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Abstract

Although the application of machine learning to financial time series in stock markets,

as an enhancement of technical analysis, experienced an increased interest in the last

decades, research on more recent techniques from the area of deep learning for this pur-

pose, and for the testing of economic theory, remains sparse. More generally, a surge in

research on deep-layered models for time series analysis led to applications in a vari-

ety of fields, establishing this topic as a challenging subject. The first part of the tested

hypothesis states that deep-layered feedforward artificial neural networks are able to

learn complex time-shifted correlations between step-wise trends of a large number of

noisy time series, using only the preceding time steps’ gradients as inputs. The second

part states that such correlations are present in stock prices, and that these models can

be used to predict changes in a price’s trend based on other stocks’ trend gradients of

the previous time step, delivering empirical evidence against both the random market

hypothesis and the efficient-market hypothesis. In more narrowly defined terms, this

applied part is situated at the intersection of computational finance and financial econo-

metrics. Using the stocks of the S&P 500 Index as an experimental dataset, the models

developed for this thesis are able to successfully predict trend changes based solely

on information about other stocks’ preceding gradients, with accuracies above chosen

market baselines and adhering to methods used for a rigorous statistical validation of

the results. Apart from the applicability of the investigated approach to a vast array of

problems dealing with complex relationships between numerous and noise-laden time

series, this thesis presents compelling evidence against both economic hypotheses.
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Chapter 1

Introduction

In this chapter, the motivation for the research at hand is summarised, as well as an

overview of the hypothesis, the target deliverables and the relevance to different scien-

tific fields of research. Following this introduction, an outline and explanation of the

structure and findings is given to serve as a concise synopsis for the interested reader.

1.1 Motivation

Due to the inherent nature of investments in companies’ performance, stock market

prediction is a lucrative and therefore potentially attractive endeavour. From the late

1980s onwards, machine learning models based on historical stock market data started

to be applied to solve the difficulty of such predictions, underpinned by the assumption

that this kind of data contains relevant information that could be used to predict future

price trends (White, 1988). This necessary assumption does, however, stand in direct

violation of the long-standing efficient-market hypothesis in economics and finance,

which describes stock market mechanics as informationally efficient (Fama, 1965).

Should the postulate of the efficient-market hypothesis hold, the only source of changes

in stock prices would be new and unpredictable information, as markets would already

reflect all available information. This notion of information efficiency is consistent

with the random walk hypothesis, which states that stock markets follow a random

walk and are thus inherently unpredictable (Kendall and Bradford Hill, 1953; Cootner,

1964; Malkiel, 1973). In the case of stock markets merely following a random walk,

it would be impossible to forecast price trends in a manner that results in over-average

returns over long periods of time and without a proportionately higher risk exposure.
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Chapter 1. Introduction 2

The growing interest in research dealing with the usage of artificial neural networks for

stock market prediction is further facilitated by the availability of large-scale historic

stock market information. As such information, e.g. on stock prices and volumes of

stock trades, takes the form of time series, classical approaches to time series analysis

are currently widespread within the investment industry (Clarke et al., 2001). This

configuration, together with the existence of related hypotheses, makes the prediction

of stock price changes based on historical data a good use case for trend forecasting in

complex and potentially intercorrelated time series. Although a small number of papers

on the topic of deep learning models for stock price prediction has been published in

recent years, compelling and thorough evidence for the feasibility is yet outstanding.

1.2 Problem description

One of the main concerns for the effective application of deep-layered neural networks

is the correct choice and implementation of feature engineering, which often consumes

large parts of a machine learning project’s time and relies on domain knowledge for

the identification of good data representations (Najafabadi et al., 2015). As linear re-

gressions on time series are a simple measurement of trends, such regressions hold the

potential of being used as input features extracted from the respective time series. For

the use in the input layer of a feedforward neural network, the results have to be further

reduced to a vector per training example while maintaining a rich-enough representa-

tion, e.g. as the gradients computed through the first derivatives of linear regressions.

The gradient in such a case does not represent the value of a time series at a cer-

tain point, but the strength of the upwards or downwards movement as approximated

by the regression. It has to be determined whether the gradients of such simple trend

approximations contain enough information to retain complex correlations between

time series at different points of time, and whether deep-layered feedforward neural

networks are able to extract this information. Changes in a stock market are fuelled

by human decisions based on beliefs about a stock’s future performance. In the case

of new information not directly related to the respective company, this equates to pre-

dictions about other investors’ and other people’s predictions, i.e. beliefs about other

humans’ future beliefs. Examples of such processes are the sharp fall in stock prices

for various airlines after the September 11 attacks, and the negative effects of acknowl-

edgements of a CEO’s deteriorated health (Drakos, 2004; Perryman et al., 2010).
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This makes markets inherently noisy and prone to fluctuations via overreactions and

dynamical reinforcement, which is a complicating factor (Chen et al., 1986). It is

subject of a long-standing academic debate that is centred on the efficient-market hy-

pothesis and the random walk hypothesis whether such time-shifted correlations in the

stock market exist at all. Should such correlations be present in historical information,

they must also be detectable despite potentially poor data quality, and through the noise

that is present in stock markets, adding the development of a thorough data cleansing,

pre-processing and feature engineering to the deep learning aspects of this thesis.

1.3 Hypothesis and deliverables

The hypothesis of this thesis is two-fold and covers both research in deep learning and

time series analysis, and an empirical approach to economic theory as a use case:

• Deep-layered feedforward neural network architectures can be used to consis-

tently learn and, for previously unseen data, act with an accuracy above prede-

termined baselines on time-shifted correlations of gradients that are computed

step-wise for complex time series, with only the previous interval as features.

• Price series in historical stock market data contain time-shifted correlations that

can be successfully exploited with such architectures, resulting in above-average

price trend predictions without data of the target stock present in the inputs, and

taking up- and downward trend distributions for time intervals into account.

In order to result in empirical evidence that holds up to scientific scrutiny and peer

reviews, certain standards have to be met in regard to the deliverables of this the-

sis. With the intention to create a high-quality set of features to train the models, the

datasets have to be cleansed and pre-processed in a way that allows for a perfect align-

ment of different stocks’ observations for all time steps. Subsequently, the finalised

models have to be shown to learn and successfully act on non-random correlations

with above-average predictions of trend changes. Validation measures have to confirm

the models outperforming predetermined baselines that exclude the simple learning of

distributions or frequencies, and adhering to statistical key performance indices.
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1.4 Relevance and contributions

1.4.1 Economic theory

The application of the proposed approach regarding the learning of time-shifted corre-

lations between time series to stock market data represents an empirical test of both the

efficient-market hypothesis and the random walk hypothesis. Positive results for this

thesis would deliver rigorously tested empirical evidence against the latter hypothesis,

as the assumption of stock prices over time as random walks excludes the possibility

of such exploitable information in historical stock market data. In addition, positive

results would support previous weak evidence for the absence of a random walk in fi-

nancial time series via the use of artificial neural networks by Darrat and Zhong (2000),

and invalidate research that argues for the existence of a random walk specifically for

S&P 500 stocks due to an inability of artificial neural networks to extract any informa-

tion resulting in over-average predictions for these stocks (Sitte and Sitte, 2002).

The consistency of the efficient-market hypothesis with the random walk hypothesis

also means that positive findings would serve as evidence against the efficient-market

hypothesis, which is widely supported by academics in finance (Doran et al., 2010).

This hypothesis exists in three different grades of strength and could be further weak-

ened in its postulates to accommodate affirmative results. The different forms of the

efficient-market hypothesis are described in Section 2.1.1, and Section 6.2 discusses

possible alterations to the hypothesis to conciliate it with the findings of this thesis.

1.4.2 Applied machine learning

Deep learning recently started to be applied to stock price time series to improve sim-

ple strategies like momentum trading, with results that indicate a feasibility of such

methods (Takeuchi and Lee, 2013). Further research projects that fall into the category

of time series-based stock prediction will be described in Section 2.1.3, and used for

comparisons in a subsequent discussion of this thesis’ findings in Section 5.1.2. Suc-

cessful experiments would validate the approach of using deep-layered feedforward

neural networks for the exploitation of time-shifted and highly complex correlations

between time series in the area of trend prediction. For that reason, the research of this

thesis aims to further the understanding of deep learning in this specific context.
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1.4.3 Time series analysis

As described in Section 1.1, stock market data constitutes a fitting example of com-

plex time series for predictive tasks. While research on gradients of regression lines

performed on stock price intervals is sparse, the utilisation of directional derivatives

of wavelets was introduced earlier in the area of natural language processing (Gib-

son et al., 2013). The usage of derivative-based features quickly leaked into research

in statistics and digital signal processing (Górecki and Łuczak, 2014; Baggenstoss,

2015). Should a gradient-based approach to trend prediction relying solely on past

time series information of correlated variables lead to positive results in this scenario,

these findings would deliver further evidence for the utility of gradients in the form

of linear regression derivatives for time series analysis. In addition, applicable results

would demonstrate the value of deep learning approaches to these problems.

