalize the
change in action®0, instead. Garcia et §B81] notedthat a large sampling interval
causes oscillations and suggest that only the present resulting@aci®oosedand

to resolve the problem again @ p using the new state.

12



Meadows et al[30] reported increased overshoot and faster resparith longer
time horizons. Moreover, longer prediction horizons are more susceptible and
sensitive to disturbances.

Bryson et al[32] suggest that weight values should be inversely proportional to the
maximum limit. On a contrasting note, Meadows eff20] found this to be too
penalizing and instead suggasapply a penalty to constraiéviations. This would

be in accordance with general optimizatioadty, where instead of fixing equality
constraints and introducing more variables, a slack variable is added ii33pad

4 0¢ Qa v w0 Yo 'YWo 1 %Y
i 6O @FE o6 o 1,0N8

) oe 060

) )

O ®

QED 08°Y

Where "Yis the penalty given if the control action approaches . For the
optimizerto find a meaningful solution, the control problem must be both observable
and controllabl¢34]. Figure6 illustratesthe MPC workings, showing the forecasted
state as part of the solution. It is interesting to note that MPC has beein tised
designof thrustvectored flighf35] and also guidance and contf86]. The former
achieved better results than the static gain LQR, and similar performance-to gain
scheduled LQR, where many different LQR solutions are applied depending on the
state in which the plant is in.

past 1 future/prediction

<

N

Desired set-point

e
-

Closed-loop state e
(measured) R
/—\/’f :
u; ..-_-.% Optimal input
fa— Iy - H
Closed-loop input R trajectory (time k)

e |

H i
_[_ L
L R P B
L-==7  Re-optimal input
:___g_'.ajcctm'_\' (time k+1)
| —

k k+1 k+p k+m

| Control horizon p N

L Prediction horizon m A |

Figure 6 MPC takes the current state and input and finds a solution for the optimal input base
required constraints and prediction horiZb8].
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2.5 Reinforcement Learning

As opposed to explicitly defining a model, RL applies the theory of dynamic
programming tadefine aframework thatadapts itself through episodimteraction

with an environmentThe environment is typically defined as a Markov Decision
Proess[37], wherea set ofactions are avaitde to choose from at any state.
generalRL problem would involve a policy that takes actiortstes that represent
where theagentis, and rewards that enforce good actiamen ina state The goal

is to learn thepolicy, the method of choosing actighat maximizes rewardBigure

7 illustrates this system.

Wi 1A 0lLYie @ (®
l'ee
\ J
f
=] mhavinga
policy“ i hid that o R
, - maps states to O ci@éhin
i agan be represented by a actions. Chosen_greedny
vector, for examples in the (maximum
rocket landing problem. E0hd BoC e value),
{00 i 0 ®w o ¥~ randomly with
The reward serves as probability U
feedback which is used to sa}mplved from
update the paotiy. P Y1ip , or
- < L otherwise.
eward

The value functionw i , represents the expectedmulativereward that a policy
would get if it followed that policy from there onwardrmally, let:

Y [

0O 00 id i o
Y o1 94 ihd i

In linguistic terms, given actiodand staté, 0 defines he transition probabilities

of going from one state to each possible next state viMilstdefines the expected
value of the next rewarf88]. 'Y represents the discounted future rewards, where
T p. Note that like MPC, the ainm RL is to maximize the reward amedach

an optimal stution by breaking down a mufteriod problem into smaller pieces.
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This notion is known as Dynamic Programmiagnd it 6s <centr al to Be
equation39]:

Where* i is the probability ofchoosingaction & when in statd . Although

theoretically sound, for an update of the value function to take @Ehatats must
bevisited Insteal, an iterative version known as Temporal Differencing (4D}

makes an online update of the form:

Gi Nai | YOI Qad
NP G O

This equationprovides an updated estimatesof as soon as the state is visited. |

only has one hyper pacaaafsebeexpandedtoindludear ni ng r a
additional terms that reinforce not just the current state, but previous states that led
toarewardThisisk nown a[d40].TD( &)

2.5.1 Discrete StateAction Q-Learning

Bell mands equation above makes,whait of transi
these were unknownTransition probabilities imglknowledge of a model, and the

aim is to obtain a moddtee frameworkhatcan learn iterativelyw i is a notation

for a value of a state of tlaptimal policy that maximizes the expected ad. On

the other hand) i represents the value of a state if actizis chosen, and then

continue with that policy from that state onwards. This means that it eliminates the

need to knowand executeéhe optimal policy “ i iy, and insteadexecuteany

action available according to the policy at that time.gtepmally, this can be written

as:

Oihd 1 1O i
This form eliminates the need for a model and can bgted to many problems.

