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 Abstract 

 
The high cost of rocket technology has led to system reusability developments, particularly 

in the field of first stage rockets. With the motivation of decreasing production costs, 

successful vertical rocket landing attempts by SpaceX and Blue Origin have led the path 

for autonomous recovery and reusability of rocket engines. Such a feat can only be 

accomplished by complex control algorithms executing in real-time aboard the rocket. This 

project aims to develop a vertical rocket landing simulation environment where algorithms 

based on classical control and machine learning can be designed and evaluated.  

 

After developing the simulated environment in Python using a robust physics engine known 

as Box2D, two control algorithms were designed; once classical control method and the 

other from the optimal control domain. The classical control Proportional Integral 

Derivative (PID) controller served as a benchmark, whereas Model Predictive Control 

(MPC) makes use of an optimizer to find the best performing action to take based on an 

objective function. Two Reinforcement Learning algorithms were then designed with the 

aim of automatically developing the required control without explicitly defining the 

dynamics of the system. These methods, known formally as Function Approximation Q-

Learning and Deep Deterministic Policy Gradients (DDPG) provided a contrasting 

approach to the PID and MPC controllers. While the classical controllers achieve 

acceptable performance, the Artificial Intelligent counterparts, specifically the DDPG 

converged to a more stable and consistent rocket landing. 
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1 Introduction  
 

This project concerns itself with the multidisciplinary subject of reusable space 

systems, specifically first stage rockets. Vertical take-off and landing (VTOL) of a 

rocket is a very primitive field which exploits the reusability of the launch vehicle 

used to transport highly valuable payloads, such as satellites, into space. Work on 

reusable launch systems is motivated by economic and material reasons; a significant 

cost reduction is attained by reusing the first stage rocket hardware [1], [2]. On top 

of this, improved scalability, as well as increased launch frequency are two positive 

by-products of this reusability. 

 

Since the subject of VTOL of a rocket is still in its infancy, there is very little to no 

published material on specific topics, such as control methods used. Moreover, these 

industries are subject to sensitive military information which prevents any 

publications. Therefore, some references to exemplary non-technical methods and 

plans are made from respectable leaders in the industry who spearheaded the subject, 

such as Space Exploration Technologies Corporation (SpaceX).  

 

The first successful relaunch of a previously used rocket was performed by SpaceX 

with the Falcon 9 rocket [3] on March 30th, 2017. It is important to point out that not 

the entire rocket is reused. As an example, SpaceXôs Falcon 9 rocket is made up of 

two main stages [4], excluding the payload that fits on top of the second stage. The 

first stage houses the clustered rocket engines as well as the aluminium-lithium alloy 

tanks, whereas the second stage contains a single engine to drive the payload to the 

desired orbit. After separation, the first stage is propelled back to earth in a controlled 

manner as shown in Figure 1 [1]. 
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The focus of this thesis was on the very last stage: designing controllers to land the 

rocket on the barge with the main firing engine without exceeding any hardware 

limits or running out of fuel. In other words, this work assumed that all previous 

stages of the rocket were successful and that the rocket was guided to within 

reasonable proximity ( 200 meters) of the landing area, having a relative downward 

velocity similar to that experienced in real life. 

 

Tests conducted by SpaceX and Blue Origin [5] successfully show the use of the 

main engine, grid fins as well as cold gas Nitrogen thrusters to land the first stage 

rockets, each used to a different extent and in different stages. Gimbaled thrust [6] is 

also used as part of the control. Together with the main and side thrusters, gimbaled 

thrust will form the backbone of the mathematical model of the rocket in this thesis.  

1.1 Objectives and Contributions 
 

The main objective of the project is to design and compare classical and optimal 

control algorithms with machine learning algorithms with increasing sophistication. 

Since designing stable closed loop controllers for non-linear and multivariable 

systems is non-trivial, the Artificial Intelligence (AI) approach represents an 

unsupervised way to tackle such complex problems. To this end, two control 

approaches, as well as two AI approaches were designed and implemented. 

 

Before designing any controller, a vertical rocket simulation environment was 

developed in Python 3.5 using the physics engine Box2D [7]. This environment 

allows for not just landing simulations, but also launches and trajectory tracking. 

Therefore, contributions from this thesis include: 

¶ Simulation environment in Python 3.5 

¶ Implementation of: 

o Proportional Integral Derivative (PID) controller 

o Model Predictive Control (MPC) method on the linearized problem 

o Linear function approximation Q-Learning controller 

o Deep Deterministic Policy Gradient (DDPG) controller 

¶ A thorough comparison between methods from both domains. 

The rest of the thesis is organized as follows: Section 2 presents related work done 

on some of the control algorithms that are explored, as well as important rocket 

related details that must be addressed. Section 3 gives a brief overview of the 

developed simulation environment. Section 4 presents the problem as well as 

technical background on the algorithms that were adopted. It also describes the 

methodology of the models and establishes the baseline that was implemented for 

the rest of the models to be compared with. This is followed by the evaluation and 

comparison with the improvements and conclusion drawing final remarks in 

Sections 6 and 7 respectively. 
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1.2 Problem Definition 
 

Consider Figure 2 below, illustrating the rocket landing on a barge. 

 

Let 

 

Ὂ ὓὥὭὲ ὝὬὶόίὸὩὶ ὊέὶὧὩ 

Ὂ ὙὭὫὬὸ ὝὬὶόίὸὩὶ ὊέὶὧὩ 

Ὂ ὒὩὪὸ ὝὬὶόίὸὩὶ ὊέὶὧὩ 

Ὂ Ὂ Ὂ 

— ὃὲὫὰὩ ὦὩὸύὩὩὲ ὸὬὩ ᾀ ὥὼὭί ὥὲὨ ὸὬὩ ὰέὲὫὭὸόὨὭὲὥὰ ὥὼὭί έὪ ὸὬὩ ὶέὧὯὩὸ 

• ὃὲὫὰὩ ὦὩὸύὩὩὲ ὸὬὩ ὔέᾀᾀὰὩ ὥὲὨ ὸὬὩ ὰέὲὫὭὸόὨὭὲὥὰ ὥὼὭί έὪ ὸὬὩ ὶέὧὯὩὸ 

ὰ ὒέὲὨὭὫόὸὨὭὲὥὰ ὰὩὲὫὸὬ ὦὩὸύὩὩὲ ὸὬὩ ὅὩὲὸὩὶ έὪ ὋὶὥὺὭὸώ ὅὕὋ ὥὲὨ Ὂ 

ὰ ὒέὲὫὭὸόὨὭὲὥὰ ὰὩὲὫὸὬ ὦὩὸύὩὩὲ ὸὬὩ ὅὕὋ ὥὲὨ ὊȟὊ 

ὰ ὔέᾀᾀὰὩ ὰὩὲὫὸὬ 

ά ὙέὧὯὩὸ Ὀὶώ ὓὥίίὊόὩὰ ὓὥίί 

ὼ ὌέὶὭᾀέὲὸὥὰ ὖέίὭὸὭέὲ έὪ ὸὬὩ ὙέὧὯὩὸ 

ᾀ ὠὩὶὸὭὧὥὰ ὖέίὭὸὭέὲ έὪ ὸὬὩ ὙέὧὯὩὸ 

‌ ὙὩὥὰ ὅέὲίὸὥὲὸ 

Figure 2 Vertical Rocket Landing Model 
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As explained in the introduction, the main controls of the rocket are the: 

¶ Main engine thrust, Ὂ 

¶ Side Nitrogen gas thrusters, ὊȟὊ 

o Summarized in a single input Ὂ Ὂ Ὂ 

¶ Nozzle angle, . 

The objective is to land the rocket in a controlled manner such that the final state of 

the rocket at landing is as close to a target state as possible. This will later be defined 

numerically in a utility function. The inputs, defined as ό ὊȟὊȟ• have the 

following constraints: 

 

π ὔ Ὂ φτψφ ὔ 

ρσπ ὔ Ὂ ρσπ ὔ 

ρυ • ρυ 
 

These constraints are scaled (1:30) estimates for the first stage rocket of Falcon 9 

during landing [4], [8]. Except for the position of the center of gravity (COG), the 

simulation was developed to reflect real life conditions where possible, including 

dimensions and force magnitudes. In the simulation, the COG was higher than in 

real rockets, making control harder. 

