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Abstract
Gene regulation is an essential component of many biological processes. Understand-
ing how a cell controls the level of expression of a gene, and understanding the regu-
latory relationships between genes, are two important aims of systems biology.

With the advent of high throughput methods for measuring gene expression, a huge
amount of transcriptomic data has become available. This data contains important in-
formation about genes and proteins, which can be used to better understand the genetic
characteristics of diseases and thus enable effective treatments to be developed. Sev-
eral methods of analysing gene expression data have been devised over the years. They
are used to infer gene networks from the data, however, many of the methods do not
consider changes in network topology at different time points in the time series data.

The aim of this thesis is to implement a method developed by Thorne for the infer-
ence of gene regulatory networks which can vary their structure between different
time points while at the same time taking into account the sequential aspect of the
data [Thorne and Stumpf, 2012]. This method uses the Hierarchical Dirichlet Process
Hidden Markov Model (HDP-HMM) and uses a Dynamic Bayesian Network (DBN)
to represent the gene regulatory network at each hidden state. As such, it is abbreviated
as the HDP-HMM-DBN method.

HDP-HMM-DBN may be executed as a stand alone method but it can also be used in
combination with GABI, an algorithm implemented by the Overton group, which is
designed to perform relevance thresholding in networks. Gabi also predicts direction-
ality using information-theory and the properties of the undirected relevance network.
We demonstrate how the use of GABI as a prior to the Hierarchical Dirichlet Process
Hidden Markov Model algorithm improves overall performance. The efficiency of the
HDP-HMM-DBN method, with and without GABI, is evaluated using benchmark data
available on the DREAM challenge website. We focus on the DREAM4 challenge; the
provided in silico time-series data is input to our method and the results are evaluated
with the the gold standard networks.

To verify the benchmark evaluation we make use of ROC curves. The ROCR package
is used to plot graphs for the Matthews correlation coefficient of the results, produced
by running the method on its own and with GABI as a prior. We demonstrate how
performance is affected when GABI is applied. Parameters for the method were set
using cross-validation with DREAM gold-standard data.

As a more real life application of the HDP-HMM-DBN method, we use it to analyse
renal cancer time course data provided by the Overton group. This data is derived
from the drug resistant Caki-1 cell line which has been exposed to the drug Sunitinib
in hypoxia. Cytoscape is used to visualise and analyse the network produced by our
method from the cancer data. DAVID (Database for Annotation, Visualization and
Integrated Discovery) is applied to gain insights into the biological meaning of the
gene network

The biomedical context of this project is to develop more effective clinical tools for
renal cancer medicine by investigating molecular control of drug (Sunitinib) resistance
and response.
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Chapter 1

Introduction

Cellular phenotype is the term used to describe the groups of multiple and different
cellular processes that take place as part of a cell’s proper function [Sul et al., 2009].
These cellular processes combine the activity of thousands of genes, maintained by a
complex network which controls their expression. Understanding this organisation of
genes and the interactions between them is an important part of systems biology as it
sheds light on the normal physiology of the cell. An important part of systems biology
is the inference of regulatory networks from the gene expression data obtained from
high-throughput experiments such as microarrays.

Genome projects are providing us with a huge amount of clinically relevant informa-
tion in the form of genes and proteins that deal with cellular function. By analysing
this information we get better insight into the complex molecular processes essential
to many biological systems. Experimental techniques on their own are not sufficient to
allow us to fully comprehend the complexity of genetic networks. Recently there has
been substantial progress in the application of computational techniques to the field of
biology [Imoto et al., 2003; Lebre et al., 2010; Werhli and Husmeier, 2008; Penfold
et al., 2012; Thorne and Stumpf, 2012], the main goal being the deciphering of com-
plex functional relationships occurring between genes by analysis of omics data. One
simple method of investigating the relationships between different expression datasets,
and understanding their functional pathways, is by performing clustering of gene ex-
pression profiles.

Over the last decade remarkable progress has been made in genomic research. This
has led to an increase in the number of reverse engineering methodologies proposed in
the literature. The main objective of these methods is to infer, analyse and understand
the causal relationships between genes: in other words to understand which gene is the
regulator to another [DâĂŹhaeseleer et al., 2000]. Reverse engineering involves taking
gene expression datasets, deciphering the information contained in them and using that
information to unravel unknown gene regulatory networks. There are several ways
of regenerating gene regulatory networks, based on different paradigms, for instance:
using graphical Gaussian models [Schäfer and Strimmer, 2005], Bayesian networks
[Friedman et al., 2000], Boolean networks [Lähdesmäki et al., 2003] and so on. A lot of
these methodologies do not account for the varying structure of the network at different
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2 Chapter 1. Introduction

time points. Those which do often do not take into consideration the sequential nature
of the data. Identifiability is another important feature a reverse engineering method
should satisfy to enable more accurate predictions. However, it is often an overlooked
property when modelling gene regulatory networks [ide, 2016].

The HDP-HMM-DBN method implemented in this thesis performs inference of gene
networks while taking into consideration the changing network topology at various
time points in the data. Furthermore, by using it in combination with the GABI algo-
rithm to prune out insignificant edges, its performance is significantly improved.

The efficiency of our method is verified using a rigid evaluation process involving
benchmarking and cross-validation using data from the DREAM1 challenge website
(Chapter 5). We run our method on renal cancer data, derived from cell lines which
have been exposed to the drug Sunitinib, and analyse the results produced using spe-
cific programs such as Cytoscape2.

From a biological point of view, this method is a valuable tool which can be applied
to gene expression data to infer the complex web of genes contained therein, and their
regulatory relationships. By understanding the link between the regulators and their
targets one can understand the genetic characteristics behind diseases, and as a result
find cures for them.

The model that we will be implementing for this project is based on Dynamic Bayesian
networks and Hierarchical Dirichlet Process-Hidden Markov Model. More details on
that are given in the chapters which follow.

1.1 Motivation

A gene regulatory network describes a collection of genes that interact with each other
in order to allow for the proper functioning of a particular cell. The way the genes
are expressed is quite specific in the sense that each one needs to be expressed in the
correct amount and at the right time to ensure the correct behaviour of the cell.

Analysing the complex structure of gene regulatory networks using computational
methods is an important aspect of systems biology. Gene expression data sets tend
to be high dimensional because of the large number (1000s) of expressed genes in a
given cell. The data also contains relatively few sampling time points in contrast to
its high number of dimensions. For this reason, it is called the large p (number of
genes) and small n (number of time points/samples) problem, which makes it difficult
to analyse.

To date, various mathematical models and computational methods have been devel-
oped to infer gene regulatory networks from gene expression profiles [Schäfer et al.,
2001; Wang et al., 2016; Lebre et al., 2010; Grzegorczyk et al., 2008]. However a lot
of these network models assume that the network topology stays the same over time

1DREAM Website: http://dreamchallenges.org/
2Cytoscape: http://www.cytoscape.org/
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when in reality this is often not the case. Some approaches have been proposed which
build time-varying biological networks [Lebre et al., 2010]. These approaches make
use of change points in the time series data, but fail to take into account the sequen-
tial nature of the data . Another issue is that they establish in advance the number of
change points that can be observed, and are therefore unable to adapt to the complexity
of the observed data.

To allow for the inference of gene regulatory networks which can change their struc-
ture at different time points, whilst taking into consideration the sequential nature of
data, Thorne and Stumpf [2012] has proposed a methodology which uses the infi-
nite Hidden Markov Model, also known as the Hierachical Dirichlet Process Hidden
Markov Model, along with a Bayesian network representing the gene regulatory net-
work at each hidden state. The Hierachical Dirichlet Process Hidden Markov Model
(HDP-HMM) extends the traditional hidden Markov model by having an infinite num-
ber of hidden states to explain the data. The distributions of the states are grouped
in a hierarchical structure to facilitate sharing and transitions between the states. The
method employs the Metropolis Hasting algorithm when generating network structures
for each hidden state. More information about the method is given in chapter 3.

To improve the efficiency of the HDP-HMM-DBN method at making predictions we
have integrated it with GABI, a relevance thresholding algorithm developed by Alex
Lubbock from the Overton group as part of his PhD. The GABI algorithm generates a
relevance network and applies information-theoretic and topological directionality in-
ference rules. When using GABI as a prior to our method, edges with low significance
are removed, thereby ensuring that the networks generated by the HDP-HMM-DBN
method only contain important edges.

In the next section we give an overview of the aims and objectives of this thesis.

1.2 Aims and Objectives

There are three main aims of this project: implementing the HDP-HMM-DBN method,
evaluation and benchmarking the method using data from the DREAM3 challenge
while assessing the benefit of including GABI as a prior and using of our method
to analyse renal cancer data provided by the Overton group.

The first task is an implementation of the non-parametric framework proposed in
[Thorne and Stumpf, 2012]. This framework, which makes use of the Hierachical
Dirichlet Process Hidden Markov Model (HDP-HMM), models how a network changes
its topology at different time points. In the original method devised by Thorne et al.,
the network structure was represented in the form of a Bayesian network. In our im-
plementation we extend it in a novel way by using a dynamic Bayesian network to
model the network structure. The advantage of using a dynamic Bayesian network is
that it increases the space of potential network structures by overcoming the restriction
imposed by the directed acyclic graph (DAG) structure of a Bayesian network. This

3DREAM Challenge: www.dreamchallenges.org



4 Chapter 1. Introduction

method is developed using the R language because of the large number of statistical
features it contains.

In the second task, the method is evaluated using benchmarking data from the DREAM
challenge website. DREAM4, (Dialogue for Reverse Engineering Assessment and
Methods), is a repository of challenges which allows researchers to evaluate their
methodologies against some gold standard. The data that we use to test our method
comes from the DREAM4 challenge and is simulated time-course data. We run our
method both on its own and in conjunction with GABI. By incorporating a connectiv-
ity prior from GABI, we verify whether this enables the HDP-HMM-DBN algorithm
to make more accurate predictions.

To determine a thresholding parameter and to benchmark the various instances of the
network inference algorithm, we compare the output of the HDP-HMM-DBN algo-
rithm against the provided gold standard networks. Receiver operating characteristic
(ROC) curves are used to verify the performance of our method. We also vary the
"number of node (gene) parents" parameter when running the method with and with-
out GABI in order to verify how this impacts the method’s outcome. We generate
Matthews Correlation Coefficient curves for the various results, corresponding to dif-
ferent runs of the method, and use them to evaluate how well our method executes
when the settings are changed. Prior to running the algorithm on the renal cancer data,
we perform cross-validation of the method to find the settings which give optimal per-
formance. We then apply these settings to our method when running it on the cancer
data.

Finally in the third task, we run our method on renal cancer time course transcrip-
tome data derived from cell lines exposed to the drug Sunitinib. Using the output of
our method, we visualise regulatory networks using Cytoscape and use them to make
further biological investigations.

We put forward a checklist which may be used to verify whether we have completed
the tasks that have been set at the start of the project. This will give us an indication of
the project’s success.

1. HDP-HMM framework implementation

• Implement the method developed by Thorne and Stumpf [2012] and extend
it in a novel way by exploring the inference of gene regulatory networks
using the Dynamic Bayesian network approach.

• Incorporate GABI as a prior in the method.

2. Benchmarking using DREAM data

• Assess the performance of the method using DREAM networks as bench-
mark.

• Verify how using the method in combination with GABI affects perfor-
mance.

4DREAM Website: http://dreamchallenges.org/



1.3. Results and Contributions 5

• Assess the effect of the maximum number of potential parents of a gene
parameter on predictive performance, which is limited by the availability
of the number of replicates in the dataset.

3. Running the method on renal cancer data

• Run the method on the renal cancer data provided and generate a molecular
network which can be used for further biological analysis.

1.3 Results and Contributions

The main contributions of this thesis are as follows:

1. Novel method for inferring gene regulatory networks from gene expression data.
We implement the method proposed in [Thorne and Stumpf, 2012] and extend
it in a novel way by using a dynamic Bayesian network to represent the gene
networks.

2. Incorporating a connectivity prior.
We integrate GABI with our method to perform relevance thresholding by re-
moving insignificant edges in the networks generated by our method. We show
in particular how using a connectivity prior helps achieve better results.

3. Performing dynamic analysis of renal cancer data.
By running our method on renal cancer time course data, we are able to look at
the gene networks at specific time points during the gene expression phase. For
example, we can study the gene networks during apoptosis and angiogenesis.
By being able to perform such in-depth analysis of biological data, we can better
understand the interactions between the regulatory elements when they are ex-
posed to specific conditions like hypoxia or normoxia. We can also analyse the
effect of certain drugs on the cancer cells. This is an important step when trying
to find cures for specific diseases.

1.4 Thesis Structure

The content of this thesis is structured in the following chapters.

Chapter 1: Introduction gives an overview of the method we have implemented and
describes the motivation for the project as well as our aims and objectives. It also lists
the main contributions it has brought to research.

Chapter 2: The Background chapter provides background details about the molecu-
lar biology aspect of the project by explaining concepts like the central dogma, gene
expression and gene regulatory networks. It investigates the various existing math-
ematical models and computational methods that have been developed to infer gene
regulatory networks from gene expression profiles. It also provides information on



6 Chapter 1. Introduction

some important concepts related to the Hierarchical Dirichlet Process-Hidden Markov
Model framework. An entire section is dedicated to explaining the biology of cancer
as this is an important part of this thesis.

A lot of the research work in this chapter is derived from the research proposal which
was written as part of the Informatics Research Proposal module

Chapter 3: The Algorithm chapter describes the Hierarchical Dirichlet Process-Hidden
Markov Model and the Metropolis Hastings sampler algorithms in more details. Pseudo-
codes for both of them are also listed.

Chapter 4: The Implementation chapter describes how HDP-HMM-DBN method has
been developed in R. Some code extracts and brief descriptions of the functions which
are implemented as part of the method are also included.

Chapter 5: Benchmarking and Analysis looks into the DREAM challenge and pro-
vides a step by step description of how the HDP-HMM-DBN method is evaluated
using simulated time series data from the DREAM4 challenge. Here we talk about
the algorithm’s performance in terms of the predictions made. We discuss the results
of running the HDP-HMM-DBN algorithm both on its own and when incorporating
GABI as a prior. We vary the parameter of the number of parents associated to a
node and run the method both with and without GABI. We present ROC curves and
Matthews correlation coefficient graphs for the different runs of the method as part of
the evaluation process. We also perform cross-validation of the results and present it in
the form of tables. This chapter also covers the analysis of renal cancer data using the
HDP-HMM-DBN method and describes the steps undertaken to generate a molecular
network using the method’s output. We give an overview of the biological interpreta-
tion of the network by highlighting the important relationships between specific genes
which are known to be linked to cancer.

Chapter 6: Conclusion reflects on what has been accomplished in this project, our
observations and suggestions for future works.

Appendices: List of all graphs and tables generated as part of the evaluation process
and any other additional materials referred in the main text.



Chapter 2

Background

This chapter provides the biological and computational background of this thesis. It
gives an overview of the central dogma of molecular biology and the three elements
which form part of it namely DNA, RNA and protein. It explains the process of how
genetic information in a cell gets translated into protein. It also covers an exposition
of the relevant literature review on gene expression, how it is measured, analysed and
modelled as well as the various methodologies devised for the reverse engineering of
gene regulatory networks from gene expression data. Some background information on
concepts like Markov chain, Hidden Markov model, Dirichlet process and Hierarchical
Dirichlet process are also given as these are important aspects of the Hierarchical
Dirichlet Hidden Markov Model algorithm implemented as part of this thesis.

2.1 The Central Dogma of Molecular Biology

The Central Dogma of molecular biology, proposed by Francis Crick in 1958 [Crick
et al., 1970], is a concept which details how genetic information found in DNA gets
converted to protein through processes known as transcription and translation. Before
going into more details about the central dogma, we first need to understand what a
DNA is.

2.1.1 DNA

DNA which stands for DeoxyriboNucleic Acid is the material which stores genetic
information that gets passed on from generation to generation, thereby allowing the
reproduction of living things. All organisms inherit from their parents the genetic in-
formation which defines their structure and function [Bruce Alberts, 2002]. The DNA
acts as a reservoir of genetic information, necessary for the creation and maintenance
of an organism. The information found in DNA is composed of four different bases:
A(adenine), T(thymine), C(cytosine), G(guanine) and is stored as a code. A DNA code
can be very long, for example the human DNA is made up of about three billion bases.

7



8 Chapter 2. Background

Approximately 99% of these bases are the same in all people [dna, 2016]. The order-
ing of bases is important as it is this sequence which contains the information required
for making proteins. Each base forms a nucleotide by attaching to a sugar molecule
and a phosphate molecule. A sequence of DNA bases can pair up with another com-
plementary sequence and in doing so Adenine forms a base pair with Thymine and
Cytosine forms a base pair with Guanine. This feature of base-pairing enables two
complementary DNA strands to form a double helix.

Source: GeneEd (https://geneed.nlm.nih.gov)

Figure 2.1: Double helix structure of a DNA molecule

A DNA sequence consists of multiple genes. Genes are fundamental to heredity in
that they are transmitted from an organism to its offspring and are responsible for that
offspring’s inherited features. A gene may encode for information that directs the
manufacture of a specific protein or RNA molecular form. Genetic information flows
from the DNA, which acts as the information store, through RNA molecules where the
information is translated into proteins. Proteins are the main working components of
organisms, playing a major role in almost all the key processes of life.

2.1.2 DNA, RNA and Protein

The key relationship between DNA, RNA and proteins is represented by the central
dogma of molecular biology, which explains how genetic information flows from the
DNA through RNA molecules and is subsequently used in the formation of proteins.
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Source: yourgenome (http://www.yourgenome.org/)

Figure 2.2: Central Dogma of Molecular Biology

The DNA sequence is decoded in a two stage process, the stages being called tran-
scription and translation.

Transcription is the first step of gene expression. During this stage a particular seg-
ment of DNA is copied into ribonucleic acid (RNA). This process is carried out by the
enzyme RNA polymerase. RNA molecules are linear polymers made up of four bases:
Adenine, Guanine, Cytosine and Uracil. Unlike DNA, which has Thymine as one of
its bases, RNA contains Uracil instead and is much shorter in length when compared to
a DNA molecule. While DNA carries information about many proteins, RNA mainly
carries information for a single protein. Messenger RNA (mRNA) is the term used
for RNA transcribed from a protein-coding gene and is the molecule that directs the
synthesis of the protein chain. A gene is said to be expressed if, when transcribed, it
results in an RNA. The expression of genes in a cell can be regulated by the cell itself
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by controlling the transcription process which in turn regulates the production of RNA.

Translation is the second step in gene expression where mRNA produced during the
transcription phase is converted into protein by a ribosome. Messenger RNA is trans-
lated into protein according to the genetic code, where each set of three consecutive
bases in the mRNA forms a codon which in turn specifies a particular amino acid. The
sequence of nucleotides of a gene gets translated into a sequence of amino acids which
forms part of a protein chain having a particular function.