Suttonet al.[41] give an example with a cliff walking gridorld having discrete
actionso ™ 6 Q£ Ohg QAQEIN The environment awards a reward bfor all
transitions except for the cliff region, in which a rewardldfO is giveras shown in
Figure 8. They compare ofpolicy with onpolicy Q-Learning, where the latter is
known as State Action Reward State Action (SARSA). The only difference between
these two algorithms is in the degree of greediness, as illustrated overleaf.
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R=-1 safe path

optimal path

S The Cliff Gl

R=-100

Figure 8 Cliff walk example[41], where the aim is to arrive to point G without falling off the clif
reward of-1 is given for each transition, where&80 is given for walking on the cliff.
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/T T TR GV YO o 0 i hd
iy i T ABT RD 0 i ho

Fo N
Fy N

CR

On-Policy QLearning(SARSA)
Off-Policy QLearning:

C
C

Sutton et alreported tht SARSA achievekigher rewardthan QLearning After a

few episodes, Qearning learns the optimal policy, that which walks along the edge

of t he cl i-grdedy adianeelettion, sorheémesithis can result in falling

off the cliff. Interestingly, in SARSA, the policy chooses to take thgéo but safer

pat h. The authors go o northeotwosalgayitprasstd t hat U ¢
converge.

Noticethat this example representiscrete statewith discrete actions. The state is

leftt o t he designer 6s c¢hoi CldfWaldxamplethigh not spe
can be represented by the grid in which #gentis currently in,for instance

representing each squareith a binary number This leads to the tabular
representatioshown inFigure9.

States accesed using binary representation

States
1]12] 3 | é | n-1|n
, Left| 0|0 0
5 Right[0.1]0.1 é é é 0.1
g Up|O]|oO Q(s, a=up) 0
Down|[ 0 | O Q(s, a=down) 0

Figure 9 Tabdar (2D array) representation of the stattion function, Q(s,ayith optimistic
initialisation of the action Righf his initialization will lead to action Right being picked more
frequently initially, contributing to faster learning.

The problem with such formulation is known as the curse of dimensiongH3],

where the number of states actionamake the problem infeasible. Suis the case
in this project, where the actiods® "OROR are all continuous. One limiting
solution is to discretize both states and actions, howevers thigscalable. To this
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end, Lillicrap et al[43] formulated a continuousamework based on deep learning
which was implemented in this project.

2.6 Conclusion

In this section, theory and examples related to the methods implemented in this
project were introducedThe VTOL problem relies on controllers, andch
introducedalgorithmsolves a shortfall presented in freceding ones

PID, LQR, MPC andRL were the four control methods that were discussed. The
PID is the simplest and most intuitive method, ushey groportional, integral and
derivative of the error with respect to a reference in order to drive the process.
However, the PID is suitable for SISO systems. Therefore, whettvariable
coupled andiortlinear systems are presented, the PID can oslyniplemented to

a limited extent on the linearized and decoupled plant.|l&adsto inaccuracies and
suboptimal control PIDs are tackleds a baselingm Sectior4.2

Unlike PID controllers, LQRs use the state spacentbtfie optimal feedback matrix

0. Moreover, whereas the PID acts on the error, the LQR acts on the state. This
state is still evaluated wittespect to an equilibrium poisince any noilinearities
need to be linearized for an LQR to be desigiée. gameral form of LQR does not
include constraintandthe designed LQR will only beptimal at the linearized state.