 

Let the state of the rocket dynamics at any time be defined by ●░
ὼȟὼȟᾀȟᾀȟ—ȟ—  and the final state by ●Ⱳ. For a successful landing, ●Ⱳ must be 

within the following numerical thresholds, defined by ●Ⱳ□╪●: 

 

ὒὩὪὸ ὄὥὶὫὩ ὉὨὫὩὼ ὙὭὫὬὸ ὄὥὶὫὩ ὉὨὫὩ 

ς άȾί ὼ ς άȾί 

ᾀ ὄὥὶὫὩ ὌὩὭὫὬὸ 

ᾀ π άȾί 

ρπ — ρπ 

ςȾί — ςȾί 
 

Therefore, a cost can be imposed on the final state, defined as: 

 

ὐ ‫ ὼ ὼ  

 

where is a φ ρ weighting matrix and ὼ ‫  is the desired final state. This 

formally defines a successful landing, such that ὐ  lies within a threshold. The closer 

ὐ is to 0, the better the landing. The cost associated with the states will be formally 

defined in Section 5.2. 
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2 Background 
 

Vertical rocket landing has only been practically explored in the last few years. 

Given that this is a multidisciplinary topic, a brief background on thrust vectoring, 

different aspects of the rocket, the barge, and control methods is necessary, with 

special attention given to the latter. 

2.1 Launch Vehicle Reuse 
 

The motivations of launch vehicle re-use are two-fold: saving of the first stage engine 

and structure leading to significant economic savings. However, there can be 

different types of recovery systems, dependent on the type of launch vehicle. Ragab 

et al. [9] review the different techniques used. They highlight that propellant and 

gases contribute less than 5% of the first stage cost of the rocket, further cementing 

the argument for recovery. However, they do mention that simpler recovery, such as 

with the use of parachutes, is more cost effective than booster fly back. At the same 

time, the landing accuracy of simpler methods is measured in miles, whereas with 

vertical rocket landing it is measured in meters. 

 

After separation of the first and second stages, reduction of translational velocity is 

necessary. Blue Origin achieves this both passively with brake fins, as well as 

actively by re-starting the main engine, powered by liquid Hydrogen and liquid 

Oxygen [5]. On the other hand, Falcon 9 uses its grid fins for re-entry 

manoeuvrability before switching on its engines again [4]. It also achieves 

controllability using main engine gimballing and cold gas Nitrogen thrusters [8]. The 

latter two are included in this projectôs mathematical model as illustrated in Figure 

2. 

 

2.2 Thrust Vector Control  
 

Thrust vectoring will be the main control method to keep — as close to π as possible, 

keeping the rocket upright whilst still following a reference trajectory. Vectoring 

refers to the gimballing action of the engine or the flexibility of the nozzle, where 

the nozzle direction is changed relative to the COG of the rocket. Since the direction 

of the nozzle dictates the angle at which thrust is exerted, a torque about the COG is 

created if • π as shown in Figure 3 [10]. In reality, the nozzle is moved along 3-

dimensions with actuators. Since the simulation developed in this thesis is in 2-

dimensions, only a single rotational movement is needed. 
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The nozzle itself can take many forms, and the generated thrust magnitude and 

profile are directly dependent on the shape of the nozzle. Thrust reduction and 

increased wake turbulence can result from a sub-optimal nozzle profile [6], [11], 

however, this project will assume ideal thrust profiles utilizing a single flexible 

nozzle joint [9]. Hence, the gimbal can be represented by a rotary ball joint at the 

lower end of the rocket. The flow of the thrust will be assumed to act along a single 

directional vector, Ὂ. 

2.3 The Landing Site 
 

Simple recovery methods with parachutes were used to collect launch vehicles from 

the ocean, however, no first stage rocket had landed on an ocean barge before. Falcon 

9 successfully did this on April 18th, 2014 [12] in a historic landing.  

 

The rocketôs take-off location is usually from the east coast of the United States, 

having an abundance of area away from civili zation. However, if the first stage is to 

be recovered, not enough fuel can be carried by the rocket for the first stage to make 

it back to land. Even then, it would be a dangerous endeavour. For this reason, 

SpaceX opted to use a floating platform in the Pacific Ocean. 

 

The bargeôs landing area measures approximately 74 by 52 meters and is navigated 

with 4 diesel-powered thrusters and a Global Positioning System for self-navigation 

[13]. Given this setting, landing a rocket on a self-navigated barge presents a control 

problem on its own, especially since sudden weather changes can cause disturbances 

in the bargeôs position and angle. For this reason, the floating platformôs position 

and angle relative to the horizontal plane are variables in the simulation and can be 

adjusted for testing purposes and included in the mathematical model. 

Figure 3 Thrust Vector Control of a Rocket [10]  
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2.4   Control Algorithms  
 

Closed-loop control systems [14] are the pivot on which such landings are made 

possible. Both classical control and Artificial Intelligence (AI) techniques rely on 

state variables to analyze the error with respect to an ideal state and execute 

corrective measures. A controllerôs job is to perform these actions in a stable and 

controlled manner. 

 

In classical control, these states must be bound by a well-defined mathematical 

model, whereas in AI input variables are defined loosely since the method has no 

knowledge of what the variables represent. This underlines the difference in the 

approaches of creating a controller. Classical control follows a set of rules and 

known methodology that have been widely used and tested, whereas AI techniques, 

such as Reinforcement Learning (RL), are less structured. 

 

This section introduces the background required for understanding the material from 

both domains. 

 

2.4.1 System Representation 
 

The design of classical controllers requires a model to be defined in a certain 

standardized format. In control theory, functions known as transfer functions are 

used to characterize the input-output relationships of the system defined by 

differential equations [15]. 

 

Consider a linear time-invariant system defined by the following differential 

equation: 

 

ὥ
Ὠώ

Ὠὸ
ὥ
Ὠ ώ

Ὠὸ
Ễ ὥώ ὦ

Ὠ ὼ

Ὠὸ
ὦ
Ὠ ὼ

Ὠὸ
Ễ ὦὼ 

 

Where ὲ ά, ώ is the output of the system, ὼ is the input and ὥȣ , ὦȣ  are their 

respective coefficients. The transfer function of the system is defined as the ratio of 

the Laplace transform of the output to the input under zero initial conditions. 

Formally: 

Ὃί  
flέόὸὴόὸ

flὭὲὴόὸ
 
ᾀὩὶέ ὭὲὭὸὭὥὰ ὧέὲὨὭὸὭέὲί

 

ὣί

ὢί
 

 
ὦέί
ά ὦρί

ά ρ Ễ  ὦά
ὥέίὲ ὥρίὲ ρ Ễ  ὥὲ
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The Laplace transform is a convenient operation that allows the input-output 

relationship to be represented algebraically. A typical closed loop Single Input 

Single Output (SISO) system can be represented as shown in Figure 4. 

 

 

As complexity increases, systems typically become Multiple Input Multiple Output 

(MIMO) problems, at which point such a representation becomes too limiting. 

Therefore, the linearized mathematical model in this project is represented in state 

space form [16]. 

 

The state vector was previously defined as ὼ whilst the input vector was defined as 

ό. Using state space, the dynamics of a linear system can be calculated for any time 

ὸ ὸ. The system can be defined by: 

 

ὛὸὥὸὩίȡ ὼ ὼȟὼȟȣȟὼ  

ὕόὸὴόὸȡ ώ ώȟώȟȣȟώ  

Ὅὲὴόὸȡό όȟȣȟό  

 

ὼὸ Ὢὼȟόȟὸ 

ώὸ Ὣὼȟόȟὸ 

 

If the system is non-linear, as is the rocket VTOL, then it must be linearized about 

an operating point using Taylor series expansion [17]. Otherwise, it can be written 

directly in the following shorthand notation: 

 

ὼ ὃὼ ὄό 

ώ ὅὼ Ὀό 
 

Where ═ is the state matrix, ║ is the input matrix, ╒ is the output matrix and ╓ is the 

direct transmission matrix, which is usually 0. State space allows for a concise 

representation of a system, exposing all the dynamic relationships in well-defined 

matrices. Moreover, whereas Figure 4 models a SISO system, state feedback can be 

used by designing a ὑ matrix that together with a reference state commands the plant 

Feedback 

H(s) 

Plant Transfer 

Function 

G(s) 

Controller + 
_ 

E(s), error 

R(s), reference 

input C(s), output 

B(s), feedback signal 

Figure 4 Single Input Single Output Closed-Loop System 

U(s) 
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through its input as shown in Figure 5. The SISO model in Figure 4 was used to 

implement 3 decoupled PIDs to control ό in the benchmark model and is outlined in 

Section 4.2. State feedback was used for more advanced optimal control as shown in 

Section 4.3. 