1.5 Outline of this thesis

Chapter 1 acts as an introduction to the topics that form parts of this thesis, i.e. stock

market prediction, applied machine learning and time series analysis. It also explains

the hypothesis that is investigated and describes the deliverables necessary to draw

valid conclusions from the results of the experiments. Following this initial introduc-

tion and overview, the results of an extensive background research are presented in

Chapter 2, which is split in three parts that mirror the description of this thesis’ rel-

evance to three difference areas of research in Section 1.4. This includes an explana-

tion of the related economic framework, a historical and topical overview of efforts in

computational stock market prediction, considerations when dealing with deep-layered

artificial neural networks, and recent advances in trend forecasting for time series.

Chapter 3 details the methodology and setups for the experiments performed for this

thesis. Initially, the data mining process, as well as the data provider and an overview

of the datasets, are described. This guide is followed by an account of the data cleans-

ing and pre-processing steps that are taken to prepare the datasets for the subsequent

feature engineering via linear regressions over time intervals and their first derivatives.

Lastly, the specific implementation of the deep learning experiments, including com-

plexity tests with bottleneck layers and high-volatility data, is explained step by step.
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The same chapter subsequently discusses the fundamental problems that can occur

when performing two-class trend prediction for time series, followed by a description

of the validation procedures that are implemented to confirm the significance of the

findings. In order to check whether the experimental models outperform the prediction

of the class with the highest frequency in the respective training set, the predictions

for each stock are matched against single-class vectors. To test for the possibility of a

model just learning the distribution of the training targets, a random permutation of the

predictions for both each stock and each cross-validation fold within a stock prediction

are then computed and compared against the accuracy of the unchanged predictions.

Chapter 4 summarises the experimental results, covering the primary experiments

on the two five-year datasets, as well as the results for the subsequent experiments that

deal with high-volatility scenarios and bottleneck models for the complexity appraisal

of correlations between stock price series. For the primary experiments, an average

accuracy of 56.02% is reached for one-day time steps, whereas the average accuracy

decreases along with smaller intervals, with 53.95% and 51.70% for one-hour and

half-an-hour time steps respectively. For a select number of stocks, these average ac-

curacies rise to up to 63.95%, indicating that some stocks exhibit stronger correlations

with other stocks’ past data. The results for bottleneck models show a similar average

accuracy of 55.03% for a 10-neuron bottleneck layer, while experiments for smaller

bottleneck layers quickly fade into levels situated only slightly above random chance.

Chapter 5 contains a thorough discussion of the results for all experiments through

the lens of the chosen validation metrics, as well as a comparison of the experiments

and the respective results to existing research related to this thesis. Possible short-

falls of the experiments and the validation procedures are lighted to allow for a critical

examination. The complexity tests via bottleneck layers are further examined in this

chapter, and the results for the high-volatility scenarios linked to financial crises are

viewed within the scope of the wider economic framework. Following the discussion,

Chapter 6 lists the conclusions that are drawn, and summarises the contributions to

existing theory. The experimental results are found to confirm the investigated hy-

pothesis for both the applicability of deep-layered feedforward neural networks to a

gradient-based analysis of correlations between time series and the evidence against

the unaltered efficient-market hypothesis and the random walk hypothesis. In addi-

tion, a selection of suggestions for further research is given to inspire future enquiries.



Chapter 2

Background research

The first chapter gave an introduction to this thesis and an overview over its structure,

as well as a high-level summary of its content and results. In this chapter on back-

ground research, the outcomes of a review of related literature are detailed to facilitate

a deeper understanding of the economic framework, machine learning approaches to

stock market prediction, the history of and considerations regarding deep-layered neu-

ral networks, and relevant research in the broader area of time series analysis.

2.1 Stock market prediction

2.1.1 The Efficient-market hypothesis

The efficient-market hypothesis was formulated by Fama (1965). In general, it states

that markets are informationally efficient, and historical stock market information there-

fore does not contain information that is not already reflected in current prices. Cur-

rently, there are three different versions of this hypothesis, which differ in the grades

of strength of their postulates about market mechanics (Malkiel and Fama, 1970):

The weak-form efficient-market hypothesis states that all publicly available infor-

mation is already reflected in current stock prices. It excludes the possibility of above-

average returns based on technical analysis, i.e. stock trading decisions made on the

basis of past stock market information, over prolonged periods of time. Short-termed

positive returns due to inefficiencies are allowed in this framework, as well as long-

term positive returns through fundamental analysis, i.e. stock trading decisions based

on further information like companies’ financial statements and a CEO’s health.

7
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The semi-strong-form efficient-market hypothesis states that publicly available in-

formation is incorporated into the stock market sufficiently fast to make a reliable

usage of both technical and fundamental analysis impossible. This postulate is similar

to reducing stock price series to a random walk, with the notable exceptions of insider

trading and other situations that prevent information from entering the public sphere.

The strong-form efficient-market hypothesis, going a step further, states that all ex-

isting information, both private and public, is already incorporated into the market. In

such a scenario, it is categorically impossible to reliably earn returns above the mar-

ket average, with seemingly contradictory cases being reduced to statistically expected

outliers and all sorts of stock investment being identical to a game of random chance.

The random walk hypothesis is usually attributed to Malkiel (1973), although ran-

dom walks in stock prices were earlier discussed by Fama (1965), and Kendall and

Bradford Hill (1953). It is consistent with all forms of the efficient-market hypoth-

esis, as reliable success via technical analysis is excluded by all three versions, and

stock markets are postulated to only react to the creation of new information. Both

hypotheses are wide-spread in economics and finance, although the efficient-market

hypothesis sparked an ongoing and still-lasting debate, especially from the field of be-

havioural economics (Nicholson, 1968; Rosenberg et al, 1985; Kamstra et al., 2015).

2.1.2 Dragon kings and black swans

Dragon king is a term introduced by Sornette (2009) to describe unique events with

a large-scale impact, which are predictable to a certain degree. While the initial paper

on the topic applied this hypothesis to a wide range of topics, including distributions

of earthquake energies and in material failure, subsequent research focussed more on

financial markets as an exemplary area of application (Johansen and Sornette, 2010).

Black swan is a term usually contrasted with dragon kings, and on which the latter

represent an alternative view. It describes events of the same magnitude, but with

inherent unpredictability (Taleb, 2007). Notably, the financial crisis of 2007/2008 is

often stated to be either one of the two in the context of its potential predictability. Both

terms are linked to research in power law models in statistics, as well as catastrophe

theory in mathematics. Recent research as to whether these approaches can confirm

the existence of dragon-king events in stock market crises differ, with conclusions that

either confirm or deny the predictability (Jacobs, 2014; Barunik and Kukacka, 2015).
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2.1.3 Time series-based prediction

Technical analysis, mentioned in Section 2.1.1, is decision-making in stock trading

based on historical stock market data. The assumption behind its utilisation in the

investment industry is that above-average returns are possible when using past time

series of stock information without a proportionally increased risk exposure. While

this assumption is inconsistent with the random walk hypothesis and all forms of the

efficient-market hypothesis, Clarke et al. (2001) show that this practice is wide-spread

in the investment industry. A meta-analysis by Park and Irwin (2004) shows that the

majority of papers on the topic of technical analysis report a profitability that stands in

contrast to the efficient-market hypothesis. Such analyses should, however, be inter-

preted with caution, as there could be a publication bias in favour of positive results.