Proteins are the end-product of the translation step. They are manufactured using
the information encoded in DNA and are the main working components in organ-
isms, playing a major role in almost all the important processes of life. Proteins are
molecules that carry out processes such as energy metabolism, biosynthesis and inter-
cellular communication. Each type of protein consists of a precise sequence of amino
acids. Proteins cannot do much on their own. The biological properties of a protein
molecule are defined by its physical interaction with other molecules, which may be
other proteins or regulators. By interacting with other molecules, proteins form brief
or stable complexes which enable them to carry out their function and activity. For ex-
ample, antibodies attach to viruses or bacteria to mask them for destruction, and actin
molecules bind to each other to assemble into actin filaments [ncb, 2016].

Protein-protein interactions occur when a protein physically bind with one or more
other proteins in order to perform a particular task. Depending on the protein’s func-
tion, the binding can be very tight and lasting or weak and transient.

Molecular interactions are important because they help us to understand a protein’s
function and behaviour. They can help predict the biological processes that a protein
of unknown function is involved in. For example we may deduce the as yet unknown
function of a protein if it is associated with one of known function. One way of find-
ing out the associations is by looking at the protein networks. Proteins with similar
functions, or which are involved in the same process, are normally clustered together
in network maps. This knowledge helps in the identification of protein complexes and
pathways in networks. [ebi, 2016].

2.2 Gene Expression

In any given cell, thousands of genes are expressed and work together to ensure its
proper functioning. Nearly every cell found in an organism is composed of the same
set of genes. However only a small number of them are "turned on" (expressed) at any
given time. The gene expression of a particular cell is what differentiates it from other
cells. For example the gene expression of a hair cell is different from that of an eye
cell. Similarly the gene expression of a normal healthy cell is different from that of an
abnormal cell such as a cancer cell. The way the genes are expressed is quite specific.
For a normal healthy cell, each gene needs to be expressed in the correct amount and
at the right time to ensure the correct behaviour of the cell.

Gene regulation is the term used to represent a set of cellular processes, the two main
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ones being transcription and translation. These processes are involved in controlling
the level of a gene’s expression; resulting in the production of a specific quantity of
target protein [Filkov, 2005].

A gene regulation system is made up of genes, cis-elements, and regulators called tran-
scription factors. Transcription factors are proteins that bind to specific sequences of
DNA to regulate the transcription process of converting DNA to RNA. Interaction be-
tween transcription factors and cis-elements during transcription determines the degree
of gene expression in a cell and this forms gene regulatory networks. Transcription
factors act as inducers and suppressors by activating or inhibiting the expression of a
gene.

Regulation of gene expression is performed by cells to control the amount of RNA,
and thus the amount of protein produced. The amounts and types of mRNA molecules
produced in a cell during the transcription phase define the function of that cell as it is
these mRNA transcripts that get translated into protein, the cell’s functional product.
Since a single mRNA molecule can code for several proteins, the control point for gene
expression is usually assumed to be at the start of the transcription phase [gen, 2016b].

Gene regulation also controls cell differentiation whereby generic embryonic cells are
transformed into cells that are specialised for a particular function. For example, a
sperm cell is different from a liver cell in both structure and activity performed [cel,
2016a]. Cell differentiation occurs during the gene expression process. As part of
this specialisation phase, the cell changes its size and structure as well as the way it
responds to signaling molecules whose task is to inform the cell of its function.

2.2.1 Gene Expression Analysis: Methods and Techniques

To derive meaningful information from gene expression data, each gene is studied un-
der multiple conditions and their expression over a certain time span is documented.
These time series datasets are then analysed in depth to get insights into normal cellu-
lar functions such as differentiation, and to understand the genetic aspect of diseases.
Gene expression analysis can be done at any point during the processes of transcription
and translation. For instance, the analysis may be performed during or after transcrip-
tion, or during or after translation. It is common however in gene expression analysis
experiments to study transcriptional regulation processes [gen, 2016a]. An indication
of how active a gene is can be obtained by the amount of mRNA produced during
transcription [Filkov, 2005].

Gene expression is generally assessed by measuring how much mRNA has been pro-
duced in a tissue sample during the transcription phase, using methods like: Northern
Blot, RNA sequencing (RNA-Seq), reverse transcription polymerase chain reaction
(RT-PCR) and microarray analysis. Protein concentrations can also be measured by
directly measuring protein levels using a technique known as the Western Blot. A brief
description of each of these methods ensues.
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2.2.1.1 Northern Blot

Northern Blot is a method used to measure the amount of RNA expression of genes in a
particular tissue sample. The first step in this method involves separating the RNA into
separate strands according to their sizes using gel electrophoresis. The RNA is next
transferred onto a special blotting membrane. This membrane is treated with a probe
which is a small piece of RNA. The probe binds to its complementary RNA sequence
on the membrane by forming base pairs. This probe has a label which allows the RNA
molecule of interest to be detected by simply finding the location of that probe using
its label.

2.2.1.2 RNA-Seq

RNA-Seq is a novel method which has been developed for transcriptome profiling. A
transcriptome is the entire set of mRNA transcripts produced in a cell under some
specific condition during transcription. RNA-Seq uses deep-sequencing technologies
and provides a more accurate measure of the mRNA levels than any other existing
method [Wang et al., 2009]. Using this technique, the RNA is isolated and purified
before getting converted into a set of cDNA. Each cDNA fragment has sequencing
adaptors attached to one or both ends of it. The cDNAs are next sequenced using a
sequencing platform. The resulting reads are then analysed by either being aligned to
an existing reference genome or assembled de novo. What makes RNA-Seq attractive
is the fact that it can be used to detect transcripts belonging to genomic sequences that
have not been completely determined. Additionally, unlike microarrays, it has very
low background noise [Wang et al., 2009].

2.2.1.3 Western Blot

Western Blot is a method which allows the identification of specific proteins from a
complex mixture of proteins derived from a particular tissue or cell. The first step in
this method involves mixing the protein sample with a detergent to make the proteins
unfold into linear chains. The protein molecules are then separated, based on their
molecular weight, using gel electrophoresis. The separated proteins are then trans-
ferred to a blotting membrane which gets treated with antibodies having labels known
as primary antibodies. These labelled antibodies bind to the proteins of interest and
any unbound antibodies are washed away. The membrane is then treated with a sec-
ondary antibody which binds to the primary antibody allowing the protein of interest
to be detected [wes, 2016].

2.2.1.4 RT-PCR

Reverse Transcription Polymerase Chain Reaction is a versatile method used for the
detection and quantification of mRNA levels in a given sample. mRNA levels are
measured by performing reverse transcription of the RNA to cDNA. The cDNA is then
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amplified using PCR. PCR, which stands for polymerase chain reaction, is a technique
used for the amplification of specific DNA fragments. The quantity of each specific
target is measured by the strength of the signal emitted from the DNA-binding dyes or
probes. This amplification process is done several times, during which measurements
of mRNA levels are collected. This method can be used, not only for gene expres-
sion profiling, but also for finding out mutations and DNA modifications as well as
confirming results derived from microarray analysis [gen, 2016a]

2.2.1.5 Microarray Analysis

Microarrays are used to measure the expression of genes in a cell or set of cells. DNA
microarray analysis enables an experiment to be performed simultaneously on thou-
sands of genes in order to measure the expression level associated with them. A DNA
microarray, also known as a DNA chip, helps identify the amount of mRNA transcripts
present in the cell during transcription, and based on this amount we get an approxi-
mate measure of the level of expression of that gene [mic, 2016b].

A typical microarray consists of a surface on which probes are fixed at specific loca-
tions called spots. One way of measuring gene expression is to compare the expression
of a set of genes from a cell in a particular condition (e.g condition A) to the same set
of genes from a reference cell maintained under normal conditions (condition B) [mic,
2016a]. RNA is first extracted from the subject cells and transcribed to cDNA where
some of its molecules are substituted with nucleotides labelled with different fluores-
cent dyes. For example cells in condition A are labelled with red dye while those
in condition B are labelled with a green dye [mic, 2016a]. These samples undergo
a hybridization process. Each spot on the microarray is bound to a certain amount
of cDNA proportional to the level of gene expression represented by the probe [mic,
2016b]. The microarray is then scanned by a laser light which detects the amount of
fluorescent dye emitted by the RNA molecules. The amount of fluorescence produced
is proportional to the quantity of RNA molecules. The end result of this experiment
is an image of the microarray with each spot corresponding to a gene which has an
associated fluorescence value representing its expression level.

Recent advances made in the methods used for measuring gene expression which allow
thousands of genes to be analysed simultaneously, means that studying time series data
is now more feasible and as a result more relevant studies can be made in the field of
genomics when querying dynamic biological processes [Bar-Joseph et al., 2012].

Techniques such as cluster analysis and correlation are often employed when studying
how the sequence of gene expression changes over the course of time. Clustering
methods for example hierarchical clustering have been widely applied to time series
data. One important aspect of time series data is the ability to infer causal relationships
between genes by investigating the changes in the gene expression.

Several methods, such as hidden Markov models have specifically been developed for
time series data [Ghahramani, 2001]. One methodology which goes beyond cluster
analysis is the inference of gene regulatory networks from the expression data. The
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next section provides more insight on gene regulatory networks and how they are mod-
elled.

Elements of Sections 2.3 and 2.5.1 extend the materials presented in the Informatics
Research Proposal (IRP).

2.3 Gene Expression Modelling: Gene Regulatory Net-
works

Most biological processes are constantly changing. To capture and study the time-
varying aspect of these processes, time-series experiments are performed to measure
the gene expression at diverse time points, thereby capturing any transient changes in
the expression. Such data is key when modelling the dynamic aspect of biological
processes and provides a wealth of varied information, including dynamic cell activity.
For instance this data can be used to help understand the relationships between genes
by studying their interactions, and can help to identify how genes are expressed and
regulated in cellular processes as well as understanding their causal effects.

One way of modelling the dynamic systems in a cell is to have a blueprint which shows
the layout of the genetic components, such as genes and proteins, and the interactions
occurring between them. Such a blueprint will assist in understanding how genes func-
tion cooperatively by their interactions with each other. Gene networks, an example
of such a blueprint, concisely represent the complex network of genes in the system
being studied.

A gene regulatory network is a collection of genes interacting with each other in or-
der to ensure that a cell functions correctly and is fit for its purpose. Understanding the
processes behind the proper functioning of these networks is important as they provide
insight into the mechanisms by which dysregulations in cellular processes can trigger
diseases. It also helps in exploring the effect of drugs in cells, for example by analysing
how the gene regulatory network evolves over time when a specific drug is applied to
cancer cells. Such knowledge can help produce cures for specific diseases. Gene regu-
latory networks clearly and comprehensively represent the causality of the interactions
between the genes and hence of the developmental processes. They explain exactly
how genomic sequence encodes the regulation of expression of the sets of genes that
progressively generate developmental patterns and execute the construction of multiple
states of differentiation. With advances made in the field of biotechnology, research
on gene networks has progressed significantly over the last decade and as a result our
knowledge on this subject has also substantially broadened, allowing researchers to
effectively model gene regulatory networks.
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Source: University of Warwick (http://www2.warwick.ac.uk/)

Figure 2.3: An example of a gene regulatory network with hubs represented by black squares

A gene regulatory network is often depicted as a graph, where each node represents
a particular gene and edges represent the potential regulatory relationships between
pairs of genes. The relationships between genes can be directed, weighted or signed.
A directed edge from node i to node j, denoted by (i, j), means that gene i influences
gene j. The weight associated with an edge indicates the strength of the relationship
between the two nodes. The sign indicates whether the relationship is an activation:
where transcription of other genes is induced, or an inhibition: which is the prevention
of transcriptional activity [Cho et al., 2007].

Gene regulatory factors, (for example, transcription factors and their interactions and
targets), are very important for the proper functioning of cells. Deciphering the regu-
latory network structure is crucial to understanding how cellular systems work. Gene
networks concisely represent the knowledge of the system being studied and can be
used for studying the regulatory interactions between genes during the different stages
of organism development.

Knowing how genes interact can help identify the effect of drugs on specific targets.
Gene regulatory networks may be used to aid drug development: by predicting adverse
effects of new drugs and identifying target genes for the development of new drugs.
They may also be used for diagnostic purposes[Nakajima and Akutsu, 2014]. Such
knowledge in addition to understanding the behaviour of the model can help with pro-
ducing cures for certain diseases. Having gene networks of an organism at different
time points enable their comparison and provides an understanding of how the network
evolves functionally and structurally over time. Differences in the networks provide an
insight into how organisms are affected by certain factors or stimuli.

Analysing the complex structure of gene regulatory networks using computational
methods is an important aspect of systems biology. A feature of gene expression data
sets that makes them difficult to analyse is that they have relatively few sampling time
points and are highly dimensional (large p small n problem). A number of mathe-
matical models and computational methods have been developed to infer gene regula-
tory networks from large-scale gene expression profiles. Gene network models can be
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classed as either static or dynamic. Dynamic models of gene networks take into con-
sideration the time-varying aspect of changes occurring in the gene expression. They
aim to make predictions based on the observed data. Static models of gene regulatory
networks do not consider the time component of data, they only display the genes and
relationships between them. Some models used to reverse engineer gene regulatory
networks include Boolean networks [Liang et al., 1998], Bayesian networks [Imoto
et al., 2003], Dynamic Bayesian networks [Thorne and Stumpf, 2012] [Murphy et al.,
1999] and Gaussian Graphical models [Ma et al., 2007]. A brief explanation of these
methods is given below.

2.3.1 Boolean Networks

Boolean networks are examples of dynamic models of gene networks. In this type of
network boolean logic is used to depict the state of each node. A variable representing
a gene can take on only two values: True or False, represented by 1 and 0 respectively.
A value of 1 means that the gene is active and 0 represents an inactive gene. Gene
regulation rules are given as Boolean functions with the variables connected by logic
operators.

A Boolean network is a directed graph with the nodes represented as Boolean vari-
ables. The state of the network corresponds to the combination of values of all the
nodes in it. When representing gene networks, the nodes are associated with the lev-
els of gene expression. They indicate whether the mRNA level has gone up or down
[Filkov, 2005]. An important assumption of this model is that the genes change state
synchronously and do so at discrete time points[Nakajima and Akutsu, 2014]. In other
words, the nodes change state at the same time and the network is said to undergo a
state transition from state S(t) to a new network state S(t + 1). The dynamic aspect
of Boolean networks and the simplicity they exhibit makes them appealing for use in
modelling biological networks.

2.3.2 Graphical Gaussian Networks

Graphical Gaussian models are frequently used when studying gene networks. Cor-
relations present in gene expression data assist in the understanding of the underlying
gene regulatory networks. By measuring the amount of independence between a pair
of genes using partial correlation, co-regulation patterns occurring between pairs of
genes can be inferred, subject to the influences of other genes. This helps differentiate
the interactions by classifying them as either direct or indirect [Hache et al., 2009].

Graphical Gaussian models have proven to be useful tools for the inference of gene
networks because of the way they model the conditional dependence among the genes.
In these models, we assume a random vector denoted by Y = (Y1, ...,Yp) following a
multivariate normal distribution. Each model is depicted as an undirected graph where
the variables Yj and Yk are conditionally independent for each non-existing edge ( j,k),
subject to the remaining variables [Finegold and Drton, 2011].
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2.3.3 Bayesian Networks

Bayesian networks, also known as belief networks, are an integral part of the family
of probabilistic graphical models (GMs). These models can handle both static and
non-static data.

A joint probability distribution can easily be represented by a Bayesian network, so
Bayesian networks are often used for the analysis of gene expression data. Using this
method, conditional probabilities can be used to represent the gene regulation rules in
a gene regulatory network.

A Bayesian network model is made up of two components, a set of nodes (vertices)
and a set of directed edges. Each node in the graph represents a random variable
(discrete or continuous) and is usually labelled by a variable name as a way of distin-
guishing it from other nodes. In a Bayesian model of a gene network, a node can rep-
resent mRNA concentrations, protein concentrations, genes or other gene regulatory
elements [Hartemink et al., 2001]. Relationships between the variables in a Bayesian
network may be described as qualitative and quantitative. At a qualitative level, the
relationships between the variables are defined by dependence and conditional inde-
pendence between the nodes, whilst at a quantitative level, the relationships between
the variables are described by joint probability distributions whereby the conditional
probability distribution at each node depends only on its parents [Hartemink et al.,
2001].

The relationship between two nodes A and B, which represent the probabilistic de-
pendencies between their variables, is denoted by a directed arc between them. The
direction on the arrow gives an indication of which node is the precursor to the other
one. For example, if there is a directed edge from A to B, it can be said that the value
of variable B depends on the variable A and node A is considered to be the parent of
node B and B is said to be the child of A.

The childen, grandchildren, and so on of a node are known as its descendants. A
directed path from node A to node B is depicted as a sequence of edges or nodes which
start from A and finishes at B such that each node in the sequence goes in the same
direction towards the end node B. Each node is a child of the previous node in the path.

The outdegree of a node n is the number of edges pointing outward of it. That is the
number of children of that node. The indegree of a node n is the number of edges
pointing towards it. That is the number of parents of that node.

A more formal definition of a Bayesian network, as described in [Friedman et al., 1997]
is given below:

A Bayesian network is represented by an annotated directed graph that represents a
joint probability distribution over a set of random variables U. The network is repre-
sented by B=(G,Θ), where G is a directed acyclic graph consisting of vertices X1,...Xn
and edges. The vertices denote random variables, while the edges represent the direct
dependencies between them. Each variable Xi in the graph G, given its parents, is not
affected in any way by its non-descendants. Θ denotes the set of parameters of the
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network and is denoted by θXi | πXi
= PB(Xi | ΠXi) for each value xi of Xi and πXi of

ΠXi , where the set of parents of Xi in G is denoted by ΠXi .

One reason why Bayesian networks are preferred for the analysis of gene expression
data is because they can easily handle data with inconsistencies as well as imperfect
models [Hartemink et al., 2001].

Bayesian networks do not however take into account the sequential order of the data.
Additionally, they suffer from one main drawback which has to do with their directed
acyclic graph (DAG) structure: they do not allow for loops in the network.

2.3.4 Dynamic Bayesian Networks

A Dynamic Bayesian Network (DBN) is an extension of the Bayesian network de-
veloped to consider the sequential nature of dynamic data. It is used when inferring
regulatory relationships between nodes [Cho et al., 2007]. Unlike Bayesian networks,
the Dynamic Bayesian Network works well with time series data and cyclic networks
[Nakajima and Akutsu, 2014].

A DBN is described as a Bayesian network which has a time component to model
time series data. In time series modeling, it is assumed that an event can only have an
effect on another event in the future. For example, the gene expression in a network
at time t can influence the gene expression at time t+1 but not the other way round.
DBNs are particularly appropriate for representing stochastic temporal processes since
each variable in a DBN is influenced by the previous one[Ghahramani, 2001]. As an
example, consider the regulation of gene expression.