 

2.4.2 Proportional Integral Derivative Controller  
 

A Proportional Integral Derivative (PID) controller is an intuitive controller that is 

suitable for SISO systems shown in Figure 4. The PID is a simple yet effective 

controller that computes the proportional, integral and derivative of the difference 

between the output and the reference input (error) and outputs a control signal 

depending on the defined PID coefficients [18]. The input-output relationship is 

defined as: 

 

όὸ ὑὩὸ ὑ ὩὸὨὸὑ
ὨὩὸ

Ὠὸ
 

 

Taking the Laplace transform leads to: 

 

Ὁί

Ὗί

ί

ὑί ὑί ὑ
 

 

Fine-tuning of ὑȟὑ and ὑ  has been refined in the continuous time domain, 

frequency domain, and even discrete time domain. These parameters are designed 

based on the desired response to a step input. The response is characterised by the 

rise time, settling time, bandwidth and overshoot. Well-known methods for tuning 

are the Ziegler-Nichols rules [19] and root locus [20]. A system may require certain 

timing and damping characteristics which impose design criteria during the design 

+ 
+ 

-K 

● ═● ║◊ 
◐ ╒● ╓◊ 

+ 
+ 

▄, error 

►, reference 

state ◐, output ◊, input 

● 

▀, disturbance 

Figure 5 State feedback system. The state vector x is used together with the reference state to control 

the plant. The disturbance, d, can manifest itself at any point in the process but is shown in the 

feedforward loop. 
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process. As an example, it is imperative that a chemical process does not experience 

any overshoots, but must be critically damped. 

 

A second order system is typically used as an approximation for many systems 

because of its balance between complexity and ease of design. The following transfer 

function represents a closed-loop second order system: 

 

Ὃί
ὑ‫

ί ς‒‫ ‫
 

 

Where ‫  is the natural frequency of the system and ‒ is the damping factor. Yang 

et al. [21] designed a second order PID controller calibrated by trial and error on a 

thrust vectored nozzle. The authors also highlight the effect that the individual PID 

constants have on the system, particularly stressing the need to balance the transient 

response with steady-state errors and oscillations. 

 

The proportional term, ὑ  tends to make short transients and caters for the present 

error as well as to decrease the steady state error. The integral term allows for the 

elimination of steady state errors but increases the order of the system, potentially 

rendering it unstable. On the other hand, ὑ  leads to faster rise times and increases 

the systemôs bandwidth. The PID is used as a benchmark controller in this project 

and the design is described in detail in Section 4.2. 

 

2.4.3 Optimal Control  
 

Even though the PID is widely used to control simple systems, it does not guarantee 

optimal control or stability. Furthermore, problems with coupled variables and 

MIMO systems increase the complexity and make the manual-tuning of a PID a 

naïve approach. To this end, the field of optimal control is introduced. The Linear 

Quadratic Regulator (LQR) and MPC are two such controllers in this field. In this 

project, LQR was used as a stepping stone for MPC. 

 

As opposed to manual tuning of constants, optimal controllers minimize a cost 

function with constraints associated with the state and input in order to iteratively 

compute the optimal control strategy. A general optimization problem takes the 

following form [22]: 

 

    

άὭὲὭάὭᾀὩ 

ίόὦὮὩὧὸ ὸέ 

Ὢὼ 

Ὢὼ πȟὭ ρȟȣȟά 

Ὣ ὼ πȟὭ ρȟȣȟὴ 
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Where Ὢὼ represents the objective function and the constraints represent inequality 

and equality constraints respectively. This is a convex program if the objective 

function and constraints are both convex, satisfying the inequality: 

 

Ὢ‌ὼ ‍ώ ‌Ὢὼ ‍Ὢώ 

 

Not all problems are solved equally; different classes of optimization problems, such 

as least squares, linear programs or quadratic programs may use different optimizers 

to obtain a solution using the least amount of computing power. Moreover, non-

convex problems require more time to ignore local optima and reach a global 

solution [22]. 

2.4.4 Linear Quadratic Regulator 
 

For a model given by ὼ ὃὼ ὄό, the LQR seeks to find a feedback matrix ὑ 

that leads to optimal control by minimizing a quadratic cost defined as ὐ

 ᷿ ὼὗὼ όὙόὨὸὼὗὼ [23] where ὗṍπ, ὗ ṍπ and  Ὑṋπ (positive 

semi-definite and positive definite respectively). The symmetric matrix ὗ 

represents the cost given to the final state. 

 

ὗ represents the penalty given to the distance between the state and target, whilst Ὑ 

is the penalty paid to execute the actions. Therefore, ὐ represents a trade-off between 

state accuracy and action penalty [24]. Low values of Ὑ indicate that the controller 

has more flexibility in executing the actions. Moreover, ὗ and Ὑ must be balanced 

to achieve the required transient response as well as steady state error, a process 

requiring a certain degree of trial and error [23]. 

 

Note that this method requires a linear system. This suggests that the matrix ὑ can 

be found analytically to achieve the feedback control law ό  ὑὼ. In fact, there 

are many ways to derive ὑ, most notably the dynamic programming approach. By 

differentiating  ὐ with respect to ό over a single time step, the following solution is 

derived for the continuous time case: 

 

ό  Ὑ ὄὖὼ 
 

Where ὖ is the solution of the algebraic Riccati equation [23]. It can be shown that 

this solution achieves desirable control characteristics and robustness [25]. Note that 

a distinction must be made between continuous and discrete time LQR, since they 

lead to slightly different solutions. 

 

Mohammadbagheri et al. [18] compare PID and LQR controllers on voltage-source 

inverters and concluded that the rise time as well as settling time of LQR controllers 

were superior to those of the simple PID. Kumar et al. [26] also design robust LQR 

controllers for both stabilizing the inverted pendulum and trajectory tracking to a 
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reference input. Note that the inverted pendulum model is not that far from the rocket 

landing problem, on the contrary, the mathematical models are very similar since 

both tend to naturally unstable equilibrium positions. The authors showed that LQR 

can optimize even with the most stringent of parameters. 

 

The disadvantage of LQR is that the optimal feedback is independent of constraints. 

This poses a problem in processes such as the rocket landing, where all inputs are 

bounded. The problem can be redefined to include constraints, but more advanced 

methods, such as MPC, cater for such an issue. 

2.4.5 Model Predictive Control 
 

MPC is a relatively new field in control that has only been proven useful thanks to 

the increased computational power. However, it found widespread use in industry; 

from precision landings [27] to trajectory planning in missiles [28]. Like LQR, MPC 

solves a quadratic program by minimizing an objective function. However, unlike 

LQR, it includes equality and inequality constraints, and the linearized plant 

dynamics form part of these constraints. This enables the optimizer to find a solution 

that is optimal for not just the present state, but also future states. The extent of 

predictability is referred to as the time horizon. A generalized convex quadratic MPC 

program takes the following form [29]: 

 

ὼ  represents the initial state and ὼ  represents the target state at the end of 

the time horizon Ὕ. This constrains the problem to converge to a desired final state. 

Note that the problem can be restructured in many ways, and the choice of the utility 

function, cost matrices, constraints, linearization, control horizon, prediction 

horizon, sampling interval and error tolerance should be treated as hyper parameters. 

As an example, the penalization of the control action όὙό in ὐ causes the objective 

function to have a non-zero value even under steady state conditions, where ό might 

not be zero for proper control action. Meadows et al. [30] propose to penalize the 

change in actions, Ўό, instead. Garcia et al. [31] noted that a large sampling interval 

causes oscillations and suggest that only the present resulting action ό  is used, and 

to resolve the problem again at ὸ ρ using the new state. 