White (1988) hypothesised early that artificial neural networks could be successfully

used to deliver empirical evidence against all three forms of the efficient-market hy-

pothesis, reporting an R2 value of 0.175 for the use of a simple feedforward network

and the five previous days of IBM stock prices as inputs for a regression task. The

efficient-market hypothesis itself is aptly summarised as follows in the same paper:

”The justification for the absence of predictability is akin to the reason
that there are so few $100 bills lying on the ground. Apart from the fact
that they aren’t often dropped, they tend to be picked up very rapidly. The
same is held to be true of predictable profit opportunities in asset markets:
they are exploited as soon as they arise.” (White, 1988)

The notion of such models being able to outperform the market that was later applied to

deliver first indications of the reliable feasibility by identifying one-week overall trends

in markets using such models (Saad, 1998). Zhang et al. (1997) find that artificial neu-

ral networks are especially suited for forecasting due to their unique characteristics,

which are stated as arbitrary function mapping, non-linearity and adaptability. Skabar

and Cloete (2002) compare a neural network model with just one hidden layer trained

on both a collection of randomly generated data and a small subset of historical stock

prices, reporting a statistically significant return for the use of stock market informa-

tion. Research on artificial neural networks for stock market prediction does, however,

remain sparse over the last decades, with a notable shift taking place in the 2010s.
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In recent years, the founder of the efficient-market hypothesis has investigated the ef-

ficacy of momentum trading, i.e. the observation that there are positive trends for

high-performing stocks over multiple months, while the same holds true for low-

performance stocks and negative trends. The apparent ability of momentum-based

strategies to outperform the market are called a premier anomaly within the frame-

work of the efficient-market hypothesis (Fama and French, 2008). Takeuchi and Lee

(2013) is, to the knowledge of the two authors, the first published research on deep

learning for stock market prediction and intends to exploit said efficacy of momentum

trading. Drawing on work by Hinton and Salakhutdinov (2006) on the construction of

autoencoders via stacked restricted Boltzmann machines for dimensionality reduction

and feature learning, stock movements are predicted on the basis of historical stock

market data of only the respective target stocks from a large set of NYSE stocks. With

an average accuracy of 53.36%, the model delivers evidence for above-average returns

by using features learned from 12-month periods to predict the trend for the respective

next month, and serves as a baseline for subsequent research endeavours in this field.

Since the inception of this thesis in 2015, new research on deep learning for time

series-based prediction has been published in the wake of a seemingly increased inter-

est in the topic. Influenced heavily by Takeuchi and Lee (2013), Batres-Estrada (2015)

constructs a deep belief network composed of stacked restricted Boltzmann machines,

followed by a feedforward artificial neural network with one hidden layer. The input

and objectives are similar, with the previous 12 months worth of a stock’s log-returns

as the input to predict the subsequent month’s trend in a binary fashion, with the addi-

tion of daily log-returns for each day of a respective month. This approach results in

an accuracy of 52.89% for the test set, which outperforms naı̈ve baselines and a simple

logistic regression, and yields results that are comparable to Takeuchi and Lee (2013).

Dixon et al. (2016) implement a feedforward artificial neural network with five hidden

layers for trinary classification, differing in an output that represents little or no change

from the previously mentioned research. Using data of CME-listed commodities and

foreign exchange futures in five-minute intervals to generate a variety of engineered

features like moving correlations, a single model is trained instead of a separate model

for each target instrument and results in an average accuracy of 42.0% for the investi-

gated three-class prediction task. It should, however, be noted that no cross-validation

is carried out, which would further validate the results for economic conclusions.
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2.1.4 Text analysis-based prediction

Although alternative methods of stock market prediction are not featured in the ex-

periments of this thesis, another computational approach to this problem should be

described in order to make this chapter a well-rounded overview of current trends in

stock market prediction. In addition, it is important to understand the varying impli-

cations for economic theory regarding empirical evidence for the efficacy of different

methodologies, and to contribute a further baseline for later comparisons. Apart from

the sparse literature on deep learning for time series-based stock market prediction,

text-based prediction approaches using machine learning models gained traction as the

predominant alternative during the last years. The notion of using news articles, which

present new information instead of historical data, to predict stock prices was intro-

duced by Lavrenko et al. (2000) and is a common baseline for subsequent research.

A system devised by Schumaker and Chen (2009a), named AZFinText, lead to wide-

spread news coverage due to a directional accuracy of 57.1% for the best-performing

model. Using a support vector machine with a proper-nouns scheme instead of a simple

bag-of-words approach in combination with a stock’s current price as inputs, this result

was obtained with news articles and stock prices of a five-week period. A valid coun-

terargument is that five weeks worth of information could fail to constitute a rigorous

test of performance. In addition, it proved to be only successful within a twenty-minute

time frame, which falls under the margin of earlier research concluding that the ma-

jority of market responses to new information experiences a time lag of approximately

ten minutes (Patell and Wolfson, 1984). Subsequent research shows that AzFinText is

able to outperform established quantitative funds (Schumarker and Chen, 2009b).

Ding et al. (2015) propose the use of a neural tensor network to learn event embeddings

from financial news articles in order to feed that information into a deep convolutional

neural network for a two-class prediction of a stock price’s future movement. For this

system, an accuracy of 65.9% is reported for 15 different S&P 500 stocks and daily

trend predictions. No clear indication, however, is been given as to how these reported

stocks are selected. Related research by Fehrer and Feuerriegel (2015) aims to use

recursive autoencoders to extract sentiments from financial news headlines and com-

panies’ financial disclosure statements, resulting in an accuracy of 56.5% for the test

set and predictions of stock price movements after a financial disclosure statement.
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2.2 Deep neural networks

2.2.1 Introduction to artificial neural networks

This section is intended as a concise overview of the development of artificial networks

to enable the respective reader to understand the approach that is taken in this thesis,

and why neural network models are suited for the task at hand. As this thesis is also of

interest for economics and finance, these models are explained in a manner that enables

readers without related expertise to grasp later concepts. The explanations and depic-

tions of this section are constrained to supervised learning with feedforward-types of

networks, as a full review of the state of art would go beyond the scope of this thesis

and is not necessary to understand the described hypothesis and experiments.

Artificial neurons are the fundamental building blocks of such models and were first

proposed for computational problems by McGulloch and Pitts (1943) within the scope

of thresholds for logical calculations, i.e. the idea of a certain strength of activation

being necessary to make such an artificial neuron fire instead of remaining dormant.

Perceptrons are the next step in this evolution. Devised by Rosenblatt (1958), per-

ceptrons are algorithms that implement a linear classification for binary distinctions

and present one of the first kinds of artificial neural networks that have been produced,

as well as the simplest example of a feedforward neural network. The mathematical

formulation that takes place for a respective perceptron can be summarised as follows:

f (x) =

{
1 i f w ·x + b > 0

0 else
(2.1)

Here, w and x denote vectors in R, with x being the vector of inputs to an artificial

neuron, whereas w is the vector of the respective weights for each separate input. The

letter b denotes a bias term which represents the artificial neuron’s firing threshold, and

f (x) is a Heaviside step function, i.e. a function that outputs 1 for a positive argument

and 0 for a negative argument. The dot product of w and x can be formulated as:

w ·x =
N

∑
n=1

wi xi (2.2)
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Feedforward neural networks are directed, acyclic graphs, which use a set of artifi-

cial neurons to funnel inputs in one direction towards the outputs. In their commonly

used form, such models are fully connected between neighbouring layers of artificial

neurons, whereas no connections exist over multiple layers. Due to their history, artifi-

cial neural networks are often still called single- or multi-layer perceptrons despite the

term denoting a model consisting of just one artificial neuron, depending on their num-

ber of hidden layers. In this thesis, however, the naming as perceptrons is mentioned

only in the given context of a historical overview of the broader topic, whereas such

models are referred to as artificial neural networks in the rest of the sections. Figure

2.1 depicts a simple feedforward artificial neural network with no hidden layers:

Figure 2.1: Feedforward neural network without hidden layers

The input layer represents, in this form of portrayal, the input vector used in formulas

(2.1) and (2.2), i.e. in this case values for four variables. The output layer represents

the result that is obtained from running the values of the input layer through the model.

In this basic form, the artificial neural network is equivalent to a linear regression, as

each input is multiplied by a weight to obtain the respective output. In other portrayals,

the weights are depicted as the layers instead, but this representations will be applied

throughout this thesis in order to guarantee a consistent reading process for all sections.