The shortfall of LQR in dealing with constraints as well as diffecenditionsled

to MPC, where the problem is formed as an objectivetimmavith constraintsMPC

finds the correct input to takey minimizing a cost function with respect to the states
and actions. Like LQR, the cost function is quadratic, but it is not solved analytically.
Instead, an optimizer is used to find a solutmthie objective function. This is also
done whilst respecting constraindsd following a trajectory. This means that
whereas PIDs and LQRs only consider the current state, ddR{dicorporate the
model in the constraints astnulate future stateenablig it to pick the best actions
that maximize not just the current reward, but also future rewBngsderivation of
LQR thatledto the implementation of MPC is detailed in Secto®

Recall that the general form of théPC still needs a weltlefined model where the

state is found analytically @s estimated. The notion of rewaridsfurther extended

to RL, where the MPC framewoik reformulated in an iterative andodetfree

framework that interacts with the environmdrgedback is given as a reward value

as opposed to an error. Li ke MPC, it is deri
to find the best policy thahaximiseduture rewardsRL can take on many forms,

but discrete statactions prove to be limiting in cawl applications. To this end, a

stateaction approximatoas well as a continuow®mainand relatively newnethod

is appliedto the VTOL problem and are discussedSectiors 4.4 and4.5.
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3 Simulation Environment

The environment is builh Python 3.5 and depends on the use of BokZD[44].
Box2D is a physics engine that supports rigid body simulations. It was originally
intended for games, however, it can also be used for light simulations not requiring
state of the art accuracged incritical goplications.

Bodies in the environment are built using basic shapeslgedtssuch agpolygons,
rigid bodies (defined as being as hard as diamond), fixtheasng attributesuch
as density, friction), physical constraints, joints, joint mofspecfying torque) and
finally the world which contains all the defined objects.

Box2D is tuned for meters, kilograms, seconds and radians. Since the rocket is
modeledafter Falcon 94] and thedimensions arguite large, all units are divided

by a scaling factofl:30) assuggested by the author of Box2[he physics engine

is meant to take care of collisiomsmd physics related calculations with a udefined
frequency. In this case, each tistep wassetto be 1/60 s, or updatingwith a
frequency of60Hz. Uponpassingan actionto the simulationas ap o array
"OROR , corresponding forces are applied to the respective body. As an example,
a force equivalent to 'O p would result in a force O

08 6 OB 0 "O0b 'O w'Oapplied to the bottom of the nozzl€® and™O values

are normalized, whereas the angl& not.

Two types of bodies are defined in Box2D; static and dynamic. The fismeant

to be indestructible, defined as having zero mass. On the other hand, dynamic bodies
are meant for collisions, forces and gethdynamics All rocket parts are defined to

be dynamic bodies, whereagtharge and sea are static. The nozzle is fixed with the
lower part of the main rocket body byevolute joint. The revolute joint is given a
motor with a specified torque, havitggcertain delay. In this case, the torque was
defined large enough such that the angle is driven irtirealwith little to no delay.

The legs aralso defined as dynamic bodies ard connected via a revolute joint
with the rocket. Angle constraints ofu and a torqueveregiven to the joints to
simulate a spring once in contact with the ground. Forces are appliet afith
respect to the defined body at the relative coordinates. Since visuals needsentepre
the physics simulation armbdycoordinates, all simulation dynamics are updated on
the actual defined objecits the physics enginé\s an example, the&fw position

of the rocket can be accessed withid ¢ 8'@ii "Qan@kisis then used to render
the rocket. Partiels are used to represent forces. This is done for visual aid and is
very useful for verifying contrslvisually. However, rendering is not requiréar

the physics simulation to take plaéénally, the environment is meant to reset to the
defined initialconditions if the rocket tilts by more tharo v with respect to thé
axis or touches the outside boundakly.the above is summarized kiigure10 and
Figurell

18



Environment Reset Boundaries: If the rocket
touches the boundary box, the environment is

: . reset to the specified initial conditions.
Rocket Parts: Dynamic Bodies

‘ B
n

-
.

1
1 1
1 I
1 I
1 |
1 1
1 I
1 1
1 1
I . !
I Rocket Landing Legs: 1
I Dynamic Bodies fixed with a 1
I revolute joint with the main |
1 I
1 I
1 1
1 I
1 I
1 1
1 I
1 1
1 1
1

¥

body. T ;
%\ Target: (Barge Midpoint, Barge Height)

Barge: Static Body whose
position, height and shape
can be manipulated during
Sea: Static Body — Polygons the simulation.