 

άὭὲὭάὭᾀὩ 

ίόὦὮὩὧὸ ὸέ 

ὐ  ὼὗὼ όὙό  

όᶰ5, ὼᶰ8 

ὼ ὃὼ ὄό 
ὼ ὼ  

ὼ ὼ  

Ὢέὶ ὸ ὸȣὝ 
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Meadows et al. [30] reported increased overshoot and faster response with longer 

time horizons. Moreover, longer prediction horizons are more susceptible and 

sensitive to disturbances. 

 

Bryson et al. [32] suggest that weight values should be inversely proportional to the 

maximum limit. On a contrasting note, Meadows et al. [30] found this to be too 

penalizing and instead suggest to apply a penalty to constraint deviations. This would 

be in accordance with general optimization theory, where instead of fixing equality 

constraints and introducing more variables, a slack variable is added instead [33]. 

 

Where Ὓ is the penalty given if the control action approaches ό . For the 

optimizer to find a meaningful solution, the control problem must be both observable 

and controllable [34]. Figure 6 illustrates the MPC workings, showing the forecasted 

state as part of the solution. It is interesting to note that MPC has been used in the 

design of thrust-vectored flight [35] and also guidance and control [36]. The former 

achieved better results than the static gain LQR, and similar performance to gain-

scheduled LQR, where many different LQR solutions are applied depending on the 

state in which the plant is in.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i 

άὭὲὭάὭᾀὩ 

ίόὦὮὩὧὸ ὸέ 

ὐ  ὼὗὼ ЎόὙЎό ‫Ὓ‫ 

ό ό ὼᶰ8 ,‫ 

ὼ ὃὼ ὄό 
ὼ ὼ  

ὼ ὼ  

Ὢέὶ ὸ ὸȣὝ 

Figure 6 MPC takes the current state and input and finds a solution for the optimal input based on the 

required constraints and prediction horizon [55]. 



14 

 

2.5 Reinforcement Learning 
 

As opposed to explicitly defining a model, RL applies the theory of dynamic 

programming to define a framework that adapts itself through episodic interaction 

with an environment. The environment is typically defined as a Markov Decision 

Process [37], where a set of actions are available to choose from at any state. A 

general RL problem would involve a policy that takes actions, states that represent 

where the agent is, and rewards that enforce good actions when in a state. The goal 

is to learn the policy, the method of choosing actions, that maximizes rewards. Figure 

7 illustrates this system. 

 

 

The value function, ὠί, represents the expected cumulative reward that a policy 

would get if it followed that policy from there onwards. Formally, let: 

 

Ὑ ‎ὶ  

ὖ 0Òί ίȿί ίȟὥ ὥ 

Ὑ Ὁὶ ȿί ίȟὥ ὥȟί ί  

 

In linguistic terms, given action ὥ and state ί, ὖ  defines the transition probabilities 

of going from one state to each possible next state whilst Ὑ  defines the expected 

value of the next reward [38]. Ὑ represents the discounted future rewards, where 

π ‎ ρ. Note that like MPC, the aim in RL is to maximize the reward and reach 

an optimal solution by breaking down a multiperiod problem into smaller pieces. 

╔▪○░►▫▪□▄▪◄ 

═▌▄▪◄ having a 

policy “ίȟὥ that 

maps states to 

actions. 

ὥὧὸὭέὲȟὥ 
ὲὩὼὸ ίὸὥὸὩȟί 

ὶὩύὥὶὨȟὶ 

ὠz ί  ÍÁØ
 ɴ

ὖίίᴂ
ὥ Ὑίίᴂ

ὥ ‎ὠᶻίᴂ

ίᴂ

 

ὃὧὸὭέὲȟὥȟ 
chosen greedily 

(maximum 

value), 

randomly with 

probability Ů 

sampled from 

Ὗπȟρ, or 

otherwise. 

ίᴂ can be represented by a 

vector, for example, ● in the 

rocket landing problem. 

 

The reward serves as 

feedback which is used to 

update the policy. 

Figure 7 RL problem defined by a value function, which is used to determine how good it is for an 

agent to be in that state. An action is then taken and the environment reciprocates with a reward 

which is then used to update the policy. 
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This notion is known as Dynamic Programming and itôs central to Bellmanôs 

equation [39]: 

 

ὠί Ὁ Ὑȿί ί 

Ὁ ὶ ‎В ‎ὶ ί ί 

 “ίȟὥ ὖ Ὑ ‎ὠί  

 

Where “ίȟὥ is the probability of choosing action ὥ when in state ί. Although 

theoretically sound, for an update of the value function to take place, all states must 

be visited. Instead, an iterative version known as Temporal Differencing (TD) [40] 

makes an online update of the form: 

 

ὠί ᴺὠί ‌ὝὥὶὫὩὸὠί  

ᴺὠί ‌ὶ ‎ὠί ὠί  

 

This equation provides an updated estimate of ὠί as soon as the state is visited. It 

only has one hyper parameter, Ŭ (learning rate), and can also be expanded to include 

additional terms that reinforce not just the current state, but previous states that led 

to a reward. This is known as TD(ɚ) [40]. 

 

2.5.1 Discrete State-Action Q-Learning 
 

Bellmanôs equation above makes use of transition probabilities. However, what if 

these were unknown? Transition probabilities imply knowledge of a model, and the 

aim is to obtain a model-free framework that can learn iteratively. ὠί is a notation 

for a value of a state of the optimal policy that maximizes the expected reward. On 

the other hand, ὗίȟὥ represents the value of a state if action ὥ is chosen, and then 

continue with that policy from that state onwards. This means that it eliminates the 

need to know and execute the optimal policy, “ᶻίȟὥ, and instead, execute any 

action available according to the policy at that time step. Formally, this can be written 

as: 

 

ὗίȟὥ ὶ ‎Ὁ ὠί  

 

This form eliminates the need for a model and can be adapted to many problems.  

 

Sutton et al. [41] give an example with a cliff walking grid world having discrete 

actions όᶰόὴȟὨέύὲȟὰὩὪὸȟὶὭὫὬὸ. The environment awards a reward of -1 for all 

transitions except for the cliff region, in which a reward of -100 is given as shown in 

Figure 8. They compare off-policy with on-policy Q-Learning, where the latter is 

known as State Action Reward State Action (SARSA). The only difference between 

these two algorithms is in the degree of greediness, as illustrated overleaf. 
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Sutton et al. reported that SARSA achieves higher rewards than Q-Learning. After a 

few episodes, Q-Learning learns the optimal policy, that which walks along the edge 

of the cliff. Due to the Ů-greedy action selection, sometimes this can result in falling 

off the cliff. Interestingly, in SARSA, the policy chooses to take the longer but safer 

path. The authors go on to suggest that Ů be annealed for the two algorithms to 

converge. 

 

Notice that this example represents discrete states with discrete actions. The state is 

left to the designerôs choice. Although not specified, in the Cliff Walk example this 

can be represented by the grid in which the agent is currently in, for instance 

representing each square with a binary number. This leads to the tabular 

representation shown in Figure 9. 

The problem with such a formulation is known as the curse of dimensionality [42], 

where the number of states or actions make the problem infeasible. Such is the case 

in this project, where the actions ό ɴ ὊȟὊȟ•  are all continuous. One limiting 

solution is to discretize both states and actions, however, this is not scalable. To this 

Figure 8 Cliff walk example [41], where the aim is to arrive to point G without falling off the cliff. A 

reward of -1 is given for each transition, whereas -100 is given for walking on the cliff. 

On-Policy Q-Learning (SARSA): 

 
Off-Policy Q-Learning: 

ὗίȟὥ ᴺὗίȟὥ ‌ὶ ‎ὗί ȟὥ ὗίȟὥ  

ὗίȟὥ ᴺὗίȟὥ ‌ὶ ‎ÍÁØὗί ȟὥ ὗίȟὥ  

Figure 9 Tabular (2D array) representation of the state-action function, Q(s,a) with optimistic 

initialisation of the action Right. This initialization will lead to action Right being picked more 

frequently initially, contributing to faster learning. 

1 2 3 n-1 n

Left 0 0 0

Right 0.1 0.1 é é é 0.1

Up 0 0 Q(s, a=up) 0

Down 0 0 Q(s, a=down) 0

States accesed using binary representation

States

A
c
ti
o
n
s

é
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end, Lillicrap et al. [43] formulated a continuous framework based on deep learning 

which was implemented in this project. 