Xt := (xt
1, ...,x

t
p)

T ∈ RP

is a vector which represents the expression levels of p genes at time t.

A first-order Markov model
P(X t |X t−1)

can be used to explain how the probabilistic distribution of gene expressions at time t
is directly influenced only by those at time t-1

Based on the above hypothesis, the following equation can be used to denote the prob-
ability of gene expression levels over a time series of T steps, whereby the gene ex-
pression at time t given by Xt, is predicted based on the value of the gene expression at
time t-1, given by Xt-1.

p(X1, ...,X t) = p(X1)ΠT
t=2 p(X t |X t−1)

,

Since it is easier to interpret the semantics of DBNs, they are often preferred over the
standard Bayesian networks. Normally, in a DBN, the direction of edges start from
time t-1 and points to time t, and it is for this reason that DBNs are a natural choice
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for representing gene regulatory relationships and other dynamic systems [Song et al.,
2009].

These network models assume that the network topology stays the same over time,
but in reality the real gene regulatory network in the cell changes its structure at dif-
ferent time points and when stimulated, for example, by the effects of environmental
perturbations. Experiments are often of long duration during which the regulatory in-
teractions between pairs of genes as well as the activities of the nodes may change and
responses to stimuli may take varying amounts of time.

2.3.5 Existing approaches for modelling dynamic gene networks

Many approaches have recently been proposed, which use time-series gene expression
data to build time-varying biological networks. To allow the network structure, in-
ferred from the data, to vary between time segments, some methods have introduced
change points in the time series. Lebre et al. [2010] introduced the autoregressive time-
varying (ARTIVA) algorithm for the analysis of time-varying network topologies from
time course data which has been generated from different processes. The interactions
between genes are modelled using Reversible Jump Markov chain Monte Carlo (RJM-
CMC) and dynamic Bayesian networks. This is done for each segment of the time
series.

A limitation of these approaches is that there is a prior assumption about the number
of change points that can be observed; it cannot be automatically adjusted to suit the
complexity of the observed data [Thorne and Stumpf, 2012].

The approach of Grzegorczyk et al. [2008] assigns each observation to a group, using
an allocation sampler along with Bayesian Networks. The method allows the order of
the observations to be interchangeable whereas the data is actually sequential. Werhli
and Husmeier [2008] use a hierarchical modelling framework in which each individual
dataset is used to infer a separate network structure. Unfortunately this approach only
deals with steady state data using Bayesian networks and is not therefore applicable to
time series data. Another approach using a hierarchical framework with several sources
of time series data is that of Penfold et al. [2012]. Here it is used in conjunction with
the non-parametric causal structure identification (CSI) algorithm [Penfold and Wild,
2011]. A single static network is built from the whole time series; the network structure
is not allowed to change at different time points within the time series.

Thorne and Stumpf [2012] have proposed a methodology which uses the infinite Hid-
den Markov Model, also known as the Hierachical Dirichlet Process Hidden Markov
Model, along with a Bayesian network representing the gene regulatory network at
each hidden state. This model allows for the inference of gene regulatory networks
which can change their structure at different time points whilst taking into considera-
tion the sequential nature of data. A major goal of this project is to implement Thorne’s
method and extend it in a novel way by including the Dynamic Bayesian Network ap-
proach. This will accomodate cyclic regulatory relationships among the nodes in the
gene regulatory network. A detailed explanation of this method is given in the next
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chapter.

2.4 Some important concepts

In order to get a better understanding of the Hierarchical Dirichlet Process Hidden
Markov Model method, it is important to first understand the concepts of Markov
chains, Hidden Markov Model, Dirichlet Processes and Hierarchical Dirichlet Pro-
cesses. A brief description of each of these concepts is given below.

2.4.1 Markov Chain

A Markov chain is a stochastic process depicting a sequence of possible events where
the probability of the next event happening depends only on the current event’s state.
This process does not take into consideration the preceding sequence of events that
occurred before the current one. Its state space is made up of a finite number of states
and the probability of transitioning from state i to state j is denoted by Pij.

For example, consider a sequence of random elements X1, X2,.... If the probability of
Xn+1 depends on Xn only, then the order of the sequence of elements is said to follow a
Markov chain. A Markov chain is said to have stationary transition probabilities if the
conditional distribution of Xn+1 given Xn, does not depend on the value of n [Brooks
et al., 2011]. In other words, in a stationary Markov process, the distribution of Xn is
the same for all n.

The concept of a stationary distribution can also be defined as follows:

A (discrete-time) stochastic process Xn: n≥0 is stationary if for any time points i1,...,in
and any m≥0, the joint distribution of Xi1 ,...,Xin is the same as the joint distribution of
Xi1+m,...,Xin+m [sta, 2016]

The stationary aspect of a Markov process allows the proportion of time that a Markov
chain spends in any particular state to be calculated. This is independent of the initial
starting state. Let us consider the example taken from [sta, 2016], where we have a
stationary process whereby for every n, P(Xn=2)= 1

10 . Thus, over a time span of 1000
time steps, we can assume that approximately 100 out of 1000 time steps will be in
state 2 and over a time frame consisting of N time steps, around N

10 time steps will be
in state 2. As N→∞, the amount of time the system will spend in state 2 will converge
towards 1

10 .

Depending on the situation, it is possible to make a Markov chain stationary by en-
suring that we have the correct initial distribution for X0. If the Markov chain is in a
stationary state, then the common distribution of all its states Xn is called the stationary
distribution of the Markov chain [sta, 2016].
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One way of extending the first order Markov model, such that the probability of a
state is not restricted only to the probability of the previous state, is through the use
of Higher Order Markov chains. This extension, which allows states to interact using
higher order interactions, provides more flexibility than the more traditional Markov
model. Consider the example of an nth order Markov model. In this model, the prob-
ability of variable Xi can depend on the previous variables Xi−1, ...,Xi−n, denoted by
P(Xi|Xi−1, ...,Xi−n).

2.4.2 Hidden Markov Model

Hidden Markov model (HMM) is an extension the Markov model. This model, which
is a type of dynamic Bayesian network, consists of two main components: a sequence
of hidden states which follows a Markov process and a sequence of observations. It is
assumed that the observations are dependent on the sequence of unobserved (hidden)
states [Ghahramani, 2001].

Hidden Markov Models (HMMs) are the tool of choice when it comes to modelling
time series data. A good definition which concisely explains the concept of a hidden
Markov model is given in [Rabiner and Juang, 1986], which defines an HMM as "a
doubly stochastic process with an underlying stochastic process that is not observ-
able (that is, it is hidden), but can only be observed through another set of stochastic
processes that produce the sequence of observed symbols" [Rabiner and Juang, 1986].

To get a better understanding of how the HMM functions, consider the following sim-
ple example of a HMM for a 5’ splice site recognition, taken from [Eddy, 2004].

Source: Nature website
(http://www.nature.com/nbt/journal/v22/n10/full/nbt1004-1315.html)

Figure 2.4: A simple example of an HMM for the identification of a 5’ splice site.

In the example, we have a DNA sequence containing an exon, a 5’ splice site and an
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intron. The aim is to identify the 5’ splice site. Based on what we have so far, we can
build an HMM consisting of three states where each of them corresponds to the exon,
5’ splice site and intron respectively.

Each state in the HMM is associated with some emission and transition probabilities.
Each hidden state emits some observed value based on the emission probabilities. In
state ’I’, symbol ’A’ is emitted with probability 0.4 and symbol ’C’ is emitted with
probability 0.1. The transition probabilities associated with a state are the probabilities
of moving from the current state to a new one. Therefore, starting from some initial
state, a sequence of hidden states is formed based on the transition probabilities until
the end state is reached. During that state-transition process, a sequence of observed
symbols is emitted based on the emission probabilities at each state.

The main idea behind an Hidden Markov Model can be explained by the following two
properties.

i The sequence of states is hidden. Only the values emitted by the states can be
observed.

ii The hidden sequence of states follows a Markov chain whereby the value of the
next state depends only on the current one. This ensures that the output of the
states, which is the sequence of observed values, also satisfy a Markov property
with regard to the states [Ghahramani, 2001].

2.4.3 Dirichlet Process

The Dirichlet process, an extension of the Dirichlet distribution, is a stochastic process
whose domain comprises a set of probability distributions. Each draw taken from a
Dirichlet process distribution is a distribution itself. Therefore, a Dirichlet Process
can be described as a distribution over distributions [Teh, 2011]. Even though the
distributions derived from a Dirichlet process are discrete, it is difficult to represent
them by simply using a finite set of parameters . This is the reason why it is classified
as a non-parametric model and, as a result, it is often used in Bayesian non-parametric
models of data [Teh, 2011].

Non-parametric Bayesian models form part of a class of models whose parameters are
not fixed in advance. Unlike traditional parametric models, which have a fixed and
finite number of parameters that are normally predetermined, the parameters of non-
parametric Bayesian models can be modified as needed to fit in with the data. As a
result, the complexity of the inferred model can be adjusted according to the observed
data.

Traditionally, a Dirichlet distribution is defined as:

P(x|α) = Π
M
i=1xαi−1

i

where x is a dimensional vector which takes parameters αi for i∈ 1, ...,M and all xi > 0.
M represents the dimension of x such that ∑M xi = 1 [Thorne and Stumpf, 2012].
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Since the observed values of the Dirichlet process are discrete and sum to one, it can be
assumed that xi define a discrete probability distribution over a set of outcomes 1, ...,M
while αi is the number of observations of outcome i already seen.

"The Dirichlet process can thus be obtained as the limit of a symmetrical Dirichlet
distribution with dimension M and concentration parameters α

M as M → ∞"[Thorne
and Stumpf, 2012].

One way of constructing the Dirichlet process was developed by Sethuraman (1994)
and is known as "stick breaking". In this method, we assume that we have a stick of
length 1. Let β’j ∼ Beta(1,γ) for j = 1,2,3, ... and some concentration parameter γ.
Consider β’1, β’2,... as fractions which we remove from the remainder of the stick
every time. βi can be derived by the lengths of the stick which we break each time.

βi = β
′
i

i−1

∏
j=1

(1−β
′
j)

Source: Zoubin Ghahramani Tutorial on Non-parametric Bayesian Methods
(http://mlg.eng.cam.ac.uk/zoubin/talks/uai05tutorial-b.pdf)

Figure 2.5: Illustration of the stick breaking method

Therefore, a Dirichlet process, comprising of concentration parameter γ and base mea-
sure H which is denoted by DP(γ,H) and G∼ DP(γ,H), is represented by

G =
∞

∑
i=1

βiδθi

where δθ represents an infinite sequence of discrete probability atoms taken from from
the base measure [Thorne and Stumpf, 2012].

2.4.4 Hierarchical Dirichlet Process

The Hierarchical Dirichlet process (HDP) is an extension of the Dirichlet process and
is normally applied when performing analysis between many different clusters of data.
One important aspect of the HDP is that it can allow related groups of data to share
clusters. It is composed of a Bayesian hierarchy "where the base measure for a set
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of Dirichlet process is itself distributed according to a Dirichlet process" [Teh et al.,
2012]. To construct a HDP, we only need to use a Dirichlet Process as the base measure
of another Dirichlet Process [Thorne and Stumpf, 2012].

Based on the stick breaking method as described in [Teh et al., 2012], we get

G =
∞

∑
i=1

πiδθi

where θi ∼ H, β∼ GEM(α) and π∼ DP(γ,β)

The flexibility that the Hierarchical Dirichlet Process, as a Bayesian non-parametric
method, gives when applied to Hidden Markov Models makes it an attractive tool to
use when analysing statistical data as it can easily adapt to fit in with the observed data
[Thorne and Stumpf, 2012].

More details about the Hierarchical Dirichlet Process-Hidden Markov Model (HDP-
HMM) is given in the Algorithm chapter.

The implemented HDP-HMM-DBN algorithm will first be evaluated using synthetic
data to determine whether the predicted network structures are accurate. After which,
it will be run on benchmark data available on the DREAM1 (Dialogue for Reverse
Engineering Assessment and Methods) challenge website, a site hosting challenges
designed to assess the latest methods developed for gene network inference while pro-
viding better insight of systems biology.

Receiver Operating Characteristic (ROC) curves are used to test the benchmark eval-
uation. A ROC curve is a graphical plot useful for illustrating the performance of a
binary classifier. By assessing the accuracy of the predictions made by the model, we
can easily evaluate its performance and compare it to other models. The curve is cre-
ated based on the true positive values and false positive values generated by the model
when compared to some gold standard. By plotting the graph with the True Positive
Rate (TPR) on the y-axis and the False Positive Rate (FPR) on the x-axis using different
cutoff values, we get a comprehensive and visually appealing way of summarising the
accuracy of the predictions. The main reason for using ROC curves is that they allow
us to select the optimal models and discard the ones which are not deemed to be good
enough. Matthews correlation coefficient gives us information about the performance
at a specific cutoff.

More information about the DREAM challenge and the evaluation process is given in
the Analysis chapter.

1DREAM Challenge: www.dreamchallenges.org
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2.5 Cancer

An important task of this project is to analyse renal cancer data using the HDP-HMM-
DBN algorithm.

Cancer is a major health concern around the world with tens of millions of people
diagnosed every year; more than half of those diagnosed eventually succumb to it
[Ma and Yu, 2006]. Due to progress made in cancer treatment in highly developed
countries, there has been some decrease in cancer death rates, however this decrease is
very small compared to estimates of increased cancer death rates over the next couple
of years. It is predicted that the number of new cancer cases and cancer related deaths
will increase to more than double globally over the next 20-40 years [Thun et al., 2010].

Cancer now ranks as the world’s third most common cause of death with more than 14
million people newly diagnosed and 8.2 million people dying from it in 2012 [who,
2016]. By 2030, it is predicted that there will be approximately 26 million new cancer
cases and 17 million deaths related to it each year [Thun et al., 2010]. This increase is
largely driven by the fact that elderly people are more prone to cancer; population aging
is a normal phenomenon around the world, especially in developed countries where
people are living longer due to advances in medical science and improved lifestyle.

Biologically, cancer is the term used to refer to a group of related diseases which in-
volves abnormal growth of cells in certain parts of the body. These cancerous cells can
reproduce in an uncontrollable way and spread to surrounding healthy tissues, includ-
ing organs and destroy them [nhs, 2016]. Cancer can happen anywhere in the human
body and can affect any cell. A normal cell follows an orderly process whereby it grows
and divides to form new cells and dies when it is old or damaged. When cells die, they
are replaced by new ones. With cancer, the order of this process gets disturbed. Rather
than dying, damaged cells continue to thrive and new cells are formed when not re-
quired. These cells accumulate and form growths known as tumors. Cancerous tumors
are malignant, meaning that they can spread and affect surrounding tissues as well as
other parts of the body which are not necessarily close to the location where the tumor
developed [can, 2016b]. The process by which cancer cells spread to other areas of
the body, not necessarily related to the part of the body where the cancer started, is
known as metastasis. For example, cancer starting in the liver can end up affecting the
kidneys.

A cancer tumor can have several mutations which make it unique: for instance if spec-
imens from two breast cancer tumors are compared, the mutated genes contained in
them will not be similar[can, 2016c]. [Hanahan and Weinberg, 2000] have reduced the
complexity associated with cancer by explaining it through a series of six principles
in their article The Hallmarks of Cancer. These principles explain how a normal cell
changes to a cancer cell. In 2011, an update to the original article was published which
proposed another four hallmarks [Hanahan and Weinberg, 2011]. A brief description
of the original six hallmarks of cancer ensues.

1. Self-sufficiency in growth signals
Growth factors are signalling molecules which control the activities of the cell.
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For example they aid in: cellular proliferation and differentiation, survival, in-
flammation and tissue repair. Growth factors are an important requirement for
normal cellular proliferation. Cancer cells do not require any stimulation from
growth factors to proliferate; "They are masters of their own destiny"[Hanahan
and Weinberg, 2011] in the sense that they produce their own growth signals and
encourage their own propagation.

2. Insensitivity to anti-growth signals
Cancer cells are insensitive to growth-preventing signals from surrounding cells.
By avoiding and hindering those signals, cancer can continue on spreading.

3. Evading apoptosis
Apoptosis is a programmed form of cell death which occurs as a normal pro-
cess in the growth and development of an organism. In this form of cell death
the collapse of the cell is characterised by: "membrane blebbing, cell shrinkage,
condensation of chromatin, and fragmentation of DNA followed by rapid engulf-
ment of the corpse by neighbouring cells" [Renehan et al., 2001]. In apoptosis,
the cell is eliminated without any associated inflammation. Disruptions in apop-
tosis can lead to disorders such as autoimmune disorders, neurological diseases
and cancer [Parsons and Green, 2010]. Cancer cells are resistant to death signals
and evade apoptosis by avoiding the normal cell death cycle.

4. Limitless replicative potential
Cancer cells spread and form tumors by avoiding apoptosis. They propagate as
a result of abnormal and uncontrollable cell division and by being able to repro-
duce an infinite number of times. Cell division is an important part of normal
cell growth and development. A normal cell divides a restricted number of times
and this process is controlled by the telomere length. Telomeres are the repeated
nucleotide sequences at the end of each DNA strand and help protect the chro-
mosome. When a cell divides the telomeres shorten, and as division progresses
the telomeres become shorter and shorter until eventually they become so short
that the cell dies. Telomerase is the enzyme that maintains the telomeres and pro-
tects them from becoming too short during the course of cell division. Cancer
cells can keep on replicating forever because they have the enzyme telomerase
activated most of the time.

5. Sustained angiogenesis
Angiogenesis is the process which involves the development of new blood ves-
sels from pre-existing vasculature [ang, 2016]. It is a normal and important
lifelong process during which embryonic tissues are formed. Capillaries are es-
sential for carrying oxygen and nutrients from the bloodstream to the different
tissues in the body. During normal development, once the necessary blood ves-
sels are formed, the angiogenesis process stops. Cancer cells on the other hand
always have the process of angiogenesis going on. The constant growth of new
blood vessels causes proliferation of cancer cells by providing them with an ad-
equate amount of oxygen and nutrients on which they can thrive. This process
can cause a tumor to become malignant.
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Angiogenesis is controlled by both activator and inhibitor molecules. Angio-
genic inhibitors are used as a treatment for reducing cancer proliferation. [Nishida
et al., 2006].

6. Tissue invasion and metastasis
One alarming feature of cancer is its ability to spread to other parts of the body.
Metastasis occurs when the cancer cells travel from the primary neoplasm to
other parts of the body via the blood or lymph system, and affect distant tissue
and organs. Most cancer related deaths occur because of metastases that are
resistant to treatments. It is now known that a tumour cell metastasizes based
on its interactions with homeostatic factors responsible for: tumour-cell growth,
survival, angiogenesis, invasion and metastasis [Fidler, 2003].