Figure 10 Actual simulation executing a control algorithm. Visuals are needed to correctly ver

the simulation is being executed as intended.

Left Nitrogen gas thruster, F;

-,

T~ Right Nitrogen gas thruster, Fp
1
Environment Reset: +35° :
A I

\\ + Centre of Gravity

\ I
\ 1
\ |
\ X |
A
Thrust Vectored Nozzle, +15° I
M

oy

Every “particle” represents a Main engine thruster, Fp
varied force applied at the
defined point on the rocket
(nozzle in this case).

Figure 11 Rocket defined from multiple dynamic bodies. Particles are aseftisual aid to represe

forces being applied.
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4 Methodology

This section ioludes the implementedlgorithms with detailed derivations and
methods. Reference is frequently made to theory outlined Bettiegroundsection.

A brief but necessarynathematical derivation is first present@the baseline PID
controller design ishen explainedfollowed byLQR theory whicheadsto MPC.
Model free RL is then introduced, startingith discrete actionfunction
approximation GLearning followed by the final modalsingDDPG, which tackles
the vertical rocket lading problem in a continuousanner

4.1 Mathematical Derivation

The problemand nomenclatuneere introducedinderProblem Definitiorin Section
1.2 specifically Figure 2. Support legswere omitted from the diagram for
clarification purposes.

TheNitrogengas thrusters allow for more complaxt stablecontrol However their
force can be fixed to O if required, simplifying the mod#.the same line, the derg
and positiorof the bargavere fixed in this projectutareincludedas variablesn
the environmento reflectthe possible changes that might arise.

By usi ng "“MNeof mationdtisdre@body diagram shown iRigurel12can
be deduced:

08 E-l

Figure 12 Free body diagram showing all forces considered.
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Solving for translational forces ity directions as well as rotational torque with
respect t @OGldadsto:r ocket 6s

G¢® "OOE+ - 'OAT© X )
"OAT ©OE+ OAT BO0Ed ™OAI O
G

. 0— "0 O
w - p
a

In the last step, small angles were assumed for simplification. BhuisO
Al 6 pandOEd <MOE+ —

6¢ OAT© « "OOE+ a™Q
"OAT HAT© "OO0E3F OEF+ "OO0E+ aQ
a

., 'O "O+— 0— 4Q
a a C

Torque:

O0— "OOEd a aAl O a0
O« & & a0
L') (6)

a AT O represents the fact that the thrust is applied to the base of the nozzle.

Equation 4 specifies that the fuel burrieectly proportional to thrusiThe control
problem is a multiplénput, multiple ouput (MIMO) system wheréORO® ¢ Q
represent the variable inputs that must be adjusted for the rocket to land safely at a
reference positionThe independent forces applied by the cold gas thrusters at the
upper half of the rocket can baplied from™Q

—h® & @represent the output of the system. A suitable representation for writing a
MIMO problem is state space form:

w 0woo
w 0w 0o
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Where

® €0 0 OO € i

w ‘séc’)c‘)r‘pc'nc‘nbc‘)éi

0 i'@r‘]d)c‘nd)c‘)éi
OMMAO 6 ¢ & i @WEA QO QI

This formulation requireshat the problem be linear tinwevariant, which also
implies thatO E-- e —BA T -© e p for small angles of=Even if this assumption

is carried on, Equins 1-3 suggest that the inputs and states are coupled and not
independent-or instance, varyin@ leadsto changes in all stateBhis coupling is
nottrivial and presenta difficult problem in control as the system needs to be linear
for it to be represented in state space form.

To this end, the problem can be linearized about equilibrium points if the system
operates around those poimspoint is called an equilibrium point if there exists a
specific input that renders alhangingstates tat [45]. Formally, for anonlinear
differential equation given by:

w6 Quom o

An equilibrium point is defined as:

iy n

Settingaftand—to 0 in Equations-B and solving the simultaneous equatileasls
to the equilibrium inpué & "@rtIT . This means that if we start the simtibn at
the equilibrium point and apply, the system will remain at that point assuming no
external disturbances randomnesdHowever, starting away froadjand applying a
different6 leadsto a deviation:
1 0 wo o
1 0 00 O
Then it follows that:
10 Qa1 o 1 0
Expanding by Tayl orhighsordérkeenéeadston and i gnoring
"0 "0
e e .
T'w g T o ¢
o o 0o o