2.6 Conclusion 
 

In this section, theory and examples related to the methods implemented in this 

project were introduced. The VTOL problem relies on controllers, and each 

introduced algorithm solves a shortfall presented in the preceding ones. 

 

PID, LQR, MPC, and RL were the four control methods that were discussed. The 

PID is the simplest and most intuitive method, using the proportional, integral and 

derivative of the error with respect to a reference in order to drive the process. 

However, the PID is suitable for SISO systems. Therefore, where multivariable, 

coupled and non-linear systems are presented, the PID can only be implemented to 

a limited extent on the linearized and decoupled plant. This leads to inaccuracies and 

sub-optimal control. PIDs are tackled as a baseline in Section 4.2. 

 

Unlike PID controllers, LQRs use the state space to find the optimal feedback matrix 

ὑ. Moreover, whereas the PID acts on the error, the LQR acts on the state. This 

state is still evaluated with respect to an equilibrium point since any non-linearities 

need to be linearized for an LQR to be designed. The general form of LQR does not 

include constraints and the designed LQR will only be optimal at the linearized state. 

 

The shortfall of LQR in dealing with constraints as well as different conditions led 

to MPC, where the problem is formed as an objective function with constraints. MPC 

finds the correct input to take by minimizing a cost function with respect to the states 

and actions. Like LQR, the cost function is quadratic, but it is not solved analytically. 

Instead, an optimizer is used to find a solution to the objective function. This is also 

done whilst respecting constraints and following a trajectory. This means that 

whereas PIDs and LQRs only consider the current state, MPC can incorporate the 

model in the constraints and simulate future states; enabling it to pick the best actions 

that maximize not just the current reward, but also future rewards. The derivation of 

LQR that led to the implementation of MPC is detailed in Section 4.3. 

 

Recall that the general form of the MPC still needs a well-defined model where the 

state is found analytically or is estimated. The notion of rewards is further extended 

to RL, where the MPC framework is reformulated in an iterative and model-free 

framework that interacts with the environment. Feedback is given as a reward value 

as opposed to an error. Like MPC, it is derived from Bellmanôs equations and seeks 

to find the best policy that maximises future rewards. RL can take on many forms, 

but discrete state-actions prove to be limiting in control applications. To this end, a 

state-action approximator as well as a continuous-domain and relatively new method 

is applied to the VTOL problem and are discussed in Sections 4.4 and 4.5.
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3 Simulation Environment 
 

The environment is built in Python 3.5 and depends on the use of Box2D [7], [44]. 

Box2D is a physics engine that supports rigid body simulations. It was originally 

intended for games, however, it can also be used for light simulations not requiring 

state of the art accuracy used in critical applications. 

 

Bodies in the environment are built using basic shapes and objects such as polygons, 

rigid bodies (defined as being as hard as diamond), fixtures (having attributes such 

as density, friction), physical constraints, joints, joint motors (specifying torque), and 

finally the world which contains all the defined objects. 

 

Box2D is tuned for meters, kilograms, seconds and radians. Since the rocket is 

modeled after Falcon 9 [4] and the dimensions are quite large, all units are divided 

by a scaling factor (1:30) as suggested by the author of Box2D. The physics engine 

is meant to take care of collisions and physics related calculations with a user-defined 

frequency. In this case, each time-step was set to be 1/60 s, or updating with a 

frequency of 60Hz. Upon passing an action to the simulation as a ρσ array 

ὊȟὊȟ•, corresponding forces are applied to the respective body. As an example, 

a force equivalent to Ὂ ρ would result in a force Ὂ

ὊȢὓὃὍὔͅὉὔὋὍὔὉὖͅὕὡὉὙ applied to the bottom of the nozzle. Ὂ and Ὂ values 

are normalized, whereas the angle • is not. 

 

Two types of bodies are defined in Box2D; static and dynamic. The former is meant 

to be indestructible, defined as having zero mass. On the other hand, dynamic bodies 

are meant for collisions, forces and general dynamics. All rocket parts are defined to 

be dynamic bodies, whereas the barge and sea are static. The nozzle is fixed with the 

lower part of the main rocket body by a revolute joint. The revolute joint is given a 

motor with a specified torque, having a certain delay. In this case, the torque was 

defined large enough such that the angle is driven in real-time with little to no delay. 

 

The legs are also defined as dynamic bodies and are connected via a revolute joint 

with the rocket. Angle constraints of υ and a torque were given to the joints to 

simulate a spring once in contact with the ground. Forces are applied at ωπ with 

respect to the defined body at the relative coordinates. Since visuals need to represent 

the physics simulation and body coordinates, all simulation dynamics are updated on 

the actual defined objects in the physics engine. As an example, the ὼȟώ position 

of the rocket can be accessed with: ὰὥὲὨὩὶȢὴέίὭὸὭέὲ and this is then used to render 

the rocket. Particles are used to represent forces. This is done for visual aid and is 

very useful for verifying controls visually. However, rendering is not required for 

the physics simulation to take place. Finally, the environment is meant to reset to the 

defined initial conditions if the rocket tilts by more than συ with respect to the ᾀ 
axis or touches the outside boundary. All  the above is summarized in Figure 10 and 

Figure 11. 
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Figure 10 Actual simulation executing a control algorithm. Visuals are needed to correctly verify that 

the simulation is being executed as intended. 

Figure 11 Rocket defined from multiple dynamic bodies. Particles are used as visual aid to represent 

forces being applied. 
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4 Methodology 
 

This section includes the implemented algorithms with detailed derivations and 

methods. Reference is frequently made to theory outlined in the Background section. 

A brief but necessary mathematical derivation is first presented. The baseline PID 

controller design is then explained, followed by LQR theory which leads to MPC. 

Model free RL is then introduced, starting with discrete action function 

approximation Q-Learning, followed by the final model using DDPG, which tackles 

the vertical rocket landing problem in a continuous manner. 

4.1 Mathematical Derivation 
 

The problem and nomenclature were introduced under Problem Definition in Section 

1.2, specifically Figure 2. Support legs were omitted from the diagram for 

clarification purposes.  

 

The Nitrogen gas thrusters allow for more complex but stable control. However, their 

force can be fixed to 0 if required, simplifying the model. On the same line, the angle 

and position of the barge were fixed in this project, but are included as variables in 

the environment to reflect the possible changes that might arise. 

 

By using Newtonôs 3rd law of motion, the free-body diagram shown in Figure 12 can 

be deduced: 

 

ὰ 

 
 ̒

άὫ 

 ̒

ὰ 

ὰ 

Ὂ  

Ὂ  

Ὂ  

ὊȢÓÉÎ• — 

ὊȢÃÏÓ• — 

ὊȢÃÏÓ— 

ὊȢÃÏÓ— 

ὊȢÓÉÎ— 

ὊȢÓÉÎ— 

ὰ 

Figure 12 Free body diagram showing all forces considered. 
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Solving for translational forces in ὼȟᾀ directions as well as rotational torque with 

respect to the rocketôs COG leads to: 

 

 

In the last step, small angles were assumed for simplification. Thus, ÃÏÓ•

ÃÏÓ—  ρ and ÓÉÎ• •ȟÓÉÎ— —. 
 

 

Torque: 

 

ὰÃÏÓ•  represents the fact that the thrust is applied to the base of the nozzle.  

 

ά ‌‍Ὂ Ὂ τ 

ὐ• † υ 

 

Equation 4 specifies that the fuel burn is directly proportional to thrust. The control 

problem is a multiple input, multiple output (MIMO) system where ὊȟὊ ὥὲὨ • 

represent the variable inputs that must be adjusted for the rocket to land safely at a 

reference position. The independent forces applied by the cold gas thrusters at the 

upper half of the rocket can be implied from Ὂ. 