To control their activity, cells make use of signalling pathways to transmit informa-
tion within the cell. A signalling pathway refers to a group of molecules in a cell that
interact with each other to enable the cell to function correctly. For example, those
molecules can control functions such as cell division or cell death. When the first
molecule in the pathway obtains a signal, it activates another molecule by conveying
another signal. The second molecule in turn activates a third one and this process con-
tinues until the last molecule in the pathway receives a signal and is activated. As a
result the cell function is performed. When abnormalities in the signalling pathway
occur, for instance when signals are not correctly transmitted, this can lead to can-
cer. One way of inhibiting cancer growth and killing cancer cells is to block these
pathways; drugs have been developed to do this [can, 2016a].

2.5.1 Renal Cell Carcinoma

Renal cell carcinoma (RCC) is a type of kidney cancer and is caused by a heteroge-
neous group of tumours that form in the tubules of the kidney [Bukowski and Novick,
2015]. Renal cell cancer is the most common type of kidney cancer in adults and more
than 8 in every 10 kidney cancers diagnosed in the UK are this type[can, 2015]. At
the time of diagnosis nearly one third of patients suffer from metastasis. This is due to
the fact that RCC does not give any early signs or symptoms of it happening. Around
40% who undergo nephrectomy, (a procedure where part of or the entire kidney is re-
moved), will ultimately develop this complication [Bukowski and Novick, 2015]. Its
ability to spread without exhibiting any symptoms, and the fact that it is resistant to
conventional chemotherapy, makes renal cell carcinoma a fearsome form of cancer.
Studies have shown that cigarette smoking can double a person’s risk of getting RCC
and is a contributive factor to nearly one third of all cases [Motzer et al., 1996]. Obese
people as well as those suffering from specific conditions, such as von Hippel-Lindau
disease or hereditary papillary renal cell carcinoma, are also more at risk. Another risk
factor is misuse of certain painkillers [rcc, 2016].

Clear cell carcinoma is one type of renal cell carcinoma, the other is papillary carci-
noma: the classification being based on the structure and shape of the cancer cells.
Renal clear cell carcinoma is the most common type of kidney cancer with approxi-
mately 92% of kidney cancer patients suffering from it [kid, 2016].
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Currently no molecular method is available to predict how advanced RCC responds to
targeted therapy. Existing clinical methods are limited and there is no way to identify
patients who relapse after seemingly curative surgery [Galsky, 2013].

Renal cell cancers that have undergone metastasis display a large amount of tumour
vascularity and Sunitinib is used to treat these abnormal growths. Sunitinib is a re-
ceptor tyrosine kinase inhibitor whose targets include: VEGFR, PDGFR and c-KIT.
Sunitinib is often used to treat renal cancer [Vázquez et al., 2012]. Vascular Endothe-
lial Growth Factor (VEGF) is an endothelial cell mitogen which controls the develop-
ment of blood and lymphatic vessels as well as regulating homeostasis [veg, 2016].
VEGFR-1 and VEGFR-2 are closely-related receptor tyrosine kinases and are part of
the VEGF family of receptors which are implicated in angiogenesis. VEGFR-1 regu-
lates angiogenesis by the actions of: ligand-trapping, receptor homodimerization and
heterodimerization. VEGFR-2 triggers a variety of signaling pathways [Rahimi, 2006].
Platelet-derived growth factor receptors (PDGF-R) are tyrosine kinase receptors which
are important for embryonic and blood vessel development. These receptors play an
important role in cell proliferation, survival, differentiation, chemotaxis and migration
[pdg, 2016]. c-KIT, also known as CD117, is a tyrosine kinase receptor which binds to
stem cell factor, a cytokine which plays an essential role in the development of blood
cells. Modified forms of the c-KIT receptor can be found in certain types of cancer
[cki, 2016].

Tyrosine kinase inhibitors have proven their efficacy when treating renal cell carcinoma
(RCC) and other types of tumors such as gastrointestinal stromal tumors. Sunitinib is
one type of tyrosine kinase inhibitor which has shown positive results in a study of
cytokine-refractory metastatic RCC patients [Motzer et al., 2006].

To better understand the biology of renal cancer drug resistance and response, the
HDP-HMM-DBN method is applied to existing renal cancer data sets which were ob-
tained from cells exposed to the drug Sunitinib. This data is derived from Caki-1 cell
line, a human clear cell renal cell carcinoma (ccRCC) line that displays epithelial
morphology and grows in adherent culture [cak, 2016]. CAKI1 was selected as a rep-
resentative of drug resistant cancer from analysis of a panel of 16 cell lines (Overton,
personal communication).

In the longer term, these approaches would enable systems-wide dynamic modelling of
renal cancer drug resistance mechanisms to enable in silico simulation of combination
therapies towards more effective tools for cancer medicine.
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Algorithm

This chapter describes the algorithms in detail, in particular the Hierarchical Dirichlet
Process - Hidden Markov Model - Dynamic Bayesian Network (HDP-HMM-DBN),
implemented in this project, and the Metropolis Hastings Sampler algorithm which is
used for the inference of gene regulatory network structures.

3.1 Hierarchical Dirichlet Process Hidden Markov Model

For the inference of time-varying gene regulatory networks from time series data,
Thorne and Stumpf [2012] has proposed a methodology which uses the infinite Hid-
den Markov Model, also known as the Hierachical Dirichlet Process Hidden Markov
Model, along with a Bayesian network representing the gene regulatory network cor-
responding to each hidden state. An important task of this project is to implement
Thorne’s method using a Dynamic Bayesian Network (DBN), to capture the inter-
actions occurring between the genes at the time points corresponding to a particu-
lar hidden state. Use of the Dynamic Bayesian Network improves upon the method
in [Thorne and Stumpf, 2012] in that it can deal with cyclic regulatory relationships
among the nodes in the gene regulatory network.

This framework makes use of the Hierachical Dirichlet Process-Hidden Markov Model
(HDP-HMM) to model the network structure at different time points while allowing it
to vary it’s topology [Thorne and Stumpf, 2012].

To model a hidden state sequence that changes over the course of time, the methodol-
ogy of the Infinite Hidden Markov model, first introduced in [Beal et al., 2001] is used.
This methodology describes how a standard hidden Markov model (HMM), consist-
ing of a set of hidden states s1, ...sn ,is enhanced such that the number of states is not
limited to a specific number. The extended model can theoretically have an infinite
number of potential states, although it is limited in practice.

Unlike a traditional HMM, where the number of states K is known in advance and
the transitions between those states follow a Markov process, in an HDP-HMM the
number of hidden states cannot be determined beforehand; they are generated based
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on the available data, which ensures that the number of different states in the network
structure can easily be modified to conform to the observed data.

Dirichlet processes are used to allow for an infinite number of transition parameters
[Beal et al., 2001]. For example, if we consider the case of a traditional HMM, the
probability of moving from state k to state l is given by the transition probability

πkl = p(s j = l|s j−1 = k)

That is, the next state l in the sequence is derived only from the current state k.

On the other hand in a HDP-HMM, a Dirichlet process prior is applied to the transition
probabilities πk of each state k in the hidden Markov model. In other words, each
hidden state k has associated with it a Dirichlet process Gk and based on this, the
next state is derived. A base measure G0, common to all these Dirichlet processes,
is shared amongst them such that Gk ∼ DP(α, G0). This means that the distributions
corresponding to the individual states are organised in a hierarchical structure, which
allows groups of potential states to be shared. As a result, it facilitates transitions
between them [Thorne and Stumpf, 2012].

The base measure is itself derived from a Dirichlet process G0 ∼DP(γ,H), where H is
a prior over parameters for Fk which represent the emission distributions [Thorne and
Stumpf, 2012].

Based on the concept of the stick breaking method of Sethuraman (1994), we have

G0 =
∞

∑
l

βlδθl

where θl is derived from H and with β∼ GEM(γ).

Thus,

Gk =
∞

∑
l

πklδθl

with πk ∼ DP(α,β).

A model of the HDP-HMM is given in the figure below.
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Source: [Thorne and Stumpf, 2012]

Figure 3.1: Graphical model of the HDP-HMM

3.1.1 Sticky HDP-HMM

For the method implemented in this thesis we use the sticky HDP-HMM, described
in more detail in [Fox et al., 2008] and [Fox et al., 2011]. The sticky HDP-HMM
makes use of an additional parameter which adds a bias to the transition probabilities
between states. This allows the model to stay in its current state for a number of time
steps, rather than changing at each step. In biological systems, such as gene regulatory
networks, it is uncommon for the system to change state, or for the network topology
to change, at each time step. This can be observed in gene expression datasets, where
only a small number of transitions occur between different states across the time series
[Thorne and Stumpf, 2012]. Use of sticky HDP-HMM is therefore more appropriate
for the type of system being modelled.

3.1.2 Gibbs Sampling for the sticky HDP-HMM

When drawing samples from the hidden state sequence, a Gibbs sampling method
is employed. This method updates each hidden state while taking into account the
conditional probabilities of the hidden state si and the remaining hidden states s−i.

In the original method developed in [Thorne and Stumpf, 2012], a standard Bayesian
network methodology was used to model the gene regulatory network structure which
corresponds to the hidden states of the HDP-HMM. However due to the restriction
imposed by the DAG structure of a Bayesian network, it was not possible to derive
all the potential set of network structures [Thorne and Stumpf, 2012]. For this project
we use Dynamic Bayesian Networks to model the gene regulatory network structures.
Each hidden state has associated with it a Dynamic Bayesian Network which describes
the gene interactions taking place at a particular time point in the time series. Each time
step corresponds to a hidden state.
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After the sequence of hidden states has been derived, gene network structures can
easily be sampled by the following steps:

i We first generate a potential set of parent nodes for a random gene.

ii Using the Metropolis Hastings acceptance probability value, we either accept the
new set of parents or we reject it. If accepted, the network structure is modified to
reflect that change.

3.1.3 Dynamic Bayesian Networks for representing the gene regu-
latory networks

Consider a data set consisting of p genes and n timepoints. Each gene i in the dataset is
attributed a set of parents, denoted as Parents(i). Parents(i) contains the genes whose
expression level can have an effect the expression of gene i.

Assuming that the observations for the genes are indexed by i∈ 1...p and the time steps
are indicated as t ∈ 1...n, we have:

X t
i = ∑ j∈Parents(i) a jX t−1

j + ε, where ε represents noise and is denoted by ε∼ N(0,σ2).

The gene regulatory network is a network with directed edges from each of gene i par-
ents to gene i, such that j→ i for each j in Parents(i).

The HDP-HMM-DBN method is summarised in Algorithm 1.
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3.1.4 HDP-HMM-DBN algorithm

Set α, κ to fixed numbers (1.0)
Create an array β with 2 elements set to 1.0
Initialise state sequence s from 1 to n−1 (set all to 1)
Define a burn in value
Initialise 2 lists (finalList,finalSeq) to store the results of the final list of networks and state
sequence
Generate random network
Create list of networks netlist and append random network(initial list of just one network)
Set K to the current number of networks (1)
for j in 1 to 10000 do

for k in 1 to K do
Update network structure netlist[k] based on X at timepoints where s[t] = k
(metropolis hastings update)

end
for t in 1 to n do

Generate a random network for K +1
for k in 1 to K do

Calculate p(s[t] = k) (the state probability)
end
Calculate StateProb for K+1
Normalise p(s[t] = k) so that they sum to 1
Generate a random integer l from 1 to K +1 with probability p(s[t] = k)
Set s[t] = l
if l = K+1 then

Set K = K +1, add network to list of networks
Add β[K +1], set to 1.0

end
for k in 1 to K do

if there are no s[t]=k then
Delete netlist[k]
Delete β[K]
Set all s[t]> k to s[t]−1
Set K = K−1

end
end
if j > burn-in value then

store s in finalSeq list store netList contents to finalList
end

end
end
Create adjacency matrix based on finalList (contains probability for each edge)

Algorithm 1: HDP-HMM DBN algorithm

The burn-in value in the algorithm represents the initial number of iterations which
are disregarded before we start collecting samples. This is done to ensure that only
meaningful samples are collected, by minimising the effect that initial values have on
the posterior inference.

To deal with the computational complexity associated with the inference of the Dy-
namic Bayesian Networks, a limit is placed upon the number of parents associated
with a node. The value given to the number of potential parents depends on the size
of the data and the number of replicates it contains. Replicates in gene expression
data refer to repeated measurements which are performed in microarray experiments
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to minimise the amount of noise associated with the experimental data. This helps
reduce ambiguity and variability in the results.

The next section looks into the Metropolis Hastings algorithm, which is used in our
method to update the network structure associated with each hidden state as it evolves
over time.

3.2 Metropolis-Hastings Algorithm

Metropolis-Hastings (MH) algorithm is a powerful Markov Chain Monte Carlo method
which makes use of a Markov chain when drawing random samples from a probability
distribution. One important aspect of the MH algorithm is that it can be used to sim-
ulate multivariate distributions, especially those which have a high number of dimen-
sions. In the HDP-HMM-DBN method, the Metropolis Hastings Sampler is used for
the inference of Dynamic Bayesian Network structures corresponding to each hidden
state of the HDP-HMM by drawing samples to represent the structure of the network.
We begin with an initial set of nodes and then, over a number of iterations, we propose
a potential parents set for each node which we either accept or reject, depending upon
the value of the Metropolis Hastings acceptance probability.

The two algorithms below give a brief description of the MH sampler as used in our
method.

Initialise parents of all genes
for n in 1 to 10000 do

Select a random gene i
Generate potential new parent set (do not overwrite current one)
Calculate Metropolis-Hastings acceptance probability
Generate uniform random number 0 < r < 1
if r < acceptance prob then

set parents of gene i to new set
end
if n > burn in and n modulo 10 = 0 then

store parents of all genes in list
end

end
Algorithm 2: Metropolis Hastings algorithm

Generate uniform random number 0 < r < 1
if r < addprob then

add a new parent (choose a gene uniformly at random from those not currently parents)
calculate q(Parents(i)→ Parents(i)’ and q(Parents(i)’→ Parents(i))

end
else

delete a parent (choose a parent uniformly at random and delete)
calculate q(Parents(i)→ Parents(i)’ and q(Parents(i)’→ Parents(i))

end
Algorithm 3: Algorithm to generate a proposal of a new parent set for random gene i
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The Metropolis Hastings algorithm in itself is composed of three main components.

(i) Generating a proposal sample.

(ii) Calculating the acceptance probability.

(iii) Accepting or rejecting the candidate sample based on the acceptance probabil-
ity.

The first step of the algorithm consists of assigning a sample value to a variable. In
our case, we select a node, representing a gene, uniformly at random. We then find the
parents of that node by finding nodes where there exists a directed edge to the selected
child node. Next, we generate a potential new parent set for that child node.

Proposal Distribution: The proposal distribution is the conditional probability of
proposing a new state x’ given x. In this step, we generate proposal of a new par-
ent set. We first generate a uniform random number between 0 and 1 and assign it to a
variable, for e.g r.

If the value of r is less than the addprob value and the number of parents of that child
node is below a certain threshold, we select a node which is not already a parent of
the child node and add it as a potential parent node. The network is then updated by
adding an edge from the potential parent node to the child node. We next calculate the
probabilities of proposing to move:

• from the current parent set to the potential parent set, represented as q(Parents(i)→
Parents(i)′).

• from the potential parent set to the current one, q(Parents(i)′→ Parents(i)).

Now, if the value of r is above the addprob value and/or the number of parents of the
child node is above the threshold value, we randomly select a node which is currently
a parent of the child node and remove the edge between it and the child node. After
the network has been updated, we calculate the probabilities of proposing to move.

Acceptance Function: In this function, the acceptance probability is calculated and
based on that, we decide to either accept or reject the candidate parent set. The MH
algorithm consists of a Markov process which is designed to satisfy the following two
constraints:

1. The sampler should aim to visit higher-density regions and return the majority
of the samples from these regions.

2. The sampler should explore the sample space by randomly moving about and
ensuring that it does not get stuck in the same site.

It is important that the MH acceptance function satisfies the above conditions because
this ensures that the stationary distribution of values produced by the MH algorithm is
closer to the target distribution that we are interested in.
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The Metropolis-Hastings acceptance probability of a proposed new set of parents Parents(i)′

is calculated using the following equation:

a =
p(Parents(i)′|X)q(Parents(i)′→ Parents(i))
p(Parents(i)|X)q(Parents(i)→ Parents(i)′)

where q(Parents(i)→ Parents(i)′) is the probability of proposing to move from parent
set Parents(i) to Parents(i)′.

Accept/Reject a proposal: After the acceptance probability has been calculated, we
use it to either accept or reject the proposal. In practice, we generate a random number
uniformly between 0 and 1. If this value is smaller than the acceptance probability,
we accept the proposal by replacing the existing parents set of the child node with the
potential set of parent nodes derived in the proposal distribution step. Otherwise we
reject the proposal and keep the current parents set, in which case no update is made
to the network.

In the next chapter, we talk about how the HDP-HMM-DBN method is implemented
using the R language and give code extracts of the main functions.
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Implementation

4.1 R language

R, an open-source software project available under the GNU general public license,
is the language of choice when it comes to computing and graphics in the statistical
field. It is often used by statisticians and scientists for performing tasks such as: time-
series data analysis, classification, predictive modelling and data visualisation. Its core
strengths are: the large variety of mathematical functions available for manipulating
and analysing data, the ease with which user-written functions and scripts can be incor-
porated using the object-oriented paradigm, excellent facilities for creating graphical
plots.[rla, 2016].

Key R features that are used in the HDP-HMM-BDN algorithm implementation:

• matrix,list,vectors are used to store the data/values

• mathematical functions such as exponentiate, logarithm, solve, transpose are
used for data manipulation

• graph plotting functions

R is highly extensible and quite easy to integrate with other applications, facilitating
the use of other packages.

The two R packages that are the main imports in our algorithm implementation are
Igraph and rTMA. A brief description of each follows:

4.1.1 Igraph package

Igraph [igr, 2016] is a set of tools geared towards network analysis. It is mostly used
for the creation, manipulation and visualisation of graphs and networks. Bindings for
igraph are available in R, Python and C/C++. The one that we are using for our project
is the R/igraph package, an R package of the Igraph network analysis library. All
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networks in the HDP-HMM-DBN method are created using the Igraph function and
need to be manipulated using specific functions.

4.1.2 rTMA package

rTMA [rtm, 2016] is an R package, developed by the Overton group, for the analysis
of tissue microarray (TMA) data. Tissue microarrays (TMAs) are composite paraffin
blocks on which tissue cores are placed in an array in order to perform histological
analysis. Histology is the study of tissues and cells using a microscope and is an
important tool used to monitor the progress of treatments, for example by monitoring
how cancer cells react to certain drugs [his, 2016]. The tissue samples come from
many different sources and a thousand or more may be placed together on a single
histologic slide. This allows a large variety of specimens to be analysed simultaneously
in similar and standardised conditions [Jawhar, 2009]. Tissue microarray is an efficient
tool, featuring high throughput molecular analysis of tissues, which aids the discovery
of new diagnostic and prognostic markers and targets in human cancer [Jawhar, 2009].