1 0

This is called Jacobian Linearization about the equilibrium paio@ntroller should
work well if it is designed at this poifdislong as the system operates rteatpoint
Both LQR and MPC make use of the lineadiztate space, anghichis discussed
further in Sectior.3.1
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4.2 PID Controller Design

Recall that the PID is used for a SISO syst&éherefore, we wish ttransforma
SISO in thegeneral transfer function form:

Ci R
o i

Consider taking the Laplace transform of Equation 1:

Oi—i ™Oiei TOi
a

@i in this equationrepresents the position in Laplace domairhich would
representd i in the transfer functionThe inputs are’0 i ROi P i
however, @ i can only represent one input at a time, hence the -multi
variability and coupling.

Methods for decoupling, such as the Relative Gain Artéyallow a system to be
decoupled and treated as a SISO. However, since the PID is only used as a
benchmark, 3eparate PIDs were slgned by takinghe following assumptions for
Equations 13.

Equation 1
G OOE+ « TOAT O

Assume that™O 1 and small angles apply. Thikads to the following
simplification:

@ p

O ai
However, note thalO affects—significantly, as is evidenfrom Equation 3. This
coupling becomes complicated sin@eand —may require different conflicting
controlsfrom™O and™O. Thisleadsto the presumption th&D should output a control

based on thé®ID error of both ‘Q—and Qay where™Q andQ are constants.
Moreover, bothO and"O should control the positioc

To simplify the problemthe design of the PIBok placeusing just one input, with
the other set to 0Q wasthen obtained empirically, leaving the same PID constants
that were designed his methodvasalso used to derive the control f@ ande

and proved to work effectively.
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Equation 2

4a OAT© » "OOE+ 4"Q
Using the same assiption as Equation, Isetting”O 1 and taking the Laplace
transform:

@ p
Ox ai
Where'O "O & "Qi.e. an offset forx "Qs applied in practice after the PID is

designedSince™O also affects the states associatetth w (but to a lesser extén
the samempiricalmethodproposedn Equation 1 above is uséaldesign this PID

Equation 3
0— TOOEd a aATO ao

The final input that needs to be controlledeis Note that "'OOE«l &
& AT O isthe small contribution 3D to the rotational moment. Also, notice the
opposing forces given b¥D and™O asexplained in Equation 1. Sineeis being
controlled, all other ingts can be trdad as constants, even though they are
variables. This independence assumption simplifieprithielem and allows the PIDs
to be designed in a straightforward manner

a‘)

5

4.2.1 Design by Root Locus
Although anintegral termbrings the steadytate error down to O, it malgad to
instability due to the introduction of an additional zero. For this reasergesign

process took place on adportional Derivativecontroller which is given by:

i

Y .0
- U 1 —
O i V]

Consider the design on Equati@rwhere the goal is to track a refereradtude

Qi . The closed loop system can be represented as shdwgurel13.
Qi O ., 0 O o Qi
—> [V - LA >
v i
TQ >

Figure 13 Closed loop system diagram.
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The openloop polesof theuncompensateslystem— leadsto double poles at

1T, implying the system isonstantly oscillating with no change in magnitude. We
would like to design a controller that tracks a reference input with a certain transient
behaviourand stedy state error

Let the resporestime be 2 seconds, implying 90% of the final steady state value
should be obtained no later than 2 secoAdiso, letthed a mpi ng f actor ,
implying a peak overshoot of 4.5% according to the equation:

0 QENI'E® ¢ 6p

Using the angle and magnitude critesad root locug47], the following PD
controller can beomputed analyticalty

wB P p G

Together with the original transfer function, the compensated system traverses the
locus shown irFigure 14 once a PD controller is added to the system. Notice the
doubl e pol e imauTheeldsed loop polesdcca &d 0 T & 0'Q

in accordance with the design as shawifrigure 15. In theactual algorithm, the
derivative term was realibrated as part of thempiricaltuning.

The step response fdaris illustratedin Figure 16 overleaf.Note that this controller
was designed in the time domaino Translate it into the digital domain, the

derivative term needs to be scaledby————- which is— in this case.