Other types of neural network models exist, e.g. various kinds of recurrent neural

networks and convolutional neural networks, and the interested reader is invited to

acquire a respective overview for its own sake. This section also confines itself to

supervised learning, i.e. the training of a model with already correctly labelled data,

while other types of learning, like unsupervised learning for unlabelled datasets, and

reinforcement learning, find applications in a wide range of research areas as well.
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Activation functions are utilised by artificial neurons in these models, allowing in-

puts to be transformed by using weights and, in the common case, a bias term. Apart

from the Heaviside step function mentioned before, non-linear activation functions al-

low for the solution of non-trivial problems, as outputs are not constricted to logical

values. Similarly, linearly increasing activation functions require a large number of

artificial neurons for non-linear separation tasks, which makes them computationally

expensive. Instead, commonly used activation functions are meant to increase in their

output at first, but then gradually approach their limit in an asymptotic manner for

higher values. A classical example of such a function is the sigmoid function:

Figure 2.2: Depiction of the sigmoid function

In the context of the training of artificial neural networks, sigmoid functions are a term

applied to the special case of the logistic function shown in Figure 2.2, with a steepness

value of k = 1 and a midpoint of x0 = 0. The sigmoid function is calculated as follows:

sigm(x) j =
1

1 + e−k·(x j−x0)
(2.3)
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It is advisable to note that values for the sigmoid function levels out at 0 on the lower

end, which can lead to a fast saturation of weights in the top layers in multi-layered

artificial neural networks (Glorot and Bengio, 2010). An alternative is the use of the

hyperbolic tangent function, which is similar to the sigmoid function, but is centred on

0 instead of 0.5, with a lower limit of -1 and the same upper limit of 1 for its values:

tanh(x) j =
sinh(x j)

cosh(x j)
=

e x j − e−x j

e x j + e−x j
=

1 − e−2x j

1 + e−2x j
(2.4)

Other often-used activation functions for training artificial neural networks include ra-

dial basis functions and rectified linear units (Broomhead and Lowe, 1988; Nair and

Hinton, 2010). Other proposals for activation functions specifically target the goal of

a reduced computational cost, e.g. the squash function introduced by Elliott (1993).

The last activation function that deserves to be mentioned at this point is the softmax

function, which serves as a widely-used way to interpret the outputs of neural network

models used for classification tasks as probabilities (Bishop, 2006). The formula for

this function, which is wide-spread in its application as a last layer of such models, is:

so f tm(x) j =
e x j

∑
N
n=0 exn

, s.t. j ∈ {1 , 2 , ... , N} (2.5)

The notable difference to the other functions mentioned in this article is the utilisation

of all inputs from the previous layer, resulting in the values between 0 and 1 for the

softmax layer adding up to 1. These outputs can be treated as probabilities of mutually

exclusive classes, i.e. used as percentages of a 100%-total for further computations.

Hidden layers are additional layers between the output and the input layers that are

shown in Figure 2.1, with one hidden layer. The main advantage of using hidden layers

is that the artificial neurons of such layers can process the full output of the previous

layer, which turns the linear separations that a neural network model with no hidden

layers implements into a non-linear process, allowing for greater differentiation ca-

pabilities. The increased functionality that is obtained by adding hidden layers, up to

current research on complex deep-layered models, is further discussed in Section 2.2.2.
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Figure 2.3 depicts a simple feedforward artificial neural network with 4 inputs, a single

hidden layer, and two outputs, which could be used for a binary classification problem:

Figure 2.3: Feedforward neural network with one hidden layer

Backpropagation of error was developed as a method to time-efficiently train multi-

layered artificial neural networks in the 1970s, after a long period of stagnated research

on such models (Werbos, 1974). By using a predefined loss function’s gradient w.r.t.

all weights in a neural network model for optimisation methods such as stochastic

gradient descent, efficient training of multi-layered models became feasible and was

further popularised by Rumelhart et al. (1986). The general structure of backpropaga-

tion as a viable method to train artificial neural networks is explained as the concluding

piece of this overview of supervised learning via feedforward neural network models

and predominantly follows the notation of Rumelhart et al. (1984) and Nielsen (2015).

Loss functions serve as a way to attach a real-valued number to the total error under

a certain set of weights between layers. Using the example of the quadratic cost func-

tion, the total error for this case can be calculated with the following equation:

E =
1
2 ∑

i
∑

j
(ŷ j,i− y j,i)

2 (2.6)
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Here, j indexes the output units and i indexes the pairs of training examples and cor-

responding outputs, wheras ŷ and y denote the calculated outputs and actual labels re-

spectively. In the forward pass of the input through the network model, the values for

the neurons in each layer are calculated with the last layer’s outputs processed through

the activation function, and the respective connection’s weights and the layer’s bias, as

described before. In the backwards pass, the weights and the bias are then updated.

Gradient descent is a common optimisation method, and gradient-based optimisers

allow for the use of backpropagation. Weights and biases of a layer are updated as

follows, with wi, j as a weight, bl as the layer’s bias, and η as the chosen learning rate:

w j,i = w j,i−η
∂E

∂w j,i
(2.7)

bl = bl−η
∂E
∂bl

(2.8)

These formulas require the computation of the error w.r.t. a single weight or bias.

Using the chain rule, the error can be propagated backwards through the neural network

model, which gives the name to the described method. For weights, the formula is:

∂E
∂wl

j,i
= ∑

mL , mL−1 , ... , ml

∂C
∂aL

mL

∂aL
mL

∂aL−1
mL−1

∂aL−1
mL−1

∂aL−2
mL−2

...
∂al+1

ml+1

∂al
j

∂al
j

∂wl
j,i

(2.9)

The case for computing the error w.r.t. a layer’s bias is analogous to the above for-

mula. Here, wl
j,i denotes a single weight in a specific layer l, with L indicating the final

layer and al
x denoting the output of neuron x via the neuron’s activation function in

layer l. Put simply, the change rate of the error is calculated w.r.t. a single weight, i.e.

every connection between two artificial neurons in two adjacent layers has a rate that

is represented by the gradient of a neuron’s output w.r.t. the preceding neuron’s out-

put. For a path through the model, the product of this path’s rates is the path’s own rate.

This section described the basics of training feedforward neural networks with back-

propagation and gradient descent. In practical applications, variants of the latter, like

stochastic gradient descent, are usually employed, and various alternatives for back-

propagation have been proposed, e.g. difference target propagation (Lee et al., 2015).
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2.2.2 Functionality of deep learning models

In recent years, artificial neural networks became a focal point of increased public

interest in machine learning due to the possibility to train deep-layered models with

advanced computing equipment. Although deep learning, as describing a high num-

ber of processing layers mostly used for deep-layered neural network models, has re-

ceived criticism as a marketing term for long-established machine learning methods,

its usage is now established in the academic community (Wlodarczak et al., 2015). For

deep-layered feedforward artificial neural networks, these models’ graph structures are

identical with Figure 2.3., with the exception of a number of additional hidden layers.

The primary advantage of such model architectures is their high non-linearity, which

allows for the automatic identification of complex relationships in data. Glorot and

Bengio (2010) summarise the reason to use deep-layered feedforward neural networks

as the model’s ability to extract features from features learned by previous hidden lay-

ers, which reduces the need for time-intensive feature engineering. They also criticise

the use of the sigmoid function in hidden layers, as its non-zero mean is shown to

decelerate the learning process, and support the use of zero-mean activation functions

like the hyperbolic tangent function. While there are many varieties of deep neural net-

work models, e.g. convolutional networks and deep belief networks, sufficiently deep

feedforward models without such complexities reached the then-best performance of

99.75% accuracy on the MNIST handwritten digit database (Cireşan et al., 2010).

Despite their advantages, training deep-layered models brings difficulties that are ad-

dressed by refining the methods for such models that are described in Section 2.2.1.

Stochastic gradient descent deals with the problem that computing the loss function’s

gradients for all training examples is computationally expensive and thus slows down

the training of a model. The idea is to approximate the total error via the gradients

for a random sample of training inputs. This changes functions (2.7) and (2.8), with

x1 , ... , xm as the sample and Exk as the cost for each data point from the sample, to:

w j,i = w j,i−
η

m ∑
k

∂Exk

∂w j,i
, s.t. k ∈ {1 , ... , m} (2.10)

bl = bl−
η

m ∑
k

∂Exk

∂bl
, s.t. k ∈ {1 , ... , m} (2.11)
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Momentum, the importance of which for the training of deep learning architectures

is stressed by Sutskever et al. (2013), is a method used to prevent the model from

remaining at a local minimum, and to accelerate the step size in so-called shallow val-

leys. The latter are phases in which the steepest direction remains the same or similar

for multiple iterations, but without a pronounced steepness. If applied to stochastic

gradient descent, with µ denoting the amount of friction for the momentum and ∆w

representing the last iteration’s weight update, Formula (2.10) is transformed to:

w j,i = w j,i−
η

m ∑
k

∂Exk

∂w j,i
+ µ∆w j,i , s.t. k ∈ {1 , ... , m} (2.12)

Overfitting describes a machine learning model’s tendency to incorporate noise and

random error from the training set, leading to a larger generalisation error. The latter,

while not subject to being calculated for all possible unseen data, is approximated via a

split of the available data into a training set and a test set, which serves as an empirical

example of unseen data. It indicates, for a poor performance on the test set in relation

to the training set, the presence of overfitting. To prevent overfitting, regularisation

becomes necessary, a simple example of which is early stopping. By splitting the data

three-fold into an additional validation set, the model’s performance on data that is not

part of the training is assessed after each epoch. If the accuracy on the validation set

stagnates over a predefined number of epochs, the training is terminated. Other, more

sophisticated approaches include `1 and `2 regularisation for a sparsity-based solution.