The rTMA package has been implemented to satisfy the requirement for a simple and
effective tool with which to analyse TMAs. rTMA takes as input a csv/tsv file contain-
ing TMA data in the form of quantitative protein expression. The data is stored in a
TMA object, which also stores associated clinical data [Lubbock, 2016]. The ComBat
algorithm [Johnson et al., 2007] can be applied when several TMA slides are used.
The ComBat algorithm makes use of an empirical Bayes method to minimise experi-
mental variations of a biological or technical nature, which occur between the slides.
The rTMA package allows for a variety of analyses to be performed on the TMA data.
These include protein marker expression visualisation, correlation and relevance net-
works analysis [Lubbock, 2016]. The rTMA functionality which we use mostly in our
HDP-HMM-DBN algorithm is a network inference method called GABI.

GABI is a novel algorithm which has been implemented by the Overton group and is
aimed towards performing relevance thresholding in networks. It is designed for the
inference of small-scale networks using TMA data. GABI has been implemented to
deal with issues which Spearman correlation and Mutual information cannot properly
manage. For example, although quite resilient to noise, Spearman correlation can miss
certain classes of protein-protein interaction, and Mutual information can overload
the user by identifying all types of statistical correlations in the network. Addition-
ally, the data contained in TMAs is often highly related, and this can make a standard
correlation network produced from that data difficult to interpret. In GABI, Spear-
man correlation is used to check for pairings between candidate proteins as part of
the protein-protein interactions. Symmetric uncertainty, if required, is applied to the
output of the Spearman correlation to determine whether the edges are signed or not.
The aim is to reduce the number of hypothesis tests that need to be done [Lubbock,
2016]. A relevance thresholding procedure is then applied to get rid of edges which are
below a certain relevance threshold value. The final output of GABI is a network that
contains only "high confidence" relationships, which can be either signed or unsigned
depending on whether Spearman correlation was applied or not.
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4.2 Code Extract

In this section, we provide an overview of the method implementation. Extracts of
code, from a trimmed down version of the important parts of the implementation, are
given along with explanations.

4.2.1 Code Extract: Network class

The HDP-HMM-DBN implementation requires the use of graph data structures to rep-
resent the genes and the interactions occurring between them. During the initial devel-
opment phase of the method, a custom graph class was implemented. This Network
class had the basic functionality required for graph manipulation, and in developing
it a good understanding of the working of graphs and their associated operations was
obtained. Eventually we moved to the complete igraph package, which offers much
greater functionality and visualisation capability. Our prototype Network class was
simply replaced with the Igraph’s class since the rTMA package also makes use of
Igraph, and this allowed for a seamless integration with the HDP-HMM-DBN algo-
rithm.

The Network class implements the required functions to manipulate graphs during the
simulation. Some of the functionalities include: add/delete nodes and edges to the
network, search for the children/parents of a node and search for edges.

4.2.2 Code Extract: Metropolis Hastings Algorithm

Following is an extract of the main function from the Metropolis Hastings Sampler al-
gorithm. It shows the implementation of the main iteration, including inline comments
for the variables and blocks of expression.

1 # I n p u t : gene e x p r e s s i o n m a t r i x and a ne twork
2 # Outpu t : u p d a t e d ne twork
3

4 # c o n s t a n t s
5 addprob <− 0 . 5
6 d e l p r o b <− (1 − addprob )
7 b u r n I n <− 10
8 n u m I t e r a t i o n s <− 1000
9

10 # Main MH−s a m p l e r f u n c t i o n
11

12 mhsampler _new <− f u n c t i o n ( gexprX , gexprY , gne t , p r i o r n w )
13 {
14 g e n e E x p r e s s i o n <− gexprX
15 geneNetwork <− g n e t
16

17 # number o f genes i n t h e gene e x p r e s s i o n m a t r i x
18 p <− n c o l ( g e n e E x p r e s s i o n )
19

20 # max . num of edges o f ne twork wi th p nodes = ( p−1)p
21 e <− 2 ∗ p
22
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23 # t i m e s t e p s / o b s e r v a t i o n s i n t h e gene e x p r e s s i o n m a t r i x
24 t <− nrow ( g e n e E x p r e s s i o n )
25

26 # main i t e r a t i o n
27 f o r ( i i n 1 : n u m I t e r a t i o n s ) {
28 # choose gene u n i f o r m l y a t random
29 randomGene <− sample . i n t ( p , 1 )
30

31 # f i n d chosen gene p a r e n t s
32 randomGeneParen t s <− f i n d P a r e n t s ( geneNetwork , randomGene )
33

34 # g e n e r a t e p o t e n t i a l new p a r e n t s e t
35 p o t e n t i a l P a r e n t S e t <− g e n P o t e n t i a l P a r e n t S e t ( geneNetwork ,

randomGene )
36

37 randomGeneParen t s _ u p d a t e d <−
38 f i n d P a r e n t s ( p o t e n t i a l P a r e n t S e t $ netwk , randomGene )
39

40 # c a l c u l a t e M e t r o p o l i s H a s t i n g s a c c e p t a n c e prob
41 X <− gexprX [ , u n l i s t ( r andomGeneParen t s ) , d rop = FALSE]
42 y <− gexprY [ , randomGene , drop = FALSE]
43 a c c e p t a n c e P r o b _ o l d <− g e n A c c e p t a n c e P r o b a b i l i t y ( . . . )
44 a c c e p t a n c e P r o b _ u p d a t e d <− g e n A c c e p t a n c e P r o b a b i l i t y ( . . . )
45

46 a c c e p t a n c e P r o b <− exp ( a c c e p t a n c e P r o b _ u p d a t e d − a c c e p t a n c e P r o b _
o l d )

47 ∗ ( p o t e n t i a l P a r e n t S e t $ probTo /
p o t e n t i a l P a r e n t S e t $ probFrom )

48

49 # g e n e r a t e un i fo rm random number between 0 and 1
50 r <− r u n i f ( 1 , 0 , 1 . 0 )
51

52 i f ( r < a c c e p t a n c e P r o b ) {
53 # s e t p a r e n t s o f gene t o new s e t
54 geneNetwork <− p o t e n t i a l P a r e n t S e t $ netwk
55 }
56 }
57 r e t u r n ( geneNetwork )
58 }

Listing 4.1: Metropolis-Hastings Sampler Algorithm

The main function in the Metropolis-Hastings algorithm takes four parameters as in-
put: two blocks of rows at two consecutive time points from the gene expression ma-
trix, the gene network to be updated and an optional prior network which in our case
is the GABI network. In the main iteration, a node representing gene i is selected uni-
formly at random. We next find the set of parents for that gene, denoted by Parents(i).
Thereafter a proposal for a new parent set for gene i is generated.

To derive the structure of the network, we initially only need to know what the set of
parents of each gene is. Using a Bayesian approach, we sample from the posterior
distribution of the parent sets for each gene such that:

p(Parents(i)|X) ∝

∫
p(X |Parents(i),a)p(Parents(i))p(a)da

where X is the gene expression matrix and i is the random gene selected initially.
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We can use the Metropolis-Hastings sampler to provide us with samples from p(Parents(i)|X)
and Zellner’s g-prior[Zellner, 1986] to calculate

∫
p(X |Parents(i),a)p(Parents(i))p(a)da.

Zellner’s g-prior is used because it gives a simple equation for the integral over the a
(that is not really important in our case). The prior on parents p(Parents(i)) is either
uniform, or based on GABI input.

We next require a proposal distribution which can be used to derive new sets of parents.
To transition from the current set of parents to a new one, there are two possible types
of move that can be made. Either we add a new parent to the exiting parent set of gene
i, or delete an existing one from that set. As part of the transitioning process, a uniform
random number r is generated between 0 and 1 and based on this, gene i parent set is
either updated or left unchanged.

In the initial implementation phase of the Metropolis Hastings sampler algorithm, there
is an initial burn in set of iterations which are discarded. The network is then stored in
a list, and updated after every subsequent tenth iteration. When the sampler algorithm
was integrated with the method’s main algorithm, the code was modified as follows:
after running the main loop a pre-defined number of times, only one (updated) network
is returned, and this is used in the HDP_HMM_DBN algorithm.

The Metropolis Hastings sampler algorithm is also composed of two other functions,
namely the genPotentialParentSet function and the genAcceptanceProbabilty func-
tions.

The genPotentialParentSet function takes as input a network and gene i, which is the
random gene chosen in the MH-Sampler main function. It returns as output an updated
version of the network and the probabilities of proposing to move: q(Parents(i)→
Parents(i)′) and q(Parents(i)′→ Parents(i))

1 # g e n e r a t e p r o p o s a l o f a new p a r e n t s e t
2 g e n P o t e n t i a l P a r e n t S e t <− f u n c t i o n ( network , c h i l d n o d e I d )
3 { . . . }

Listing 4.2: Function to generate proposal of a new parent set for gene i

The genAcceptanceProbabilty function is used to generate the Metropolis Hastings
acceptance probability, which is in turn used to decide whether to update the parents
set of gene i to a new one. This function takes as input the network, an optional
prior (GABI) network , gene expression matrix, columns in the gene expression matrix
corresponding to genes which are parents of gene i (X), columns in the gene expression
matrix corresponding to gene i (y), gene i and gene i’s parents.

A set of mathematical calculations is performed, to calculate the acceptance probabil-
ity value. Further calculations are performed if a prior network is given. If a GABI
network is provided as prior, we test each edge from Parents(i) to gene i by verifying if
it is in the prior network; the final output probability is adjusted depending on whether
the edge is in the prior or not. The output of the genAcceptanceProbabilty function is
an acceptance probability value, used in the main Metropolis Hastings sampler algo-
rithm when calculating the probability of a new set of parents for gene i.

1 # g e n e r a t e MH a c c e p t a n c e p r o b a b i l i t y − c a l c u l a t e s t h e p r o b a b i l i t y o f
a s e t o f p a r e n t s
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2 g e n A c c e p t a n c e P r o b a b i l i t y <− f u n c t i o n ( nw , pr io rnw , geneExpr , X, y , gene ,
g e n e P a r e n t s )

3 { . . . }

Listing 4.3: Function to generate proposal of a new parent set for gene i

4.2.3 Code Extract: HDP-HMM-DBN Algorithm

The HDP-HMM-DBN algorithm takes as input several parameters which are listed and
described below:

• inputFile: The file contains the time series data which eventually gets converted
to a gene regulatory network adjacency matrix.

• blocksize: This parameter is the number of consecutive rows in a block of gene
expression data and represents the number of replicates in the experiment from
which the data is derived.

• sanitize: The sanitize parameter takes as value either TRUE or FALSE and if
assigned to TRUE, it converts ’NAs’ in the data to zero.

• gabi: This argument also takes a Boolean value which when set to TRUE creates
a directed GABI network from the time series data. This directed network is then
used as prior in the HDP-HMM-DBN algorithm.

• J: J is the number of iterations in the main loop of the HDP-HMM-DBN algo-
rithm. It has a default value of 100 which get overwritten by the value input by
the user.

• burnInValue: This argument represents the initial number of iterations which are
to be ignored before we start collecting gene regulatory networks that evolve
over time.

The first thing the HDP-HMM-DBN algorithm does is to check if GABI is set to
TRUE. If it is, the time series data provided as input is used to generate a directed
GABI network which is then used as prior. This network is generated by running the
GABI algorithm provided in the rTMA package. Several variables are initialised for
use in the algorithm. One of them is a vector s (s← rep(1,n)), which stores the hidden
states sequence.

Before entering the main loop, we generate a random network which gets stored as
the initial network in a list. Inside the main function’s first inner loop, we update all
of the network structures in netList based on the gene expression data at specific time
points using the Metropolis-Hastings algorithm. In the second inner loop, we generate
another random network to potentially add to our list of networks. We then choose
the network from the list and this new network, that best fits each timepoint in the
timeseries. This step is iterated a number of times until we have a list of networks
depicting their temporal evolution over the time steps corresponding to the time series
input file. We only keep the networks which are generated after the initial burn in stage
to ensure that we get only "good" samples. Upon completion of the main loop we



4.2. Code Extract 43

create an adjacency matrix, which stores the probability of each edge in the network.
The adjaceny matrix is written to a file for subsequent use in the benchmarking step.

1 # I n p u t : gene e x p r e s s i o n m a t r i x and o p t i o n a l p a r a m e t e r s
2 # Outpu t : l i s t o f n e t w o r k s a t d i f f e r e n t t ime p o i n t s showing t h e

e v o l u t i o n o f gene r e g u l a t o r y n e t w o r k s ove r t ime
3

4 # l o a d rTMA and o t h e r p a c k a g e s
5 l i b r a r y (rTMA)
6 l i b r a r y ( i g r a p h )
7 l i b r a r y ( p a r a l l e l )
8

9 # s a n i t i z e d a t a t o remove n u l l s / na
10 s a n i t i z e D a t a <− f u n c t i o n (X) { . . . }
11

12 # e . g . hdp_dbn ( INPUT , b l o c k s i z e =5 , J =10 , b u r n I n V a l =5)
13 hdp_dbn <− f u n c t i o n ( i n p u t F i l e , b l o c k s i z e , s a n i t i z e =FALSE , g a b i =FALSE , J

=100 , b u r n I n V a l =80)
14 {
15 # r e a d t e s t o r GABI d a t a ( csv f o r m a t )
16 X <− r e a d . csv ( i n p u t F i l e , h e a d e r = TRUE)
17

18 i f ( s a n i t i z e ==TRUE) X <− s a n i t i z e D a t a (X)
19

20 # d e f i n e gene e x p r e s s i o n m a t r i x
21 geneXprMat r ix <− s c a l e (X)
22

23 i f ( g a b i ==TRUE) {
24 # c r e a t e TMA o b j e c t u s i n g i n p u t d a t a
25 tmaObj <− tma (X)
26 . . .
27 # c r e a t e d i r e c t e d Gabi ne twork
28 . . .
29 }
30

31 # num of nodes i n ne twork
32 p <− n c o l ( geneXprMat r ix )
33 # num of edges = 2 x p
34 e <− 2 ∗ p
35

36 # d e f i n e c o n s t a n t s t o be used i n t h e method
37

38 # c r e a t e an a r r a y b e t a A r r wi th 2 e l e m e n t s s e t t o 1 . 0
39 b e t a A r r <− c ( 1 . 0 , 1 . 0 )
40 # number o f rows i n a b l o c k − r e p l i c a t e s i n e x p r e s s i o n m a t r i x
41 b s i z e <<− b l o c k s i z e
42 # num of o b s e r v a t i o n s / t i m e s t e p s
43 n <− nrow ( geneXprMat r ix ) / b s i z e −1
44 # i n i t i a l i s e s t a t e s e q u e n c e s from 1 t o n , s e t a l l t o 1
45 s <− r e p ( 1 , n )
46

47 # g e n e r a t e random network
48 randomNetwork <− c r e a t e I g r a p h N e t w o r k ( p , e )
49

50 # s t o r e randomNetwork i n l i s t
51 n e t L i s t <− l i s t ( randomNetwork )
52

53 # s e t K t o c u r r e n t number o f n e t w o r k s i n l i s t
54 K <− l e n g t h ( n e t L i s t )
55

56 # o u t e r l oop
57 f o r ( j i n 1 : J ) {
58

59 # F i r s t i n n e r loop
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60 f o r ( k i n 1 :K) {
61 # u p d a t e ne twork s t r u c t u r e n e t l i s t [ k ] based on gene e x p r e s s i o n

X a t t i m e p o i n t s where s [ t ] = k ( m e t r o p o l i s h a s t i n g s u p d a t e )
62 netw <− n e t L i s t [ [ k ] ]
63

64 # u p d a t e netw s t r u c t u r e based on gexp _ t i m e p o i n t u s i n g
m e t r o p o l i s h a s t i n g s u p d a t e

65 u p d a t e d _ netw <− mhsampler _new ( . . . )
66

67 # s e t n e t L i s t [ k ] t o be t h a t p a r t i c u l a r ne twork
68 n e t L i s t [ [ k ] ]<−u p d a t e d _ netw
69 }
70

71 # Second i n n e r loop
72 f o r ( t i n 1 : n ) {
73 # g e n e r a t e a random network f o r K+1
74 newNet <− c r e a t e I g r a p h N e t w o r k ( p , e )
75

76 # i n i t i a l i s e s t a t e P r o b t o be a v e c t o r / l i s t o f l e n g t h k+1
77 s t a t e P r o b <− v e c t o r ( mode=" numer ic " , l e n g t h = K+1)
78

79 f o r ( k2 i n 1 :K) {
80 # c a l c u l a t e s t a t e p r o b a b i l i t y f o r k2
81 s t a t e P r o b [ k2 ] <− c a l c u l a t e S t a t e P r o b ( . . . )
82 }
83

84 # c a l c u l a t e s t a t e P r o b f o r K+1
85 s t a t e P r o b [K+1] <− c a l c u l a t e S t a t e P r o b ( . . . )
86

87 # Norma l i s e p ( s [ t ] = k ) so t h a t t h e y sum t o 1
88 s t a t e P r o b N o r <− . . .
89

90 # g e n e r a t e random i n t e g e r l from 1 t o K+1 wi th prob p ( s [ t ] = k
)

91 l <− sample ( 1 : ( K+1) , 1 , p rob = s t a t e P r o b N o r )
92

93 # s e t s [ t ] = l
94 s [ t ] <− l
95 i f ( l == K+1) {
96 K <− K+1
97 # add ne twork t o l i s t o f n e t w o r k s
98 n e t L i s t [ [K] ] <− newNet
99 }

100

101 f o r ( k i n K: 1 ) { . . . }
102 }
103

104 # s t o r e n e t L i s t c o n t e n t s i n f i n a l L i s t a f t e r b u r n I n
105 i f ( j > b u r n I n V a l )
106 { . . . }
107

108 }# end o u t e r l oop
109

110 # C a l c u l a t e a p r o b a b i l i t y f o r each edge and s t o r e i n an a d j a c e n c y
m a t r i x as f i n a l o u t p u t

111

112 }

Listing 4.4: HDP-HMM-DBN Algorithm

Other functions which form part of the HDP-HMM-DBN algorithm are listed below,
along with a brief description of their functionality.
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The getblock function takes as input the gene expression matrix and a block number.
It returns a set of consecutive rows from the matrix which corresponds to the block
number given as argument. The number of rows contained in one block corresponds
to the number of replicates in the data.

1 # C a l c u l a t e i n d e x p o s i t i o n s f o r gene e x p r e s s i o n d a t a a t t i m e p o i n t s
where s [ t ] = k and r e t u r n t h e s p e c i f i e d b l o c k number from g i v e n
m a t r i x M

2 g e t b l o c k <− f u n c t i o n (M, bnum )
3 { . . . }

Listing 4.5: Function to calculate a set of consecutive rows in the gene expression matrix
corresponding to a block number

The getblocks function has as parameters the gene expression matrix and a list of block
numbers. It returns a set of rows from the gene expression matrix, which contains the
blocks of data given as second parameter.