Root Locus
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Figure 14 Compensted systeni open loop root locus.

25



Imaginary Axis (seconds'1)

Root Locus

o
~

0968 093 088 08 062 035

©
w
T

o
[N

e
N

—
(o))
—
N
N
)
—
o
(0]

(=)

'

o

=
T

©
N

-0.3 S P )

1

08 062 0.35

1

-0.4 :
-1.6 -1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

Real Axis (seconds'1)
Figure 15 Closed loop root locus showing closed loop poles and zeros.

Step Response
1 2 T T T T T

— System
Step Response

=
o
T
1

Amplitude
o
o

©
SN
T
1

O 1 1 1 1 1
0 2 4 6 8 10 12

Time (seconds)

Figure 16 Step response of the closed loop system with the PID designed td.track



Havingdesigned the-PID controllerhaving outputO, Q was set to 1, where&3,
the term used to represeanin the error function, was found empirically during the
simulation. As with anyhyper parametetuning, all other parameters of the
simulationwereheld constanwvhilst finding Q. This means that and"O were held

to 0, with noinitial acceleration in thedirection. This enabletthe rocket to descend
in a controlled manner, adjustif@ until the descent was satisfactavjth respect
to differentwinitializations

The sameprocedure wasepeatedwith the other two controllergeadingto the
following algorithm

Main Algorithm 1 PID Control

Initialize PIDs as:
"0 000 pf T pn
"0 000 v MW o
. 000 mryYyh mnp pBDU

When called to perform contrelery— seconds (default;: 60Hz)

afgrufoR-F-f QRN ¢ did il O ¢ 0 et <g

a a 4 TH®
a a THO
3, O 8YE &N060Q00 06O 20

— —  — RO
— 1 me
34 O &¢ano6oQioohéo

— 1
Q@ GEN 6 @WQ T EdE Qw T

— — T8

— — 8T @
vy ¢+ 8EANO0O0QUO60RO6O 20

QO QESD ¢ & 0N TN AULE ¢ 0 HDO
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4.3 MPC Controller Design

The failure of LQR toinclude constraints in the general case led inputs
experiencing values outside their intended limit. This was commentedSection

2.4.4 To this end, MPC was proposed as a more sophisticated and robust numerical
method to solvean objective functiorat every step as opposed to designing a
cortroller at an equilibrium poinfThedesign procesis discussed in this section.

4.3.1 Linearization

Jacobian linearization was proposed as a viable numerical solution to approximate
nonlinearfunctions using’ a y | serre®expansion. Formally;

1 Lo 1 0 1o 1
T o g T 6 ¢
o o 6 o
Where:

a— E —) a— E —)

6 nQ '"&e E &7 nq ''ée E &"
1] - 1 1] - 1
v B o v B oo

This problem can be solved in two ways; analytically or by direct computation in the
simulation. Analytically, this would be equivalent to simply performing partial
differentiation on the state equatiahs ohofomh-h—andd  "OROR leading

to the following representatien

T p T T 11 T, o r'l

y _— —_ —_ >
noTTmTn = T

| J Tt Tt L

(n) |.’|-[ T TT p Tt T[:".B 11 . L I,I
L TCT T T

5 ]

i mmom n p'! 11 n n n 1

i nmn n W ,—— - 0

Although analytically inexpensive, this method proved to be less effective than
computing the Jacobians using numerical values from the simulaseif. it
Therefore, ralti-threading was used to creatg @ new simulations initialized

with the exact dynamics and coordinates as the current time step. A maixs

used to change each successive state or input by a small amirugither diredbn.