 

—ȟὼ ὥὲὨ ᾀ represent the output of the system. A suitable representation for writing a 

MIMO problem is state space form: 

 

ὼ ὃὼ ὄό 

ώ ὅὼ Ὀό 
 

 

άὼ  ὊÓÉÎ— • ὊÃÏÓ— 

ὼ
ὊÃÏÓʒÓÉÎ— ὊÃÏÓ—ÓÉÎ• ὊÃÏÓ—

ά
 

ὼ
Ὂ— Ὂ• Ὂ

ά
 ρ 

άᾀ  ὊÃÏÓ— • ὊÓÉÎ— άὫ 

ᾀ
ὊÃÏÓʒÃÏÓ— ὊÓÉÎʒÓÉÎ— ὊÓÉÎ— άὫ

ά
 

ᾀ
Ὂ Ὂ•— Ὂ— άὫ

ά
  

 

ς 

ὐ—  ὊÓÉÎ• ὰ ὰÃÏÓ• ὰὊ 

—
Ὂ•ὰ ὰ ὰὊ

ὐ
 σ 
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Where 

ὼ ὲ ίὸὥὸὩ ὺὩὧὸέὶ 

ώ ὲ έόὸὴόὸ ὺὩὧὸέὶ 

ό ὶ Ὥὲὴόὸ ὺὩὧὸέὶ 

ὃȟὄȟὅȟὈ ὅέὲίὸὥὲὸ άὥὸὶὭὧὩί 

 

This formulation requires that the problem be linear time-invariant, which also 

implies that ÓÉÎ—ḙ —ȟÃÏÓ —ḙρ for small angles of —. Even if this assumption 

is carried on, Equations 1-3 suggest that the inputs and states are coupled and not 

independent. For instance, varying Ὂ leads to changes in all states. This coupling is 

not trivial and presents a difficult problem in control as the system needs to be linear 

for it to be represented in state space form. 

 

To this end, the problem can be linearized about equilibrium points if the system 

operates around those points. A point is called an equilibrium point if there exists a 

specific input that renders all changing states to π [45]. Formally, for a non-linear 

differential equation given by: 

 

ὼὸ Ὢὼὸȟόὸ  

 

An equilibrium point is defined as: 

ὪὼӶȟό π 
 

Setting ὼȟᾀ and — to 0 in Equations 1-3 and solving the simultaneous equations leads 

to the equilibrium input ό άὫȟπȟπ. This means that if we start the simulation at 

the equilibrium point and apply ό, the system will remain at that point assuming no 

external disturbances or randomness. However, starting away from ὼӶ and applying a 

different ό leads to a deviation: 

‏ ὸ ὼὸ ὼӶ 

‏ ὸ όὸ ό 

Then it follows that: 

‏ ὸ ὪὼӶ‏ ὸȟό ‏ ὸ  

Expanding by Taylorôs theorem and ignoring high order terms leads to: 

‏ ὸ
‬Ὢ

‬ὼ Ӷȟ
‏ ὸ  

‬Ὢ

‬ό Ӷȟ
‏ ὸ 

ὃ‏ ὸ  ὄ‏ ὸ 

This is called Jacobian Linearization about the equilibrium point. A controller should 

work well if it is designed at this point, as long as the system operates near that point. 

Both LQR and MPC make use of the linearized state space, and which is discussed 

further in Section 4.3.1. 
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4.2 PID Controller  Design 
 

Recall that the PID is used for a SISO system. Therefore, we wish to transform a 

SISO in the general transfer function form: 

 

Ὃί
ὣ ί

ὢ ί
 

 

Consider taking the Laplace transform of Equation 1: 

 

ίὢί
Ὂ ί—ί Ὂ ί•ί Ὂί

ά
 

 

ὢί in this equation represents the position in Laplace domain, which would 

represent ὣ ί in the transfer function. The inputs are Ὂ ίȟὊ ίȟ•ί , 

however, ὢ ί can only represent one input at a time, hence the multi-

variability and coupling. 

 

Methods for decoupling, such as the Relative Gain Array [46] allow a system to be 

decoupled and treated as a SISO. However, since the PID is only used as a 

benchmark, 3 separate PIDs were designed by taking the following assumptions for 

Equations 1-3. 

Equation 1 

άὼ  ὊÓÉÎ— • ὊÃÏÓ— 

Assume that Ὂ π and small angles apply. This leads to the following 

simplification: 

ὢ

Ὂ

ρ

άί
 

However, note that Ὂ affects — significantly, as is evident from Equation 3. This 

coupling becomes complicated since ὼ and — may require different conflicting 

controls from Ὂ and Ὂ. This leads to the presumption that Ὂ should output a control 

based on the PID error of both Ὧ— and Ὧὼ, where Ὧ and Ὧ are constants. 

Moreover, both Ὂ and Ὂ should control the position ὼ. 

To simplify the problem, the design of the PID took place using just one input, with 

the other set to 0. Ὧ was then obtained empirically, leaving the same PID constants 

that were designed. This method was also used to derive the control for Ὂ and • 

and proved to work effectively.
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Equation 2 

άᾀ  ὊÃÏÓ— • ὊÓÉÎ— άὫ 

Using the same assumption as Equation 1, setting Ὂ π and taking the Laplace 

transform: 

ὤ

Ὂᴂ

ρ

άί
 

Where Ὂ Ὂ άὫ, i.e. an offset for άὫ is applied in practice after the PID is 

designed. Since Ὂ also affects the states associated with ὼ (but to a lesser extent), 

the same empirical method proposed in Equation 1 above is used to design this PID.  

Equation 3 

ὐ—  ὊÓÉÎ• ὰ ὰÃÏÓ• ὰὊ 

The final input that needs to be controlled is •. Note that ὊÓÉÎ• ὰ

ὰÃÏÓ•  is the small contribution of Ὂ to the rotational moment. Also, notice the 

opposing forces given by Ὂ and Ὂ as explained in Equation 1. Since • is being 

controlled, all other inputs can be treated as constants, even though they are 

variables. This independence assumption simplifies the problem and allows the PIDs 

to be designed in a straightforward manner. 

—

•

ὧ

ὐί
 

4.2.1 Design by Root Locus 
 

Although an integral term brings the steady state error down to 0, it may lead to 

instability due to the introduction of an additional zero. For this reason, the design 

process took place on a Proportional Derivative controller which is given by: 

 

Ὗ ί

Ὁ ί
ὑ ί

ὑ

ὑ
 

 

Consider the design on Equation 2 where the goal is to track a reference altitude 

ὤί . The closed loop system can be represented as shown in Figure 13. 

 

 

 

 

 

ρ

άί
 ὑ ί

ὑ

ὑ
 

 

+ 
_ 

Ὧ 

ὤί ὤί  

Figure 13 Closed loop system diagram. 

Ὂ Ὁί 
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The open loop poles of the uncompensated system  leads to double poles at ί

π, implying the system is constantly oscillating with no change in magnitude. We 

would like to design a controller that tracks a reference input with a certain transient 

behaviour and steady state error. 

Let the response time be 2 seconds, implying 90% of the final steady state value 

should be obtained no later than 2 seconds. Also, let the damping factor, ɕ, be 0.7, 

implying a peak overshoot of 4.5% according to the equation: 

ὖὩὥὯ ὕὺὩὶίὬέέὸρππȢὩ  

Using the angle and magnitude criteria and root locus [47], the following PD 

controller can be computed analytically: 

ωȢωψρρρ ςȢχί 

Together with the original transfer function, the compensated system traverses the 

locus shown in Figure 14 once a PD controller is added to the system. Notice the 

double pole marked in óxô at ί π. The closed loop poles occur at πȢυστπȢσσςὮ 
in accordance with the design as shown in Figure 15. In the actual algorithm, the 

derivative term was re-calibrated as part of the empirical tuning. 

The step response for ὤ is illustrated in Figure 16 overleaf. Note that this controller 

was designed in the time domain. To translate it into the digital domain, the 

derivative term needs to be scaled by 
 

, which is  in this case. 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 Compensated system ï open loop root locus. 
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Figure 15 Closed loop root locus showing closed loop poles and zeros. 

Figure 16 Step response of the closed loop system with the PID designed to track ᾀ. 
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Having designed the z-PID controller having output Ὂ, Ὧ was set to 1, whereas Ὧ, 

the term used to represent ὼ in the error function, was found empirically during the 

simulation. As with any hyper parameter tuning, all other parameters of the 

simulation were held constant whilst finding Ὧ. This means that • and Ὂ were held 

to 0, with no initial acceleration in the ὼ direction. This enabled the rocket to descend 

in a controlled manner, adjusting Ὧ until the descent was satisfactory with respect 

to different ὼ initializations. 