2.2.3 Relevant mathematical considerations

The Universal Approximation Theorem states that feedforward networks with one hid-

den layer act as approximators for continuous functions on closed subsets of the Eu-

clidean space Rn. Initially, the theorem was proven for three hidden layers by Irie and

Miyake (1988), followed by a proof for one hidden layer and the sigmoid function by

Cybenko (1989). Hornik (1991) concluded this process by showing that arbitrary non-

constant activation functions suffice the criteria. The reason for deep-layered models

being used instead is that the theorem makes no statement about the learnability itself,

and the necessary numbers of neurons and training examples are only given as finite re-

spectively. In practical applications, deep-layered model have been shown to perform

better on complex problems, although that does not invalidate the theorem itself.
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2.3 Time series analysis

2.3.1 Trend analysis of financial time series

Clarke et al. (2001) and Gehrig and Menkhoff (2006) find that technical analysis, de-

spite the permanence of the efficient-market hypothesis, is wide-spread in today’s in-

vestment industry, although the term refers to simpler approaches in most of the cases.

Exponential moving average, an infinite impulse response-based approach, is one of

the dominant techniques used as a lagged indicator for stock trend forecasting. It is

identical to exponential smoothing, which is the term more commonly used in the gen-

eral study of time series and can be calculated in a recursive manner as follows, with i

as the time step indicator starting at 1 and α as the smoothing factor with α ∈ (0,1):

EMA0 = x0

EMAi = αxi +(1−α)EMAi−1 , s.t. i > 0
(2.13)

Perceived patterns are among the other, less investigated methods that are used by

technical analysts, e.g. the head-and-shoulders pattern. The latter is used as an indica-

tor for a trend shift, using the negative value of the height denoted in Figure 2.4 as the

target price for a trade initiated at the breakout point, which marks the pattern’s com-

pletion. The lack of statistical research on such patterns has been criticised by Neftci

(1991), noting that there is a disparity between the rigour of academic time series anal-

ysis and the decision-making of traders. Later research by Osler and Chang (1999)

and Lo et al. (2000) shows indicators for applications for select currencies in foreign

exchange markets, concluding that such patterns may hold some practical value.

Figure 2.4: Head-and-shoulders pattern in stock market data
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2.3.2 The nature of stock market data

As mentioned in Section 1.2, price changes in the stock market are, at their core, driven

by predictions about human beliefs about the future performance of a stock, which it-

self is driven by such beliefs. To this extent, investment decisions quantify beliefs

about the beliefs of other investors in the future, which is a process that can be contin-

ued iteratively into the future. Due to this factor, the influence of new information on

investment decisions, and because a variety of methods of varying sophistication are

used to make such predictions, time series in stock markets are inherently noisy. Being

time series all the same, this makes stock markets an interesting and challenging ex-

ample of real-world time series created by a global conglomerate of human decisions.

2.3.3 Gradient-based approaches

Mierswa (2004) uses, among other features, the gradients of linear regressions of the

frequency spectrum over a moving window as input features for audio classification,

explicitly treating the data as multivariate time series. Although a decision tree and

a support vector machine are used to evaluate the viability of the selected features,

this represents an instance of other research utilising such linear regression derivatives

over time intervals as features. Similarly, gradients of wavelets have also been used for

natural language processing tasks (Gibson et al., 2013). In another approach to time

series classification, Górecki and Łuczak (2013) build on earlier research by Keogh

and Pazzani (2001) on the addition of derivatives to dynamic time warping, where the

latter is a method to measure the similarity of temporal sequences with potentially dif-

ferent speeds (Berndt and Clifford, 1994). The proposal of using a distance metric

based on the discrete derivatives of different time series is later successfully used in an

experimental implementation for a k-nn classification (Górecki and Łuczak, 2014).

Generally, research on first derivatives for classification tasks in time series as fea-

tures for machine learning is sparse, even if not viewed in the narrower context of

step-wise linear regression gradients over set intervals to search for time-shifted com-

plex correlations in a large number of time series with deep-layered artificial neural

networks. This allows for this thesis to spearhead applied research in this direction,

with potential implications for the wider utilisation of this methodology based on deep

learning with feedforward neural network models for time-shifted correlations.



Chapter 3

Methodology and experiments

Chapters 1 and 2 introduced and concisely explained the research of this thesis, fol-

lowed by a summary of the background research to prepare the interested reader for the

subsequent parts. This chapter describes the methodology that is employed to test the

hypothesis from Section 1.3, covering the data cleansing and pre-processing, as well

as the feature engineering, the setup for the different experiments and the validation

procedures used to test the reliability of the findings described in Chapter 4.

3.1 Data mining of stock market data

3.1.1 Data provider and software packages

GNU R is a multi-paradigm programming language and environment for statistical

computing and data visualisation (R Core Team, 2014). Originally inspired by the S

programming language, R quickly gained followers in industry and academia due to

its open-source approach and the resulting availability of specialised packages con-

tributed by developers. Starting in 2005, it became one of the most popular languages

for statistics and data analysis, outperforming both SAS and SPSS (Tippmann, 2015).

Version 3.1.2 of R, in its variant for Linux distributions, is used in the process of the

data cleansing, pre-processing and feature engineering described in Section 3.1.

RStudio Desktop, an open-source integrated development environment for GNU R

first being made available in 2011, is used in its version 0.99.465 for the R scripts de-

veloped in the course of the research performed for this thesis (RStudio Team, 2015).

22
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Thomson Reuters Corporation, under its infrastructure and services branch, offers

Thomson Reuters Elektron as a provider of a vast variety of stock market information.

Its historical stock market data service for professional and academic usage is called

Thomson Reuters Tick History and is one of the standard databases for research in

finance. This dominant status in these areas is due to its fine time-wise granularity and

the coverage of a large array of global stock exchanges (Bicchetti and Maystre, 2013).

The fee-based access to Thomson Reuters Tick History data is made possible through

a cooperation with the University of Edinburgh Business School and the European

Capital Markets Cooperative Research Centre for the development of this thesis.

3.1.2 Description of the raw datasets

Three datasets are obtained from Thomson Reuters Tick History to allow for experi-

ments over differing time intervals and with varying objectives. The raw datasets are

delivered as compressed bundles of CSV files and have the following header structure:

X.RIC Date.L. Time.L. Type Ave..Price

Table 3.1: Header structure of the raw datasets

The X.RIC variable defines the respective stock’s Reuters Instrument Code, consisting

of the ticker symbol optionally followed by a point and an indicator of the qualifying

stock exchange. In the case of Alphabet, formerly Google, the Reuter’s Instrument

Code is GOOGL.OQ, with ”OQ” denoting the NASDAQ Stock Market. Date.L.

describes the observation’s respective date in the form DD-M-YYYY with the first

three letters of the month’s name, and Time.L. shows the time of the observation

with millisecond precision, e.g. ”09:00:00.000” for the opening time of the New York

Stock Exchange. Ave..Price denotes the average price for the respective time step’s

duration and serves as the price data used for the subsequent features, and Type is

a data type indicator that is identical for all instances, e.g. ”Intraday 5Min”. Other

variables, e.g. the volume of transactions related to a stock and the volume-weighted

average price, as well as low and high bids and asks for a time step, are contained in

the datasets, but are not listed here for reasons of space, as they were neither used for

the computations nor for the subsequent feature engineering. The Reuters Instrument

Codes for all stocks used in the respective datasets are listed in Appendix B.
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Dataset 1 contains data from 2011-04-04 to 2016-04-01, covering approximately five

years worth of stock market information in 1-hour intervals for the S&P 500 stocks,

with a combined number of 6,049,849 separate observations for 505 stocks in total.

Dataset 2 spans the same time frame and stocks for 5-minute intervals and a resulting

number of 47,853,642 total observations, serving as a dataset with finer granularity.

Dataset 3 is identical to Dataset 1 in its make-up, but observations start at 1996-04-04,

which results in a larger dataset for stock market information covering approximately

20 years and 65,183,368 observations, including the financial crisis of 2007/2008.

3.1.3 Data cleansing and pre-processing

The three datasets obtained via Thomson Reuters Tick History show a large number of

missing values for the price information, missing observations that prevent an align-

ment of data from different stocks, and nonsensical values for time stamps and partial

or full days that refer to times when no trading takes places at the respective stock

exchange. Notably, these shortcomings are not consistent for all stocks present in the

datasets, which makes simple approaches carried out over full datasets split into lists

for unique stocks impossible. In addition, functional algorithms have to be sufficiently

fast, ruling out naı̈ve scripts. As this was discovered during the preparation and pro-

posal of this thesis, enough time was reserved for solutions addressing these issues.