Each simulation was then run througietime step and the state was returned. Finite
differencesverethen used to create the entire Jacobian based on the actual resulting
values. This hathe advantage of capturing unconsidered dynamics, sutfeas
effect of &, and resulted in better performance than the analytical solution. The
procedure is document@aBackground Algorithrmil below.
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Background Algorithm 1 Partial Differentiation with Finite Differences

Partial Differentiation function called, passing aimulationsettings
- 1o d@eE QQ
Y i o®oid ¢o-This results in @ ¢ matrix
Yio®doid @o-00
YOl 6EYQ4a 6 YOoSQRM | 'QE 008 /60O
YOl 6EYQA 6 YO OS@RSI 1 QE 008 /060
T QY Y

re ¢

0E 1 6'BE | 6-0'0
V& 1 6'BE N 6-00

K&

Y16 & Y'Qa 6 & B EORG® ® ¢ & This results in ® o matrix
Y1 o6& YQa 6 YTAQEQRGEE o Q
T “Q TY TY

° o T ¢

i 6¢& "YQa 6 dodgs Meorgh the state and inpuatmices and executes a simulatic
using values from each row. This results in a total qfi (0

06 & OOXYO & dirdépendent simulations for a total of 12, each simulating ju
step and appending the results to matricendd .

In finite differences, the smaller the value -gfthe morelocal and accuratéhe

differentiation. Asome#hat conflicting result was obtain
such that the action under test beematurateded to better results than simply

incrementing by amallstep changesuch as 18t 1. @ his result can be explained

by the fact that a small gtehangdeadsto a negligible change in state, resulting in

0 and6 becomingalmostequal to . This effectivelyleadsto the optimizer not

finding a solution or outputting a skewed tr
[0.01, 0.1, 10, 50, 10G§uggested that there is a rajglich depends on the scale

(1:30)of the simulationin which proper trajectory planning takes place. This range

was found tabe between 1Q00, with a value of 50 used in the simulation. This

effectively saturates actiois the case of matriz 8
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4.3.2 Design
Recall that a general MPC controller is given by:
a Q4G Qi 0 wO0®d 0°Y

i 0O@E o0MN50nN8

® 0w 060

W W s AOOT O
0w ®

QéEd 087Y

The above problem presents the following challergekiesigndecisions

1 Whether to penalize thehangein actions as opposed to penalizing the
actual action values.

1  Whether to use slack vables to penalize the optimizer fchoosing values
of actions or states above the constraints, or sifeplye hard constraints.

1 What value to use for thmaximum error between the w@lestates and the
actual states.

1 What \alues to use imatricesh and'Y:

1 What time horizon’Y, to use;

1 What control horizonyY, to use.

A number of experiments were conducted for the first two options to find the best
solution forfixed values of YA'YRD and'Y8Once thatesultwas established,FYR'Y
and”Y were treated as hyper parameters and are discussed in Sebtiomhe
general problem wsrestructuredas shown below.

Main Algorithm 2 MPC

G0t 04 U Yo 0Y®d 0 Yo Yo ™Y Yo
i 00 o () ow 0660
Dwmwe uQ e
0 0 & LW E UQ
DO®EUQ 6 & VO®EGQ
. o 3 .
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Note that a problem can be tested for convexity by computing the Hessian matrix
andchecking if it is positive serdefinite, t h a t Eigenyvaluesfare igreafesor
equal to OWhen considering the constraimsxed with the cost functigrthis test
becomes notrivial. For this reason, the constraints were left to be as linear as
possible since a convex framework,U, awas usedo solve the problem. The
Splitting Conic Solvewas ugd for theoptimization problem since ittan solve
convex secorwbrder cone programs of the type:

6088 U O
[ 60 BE 6w 0
Ow 0Q
wnN8
Experiments were conducted to find the optimal values for therhyyarameters
discussd earlier and results are discussed in Seétian

4.3.3 Trajectory Generation

An @ waspassedo theoptimizerto track aridealtrajectoryat every
W iteration This trajectory was conuyped empiricallyby first defining an ideal-z
profile. The target state was then computed, always starting from
ool i h—h— and computing each state iteration according to

W shown overleafThis preserves the constraint ow 0606
while providingrealistic target within the given time horizanlf instead we gave
the default values ofo 6 i &S i @i, the optimizerwould

have triedto reach® within the given horizon, whicteadsto an infeasible
solution

The Zaltitude profile was structured as:
a0 a Q8 £Q@ Q

Z-Altitude Profile
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Figure 17 Altitude profile aginst time to land.
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Using this graph, the targstatewas obtaned at each time stdpr the specified time
horizon according to the equations shown below:
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This target provided a sigmolike trajectory with respect ta as well as realistic
valuesfor —and—-tunedusingthe baseline PID. As an axale using a time horizon
of 30and a time step of 0.thereference trajectorgpecifies that the rocket should
decrease thefti displacementgraduallyas well as correct for-over the entire
period, rot just one. Theeference trajectoris shownin Figures 18,

In Figure 19, he reference trajectory is shown as a black ¢indthe optimized
trajectoryreturned from the optimizer is shovim red. One can notice thahe
planned and target trajectoride not coincide at every pointhis depends on the
Qi 1 \alue between target states and planned state®f utmost importance that
the constrainfor the final statew Yo ow'Y Qi 1 isalso included as
without thisthe MPCwould fail to provideareasonabldérajectory.