1 # r e t u r n s a m a t r i x c o n t a i n g t h e b l o c k s g i v e n as argument
2 g e t b l o c k s <− f u n c t i o n (M, b n u m l i s t )
3 { . . . }

Listing 4.6: Function to return a set of rows in the gene expression matrix corresponding to a
list of block numbers

The calculateStateProb function takes as input several parameters, including: the state
sequence, the network and the GABI network, and uses them to calculate the prob-
ability of transitioning to a different state. Several steps are taken to determine the
transition probability:

1. First, a new state sequence is derived, which excludes the element at position j
in the original sequence.

2. A transition matrix is created, based on the new state sequence.

3. Next, we calculate the number of observed transitions from state j-1 to k2 and
from state k2 to j+1

4. Finally, we derive a set of rows from the gene expression matrix such that the
row numbers correspond to the indices of the state sequence and its value equals
to k2. We then derive another set of rows based on the state sequence indices
incremented by one. Using this, we calculate the likelihood of the data given the
network structure currently assigned to each state using the genAcceptanceProb-
abilityAllNodes function.

1 # C a l c u l a t e s t a t e p r o b a b i l i t y p ( s [ t ] = K)
2 c a l c u l a t e S t a t e P r o b <− f u n c t i o n ( . . . )
3 { . . . }

Listing 4.7: Function to calculate the state probability of transitioning to a different state

The genAcceptanceProbabilityAllNodes function uses the genAcceptanceProbability
function to calculate the acceptance probability for each node in the network, and for
each of their parents and return their sum.



46 Chapter 4. Implementation

1 # C a l c u l a t e Accep tance p r o b a b i l i t y f o r f o r a l l nodes i n t h e ne twork
ne twork [ k ] a l o n g wi th t h e i r p a r e n t s

2 g e n A c c e p t a n c e P r o b a b i l i t y A l l N o d e s <− f u n c t i o n ( . . . )
3 { . . . }

Listing 4.8: Function to return the sum of the acceptance probability for all nodes in the
network

The logical step that follows is to conduct experiments based on the method described
and implemented in this chapter. The next chapter describes the benchmarking and
analysis process.
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Benchmarking and Analysis

This chapter evaluates the algorithm presented in the thesis through benchmarking and
analysis of the results obtained by running our implementation of the algorithm.

The HDP-HMM-DBN algorithm is evaluated on three data sets:

1. Synthetic/test data

2. DREAM Challenge data

3. Renal Cancer data

In the course of implementing the HDP-HMM-DBN algorithm, the output and perfor-
mance of the code were tested repeatedly with synthetic data (first data set in the list
above) generated from the DBN model and using a known network. This was a useful
step to debug the code and as an initial validation of the algorithm’s correctness and
behaviour. The tests were carried out on a small scale: the test data comprising 10
genes, identified by A,B, ...,J, with 20 observations in 3 sets of replicates. After the
initial set of tests, the DREAM4 insilico time series datasets are used for evaluation
and benchmarking. The algorithm is then applied to renal cancer drug response time
course data obtained from the Overton1 group, in collaboration with Grant Stewart2

(Consultant Urological Surgeon, Western General Hospital).

Data Input Format

The time series data used as input to our algorithm needs to be in a specific format:
each column represents a gene expression profile, and each row represents a microarray
experiment at a given time step. Replicates occur when we have multiple rows with
the same time value. Replicate measurements are done to increase the confidence level
of the results. The number of observations corresponds to the number of rows in one
set of replicates.

An example of the input data format is given below for 9 genes and 3 replicates. The
number of observations in this example is 3 as there are 3 rows for each time step.

1Overton Group: http://www.hgu.mrc.ac.uk/people/i.overton.html
2Stewart Group: http://www.ed.ac.uk/surgery/staff/surgical-profiles/grant-stewart

47
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1 Time G1 G2 G3 G4 G5 G6 G7 G8 G9
2 10 . . . . . . . . .
3 20 . . . . . . . . .
4 30 . . . . . . . . .
5 10 . . . . . . . . .
6 20 . . . . . . . . .
7 30 . . . . . . . . .
8 10 . . . . . . . . .
9 20 . . . . . . . . .

10 30 . . . . . . . . .

Listing 5.1: Example of input data format

5.1 DREAM Challenge Data

DREAM challenge3 is a non-profit, open science effort, designed and maintained by
a group of researchers from different areas of specialisation. The purpose is to gain
insight into the fundamentals of systems biology and translational medicine, while
facilitating improvements in these biological sciences by giving researchers access to
novel data. The challenges enable participants to propose solutions to problems, or to
test their solutions or methodologies against the gold standard to see how well they
fare. New and better computational models are thus developed and shared by the
scientific community. These models can be used to make significant discoveries and
solve complex problems. The knowledge gained while taking part in a challenge is
stored on Synapse, a software platform which allows scientists to share their research.

5.1.1 DREAM4 Insilico Networks

The insilico network challenge provides participants with simulated steady-state and
time-series data, which can be used to reverse engineer gene regulatory networks. Us-
ing the given insilico gene expression datasets, participants should derive the network
structure and optionally predict how the networks will react to a set of perturbations
(not included in the challenge) [Greenfield et al., 2010]. The challenge is composed
of three sub-challenges and each sub-challenge provides data for 5 different networks.
Each sub-challenge tests how consistently the method under investigation predicts the
topology of the gold standard networks.

For the benchmarking, we are using the time series data of the Insilico_size10 and
Insilico_size100 sub-challenges to predict the network structure given the provided
datasets.

Insilico_Size10 sub-challenge This sub-challenge provides datasets of type: wild-
type, knockouts, knockdowns, multifactorial perturbations and time-series, how-
ever only the time-series data is relevant for this evaluation. The data consists

3DREAM Challenge: www.dreamchallenges.org
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of networks of 10 nodes and the goal is to predict the directed unsigned edges
found in these networks.

Insilico_Size100 sub-challenge The Insilico size 100 sub-challenge is similar to In-
silico size 10, except that the networks are of size 100 instead of 10 and multi-
factorial perturbation datasets are not provided, however, we will only use time-
series data as with the previous sub-challenge.

The HDP-HMM-DBN algorithm is benchmarked using time series data from both the
above sub-challenges. For each sub-challenge, 5 files corresponding to 5 different
networks are given. Each file contains time series data depicting how the network
reacts when a perturbation is added and removed. For insilico size 10, 5 replicate
data sets are provided, while for insilico size 100, 10 are provided. Each data set
contains 21 time points; the first half (from t=0 to t=500, interval=50) shows how the
network responds to a perturbation added at t=0, the remaining time steps depict how
the network relaxes when the perturbation is removed at t=500.

Machine learning prediction methods are increasingly being used in the field of Bioin-
formatics. Evaluating the performance of these methods is an important step which
needs to be carried out before they are used on real-world data. Similarly, the HDP-
HMM-DBN algorithm is first parameterised and benchmarked using DREAM4 datasets
and is then applied to real-world renal cancer data.

5.1.1.1 Evaluation Steps

The steps followed for the evaluation of our method using the benchmarking data are
listed below.

Step 1 Run the algorithm against DREAM4 data

Step 2 Compare output with the gold standard networks

Step 3 Perform cross-validation

Step 4 Find area under the ROC curve

Step 5 Derive meta-analysis graphs

5.1.1.2 Methods and Metrics of Evaluation

We first list and briefly explain some of the methods and metrics (and what measures
they provide) used for evaluation and discussion that follows.

1. Receiver Operating Characteristics (ROC) curves

There are several performance evaluation measures which, when used in con-
junction with the ROC curve (introduced in Section 2.4.4), provide an intuitive
way of visualising the prediction performance. There are multiple tools avail-
able to display and analyse ROC curves, for instance: ROCR package, easyROC
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web tool, and pROC among others. For our purposes we opted for the ROCR4

package because of its ease of use and because it integrates well with R’s built-in
graphics functions.

2. Matthews Correlation Coefficient (MCC)

MCC provides a measure of the quality of the binary classifier method being
tested, by taking into account true positives (TP), false positives (FP), true neg-
atives (TN) and false negatives (FN). True positives are defined as the correctly
predicted edges, false positives represent the predicted edges which do not exist
in the gold standard network, true negatives are the correctly identified non-
edges while false negatives are the actual edges in the gold standard identified as
non-edges by the algorithm [Lund, 2005].

The equation to calculate MCC is given by:

T P×T N−FP×FN√
(T P+FP)(T P+FN)(T N +FP)(T N +FN)

The values returned by the MCC measure range between -1 and +1, where +1
represents an exact prediction made by the method, 0 indicates the result of a
random prediction and values less than 0 are worse than random, with -1 being
the inverse of a perfect prediction.

3. Cross-validation

Cross-validation is used for measuring the predictive ability of a model as part
of the model’s evaluation. In this method, the data is partitioned into two sets
such that one partition is used for method training and the other partition is used
for testing. The part of the data that is to be used for actual testing is treated as
new data and is used to test the performance of the resulting model. In our case
this is done by computing the MCC.

The reason we chose to perform cross-validation over residual evaluation is to
avoid the issue of overfitting. Overfitting occurs when the model performs badly
at making predictions, by yielding overly optimistic results that are not really
correct. This happens because the model fits the data too closely, and as a result
does not perform well on new data.

4. Area Under the Curve (AUC)

The AUC of the ROC curve, which corresponds to the value of the Wilcoxon-
Mann-Whitney test, is used as "a measure of goodness for predictions" [Vihinen,
2012]. An area of value 0.5 indicates a random classification while a value of 1
implies a perfect classifier. Therefore, in our algorithm evaluation, the preferred
area value should be greater than 0.5 and ideally close to 1.

5. Standard Error

4ROCR: https://rocr.bioinf.mpi-sb.mpg.de/
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Standard Error is a way of measuring the statistical accuracy of predictions by
calculating by how much predictions vary from one another [std, 2016]. To
calculate the standard error when running the algorithm in standalone mode and
with GABI, we use the anaesthetist5 webpage. To calculate the standard error
for each network, with n nodes, in the DREAM4 datasets we use: the Area under
the Curve, the number of edges in the gold standard network given by X and the
non-edges given by Y = (n2−n)−X .

Next, to compare the two curves, derived from running the algorithm alone and
in conjunction with GABI, we calculate the standard error of the difference be-
tween the two areas using the following equation.

SE(A1−A2) =
√

SE2(A1)+SE2(A2) [cal, 2016]

After the standard error of the difference in areas has been calculated for each
network, we use that value to calculate the Z-score.

6. Z-score

Z-score, also known as standard score, indicates how many standard deviations
from the mean an element is, (either above or below the mean). Z-score pro-
vides us with a way of comparing two scores that belong to two different normal
distributions. In our case from running the algorithm without GABI and from
running it with GABI.

The following equation derived from [cal, 2016] is used to calculate the Z-score.

Z = (A1−A2)/SE(A1−A2)

7. P-value

We use the Z-score to calculate the two-tailed probability values (p-value), using
the Z-Score to P-Value Calculator from [pva, 2016]. The P-value, or calculated
probability, gives an indication of how strongly data supports or rejects a partic-
ular null hypothesis. The P-value can also be seen as the strength of evidence
against the null hypothesis. Two-tailed P-value is the term used when the P-value
is derived from both ends (tails) of the distribution [Ludbrook, 2013].

Now we proceed with the actual steps of the algorithm’s evaluation and present the
results.

5.1.2 DREAM4 runs

The HDP-HMM-DBN algorithm is evaluated in two modes: as a standalone and with
GABI as a prior. Several runs are executed for each mode, (listed in the tables below),
and the argument for the maximum number of gene parents (NumParents) is varied in

5Standard Error calculation: http://www.anaesthetist.com/mnm/stats/roc/Findex.htm
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order to enable assessment of the effect of these parameters on the network structural
influence as well as the algorithm’s performance.

Runs - Insilico size 10
Mode NumParents

Standalone 3, 4, 5
With GABI 3, 4, 5

Runs - Insilico size 100
Mode NumParents

Standalone 3, 5, 7, 10
With GABI 3, 5, 7, 10

Table 5.1: Runs performed as part of the benchmarking process

The output of the HDP-HMM-DBN algorithm is an adjacency matrix containing the
probability of each edge existing in the network. In the next step, the adjacency matrix
for each network from the algorithm is compared to the adjacency matrix of the gold
standard network.

5.1.3 Performance against gold standard networks

The ROC curves and MCC graphs are generated using ROCR. This gives a measure
of how the networks inferred by our algorithm, both in standalone and with GABI,
compare to the gold standard networks.

For each network in the sub-challenge we use the adjacency matrix produced by our
algorithm and test the predictions contained in it using ROCR. Those predictions are
the estimated probabilities for the true values (labels) in the gold standard network.
The list of predictions made by our algorithm is next passed to the prediction function
of ROCR, along with the labels of the gold standard network. This gives us a prediction
object which we next use as an argument in the performance method, along with the
measure we are interested in. Four types of performance measure have been generated,
namely: accuracy, precision-recall, MCC and true positive rate v/s false positive rate.
The measure which we focus on is the MCC.

The MCC is calculated over the range of possible cutoffs by ROCR. The cutoff de-
termines which of the edges found in the adjacency matrix, produced as output by the
HDP-HMM-DBN algorithm, are considered as positive predictions. For example, if
the cutoff is 0.8, we consider edges with probability >= 0.8 as positive edges.

The MCC plots for insilico size 10 (numParents= 5) and insilico size 100 (numParents=
10) are illustrated in Figures 5.1 and 5.2.
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(a) size10_1 (b) size10_2

(c) size10_3 (d) size10_4

Figure 5.1: Algorithm’s performance shown at different cutoff values using insilico size 10
datasets and numParents=5. The y-axis corresponds to the MCC and the x-axis refers to
the cutoff value. Each graph shows the algorithm’s performance when run on its own and in
combination with GABI, depicted by a blue line and a red dashed line respectively.
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(a) size100_1 (b) size100_2

(c) size100_3 (d) size100_4

(e) size100_5

Figure 5.2: Algorithm’s performance shown at different cutoff values using insilico size 100
datasets and numParents=10. The y-axis corresponds to the MCC and the x-axis refers to
the cutoff value. Each graph shows the algorithm’s performance when run on its own and in
combination with GABI, depicted by a blue line and a red dashed line respectively.
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Figure 5.1 shows an irregular variation of the correlation coefficients for both stan-
dalone and with GABI which may be attributed to the small size 10 networks. This
irregularity is particularly prominent for cutoff values greater than 0.5, indicating a low
threshold for positive predictions using the small networks. Another reason might be
that when the cutoff gets high, there are very few (or no) positive predictions made,
and so the MCC decreases.

In the size10_4 graph, the algorithm with GABI performs better, denoted by higher
MCC values at each cutoff, where the cutoff value represents probability of the edge
in the network. This can be verified by calculating the AUC for the HDP-HMM-DBN
algorithm in both modes for network 4. Based on the values in Table 5.5, for network 4,
the AUC with GABI is indeed greater than that without GABI. The difference between
the AUC is even more prominent for network 1, with AUC without GABI being 0.6 and
AUC with GABI being 0.7. Overall, GABI seems to improve the performance of the
HDP-HMM-DBN algorithm for the insilico size 10 datasets, although the differences
in results are not statistically significant (based on the P-values in Table 5.7)

Using the size 100 datasets it is clearly noticeable how using GABI as a prior with the
HDP-HMM-DBN algorithm, gives better predictions, as indicated by a higher value
for the MCC measure. These results are statistically significant as indicated by the P-
values (0.0136, 0.0333, 0.028, 0.0119) for networks 1, 3, 4 and 5. Based on Table 5.6,
we can see that the AUC for the algorithm with GABI is greater that that without GABI,
with regards to all networks. Additionally, the AUC is greater when the maximum
number of parents is equal to the number of replicates (10 in this case) in the data,
compared to maximum number of parents being smaller (See Table 5.5 and 5.6). In
particular, with increasing cutoff values, we have improved correlation coefficients in
general for all networks.

5.1.4 Cross-Validation

The output of the HDP-HMM-DBN algorithm is an adjacency matrix with the proba-
bility of each edge existing and the cutoff determines which ones we take as positive
predictions. The aim for performing cross-validation is to find the optimal cutoff value
corresponding with the maximum value for MCC.

In our case, the insilico size 10 data is composed of 5 files. We select only 4 of them to
be used as training set and keep the remaining one for testing. We calculate the MCC
performance measures for each of the 4 training files. The coefficients at each cutoff
are then averaged. From these values we find the maximum average MCC value and
its corresponding cutoff value. This step is done to find the optimal cutoff value which
we then apply to the test file to derive the corresponding MCC. As we have 5 data files
the process is repeated 5 times so that each of the 5 files may be treated as test data;
the other files being used as training data as required.

Cross-validation has been performed for all the results generated by the runs listed in
Table 5.1. A few of the cross-validations tables generated are listed below with the
MCC measures. Probabilities above cutoff value indicate positive predictions.
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Standalone With GABI
Train Test Optimal Cutoff MCC Optimal Cutoff MCC

Insilico size 10, NumParents = 3
2,3,4,5 1 0.32 0.1731992 0.30 0.3540992
1,3,4,5 2 0.32 0.1896601 0.30 0.2699408
1,2,4,5 3 0.58 0.1276440 0.30 0.2362457
1,2,3,5 4 0.44 0.2853667 0.35 0.4583358
1,2,3,4 5 0.40 0.3104287 0.30 0.3415879

Insilico size 10, NumParents = 5
2,3,4,5 1 0.52 0.2774996 0.38 0.3604735
1,3,4,5 2 0.52 0.3072408 0.38 0.2652605
1,2,4,5 3 0.52 0.3410815 0.38 0.3789498
1,2,3,5 4 0.52 0.3817690 0.38 0.5072600
1,2,3,4 5 0.55 0.3916288 0.40 0.3852757

Table 5.2: Cross-validation table for insilico size 10 and numParents = 3 and 5.

Standalone With GABI
Train Test Optimal Cutoff MCC Optimal Cutoff MCC

Insilico size 100, NumParents = 3
2,3,4,5 1 0.20 0.01825332 0.45 0.03550667
1,3,4,5 2 0.20 0.03168943 0.45 0.01904052
1,2,4,5 3 0.25 0.03013492 0.45 0.04197943
1,2,3,5 4 0.60 0.02097569 0.45 0.04175986
1,2,3,4 5 0.20 0.02971240 0.45 0.03590798

Insilico size 100, NumParents = 10
2,3,4,5 1 0.65 0.06712193 0.80 0.18984800
1,3,4,5 2 1.00 0.04623111 1.00 0.07704713
1,2,4,5 3 0.80 0.05273394 0.90 0.14744300
1,2,3,5 4 0.75 0.04550241 0.80 0.13083250
1,2,3,4 5 1.00 0.06048800 0.80 0.13273450

Table 5.3: Cross-validation table for insilico size 100 and numParents = 3 and 10.