The separate CSV files of a dataset are merged and sorted w.r.t. the X.RIC values to

then undergo a preliminary cleansing process, which removes columns of unused vari-

ables, invalid time stamps and non-consistent entries for holidays. For these problems,

R shines due to its specialisation on data analysis and the highly optimised vectorisa-

tions. Missing values are subsequently replaced with the same-column entries of the

preceding index or the index with the next non-missing value, depending on whether

the former belongs to the same stock as identified by the X.RIC value. As missing

values are often present at the transition to another stock, this distinction is necessary

for code that is able to seamlessly run over a full dataset. After faulty observations for

invalid time stamps are sorted out and missing values are reconstructed from surround-

ing observations, one problem persists: To generate feature vectors that can be used as

inputs, the time stamps have to be aligned perfectly, i.e. each value of a feature vector

representing the respective value for a stock at the same time as for each other value in

the vector. This forbids missing observations that are not consistent over all stocks.
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The algorithm that was created to secure a time-wise alignment of observations for

different stocks by substituting missing rows is described concisely in the following

list of conceptual steps. The algorithm’s full R code is attached in Appendix A.

(1) Create a vector of consecutive time stamps expected for perfect alignment.

(2) Split the dataset into a list, with a list place for each unique X.RIC value.

(3) Generate a list of the same size, with just the time stamp vectors per stock.

(4) Generate a vector of time stamps merged from Time.L. in the list from (3).

(5) Identify the list places for which the first values from (1) and (4) do not align.

(6) Substitute the missing first row(s) in (2) w.r.t. (5) to align all the first rows.

(7) For each list place, execute steps (8) to (15) to insert the missing observations.

(8) Artificially inflate the matrix by merging it with a copy of itself vertically.

(9) Generate vectors of Time.L. and expected times similar to steps (1) and (3).

(10) Operating solely on the time vectors, identify indices without time alignment.

(11) Shift the non-doubled original matrix within the matrix one position down.

(12) Substitute the identified row with the next adjacent same-stock row’s values.

(13) Update the matrix’ Time.L. vector from (10) and all positioning counters.

(14) Continue (11) to (14) until both time vectors from (10) and (14) are aligned.

(15) Cut the matrix horizontally to contain only the updated original matrix.

The primary goal behind the design of this approach to data alignment is a speed-up

of the code execution, as naı̈ve procedures with loops over the full datasets and copies

of a full matrix for every missing observation, as well as a vectorised implementation

of the latter, did result in infeasible time estimates. By acting solely on time vector

comparisons, with matrix shifts in case of local time vector incompatibility, only for

a specific pre-split stock’s matrix, and operating on a pre-assigned matrix of sufficient

dimensionality to allow for insertions instead of appending values in-process, a suffi-

cient speed for datasets of the given scale in comparably short time frames is realised.

After this process, the returned list is merged again and checked for a subset of stocks

that satisfies the requirement of being consistently present over a sufficiently large por-

tion of the dataset’s time frame that is divisible by the chosen number of time steps for

the subsequent gradient calculation. The dataset’s price information is extracted and

transformed into a feature matrix with row-wise time steps and column-wise stocks.
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3.1.4 Statistical feature engineering

Feature engineering is a term that describes the manual selection and, if necessary,

transformation of given datasets into new data that better represents the features needed

for a chosen task. Some prominent researchers go as far as equating applied machine

learning with the concept and best practices of feature engineering (Ng, 2012). For this

thesis, a simple approach is used to approximate the trends over given time intervals.

Linear regressions offer a solution to solve this problem by assuming a linear rela-

tionship between the regressand yi and the regressors xi. They follow the form below,

with i denoting an observation, β0 as the intercept, and εi as the unobserved error term:

yi = β0+β1xi,1+β2xi,2+ , ... , +βpxi,p+εi = xT
i β+εi , s.t. i∈ {1 , ... , n} (3.1)

Simple linear regressions are least-squares estimators of such models with one ex-

planatory variable to fit a line that minimises the squared sum of the residuals. They

take the form of a minimisation problem to find the intercept β0 and the slope β1:

min
β0,β1

Q(β0,β1) , s.t. Q(β0,β1) =
n

∑
i=1

(yi−β0−β1xi)
2 (3.2)

By running a linear regression over each time series and time interval separately, and

by taking the first derivative of the resulting equation, the trend gradients for single

stocks and time intervals are obtained. Given aligned stock prices for N points in time

and a chosen step size s, the resulting feature vector generated from a stock’s prices

has the length N
s . Depending on the time frame which the dataset covers, this limits

the size of intervals that can be chosen to still obtain a viable size for the training set.

For the cleansed and pre-processed 5-year dataset with hourly values, gradients are

computed for a time step size of 8, covering a whole trading day with 1,242 gradients

per stock for 449 stocks. For the 5-year dataset with data in 5-minute intervals, two

sets of gradients are computed: The first set covers a time step size of 12, resulting

in 7,361 one-hour gradients for 449 stocks, whereas the second set covers a time step

size of 6, with 14,725 gradients for each half hour and 449 stocks. As the code that

implements the linear regression cuts the respective dataset to a length that allows for

the computation over the prescribed amounts of values, the second set for half-hour

gradients is slightly larger than double the first set. For the 20-year dataset with hourly

values, daily gradients with a step size of 8 were computed for the years from 2003,

preceding the crisis, to and including 2008, resulting in 2,131 gradients for 298 stocks.



Chapter 3. Methodology and experiments 27

3.2 Training the deep learning models

3.2.1 Libraries and programming environment

For the implementation of the deep learning experiments, Python is chosen as a multi-

purpose language with sufficient mathematical capabilities through extensions such as

NumPy (van Rossum, 1995). In recent years, Python was established as one of the pri-

mary programming languages for deep learning due to libraries like Theano (Bergstra

et al., 2011). Keras is a highly modular library for neural networks written in Python,

which is able to incorporate either Theano or, more recently, Google’s TensorFlow as

its basis (Chollet, 2015). Keras is chosen to build the experimental models due to its

suitability for the fast prototyping of artificial neural networks, with Theano being pre-

ferred over TensorFlow due to its position as an established machine learning library

and the resulting variety of guidelines for its proper usage (Bahrampour et al., 2015).

The code was implemented using version 2.7.11 of Python, with IPython Notebook

in its version 4.2.1 as the programming environment to allow for gradual code execu-

tion and an easily accessible overview of scrollable outputs, e.g. for training epochs.

3.2.2 Experimental setup and data splits

Figure 3.1 depicts a schematic overview of the experimental setup that is used for this

thesis. For the number n + 1 of stocks that are made usable during the data cleansing

and pre-processing, gradients of the price trends for each separate stock are computed

in the feature engineering step described in Section 3.1.4. The n gradients for one

time step, t - 1, are then used as inputs to a feedforward artificial neural network that

is fully connected for adjacent layers to predict whether the gradient of the left-out (n

+ 1)st stock changes up- or downwards w.r.t. its gradient in the preceding time step t -1.

This setup ensures that the experiments test for time-shifted correlations between stocks

instead of using a stock’s own historical price information, i.e. data of the stock that is

to be predicted, is not part of the model’s input. This is also one of the main differences

that distinguishes this thesis from other research on time series-based stock market pre-

diction, as its hypothesis is related to the test of economic hypotheses, with prediction

accuracy used as the metric by which the presence of correlations is measured.
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Figure 3.1: Model setup for the experiments

As the experiments aim to find general correlations between stocks, five-fold cross-

validation is used to reduce the variability of results, and to use the modestly-sized

datasets in a frugal manner (Giovanni and Elder, 2010). After each five-way split and

sorting into a training set of 4
5th of the dataset for the respective fold, another 1

4th of

the training set is partitioned off as the validation set for the early stopping procedure

described in Section 2.2.2. This way, a 60-20-20 split is used for each fold and stock.

The experiments are run for all n + 1 stocks by looping over an index i for all column-

wise stock gradients and splitting the matrix into the target gradients for stock i and

the inputs for the rest of the columns. The time intervals are then shifted one step

by clipping the first row of the input matrix and the last value of the output vector.