@ Alrajectory Profilem p ®8

24 1

22 A

20 A

18 A

16 4

- Optimized Trajectory
- Reference trajectory

14

14.0 14.5 15.0 15.5 16.0 16.5
wPositionft Qo6 Q1 |

Figures18 & 19 Referencetrajectory showing the-x profile
(left), and the correspondingraulation (right), showing planne
(red) and targetajectories (black)
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4.4 Linear Function Approximation Q -Learning

RL refers to the episodic learning of an agent whose goal is to maximize the return.
Different types of representations were discussed in S&t&pand thissubchapter
expands on @earning.

Up till now, the benchmark PID and the MPC controllers were designed and their
algorithms were outlined. The PID represented a classical control approach, whereas
MPC uses a combination of state space representatitnopitimizationmethods.

Given that MPC is derived from the same theoretical background as Rlsdbath

the sameproblemusing the same framework in different ways

Whereas MPC usemn optimizerand aknown model, R. approaches the problem
from an interation-rewardpoint of view.In this section, the state isodeledby an
algebraic sum of weightefgéatures. Features can include the actual statesed in
MPC, binary states that are activated with a condition, transfofaorexdions such
as ® w and any otherelevant functionsThe general @earningalgorithmis
given by

Background Algorithm 2 General @Learning

Initialize 0 i Fd either optimistically or randomly, in tabular form@mensional array)
Forevery episode:
Initialize the staté
Until s is the terminal state, do:
Choose actiofrom current staté u s i n egreedy polidy
Execute actiomyand get reward,, as well as the next stat&
OiRdO N Oihd |1 1T ABiRd O ihd

i N fa

However,BackgroundAlgorithm 2 above uses diste states and actions. On the
other hand, our problem spans both continuous states as well as actions. This
introduces the problem of the curse of dimensionality; if we try to discretize all states
and actions)) it becomes infeasible.

Mnih et al.[48] chose to replace the tabular approach witteap convolutional
neural network trained using stochastic gradiesgcdnt and a replay mechanism
which randomly samples previous transitionBe replay buffer was also used for
this project in the implementation of the DDPG algorithm discussed in Sdchon
The researchers effectively usth@ videocimageshaving a resolution of 8484 at
60Hzas input tahe neural networkand outputll actions as aosteriomprobability

of the state The highest valued action would then be execuléd. coding and
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Radial Basis Functions are other stagpresentations that have proven to be
effective in certain simple continuous stggmblemsbut were siddined for a
simpler solution in this implementatiaue to their scalability limitation®Note that
these solve the problem of states, but not actions

Consider the true statection matrix to be linearly approximated by another
weighted matrix:
Oihd 0 ihh

The godis to find a representation for that minimizes the cost function:
i Ed O 0 ihd 0 ifh

To this end, gradient descent can be used to find the local minimum in an online
fashion:

w1 iR D iRA b i

Where U i s t ha iHbeearesentsihg targea The target dbpends on
how the problem is formed; Mta Carlo RL implies thab i b be equal to the
average reward at the end of the episode, whereas for temporal differencing it would
be the immediate reward following staig r 0i RO A .Usingsucha
method,0 G till converges to the global solutighon-policy linear function
approximation is used.

The main algorithm used is shown below, with
using an exponential decail features are explained overleaf.

Main Algorithm 3 Linear Function Approximation Qearningi Off Policy

Initialize] randomly fromY 1ip with size equivalent to the number of features.
For every episode:
Until s is the terminal statepd

Choose actiotu s i n egreedy polidy®di "Qd @0 throN dh

Execute actiomyand get reward,, as well as the next stat&
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