With GABI
Test MCC MCC

Insilico size 10 Insilico size 100
1 0.23924690 0.006519519
2 0.32732680 0.089337880
3 -0.03474072 0.111623900
4 0.20567190 0.068116080
5 Empty network returned 0.071879000

Table 5.4: Baseline performance table for GABI only
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5.1.5 Area under the ROC curve

We calculate the area under the curve when comparing the results of the runs with
the gold standard network. These values are used later on to derive: the standard
error, Z-Score and two-tailed P-value for each network in the size 10 and size 100
sub-challenges.

The tables listing the area under the curve for insilico size 10 (numParents=3, 5) and
insilico size 100 (numParents=5, 7, 10) are given below.

NumParents = 3 NumParents = 5
size10 Standalone With GABI Standalone With GABI

Network AUC AUC AUC AUC
1 0.6117647 0.6807843 0.6003922 0.7015686
2 0.6700149 0.6741071 0.6536458 0.6082589
3 0.6207843 0.6592157 0.6796078 0.7113725
4 0.7427056 0.7763042 0.7701149 0.7979664
5 0.7902462 0.7902462a 0.7940341 0.7940341b

Table 5.5: Table listing the AUC for insilico size 10 and NumParents = 3, 5. AUC values
greater than 0.75 are in bold face indicating a good binary classifier.

aNote: No network returned by GABI
bNote: No network returned by GABI

NumParents = 5 NumParents = 7 NumParents = 10
size100 Standalone With GABI Standalone With GABI Standalone With GABI
Network AUC AUC AUC AUC AUC AUC

1 0.5093391 0.5447550 0.5402797 0.5881821 0.5746433 0.6538027
2 0.5108880 0.5276248 0.5389281 0.5565336 0.5412943 0.5316289
3 0.5328762 0.5435602 0.5226067 0.5654760 0.5669465 0.6319084
4 0.5354981 0.5662960 0.5260552 0.5571204 0.5536849 0.6181007
5 0.5141168 0.5639231 0.5739836 0.5706252 0.5592627 0.6362945

Table 5.6: Table listing the AUC for insilico size 100 and NumParents = 5, 7, 10. AUC values
greater than 0.6 highlighting the best performance are in bold face.

The standard error, Z-score and P-value for each network in the insilico size 10 and
size 100 datasets, are given in Table 5.7. For insilico size 10, standard errors are given
only for the first three networks because the X value derived for networks 4 and 5 are
not within the accepted range of values in the "Calculate Standard Error" form on the
anaesthetist webpage.
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5.1.6 Integrated analysis

In this step, we further illustrate the MCC performance measures of the HDP-HMM-
DBN algorithm based on results of the different runs of the method with and without
GABI and with varying number of gene parents. Further graphical representations
of runs pertaining to insilico size 10 and size 100 datasets are shown in Figure 5.3
and Figure 5.4. These graphs show how the performance of the HDP-HMM-DBN
algorithm is influenced by: varying the maximum number of gene parents, and using
GABI.

Figure 5.3: MCC performance measures of the HDP-HMM-DBN method shown for each net-
work in the insilico size 10 datasets with varying number of gene parents. The x-axis refers
to the networks in the size 10 datasets and the y-axis refers to the MCC. The blue lines rep-
resent the method’s performance without GABI and the red lines correspond to the method’s
performance when used in combination with GABI. The different types of line correspond to
the different number of gene parents.
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Based on the meta-analysis graph, (Figure 5.3), illustrating the runs using insilico size
10 data, we can deduce that the algorithm overall performs better, both with and with-
out GABI, when the maximum potential number of gene parents is set to the number
of replicates in the gene expression data (5 in this case). The largest possible value we
can allocate to the variable, for the maximum number of gene parents, is limited to the
number of replicates. The algorithm performs better when the maximum number of
gene parents is larger because in the real data, there may be nodes with many parents.

To verify how the algorithm’s performance is affected by the value of the maximum po-
tential number of gene parents, we use the AUC values from Table 5.5 for NumParents=
3 and 5. For networks 3, 4 and 5, the AUC for the HDP-HMM-DBN algorithm, in both
modes, has a higher value when the number of gene parents equals 5 as opposed to with
number of gene parents equals 3. Network 1 also has a higher AUC when the method
is run in conjunction with GABI and NumParents = 5. Another interesting point, for
the standalone version, is that the cutoff with NumParents = 5 seems more stable than
with NumParents = 3 (Table 5.5). Additionally, performance is improved consider-
ably in the standalone and slightly with GABI as prior as indicated by the higher MCC
values.

We also note that the MCC is higher for most networks when the algorithm is run in
conjunction with GABI. This can checked using the AUC tables for NumParents = 3
and NumParents = 5 (Table 5.5). In both tables, the AUC when the method is used
with GABI is greater than the AUC when the method is used without GABI for most
of the networks.

However, GABI does not always improve performance, for example, predictions for
network 2 , where NumParents = 5, are more accurate with the HDP-HMM-DBN
algorithm run in standalone mode. This can be verified using Table 5.5, where the
AUC for the method run without GABI is 0.6536 while the AUC for the method run in
combination with GABI is 0.6083.
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Figure 5.4: MCC performance measures of the HDP-HMM-DBN method shown for each net-
work in the insilico size 100 datasets with varying number of gene parents. The x-axis refers
to the networks in the size 100 datasets and the y-axis refers to the MCC. The blue lines rep-
resent the method’s performance without GABI and the red lines correspond to the method’s
performance when used in combination with GABI. The different types of line correspond to
the different number of gene parents.

Similarly, for the insilico size 100 runs, better performance is achieved when the high-
est potential number of parents equals to the number of replicates in the time series
data used as input. This can be verified using the AUC when the NumParents = 5
(Table 5.5) and the NumParents = 10 (Table 5.6). For all 5 networks, both with and
without GABI, the AUC is significantly higher when the number of gene parents is
equal to 10, as opposed to the number of gene parents equal to 5.

Additionally, when GABI is used as prior, we note that the MCC performance measure
is higher, denoted by the red dashed-dotted line in the graph. Overall, the AUC for the
algorithm run with GABI is bigger than that run without GABI as shown in Tables
5.5 and 5.6. GABI has a statistically significant improvement in the performance of
the HDP-HMM-DBN algorithm in many cases, as indicated by the P-values in Ta-



62 Chapter 5. Benchmarking and Analysis

ble 5.7. With reference to the insilico size 100 sub-challenge with NumParents = 10,
for networks 1, 3, 4 and 5, we note that the algorithm when used in conjunction with
GABI gives better results, denoted by the following P-values: 0.0136, 0.0333, 0.028
and 0.0119.

Based on Table 5.4, GABI on its own gives better overall performance using the in-
silico size 100 datasets, denoted by higher MCC values, than the HDP-HMM-DBN
algorithm in standalone mode (Table 5.3). However, for the insilico size 10 datasets,
the HDP-HMM-DBN algorithm, in standalone mode, gives better predictions when
the maximum number of gene parents is equal to 5 (Table 5.2.

The meta-analysis graphs and the AUC and statistical analysis tables for both insilico
size 10 and size 100 results lead us to conclude that the HDP-HMM-DBN algorithm
gives better predictions when used in combination with GABI and when the maximum
possible number of gene parents is equal to the number of replicates in the expression
data. Running the algorithm on the renal cancer data, and armed with this information,
we set the numParents argument to be equal to the number of replicates and used GABI
as a prior.

Before running the HDP-HMM-DBN algorithm on the renal cancer data, we verify the
change in network structure at each timepoint using time series data for network 1 and
5 from the insilico size 10 datasets.

5.1.7 Validating the network structure change using DREAM4 data

To verify the change in network topology at each timepoint in the gene expression
data, we concatenate the datasets for two networks, namely networks 1 and 5. We then
run the HDP-HMM-DBN algorithm on it. As mentioned previously, for the first half
of the time series data, a perturbation was added at time t=0 and then it was removed
halfway through the gene expression data at time t=500. In the second half of the data
(t=500 to t=1000), the network relaxes.

The time steps for the concatenated (interleaved) datasets of networks 1 and 5 are to
be interpreted as follows:

• the first quarter corresponds to network 1 with perturbation

• the second quarter corresponds to network 1 with perturbation removed

• the third quarter corresponds to network 5 with perturbation

• the fourth quarter corresponds to network 5 with perturbation removed

The output of the HDP-HMM-DBN algorithm in this test is a list of state sequences at
each time point in the concatenated gene expression data (network 1 and 5). This list
tells us which network we have at each time point. Using the state sequence, we derive
a matrix containing 1 or 0, depending on whether the network is the same between
each possible pair of timepoints. A visualisation of the matrix is shown in Figure 5.5
where the time on the x and y axis refers to time steps 1 to 41 corresponding to the
actual time 0 to 1000 with interval 50.
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Figure 5.5: Network structure change using time series data for networks 1 and 5 from size 10
datasets

Values in the X and Y directions represent time points in the concatenated time series
data for networks 1 and 5. Based on Figure 5.5, we can see that the network changes
structure at timepoint 2, stays the same for the next 8 consecutive timepoints and then
changes again at time point 11 and so on.

Based on these results, we can see that although it is not perfect (there are networks at
time 1 and 21 that are only for that time point) it appears to correspond to the changes
we might expect for that data (the way it is divided up into quarters, listed above), and
so the time changing part is working.

5.2 Renal Cancer data

The HDP-HMM-DBN method is applied on renal cancer time course transcriptome
data from four representative cell lines exposed to the drug Sunitinib. A cell line is a
clone of cultured cells derived from an identified parental cell type [cel, 2016b].

Four cell lines were obtained from human cancer tissues (metastasis, primary tumours)
or endothelium, and were chosen from a panel of sixteen cell lines (Overton, personal
communication). These lines will enable us in the investigation of the mechanisms
involved in the spread of cancer cells to distant sites, and drug response/resistance and
angiogenesis in the context of Sunitinib treatment. The data consists of six time points
following Suntitib exposure in two conditions – hypoxia and normoxia.

Hypoxia is a term used in a medical context to indicate a condition where the tissues
are deprived of oxygen. It is often found in the central region of tumours (referred as
tumour hypoxia) due to the lack of vascularisation in those particular areas. Tumour
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hypoxia is increasingly recognised as a detrimental factor in cancer therapies. The lack
of adequate oxygen in the tissues can have a negative impact on treatment and can aid
malignant tumour growth [McKeown, 2014]. Normoxia is the term used to indicate
"normal" oxygen levels in tissues.

Work in this thesis will examine the time course drug response data from one of these
lines (Caki-1).

5.2.1 Drug response and resistance

The renal cancer data has been provided by Hans-Joachim Sonntag, a PhD student from
the Overton lab. This data is derived from the drug resistant Caki-1 cell line which has
been cultured under hypoxic conditions. Caki-1 cells were originally obtained from
a human renal cell carcinoma [Schömig and Schönfeld, 1990], and as a result they
represent a useful model in the study of renal cancer.

The data is provided in the form of three text files, each file containing data for one
replicate. Each row in the file consists of a gene identifier (an entrezID6 in our case),
followed by tab-separated gene expression values for six time points. Before running
the algorithm on the cancer data files the data is converted into the required format:
genes presented column-wise and rows representing the different time steps. Rows
with the same time stamp, representing replicates, are arranged to be consecutive.
Gene expressions with zero values are replaced by some Gaussian noise to allow for
the correct functioning of the HDP-HMM-DBN algorithm. The reason is that because
if multiple observations for a specific gene are exactly the same number, whether it is 0
or some other value, there is not enough information to calculate the likelihood. There-
fore, adding some small amount of noise means that they are not exactly the same, and
so the method will run.

The algorithm is launched once the data is in the correct format, GABI is enabled and
the variable numParents is set to three (the number of replicates in the renal cancer
data).

The adjacency matrix, the output of our algorithm, is next converted into a weighted
adjacency list in order to to be compatible with Cytoscape.

Cytoscape7 is a software platform used for the integration of molecular interaction net-
works with high-throughput gene expression profiles and data. It provides an intuitive
way of visualising and querying the network by, for example, linking it to databases
of functional annotations. The functionality of Cytoscape is further enhanced by plug-
ins, which can be used to perform additional analysis of the molecular networks. The
BiNGO plugin can be added to Cytoscape to find which Gene Ontology8 (GO) terms
are more represented in a set of genes found in a particular biological network.

6Entrez Gene - NCBI’s database for gene-specific information: http://www.ncbi.nlm.nih.gov/gene
7Cytoscape: http://www.cytoscape.org/what_is_cytoscape.html
8Gene Ontology: https://www.ebi.ac.uk/QuickGO/
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Cross-validation on the DREAM4 gold standard 100 node network sub-challenge data
identified a threshold of 0.45 (Table 5.3). The insilico size 100 sub-challenge is chosen
to determine the threshold value for the renal cancer data since the size of the networks
contained therein matches the size of the CAKI1 input dataset. This threshold value
is used to prune insignificant edges and ascertain that only highly significant edges,
with a weight of 0.45 or higher, are kept. By removing edges with a low weight,
only a subset of genes from the renal cancer data are used to generate the network in
Cytoscape.

Once the weighted adjacency list for the ApoCluster_CAKI1_Hyp data is ready, it is
imported into Cytoscape and a directed graph depicting the gene interactions in the
renal cancer data is generated. This network is shown in Figure 5.6 .

It is helpful, for further biological investigation of the gene regulatory network inferred
from the renal cancer data, to be able to tell from the network edges, which of the genes
are inhibitory and which ones increase the transcription of the genes they are pointing
to. We use Spearman’s Rank Correlation Coefficient for this.

Spearman’s Rank Correlation Coefficient is a statistical method used to detect mono-
tonic relationships. It helps verify the strength, direction and sign (positive or negative)
of a relationship between two variables. This technique is normally applied when eval-
uating the truth of a hypothesis. The coefficient value is between -1 and +1. The closer
the coefficient value is to these extremes, the stronger the correlation is deemed to be.
In our application, a Spearman Corrleation matrix is created from the weighted adja-
cency list of genes used to create the initial network. This matrix contains the values
of the Spearman Correlation Coefficient for each edge in the network and indicates the
strength and sign of the link between pairs of genes. After the Spearman Correlation
matrix is created, it is loaded into Cytoscape to give a sign to each edge in the network.
The resulting network is displayed in Figure 5.6.
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Explanation of Figure 5.6

Figure 5.7: Each node represents a gene. The colour of the node indicates the out-degree value
and the edges represent the regulatory relationships between the genes. The sign of the edge
represents the type of relationship (activatory or inhibitory) between the pair of genes

The Uniprot9 function for each of the genes mentioned in the Analysis chapter is given
in Appendix A.

The colour of a node is based on its outdegree. Outdegree is the number of edges
emanating from a node and is the number of child nodes. Node CD276, for example,
has five edges emanating from it and is thus coloured red; red nodes have five children.
Similarly: pink, orange, yellow, green and blue represent genes having: four, three,
two, one and zero children respectively.

Edges have three attributes: colour, sign and thickness.

The colour of an edge is based on the Spearman Correlation value derived from the
Spearman Corrleation matrix. A colour gradient with colours starting from blue, pink,
black, orange and red are used to represent the correlation values between -1 and 1.
Blue lines indicate a Spearman correlation in between -1 and -0.4, pink lines represent
a correlation between -0.4 and 0. Black lines represent a correlation approximating 0.
Orange lines refer to correlation value between 0 and 0.45 and red represent lines with
correlation approximating 1.

The edge sign indicates the relationship between a pair of genes, as defined by the
Spearman Correlation strength. → implies activation and a implies inhibition. There
is also a non-linear relationship where, for example, the gene may exhibit inhibition
at low or high concentrations, but activation at a middle concentration. A non-linear
relationship is represented by a dot at one end of an edge, as shown with the gene
CSF2, (pink node at the top left of the network). The gene CD276 (shown in the
network detail, Figure 5.7) has the highest outdegree and seems to activate CCL20 and
SYT1 but inhibits the expression of BCL2, DLL3 and STAT1.

The thickness of an edge represents the probability of the edge, as predicted by the
HDP-HMM-DBN algorithm, appearing in the gold-standard network. Thicker edges
are predicted as having a higher probability of existing.

9Uniprot Website: http://www.uniprot.org/
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The BCL2 gene is an apoptosis regulator in humans. As mentioned previously, apop-
tosis is a process whereby cell death is programmed for cells which have reached the
end of their useful life. BCL2, a protein-coding gene, suppresses apoptosis in certain
cells such as lymphocytes, (white blood cells forming part of the immune system), and
neural cells [bcl, 2016]. CD276 is a protein-coding gene found in humans. This gene is
involved in controlling the T-cell-mediated immune response and may also be related
to tumour cells [CD2, 2016]. It may be of interest that our regulatory network for the
renal cancer data indicates a possible inhibitory role for the C276 gene with regard to
BCL2.

BCL2L1 is another gene which plays a key role in apoptosis. It encodes a protein
related to the BCL2 protein family. The proteins encoded by this gene are involved
in the inhibition of cell death [BCL, 2016]. Our gene regulatory network indicates
a non-linear role for CCL2 with regard to BCL2L1 and it is shown with maximum
weight.

The activation of JAG1 by BMP5, which leads to the establishment of notch signalling,
is already an established biological fact [Zavadil et al., 2004; Niimi et al., 2007]. It is
encouraging that this relationship is shown on our gene regulatory network with a
strong probability.

The relationship between VEGFC and BCL2L1 is also interesting because hypoxic
signalling (VEGFC) is predicted to confer resistance to apoptosis (BCL2L1), this over-
all relationship is also consistent with literature where resistance to hypoxic stress is
expected to include evasion of apoptosis [Greijer and Van der Wall, 2004]

The following highlights some prominent topological features exhibited by the net-
work:

• CD276 has the most influence on other gene expressions with the highest out-
degree.

• With the highest in-degree, TNFRSF1A is the most influenced, including from
CD276 through STAT1.

• TIMP2 is self regulating its expression.

• A positive feedback exits between: LTB and GDF5; DLL3 and JAG1.

• BCL3 influences LTB through IGFBP3-CX3CL1-CXCL6 and VEGFA-SHC1.

To understand the biological functions of the genes in the network, DAVID10 (Database
for Annotation, Visualization and Integrated Discovery), is used to identify gene path-
ways and gene ontologies. DAVID was chosen because of its ease of use and range of
functionality. For example, with DAVID, we can identify the biological themes related
to the genes of interest and also find functionally related gene groups. As part of our
analysis we imported all the genes in the network into DAVID and investigated which
pathways, disease and functional categories the genes are associated with. The asso-
ciations are highly significant, for example the top result has a Benjamini corrected

10DAVID: https://david.ncifcrf.gov/
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P-value of 6.1E-12 and is associated with Cytokine-cytokine receptor interaction. Cy-
tokines are inflammatory mediators present in tumor tissues [Mantovani et al., 2008].
Some of the KEGG pathways involve apoptosis and chemokine signaling, which are
linked to cancer.