The output vector is subsequently replaced by a binary one-hot representation that

indicates whether the gradients for each successive time interval for stock i are larger

or smaller than for the preceding interval. Two output nodes are chosen instead of one

in accordance with the results of Takeuchi and Lee (2013) and Ding et al. (2015).
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3.2.3 Input normalisation and regularisation

Normalising the inputs is necessary to address geometrical biases, distribute the im-

portance of values equally and ensure that all values are situated in the same range

to make them comparable for an efficient learning process of a model. The training

examples split from the dataset are normalised element-wise using min-max scaling:

Xnorm =
X−Xmin

Xmax−Xmin
(3.3)

Regularisation approaches are a valuable way to address issues with overfitting, i.e.

poor generalisation due to a specialisation on unneeded idiosyncrasies of the training

set. Early stopping, together with `2 regularisation, is used to prevent overfitting and

unnecessary complexity, whereas momentum is applied to prevent stochastic gradient

descent from terminating in small-spaced local minima. In addition, dynamic learning

rate decay is utilised to find a minimum along the optimiser’s descent path:

rate∗ = rate · 1
1+decay · epoch

(3.4)

3.2.4 Parameter tuning and model complexity

Preliminary test runs show a rise in accuracy for up to five hidden layers, after which

the learning process was hindered by the model’s complexity in relation to the avail-

able number of training examples and provided no further improvement in accuracy. In

order to make the performances of the models comparable over different experiments

with all three available datasets, parameters and hyperparameters for the artificial neu-

ral networks used in this thesis have to be chosen and subsequently fixed for the exper-

imental implementation. The respective choices that are given in this section follow

a combination of sound, scientific reasoning and preliminary experimentation, experi-

ence in the application of deep learning architectures, and simple heuristics for slowly

increasing the model’s complexity that are, for example, described in greater detail in

Nielsen (2015). As an adept introduction to parameter tuning and its inherent vague-

ness in regard to real-world applications, Snoek et al. (2012) concisely summarise the

problems that come with the terrain by stating that machine learning algorithms:
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”[...] frequently require careful tuning of model hyperparameters, regu-
larization terms, and optimization parameters. Unfortunately, this tuning
is often a ”black art” that requires expert experience, unwritten rules of
thumb, or sometimes brute-force search.” (Snoek et al., 2012)

While such a statement sounds bleak, the parameters and hyperparameters that have to

be set can be determined, or at least approximated: Due to the dependence of a viable

number of neurons for hidden layers on the particular problem that is addressed, this

number is approximated by experiments on a subset of the problem, and 400 nodes per

hidden layer are chosen as a size slightly below the number of inputs for the experi-

ments. Preliminary tests with 20 randomly chosen stocks for each of the three datasets

with half-hour, one-hour and one-day gradients show the smallest test set error for this

size of hidden layers, as measured in increments of 50 nodes for up to 800 nodes. To

address potential memory issues, a mini-batch size of 100 is chosen in order to use

stochastic gradient decent on a randomly selected batch at a time, and each model is

trained for 50 epochs, with early stopping as a regularisation measure as described in

Section 3.2.3. In addition, `2 regularisation is added to the regularisation process and

chosen over `1 regularisation. The reason behind this decision is the encouragement

to use all inputs to a certain degree, as a complex interdependence of the studied time

series is assumed due to the failures of past approaches to identify simpler correlations.

Through this introduction of decaying weights, and with the parameter λ defining the

trade-off between the loss function and the penalty for larger weights, the previously

introduced notation for unaltered gradient descend in Formula (2.7) is extended to:

w j,i = w j,i−η
∂E

∂w j,i
−ηλw j,i (3.5)

Hyperbolic tangent functions from Formula (2.4) serve as activation functions, with

sigmoid functions from Formula (2.3) at the output layer. The former choice is due to

the reasons regarding weight saturation given in Section 2.2.1, while the latter function

is chosen over the softmax function due to the interpretability of the results as indepen-

dent probabilities, and because these results are not needed to integrate to 1 as inputs

for subsequent methods. The model’s weights are initialised as scaled samples from

a zero-mean Gaussian distribution to address the potential of vanishing or exploding

gradients, with a standard deviation of
√

2
nl

and an initial bias of 0, and with nl de-

noting the number of connections in a layer, allowing for an easy adaptation to future

experiments with rectified linear units (Glorot and Bengio, 2010; He et al. 2015).
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3.3 Further experiments and high volatility

3.3.1 Complexity reduction via bottleneck layers

In the context of the given problem, an interesting question is that of its general com-

plexity, i.e. to find out to what number of variables the relevant data necessary for an

acceptable accuracy can be reduced. In order to give an indication, a bottleneck layer

consisting of a small number of neurons is inserted into the models for the daily pre-

dictions based on the 5-year dataset with hourly values. This process is implemented

for 1, 3, 5 and 10 nodes to see how the bottleneck’s size influences the accuracy. The

results are subsequently presented in Section 4.2.1. This approach is favoured over

using autoencoders as a precedent step before using their compression layer as inputs

for a full model, as autoencoders learn a goalless reduction of their inputs. For a bottle-

neck layer in the same model, the latter is forced to learn a compressed representation

directed at a representation that is suited for the target predictions at hand, funnelling

the model’s learning process through the nodes of the respective bottleneck. Figure

3.2 shows a modification of the model previously depicted in Figure 3.1, featuring an

exemplary additional bottleneck layer for complexity tests with one node marked as b:

Figure 3.2: Model with a one-neuron bottleneck layer
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3.3.2 Performance during a financial crisis

As one of the first publications on machine learning for stock market prediction that

gathered considerable news coverage, the AZFinText system devised by Schumaker

and Chen (2009a) notably was not tested for above-average results in selectively volatile

market situations, although the authors note such a test as a suggestion for further re-

search. For time series-based prediction approaches, high-volatility environments are

worse than for text analysis-based systems like AZFinText, as they solely rely on the

stock market information that is in turmoil in such a scenario. To test the gradient-

based approach and the model implementation for such environments, data from 2003

to, and including, 2008 is extracted from the 20-year dataset with hourly values to

compute daily gradients for the contained stock price information and 298 stocks.

No cross-validation is performed for these experiments, as the test set has to repre-

sent a phase of enhanced volatility in the market. In order to reach that goal, a test set

from July 2007 to the end of 2008 is split from the set of gradients, with the previous

4.5 years serving as training data. This setup also more closely resembles an applicable

prediction system, as only past data is used instead of identifying general correlations

between combinations of different time periods through cross-validation. Due to the

large fluctuations in the dataset, and given that some stocks remained more stable than

others during the financial crisis of 2007/2008, a higher variance of accuracies is ex-

pected. An accuracy above the baseline, which is expected to be higher than random

chance due to the general negative trend in that time period, would deliver evidence for

the persistence of correlations in high-volatility scenarios such as global market crises.

3.4 Reliability of the obtained findings

3.4.1 Distinction against coincidences

For a validation of the results, baselines that address the market behaviour and the

distributions of target vectors are necessary in order to find statistically significant ev-

idence. The focus of this thesis on time-shifted correlations between stocks in relation

to economic theory, which is also manifested in leaving out information of the target

stock in the models’ inputs, sets this work apart from research that aims to find the

best-possible stock market predictions instead of correlations in stock market prices.
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For research focussed purely on prediction accuracy, baselines that represent naı̈ve

regression or classification approaches, or more basic machine learning methods, are

more suitable and also used in the research discussed in Section 2.1.3. The threat

of coincidences is partly approached through cross-validation, but a model’s accuracy

must also lie significantly above the accuracies of one-value and random predictions.

3.4.2 Accuracy of random mock predictions

For each stock and fold in each model, a randomly shuffled copy of the predictions is

created and tested against the correct targets in addition to the predictions themselves,

resulting in mock predictions with a class distribution identical to the actual predic-

tions. This copy can be used to test whether the model just learned the distribution of

the two output classes in the training set, which would result in very similar accuracies

for the actual and mock predictions when compared to the test set’s correct targets.

3.4.3 Tests for one-sided distribution learning

Another case that has to be ruled out is that of a model learning to predict the dom-

inant class of the respective training set. In order to address this potential issue, two

targets are created for each stock and model, each containing exclusively one of the

two classes. A model that learns more actionable information from its respective in-

puts than the dominant class of the training set needs to perform better on the test set

than both these one-class mock targets in direct comparison to the correct targets.

3.4.4 Statistical validation metrics

The average accuracies for each model over all stocks are given as the standard method

to assess the predictive power of a model. These accuracies do not, however, give

an indication as to whether the predictions’ variations are too large to be considered

successful in the context of this thesis. For this reason, the accuracies for the three

baseline mock predictions are also given, as well as the lower bound of a confidence

interval. In addition, the p-values for the predictions’ accuracies via an upper-tail test

are calculated for each of the three baselines and an additional baseline that contains

the highest accuracy among the three baselines for each stock, i.e. for each model. The

null hypothesis H0 in each case is that the predictions’ accuracies are not significantly

larger than the respective baseline, with a very strict significance level of α = 0.001.
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Experimental results

After the introduction in Chapter 1, Chapters 2 and 3 covered the background research

that was conducted in the course of this thesis, as well as the methodology for the

experiments and the validation procedures. This chapter summarises the results of

the experiments and the related values for the statistical key performance indices as

the basis for the subsequent discussion of the findings in Chapter 5, providing both

graphical representations of the results as an overview and tables of the specific values.