The same procedure was repeated with the other two controllers, leading to the 

following algorithm: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Main Algorit hm 1 PID Control 

 

Initialize PIDs as: 

 Ὂ ὖὍὈὑ ρπȟὑ πȟὑ ρπ 

 Ὂ ὖὍὈὑ υȟὑ πȢπρȟὑ φ 

 • ὖὍὈὑ πȢπψυȟὑ πȢππρȟὑ ρπȢυυ 

 

When called to perform control every  seconds (default: 60Hz): 

 ὼȟᾀȟὼȟᾀȟ—ȟ—ȟὰὩὪὸ ὰὩὫ ὧέὲὸὥὧὸȟὶὭὫὬὸ ὰὩὫ ὧέὲὸὥὧὸ▼◄╪◄▄ 

 --------------------------------------------------------------------------------------  

 ᾀ ᾀ ᾀ πȢρὼ 

 ᾀ ᾀ πȢρὼ 

 ╕╔ Ὂ ȢὧέάὴόὸὩὕόὸὴόὸᾀ ȟᾀ ὑz  

 -------------------------------------------------------------------------------------- 

 — — — πȢςὼ 

 — ‫ πȢςὼ 

 ╕╢ Ὂ ȢὧέάὴόὸὩὕόὸὴόὸ— ȟ—  

 --------------------------------------------------------------------------------------  

 — — — 

 — ‫ 

 ὭὪ ὥὦίέὰόὸὩὼ πȢπρ ὥὲὨ Ὠώ πȢυ 

  — — πȢπφὼ 

  — — πȢπφὼ 

 ⱴ • ȢὧέάὴόὸὩὕόὸὴόὸ— ȟ— ὑz  

 --------------------------------------------------------------------------------------  

 ὭὪ ὰὩὪὸ ὰὩὫ ὧέὲὸὥὧὸ έὶ ὶὭὫὬὸ ὰὩὫ ὧέὲὸὥὧὸ 

  Ὂ π 
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4.3 MPC Controller  Design 
 

The failure of LQR to include constraints in the general case led to inputs 

experiencing values outside their intended limit. This was commented on in Section 

2.4.4. To this end, MPC was proposed as a more sophisticated and robust numerical 

method to solve an objective function at every step as opposed to designing a 

controller at an equilibrium point. The design process is discussed in this section. 

4.3.1 Linearization  
 

Jacobian linearization was proposed as a viable numerical solution to approximate 

non-linear functions using Taylorôs series expansion. Formally; 

‏ ὸ
‬Ὢ

‬ὼ Ӷȟ
‏ ὸ  

‬Ὢ

‬ό Ӷȟ
‏ ὸ 

ὃ‏ ὸ  ὄ‏ ὸ 

Where: 

ὃ ᶯὪ  

ụ
Ụ
Ụ
ợ Ễ

ể Ệ ể

Ễ Ứ
ủ
ủ
Ủ

, ὄ ᶯὪ  

ụ
Ụ
Ụ
ợ Ễ

ể Ệ ể

Ễ Ứ
ủ
ủ
Ủ

 

This problem can be solved in two ways; analytically or by direct computation in the 

simulation. Analytically, this would be equivalent to simply performing partial 

differentiation on the state equations ὼ ὼȟὼȟᾀȟᾀȟ—ȟ— and ό ὊȟὊȟ• leading 

to the following representations: 

ὃ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
π ρ π π π π

π π π π π

π π π ρ π π

π π π π π

π π π π π ρ
π π π π π πỨ

ủ
ủ
ủ
ủ
ủ
Ủ

, B

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ

π π π

π π π

π π π

Ứ
ủ
ủ
ủ
ủ
ủ
ủ
Ủ

 

Although analytically inexpensive, this method proved to be less effective than 

computing the Jacobians using numerical values from the simulation itself. 

Therefore, multi-threading was used to create φ φ new simulations initialized 

with the exact dynamics and coordinates as the current time step. A matrix ‐Ὅ, was 

used to change each successive state or input by a small amount, ‐, in either direction. 

Each simulation was then run through one time step and the state was returned. Finite 

differences were then used to create the entire Jacobian based on the actual resulting 

values. This had the advantage of capturing unconsidered dynamics, such as the 

effect of ά, and resulted in better performance than the analytical solution. The 

procedure is documented in Background Algorithm 1 below. 
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In finite differences, the smaller the value of ‐, the more local and accurate the 

differentiation. A somewhat conflicting result was obtained in this case. Setting Ů 

such that the action under test become saturated led to better results than simply 

incrementing by a small step change, such as ‐ πȢππρ. This result can be explained 

by the fact that a small step change leads to a negligible change in state, resulting in 

ὃ and ὄ becoming almost equal to . This effectively leads to the optimizer not 

finding a solution or outputting a skewed trajectory. Testing Ů with values equivalent 

[0.01, 0.1, 10, 50, 100] suggested that there is a range, which depends on the scale 

(1:30) of the simulation, in which proper trajectory planning takes place. This range 

was found to be between 10-100, with a value of 50 used in the simulation. This 

effectively saturates actions in the case of matrix ὄȢ 

 

 

Background Algorithm 1 Partial Differentiation with Finite Differences 

 

Partial Differentiation function called, passing any simulation settings: 

 ‐ ίὸὩὴ ὧὬὥὲὫὩ 

 ЎίὸὥὸὩίὸὥὸὩ‐Ὅ # This results in a φφ matrix 

                ЎίὸὥὸὩίὸὥὸὩ‐Ὅ  

 

 Ὓ ὶόὲὛὭάόὰὥὸὭέὲίЎίὸὥὸὩȟὧόὶὶὩὲὸὍὲὴόὸ  

 Ὓ ὶόὲὛὭάόὰὥὸὭέὲίЎίὸὥὸὩȟὧόὶὶὩὲὸὍὲὴόὸ 

 

 ὃ
‬Ὢ
‬ὼ

Ὓ Ὓ
ς‐
  

 ----------------------------------------------------------------------------------------------  

 ЎὭὲὴόὸὭὲὴόὸ‐Ὅ 

                ЎὭὲὴόὸὭὲὴόὸ‐Ὅ  

 

 Ὗ ὶόὲὛὭάόὰὥὸὭέὲίЎὭὲὴόὸȟίὸὥὸὩ # This results in a φσ matrix 

 Ὗ ὶόὲὛὭάόὰὥὸὭέὲίЎὭὲὴόὸȟίὸὥὸὩ 

 

 ὄ
‬Ὢ
‬ό

Ὗ Ὗ
ς‐
  

 

ὶόὲὛὭάόὰὥὸὭέὲί loops through the state and input matrices and executes a simulation 

using values from each row. This results in a total of ςὔ (ὔ

ὔόάὦὩὶ έὪ ὛὸὥὸὩί independent simulations for a total of 12, each simulating just 1 

step and appending the results to matrices ὃ and ὄ. 
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4.3.2 Design 
 

Recall that a general MPC controller is given by: 

The above problem presents the following challenges and design decisions: 

¶ Whether to penalize the change in actions as opposed to penalizing the 

actual action values. 

¶ Whether to use slack variables to penalize the optimizer for choosing values 

of actions or states above the constraints, or simply leave hard constraints. 

¶ What value to use for the maximum error between the ideal states and the 

actual states. 

¶ What values to use in matrices ὗ and Ὑ; 

¶ What time horizon, Ὕ, to use; 

¶ What control horizon, Ὕ, to use. 

A number of experiments were conducted for the first two options to find the best 

solution for fixed values of ὝȟὝȟὗ and ὙȢ Once that result was established, ὗȟὙȟὝ 

and Ὕ were treated as hyper parameters and are discussed in Section 5.5.  The 

general problem was restructured as shown below. 