The top results for the gene ontologies are related to regulation of cell proliferation,
regulation of programmed cell death, regulation of apoptosis, chemotaxis and negative
regulation of apoptosis.





Chapter 6

Conclusion

6.1 Summary

This thesis has proposed a new method to reverse engineer gene regulatory networks
from gene expression data. The method uses the Infinite Hidden Markov model and a
Dynamic Bayesian Network (DBN) model to represent the predicted gene networks.
We also investigate the use of GABI, a relevance thresholding algorithm developed
by the Overton group, as a prior to our method. Our method allows us to predict
gene networks that can change their structures at different time points. To model the
sequential nature of time series data, it uses a non-parametric framework which can
be modified as necessary to adjust to the complexity of the data. This non-parametric
framework is the Hierarchical Dirichlet Process-Hidden Markov Model (HDP-HMM),
an extension of the standard Hidden Markov Model (HMM). Unlike the HMM, where
the number of hidden states is known in advance, the HDP-HMM can have an infinite
number of hidden states depending on the data.

In the HDP-HMM model, a Dirichlet Process prior is used to calculate the transition
probabilities of moving from one hidden state to another. The distributions associ-
ated with the individual states are grouped in a hierarchical structure, which facilitates
transitions between the potential states. In the original method [Thorne and Stumpf,
2012], a Bayesian network is used for the network representation. In this thesis, to
overcome the limitation of acyclic graph associated with Bayesian networks, we ex-
tend the original method by using Dynamic Bayesian networks to model the gene
regulatory networks at each hidden state. Our extended method is referred to as the
HDP-HMM-DBN method.

When deriving DBN structures, the MH Sampler algorithm is used to sample the nodes
for the network. This sampler can simulate distributions with a large number of dimen-
sions such as gene expression data. The HDP-HMM-DBN method can be passed as
argument a prior which removes edges with low significance in the network. We use
GABI as prior in our method. GABI also predicts directionality using information-
theory and the properties of the undirected relevance network.

We benchmark our method on data from the DREAM4 challenge, using time series
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datasets from the Insilico_Size10 and Insilico_Size100 sub-challenges. Several runs
were executed on the DREAM4 data with the number of gene parents as a variable.
For each value of the gene parent variable, the run is repeated with and without GABI.
The ROCR package is used to assess the performance of our method by comparing
the networks inferred from these runs with gold standard networks. We generate ROC
curves and graphs pertaining to the Matthews Correlation coefficient to visually anal-
yse the method’s performance. We also calculate areas under the ROC curves as part
of our analysis which we use to derive the standard error and the two-tailed P values
used for testing the differences in results when running the method with and without
GABI.

Based on the Matthews Correlation Coefficient graphs generated, the method (with
and without GABI) is shown to give an irregular variation of the correlation coefficient
when run on the Insilico_Size10 datasets. The threshold for positive predictions is also
quite low with a value of less than or equal to 0.5. This variability may be related to
the small size of the networks. It is also known that GABI performs better with larger
networks. Using the Insilico_Size100 datasets, the algorithm’s performance is more
uniform across the different networks. It is also more obvious from the graphs how
GABI helps to give better predictions, indicated by a higher coefficient value and a
larger cutoff number. From the meta-analysis graphs in Figure 5.3 and Figure 5.4, it
is clearly visible that the HDP-HMM-DBN method gives more accurate predictions
when the maximum number of potential parents of a node is larger than the number of
replicates in the gene expression data, although in practice this number is limited by
the data.

Based on the information derived from the benchmarking process, we make assump-
tions regarding the best settings for the HDP-HMM-DBN method which gives us opti-
mal performance. We note that our method performs better when used in combination
with GABI and when the parameter corresponding to the maximum number of gene
parents is equal to the number of replicates in the data.

The HDP-HMM-DBN method is then run on the renal cancer data provided by the
Overton group. We ensure that the method is run with GABI enabled and the parameter
for the number of gene parents set to the number of replicates in the cancer data. Using
the results produced by our method, we generate a regulatory network using Cytoscape,
a platform for analysing and visualising regulatory networks. The Cytoscape network
can be used for further biological analysis. For instance, gene interactions at specific
points during apoptosis and angiogenesis can be studied.

6.2 Contributions

In this section, we give a summary of the main contributions of this thesis.

1. Extension of the method proposed in [Thorne and Stumpf, 2012].
We implement a new method that builds on the one advanced in [Thorne and
Stumpf, 2012] and improve it by representing gene regulatory networks using
a dynamic Bayesian network model. The method has been developed in R and
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made into a package which makes it portable and thus can easily be shared in
the systems biology community.

2. Integration with the approaches developed by the Overton group.
GABI, an algorithm designed for the inference of small-scale network based on
tissue microarray (TMA) data, and developed by Alex Lubbock from the Over-
ton group, is integrated with the HDP-HMM-DBN method. By using GABI as
prior in our method, we ensure that only "high confidence" relationships between
genes in the networks inferred by our method are kept. GABI removes edges
which are below a certain relevance threshold value, determined by Spearman
correlation and symmetric uncertainty. Additionally, the edges which result from
GABI are signed or unsigned according to the Spearman correlation, and have
directionality based on information-theory and the properties of the network. We
show how overall performance is improved when the HDP-HMM-DBN method
is used in combination with GABI.

3. Dynamic analysis of biological data.
The HDP-HMM-DBN method can be used to generate time-varying gene regula-
tory networks from gene expression profiles. By using our method on biological
data, such as renal cancer data, we can gain a better understanding of how genes
interactions change with time and during certain events.

The biomedical application of this project is to develop useful tools to assist in
the understanding of the biology of diseases such as renal cell carcinoma, and
how they respond to certain drugs. For example, use of our method on the renal
cancer data indicates a highly probable non-linear role for CCL2 with regard to
BCL2L1. BCL2L1 is a gene that plays a key role in apoptosis as it encodes
proteins which are involved in the inhibition of cell death.

6.3 Limitations and Future Work

Network reverse engineering is a hard problem. This thesis has looked at integrating
different methods and developing a benchmark that includes different network struc-
tures at different times (matching the aims of [Thorne and Stumpf, 2012]). There is
much room for improving the method in terms of predictions and speed.

We plan to document the code and improve the user interface. This should make
it easier for other developers and biologists to run the method on their own data. We
would also like to support a wider range of input for the network. We plan to upload the
source code of our implementation into GitHub as an R package in order to encourage
its use and further development by other researchers.

To improve the algorithm’s performance in terms of speed, certain parts of the code can
be optimised by performing parallel programming through careful use of R libraries
and packages that offer parallel versions of compute-intensive functions, for exam-
ple graph operations such as search. Alternatively, the method could be developed to
run in Hadoop, a framework for performing distributed processing of big data using
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computer clusters. This improvement would make it possible to run the method on
larger datasets, enabling analysis of results which is currently not feasible. Running
experiments would also be less time-consuming.

This method is not necessarily restricted to analysing gene expression data. Another di-
rection for further work is to target the generality and wider applicability of the method
in other domains requiring similar modelling. For example, inferring biological neural
networks from time series data, or modelling particle-based interactions in a physical
system.



Appendix A

Uniprot genes function

The following is the Uniprot function for the genes mentioned in the Analysis chapter
(source: http://www.uniprot.org/).

Gene Name: CD276
Protein: CD276 antigen
Function: May participate in the regulation of T-cell-mediated immune response. May play a
protective role in tumor cells by inhibiting natural-killer mediated cell lysis as well as a role of
marker for detection of neuroblastoma cells. May be involved in the development of acute and
chronic transplant rejection and in the regulation of lymphocytic activity at mucosal surfaces.
Could also play a key role in providing the placenta and fetus with a suitable immunological
environment throughout pregnancy. Both isoform 1 and isoform 2 appear to be redundant in
their ability to modulate CD4 T-cell responses. Isoform 2 is shown to enhance the induction
of cytotoxic T-cells and selectively stimulates interferon gamma production in the presence of
T-cell receptor signaling.

Gene Name: BCL2
Protein: Apoptosis regulator Bcl-2
Function: Suppresses apoptosis in a variety of cell systems including factor-dependent lym-
phohematopoietic and neural cells. Regulates cell death by controlling the mitochondrial mem-
brane permeability. Appears to function in a feedback loop system with caspases. Inhibits cas-
pase activity either by preventing the release of cytochrome c from the mitochondria and/or by
binding to the apoptosis-activating factor (APAF-1). May attenuate inflammation by impairing
NLRP1-inflammasome activation, hence CASP1 activation and IL1B release.

Gene Name: BCL2L1
Protein: Bcl-2-like protein 1
Function: Potent inhibitor of cell death. Inhibits activation of caspases. Appears to regulate
cell death by blocking the voltage-dependent anion channel (VDAC) by binding to it and pre-
venting the release of the caspase activator, CYC1, from the mitochondrial membrane. Also
acts as a regulator of G2 checkpoint and progression to cytokinesis during mitosis. Isoform
Bcl-X(L) also regulates presynaptic plasticity, including neurotransmitter release and recovery,
number of axonal mitochondria as well as size and number of synaptic vesicle clusters. During
synaptic stimulation, increases ATP availability from mitochondria through regulation of mi-
tochondrial membrane ATP synthase F1F0 activity and regulates endocytic vesicle retrieval in
hippocampal neurons through association with DMN1L and stimulation of its GTPase activity
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in synaptic vesicles. May attenuate inflammation impairing NLRP1-inflammasome activation,
hence CASP1 activation and IL1B release.

Gene Name: CCL2
Protein: C-C motif chemokine 2
Function: Chemotactic factor that attracts monocytes and basophils but not neutrophils or
eosinophils. Augments monocyte anti-tumor activity. Has been implicated in the pathogen-
esis of diseases characterized by monocytic infiltrates, like psoriasis, rheumatoid arthritis or
atherosclerosis. May be involved in the recruitment of monocytes into the arterial wall during
the disease process of atherosclerosis.

Gene Name: JAG1
Protein: Protein jagged-1
Function: Ligand for multiple Notch receptors and involved in the mediation of Notch sig-
naling. May be involved in cell-fate decisions during hematopoiesis. Seems to be involved in
early and late stages of mammalian cardiovascular development. Inhibits myoblast differentia-
tion (By similarity). Enhances fibroblast growth factor-induced angiogenesis (in vitro).

Gene Name:BMP5 Protein: Bone morphogenetic protein 5 Function: Induces cartilage and
bone formation.

Gene Name: VEGFC
Protein: Vascular endothelial growth factor C
Function: Growth factor active in angiogenesis, and endothelial cell growth, stimulating their
proliferation and migration and also has effects on the permeability of blood vessels. May func-
tion in angiogenesis of the venous and lymphatic vascular systems during embryogenesis, and
also in the maintenance of differentiated lymphatic endothelium in adults. Binds and activates
VEGFR-2 (KDR/FLK1) and VEGFR-3 (FLT4) receptors.

Gene Name: TNFRSF1A
Protein: Tumor necrosis factor receptor superfamily member 1A
Function: Receptor for TNFSF2/TNF-alpha and homotrimeric TNFSF1/lymphotoxin-alpha.
The adapter molecule FADD recruits caspase-8 to the activated receptor. The resulting death-
inducing signaling complex (DISC) performs caspase-8 proteolytic activation which initiates
the subsequent cascade of caspases (aspartate-specific cysteine proteases) mediating apopto-
sis. Contributes to the induction of non-cytocidal TNF effects including anti-viral state and
activation of the acid sphingomyelinase.

Gene Name: STAT1 Protein: Signal transducer and activator of transcription 1-alpha/beta
Function: Signal transducer and transcription activator that mediates cellular responses to in-
terferons (IFNs), cytokine KITLG/SCF and other cytokines and other growth factors. Fol-
lowing type I IFN (IFN-alpha and IFN-beta) binding to cell surface receptors, signaling via
protein kinases leads to activation of Jak kinases (TYK2 and JAK1) and to tyrosine phos-
phorylation of STAT1 and STAT2. The phosphorylated STATs dimerize and associate with
ISGF3G/IRF-9 to form a complex termed ISGF3 transcription factor, that enters the nucleus.
ISGF3 binds to the IFN stimulated response element (ISRE) to activate the transcription of
IFN-stimulated genes (ISG), which drive the cell in an antiviral state. In response to type II
IFN (IFN-gamma), STAT1 is tyrosine- and serine-phosphorylated. It then forms a homodimer
termed IFN-gamma-activated factor (GAF), migrates into the nucleus and binds to the IFN
gamma activated sequence (GAS) to drive the expression of the target genes, inducing a cel-
lular antiviral state. Becomes activated in response to KITLG/SCF and KIT signaling. May
mediate cellular responses to activated FGFR1, FGFR2, FGFR3 and FGFR4.
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Gene Name: TIMP2
Protein: Metalloproteinase inhibitor 2
Function: Complexes with metalloproteinases (such as collagenases) and irreversibly inac-
tivates them by binding to their catalytic zinc cofactor. Known to act on MMP-1, MMP-2,
MMP-3, MMP-7, MMP-8, MMP-9, MMP-10, MMP-13, MMP-14, MMP-15, MMP-16 and
MMP-19.

Gene Name: LTB4R
Protein: Leukotriene B4 receptor 1
Function: Receptor for extracellular ATP > UTP and ADP. The activity of this receptor is
mediated by G proteins which activate a phosphatidylinositol-calcium second messenger sys-
tem. May be the cardiac P2Y receptor involved in the regulation of cardiac muscle contraction
through modulation of L-type calcium currents. Is a receptor for leukotriene B4, a potent
chemoattractant involved in inflammation and immune response.

Gene Name: GDF5
Protein: Growth/differentiation factor 5
Function: Growth factor involved in bone and cartilage formation. During cartilage devel-
opment regulates differentiation of chondrogenic tissue through two pathways. Firstly, pos-
itively regulates differentiation of chondrogenic tissue through its binding of high affinity
with BMPR1B and of less affinity with BMPR1A, leading to induction of SMAD1-SMAD5-
SMAD8 complex phosphorylation and then SMAD protein signaling transduction (PubMed:24098149,
PubMed:21976273, PubMed:15530414, PubMed:25092592). Secondly, negatively regulates
chondrogenic differentiation through its interaction with NOG (PubMed:21976273). Required
to prevent excessive muscle loss upon denervation. This function requires SMAD4 and is medi-
ated by phosphorylated SMAD1/5/8 (By similarity). Binds bacterial lipopolysaccharide (LPS)
and mediates LPS-induced inflammatory response, including TNF secretion by monocytes.

Gene Name: DLL3
Protein: Delta-like protein 3
Function: Inhibits primary neurogenesis. May be required to divert neurons along a specific
differentiation pathway. Plays a role in the formation of somite boundaries during segmentation
of the paraxial mesoderm (By similarity).

Gene Name: BCL3
Protein: B-cell lymphoma 3 protein
Function: Contributes to the regulation of transcriptional activation of NF-kappa-B target
genes. In the cytoplasm, inhibits the nuclear translocation of the NF-kappa-B p50 subunit. In
the nucleus, acts as transcriptional activator that promotes transcription of NF-kappa-B target
genes. Contributes to the regulation of cell proliferation (By similarity).

Gene Name: IGFBP3
Protein: Insulin-like growth factor-binding protein 3
Function: IGF-binding proteins prolong the half-life of the IGFs and have been shown to
either inhibit or stimulate the growth promoting effects of the IGFs on cell culture. They
alter the interaction of IGFs with their cell surface receptors. Also exhibits IGF-independent
antiproliferative and apoptotic effects mediated by its receptor TMEM219/IGFBP-3R.

Gene Name: CX3CL1
Protein: Fractalkine
Function: Acts as a ligand for both CX3CL1 and integrins. Binds to CX3CR1 (PubMed:23125415,
PubMed:9931005, PubMed:21829356). Binds to integrins ITGAV:ITGB3 and ITGA4:ITGB1.



78 Appendix A. Uniprot genes function

Can activate integrins in both a CX3CR1-dependent and CX3CR1-independent manner. In the
presence of CX3CR1, activates integrins by binding to the classical ligand-binding site (site 1)
in integrins. In the absence of CX3CR1, binds to a second site (site 2) in integrins which is dis-
tinct from site 1 and enhances the binding of other integrin ligands to site 1 (PubMed:23125415,
PubMed:24789099). The soluble form is chemotactic for T-cells and monocytes and not for
neutrophils. The membrane-bound form promotes adhesion of those leukocytes to endothe-
lial cells. May play a role in regulating leukocyte adhesion and migration processes at the
endothelium.

Gene Name: CXCL6
Protein: C-X-C motif chemokine 6
Function: Chemotactic for neutrophil granulocytes. Signals through binding and activation of
its receptors (CXCR1 and CXCR2). In addition to its chemotactic and angiogenic properties,
it has strong antibacterial activity against Gram-positive and Gram-negative bacteria (90-fold-
higher when compared to CXCL5 and CXCL7).

Gene Name: VEGFA
Protein: Vascular endothelial growth factor A
Function: Growth factor active in angiogenesis, vasculogenesis and endothelial cell growth.
Induces endothelial cell proliferation, promotes cell migration, inhibits apoptosis and induces
permeabilization of blood vessels. Binds to the FLT1/VEGFR1 and KDR/VEGFR2 receptors,
heparan sulfate and heparin. NRP1/Neuropilin-1 binds isoforms VEGF-165 and VEGF-145.
Isoform VEGF165B binds to KDR but does not activate downstream signaling pathways, does
not activate angiogenesis and inhibits tumor growth.

Gene Name: SHC1
Protein: SHC-transforming protein 1
Function: Signaling adapter that couples activated growth factor receptors to signaling path-
ways. Participates in a signaling cascade initiated by activated KIT and KITLG/SCF. Isoform
p46Shc and isoform p52Shc, once phosphorylated, couple activated receptor tyrosine kinases
to Ras via the recruitment of the GRB2/SOS complex and are implicated in the cytoplasmic
propagation of mitogenic signals. Isoform p46Shc and isoform p52Shc may thus function as
initiators of the Ras signaling cascade in various non-neuronal systems. Isoform p66Shc does
not mediate Ras activation, but is involved in signal transduction pathways that regulate the
cellular response to oxidative stress and life span. Isoform p66Shc acts as a downstream tar-
get of the tumor suppressor p53 and is indispensable for the ability of stress-activated p53 to
induce elevation of intracellular oxidants, cytochrome c release and apoptosis. The expression
of isoform p66Shc has been correlated with life span (By similarity). Participates in signal-
ing downstream of the angiopoietin receptor TEK/TIE2, and plays a role in the regulation of
endothelial cell migration and sprouting angiogenesis.
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