άὭὲὭάὭᾀὩ 

ίόὦὮὩὧὸ ὸέ 

ὐ  ὼὗὼ όὙό  

όᶰ5, ὼᶰ8 

ὼ ὃὼ ὄό 

ȿὼ ὼ ȿ ÅÒÒÏÒ 

ὼ ὼ  

Ὢέὶ ὸ ὸȣὝ 

 

Main Algorithm 2  MPC 

 

άὭὲὭάὭᾀὩ 

ίόὦὮὩὧὸ ὸέ 

ὐ  ЎὼὗЎὼ όὙό Ўό πȢρὙЎό  

ὼ ὃὼ ὄό 
ὓὥὼ ὖέύὩὶ  

φ
ό & ὓὥὼ ὖέύὩὶ   

ὓὥὼ ὖέύὩὶ  ό & ὓὥὼ ὖέύὩὶ   

• ό ʒ •  

ὼ Ὕ ὼὝ πȢπρ 

ὼ ὼ  

 ύὬὩὶὩ Ўὼ ὼ  ὼ 

Ўό ό ό  
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Note that a problem can be tested for convexity by computing the Hessian matrix 

and checking if it is positive semi-definite, that is if itôs Eigen values are greater or 

equal to 0. When considering the constraints mixed with the cost function, this test 

becomes non-trivial. For this reason, the constraints were left to be as linear as 

possible since a convex framework, ὧὺὼ, was used to solve the problem. The 

Splitting Conic Solver was used for the optimization problem since it can solve 

convex second-order cone programs of the type: 

Experiments were conducted to find the optimal values for the hyper parameters 

discussed earlier and results are discussed in Section 5.5. 

4.3.3 Trajectory Generation 
 

An ὼ   was passed to the optimizer to track an ideal trajectory at every 

ὼ iteration. This trajectory was computed empirically by first defining an ideal z-

profile. The target state was then computed, always starting from 

ὼȟὼȟᾀȟᾀȟ—ȟ—  and computing each state iteration according to 

ὼ   shown overleaf. This preserves the constraint ὼ ὃὼ ὄό 

while providing realistic targets within the given time horizon. If instead we gave 

the default values of ὼ ὄὥὶὫὩ ὼȟπȟὄὥὶὫὩ ᾀȟπȟπȟπ, the optimizer would 

have tried to reach ὼ  within the given horizon, which leads to an infeasible 

solution. 

The Z-altitude profile was structured as: 

ᾀὸ ᾀ Ὡ Ȣ έὪὪίὩὸ  

 

 

 

 

 

 

 

 

άὭὲὭάὭᾀὩ 

ίόὦὮὩὧὸ ὸέ 

ὐ  ὧὼ 

ὃὼ ὦ 

Ὃὼ ὑὬ 

ὼᶰ8 

Figure 17 Altitude profile against time to land. 
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Using this graph, the target state was obtained at each time step for the specified time 

horizon according to the equations shown below: 

●╣╪►▌▄◄ ◄►╪▒▄╬◄▫►◐

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợὼ

ὼ ὼ

ρ Ὡ
ὼ ὼ

ᾀ ὸ ȣὝ

ᾀ Ὡz ȟȟ

— ᶻπȢσ Ὡ
‎— Ứ

ủ
ủ
ủ
ủ
ủ
ủ
Ủ

 

 

This target provided a sigmoid-like trajectory with respect to ὼȟᾀ as well as realistic 

values for — and —, tuned using the baseline PID. As an example, using a time horizon 

of 30 and a time step of 0.1, the reference trajectory specifies that the rocket should 

decrease the ὼȟᾀ displacements gradually as well as correct for — over the entire 

period, not just one. The reference trajectory is shown in Figures 18. 

In Figure 19, the reference trajectory is shown as a black line and the optimized 

trajectory returned from the optimizer is shown in red. One can notice that the 

planned and target trajectories do not coincide at every point. This depends on the 

Ὡὶὶέὶ value between target states and planned states. It is of utmost importance that 

the constraint for the final state ὼ Ὕ ὼὝ Ὡὶὶέὶ is also included as 

without this the MPC would fail to provide a reasonable trajectory. 

 

 

 

 

 

 

 

 

 

 

 

- Optimized Trajectory 

- Reference trajectory 

Figures 18 & 19  Reference trajectory showing the x-z profile 

(left), and the corresponding simulation (right), showing planned 

(red) and target trajectories (black). 

ὼᾀ Trajectory Profile. ὼ ρφȢυȢ 
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33 

 

4.4 Linear Function Approximation Q -Learning 
 

RL refers to the episodic learning of an agent whose goal is to maximize the return. 

Different types of representations were discussed in Section 2.5, and this sub-chapter 

expands on Q-learning. 

 

Up till now, the benchmark PID and the MPC controllers were designed and their 

algorithms were outlined. The PID represented a classical control approach, whereas 

MPC uses a combination of state space representation with optimization methods. 

Given that MPC is derived from the same theoretical background as RL, both solve 

the same problem using the same framework in different ways. 

 

Whereas MPC uses an optimizer and a known model, RL approaches the problem 

from an interaction-reward point of view. In this section, the state is modeled by an 

algebraic sum of weighted features. Features can include the actual state ὼ used in 

MPC, binary states that are activated with a condition, transformed functions such 

as ὼ ώ and any other relevant functions. The general Q-learning algorithm is 

given by: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, Background Algorithm 2 above uses discrete states and actions. On the 

other hand, our problem spans both continuous states as well as actions. This 

introduces the problem of the curse of dimensionality; if we try to discretize all states 

and actions, ὗίȟὥ becomes infeasible. 

 

Mnih et al. [48] chose to replace the tabular approach with a deep convolutional 

neural network trained using stochastic gradient descent and a replay mechanism 

which randomly samples previous transitions. The replay buffer was also used for 

this project in the implementation of the DDPG algorithm discussed in Section 4.5. 

The researchers effectively used the video images having a resolution of 8484 at 

60Hz as input to the neural network, and output all actions as a posterior probability 

of the state. The highest valued action would then be executed. Tile coding and 

 

Background Algorithm 2 General Q-Learning 

 

Initialize ὗίȟὥ either optimistically or randomly, in tabular form (2-dimensional array) 

For every episode: 

 Initialize the state ί 

 Until s is the terminal state, do: 

  Choose action ὥ from current state ί using an Ů-greedy policy 

  Execute action ὥ and get reward, ὶ, as well as the next state, ίȭ 

  ὗίȟὥ N  ὗίȟὥ  ‌ὶ ‎ÍÁØὗίȟὥ ὗίȟὥ  

  ίN ίᴂ 
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Radial Basis Functions are other state representations that have proven to be 

effective in certain simple continuous state problems but were side-lined for a 

simpler solution in this implementation due to their scalability limitations. Note that 

these solve the problem of states, but not actions. 

 

Consider the true state-action matrix to be linearly approximated by another 

weighted matrix: 

ὗίȟὥ ὗίȟὥȟ‫  

 

The goal is to find a representation for :that minimizes the cost function ‫ 

 

ÍÉÎὐ‫ Ὁ ὗίȟὥ ὗίȟὥȟ‫  

 

To this end, gradient descent can be used to find the local minimum in an online 

fashion: 

 
ρ

ς
ὐɳ‫ ‌ὗίȟὥ ὗίȟὥȟ‫ Ȣɳὗίȟὥȟ‫  

 

Where Ŭ is the learning rate and ὗίȟὥ represents the target. The target depends on 

how the problem is formed; Monte Carlo RL implies that ὗίȟὥ be equal to the 

average reward at the end of the episode, whereas for temporal differencing it would 

be the immediate reward following state ίȡ ὶ ‎ὗί ȟὥ ȟ‫ . Using such a 

method, ὗίȟὥȟ‫  still converges to the global solution if on-policy linear function 

approximation is used. 

 

The main algorithm used is shown below, with Ŭ being annealed from 0.01 to 0.001 

using an exponential decay. All features are explained overleaf. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Main Algorithm 3  Linear Function Approximation Q-Learning ï Off Policy 

 

Initialize .randomly from Ὗπȟρ with size equivalent to the number of features ‫ 

For every episode: 

 Until s is the terminal state, do: 

  Choose action ὥ using an Ů-greedy policy, ὥὶὫάὥὼ ὗίȟὥᶰὃȟ‫  

  Execute action ὥ and get reward, ὶ, as well as the next state, ίȭ 

  ὪὩὥὸόὶὩίὦόὭὰὨ ὪὩὥὸόὶὩί όίὭὲὫ ίȟὥ 

  ὗίȟὥȟ‫ ‫ὪὩὥὸόὶὩί 

  N ‫  ‌ὶ  ‫ ‎ÍÁØὗίȟὥȟ‫ ὗίȟὥȟ‫ ‫ɳ 

  ίN ίᴂ 

 






































