4.1 Results of the primary experiments

Notched box-and-whisker plots are a commonly used visualisation tool for descrip-

tive statistics, using the respective data’s quartiles to allow for an intuitive representa-

tion. The lower and upper ends of a box indicate the first and third quartile, while the

median is depicted as a horizontal bar. The whiskers show the lowest and highest data

point that is within 1.5-times the interquartile range of the first and third quartile:

whiskerupper = min(max(data), Q3 +1.5 · (Q1−Q3)) (4.1)

whiskerlower = max(min(data), Q1−1.5 · (Q1−Q3)) (4.2)

Outliers are shown above or below the whiskers, and non-overlapping notches for two

boxes indicate a statistically significant median difference at 95% confidence. Welch’s

t-test is used to achieve a higher reliability for unequal variances. For every experi-

ment, the accuracies for the model and the baselines are given, as well as the p-value

results w.r.t. the means and the minimal difference for a 99.9% confidence interval. In

Table 4.1 and subsequent tables, class 1 is the prediction that stock trends will change

downwards, and class 2 is the prediction that stock trends will change upwards.

34
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4.1.1 One-day gradient intervals

Figure 4.1: Box plots for accuracies for one-day time intervals

Figure 4.1 shows that the accuracy of 56.02% listed in Table 4.1 lies significantly above

all baselines, both for the means as measured by the p-values and the medians as indi-

cated by the box plots, with neither the notches nor the boxes themselves overlapping.

The first and third quartiles are, however, spread wider for the accuracy of the model.

accuracies of predictions

model randomised class 1 class 2 best-of

~ 0.5602 ~ 0.5002 ~ 0.4955 ~ 0.5045 ~ 0.5092

tests against baselines

randomised class 1 class 2 best-of

p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001

min. diff. ~ 0.0559 ~ 0.0607 ~ 0.0518 ~ 0.0471

Table 4.1: Statistical KPIs for one-day intervals
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4.1.2 One-hour gradient intervals

Figure 4.2: Box plots for accuracies for one-hour time intervals

With an accuracy of 53.95%, the model’s accuracies exhibit the same increased vari-

ability as for one-day gradients, albeit with a smaller spread. The baselines’ accuracies

are centred more closely on 50%, which is consistent with the overall smaller spread of

the accuracies for both the model and the baselines, trading accuracy for narrowness.

accuracies of predictions

model randomised class 1 class 2 best-of

~ 0.5395 ~ 0.5008 ~ 0.4973 ~ 0.5027 ~ 0.5043

tests against baselines

randomised class 1 class 2 best-of

p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001

min. diff. ~ 0.0356 ~ 0.0392 ~ 0.0338 ~ 0.0322

Table 4.2: Statistical KPIs for one-hour intervals
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4.1.3 Half-an-hour gradient intervals

Figure 4.3: Box plots for accuracies for half-an-hour time intervals

For a model accuracy of 51.70%, the trend to lower model accuracies in relation to

the gradients’ time frame, together with narrower boxes for the baselines depicting the

quartile ranges of the accuracy values, persists. The distribution of the model’s accu-

racies also are skewed towards lower values, i.e. more variability above the median.

accuracies of predictions

model randomised class 1 class 2 best-of

~ 0.5170 ~ 0.5011 ~ 0.4979 ~ 0.5021 ~ 0.5030

tests against baselines

randomised class 1 class 2 best-of

p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001

min. diff. ~ 0.0137 ~ 0.0169 ~ 0.0127 ~ 0.0118

Table 4.3: Statistical KPIs for half-an-hour intervals
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4.2 Complexity and volatile environments

4.2.1 Results for models with bottlenecks

Figure 4.4: Box plots for accuracies for different bottleneck sizes

To show the effect of bottlenecks sizes as described in Section 3.3.1, the box plots for

four cases are depicted in Figure 4.4. The models’ accuracies, as shown in Table 4.4,

are significantly increasing with the steps taken for the number of nodes used in the

respective bottlenecks, with 10 bottleneck nodes resulting in an accuracy slightly below

the full model without a bottleneck. The quartile ranges of the box plots, remaining

approximately symmetrical, also increase with a higher number of bottleneck nodes.

accuracies of predictions

1 node 3 nodes 5 nodes 10 nodes no bottleneck

~ 0.5107 ~ 0.5309 ~ 0.5395 ~ 0.5503 ~ 0.5602

Table 4.4: Statistical KPIs for bottleneck models
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4.2.2 Robustness in a crisis scenario

Figure 4.5: Box plots for accuracies for high-volatility environments

The range of depicted accuracies has to be changed to accommodate all values, as a

high accuracy of 61.13% is accompanied by a large spread and imbalanced target dis-

tributions. Notably, the medians and mean accuracies for one-class predictions show

that the price trends more often changed downwards during this volatile scenario.

accuracies of predictions

model randomised class 1 class 2 best-of

~ 0.6113 ~ 0.5301 ~ 0.4405 ~ 0.5595 ~ 0.5607

tests against baselines

randomised class 1 class 2 best-of

p-value p < 0.001 p < 0.001 p < 0.001 p < 0.001

min. diff. ~ 0.0677 ~ 0.1589 ~ 0.0399 ~ 0.0388

Table 4.5: Statistical KPIs for high-volatility environments



Chapter 5

Discussion

After the introduction and background research of Chapters 1 and 2, and following the

explanation of the methodology and the presentation of the results in Chapters 3 and 4,

this chapter contains a discussion of the findings. The results and their validity, includ-

ing the experiments for complexity and high-volatility environments, are investigated

in the context of comparable research and considerations regarding the implications of

the problem’s complexity, as well as the broader framework of the economic theory

that is involved in the presented application to real-world stock market information.

5.1 Findings of the primary experiments

5.1.1 Analysis and validation of the findings

The usage of p-values for validation purposes has to be viewed with caution, as crit-

icism of their abundant and often incorrect use has risen in recent years. In 2016,

the American Statistical Association published an official warning regarding the wide-

spread misuse of p-values (Wasserstein and Lazar, 2016). Accordingly, the p-values

in Chapter 4 are given in combination with other metrics such as the lower boundary

for differences in means given a 99.9% confidence interval, notched box-and-whisker

plots for median differences and quartile distributions, and accuracies for both the mod-

els and the separate baselines. In combination, these metrics deliver strong evidence

for the economic part of the investigated hypothesis, i.e. that price series in historical

stock market data contain time-shifted correlations that can be successfully exploited

with deep-layered feedforward neural networks, resulting in above-baseline price trend

predictions without data of the target stock present in the inputs of the models.

40
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Notably, larger time intervals for gradient calculations and predictions based on the

latter result in higher average accuracies, but with a trade-off in the form of an in-

creased spread of the accuracies, i.e. a larger variance. Given the described confidence

interval, this leads to the lower bounds for one-day predictions and for half-an-hour

predictions in relation to their true difference in means differing by 7.10% in favour of

one-day predictions. It therefore seems to be easier for the models to learn correlations

between gradients and make corresponding predictions for larger time steps. A natu-

ral explanation for these differences is the presence of more noise in short-time stock

observations, indicating that noise is smoothed out for regressions over larger intervals.

Similarly, the part of the hypothesis dealing with general time series analysis via such

network models is reinforced: The evidence strongly suggests that deep-layered feed-

forward neural networks can be used to consistently learn and, for previously unseen

data, act with an accuracy above predetermined baselines on time-shifted correlations

of gradients that are computed step-wise for complex time series, with only the pre-

vious interval as input features. The approach of this thesis could be applied to other

kinds of forecasting problems that involve non-linear interactions between a large num-

ber of time series and lagged effects of their trend behaviour, e.g. the metrics in areas

as diverse as consumer behaviour and epidemic dynamics for infectious diseases.

5.1.2 Comparison with related research

While meta-analyses should always be interpreted cautiously due to the possibility of

publication biases, Park and Irwin (2004) find that a majority of published research

dealing with technical analysis for stock market prediction reports results that indicate

a problem for the efficient-market hypothesis in its strict form. As research on deep

learning for time series-based stock market prediction is still sparse, there are two

research results that can be used to compare this thesis: Both Takeuchi and Lee (2013)

and Batres-Estrada (2015) use deep-layered neural network models for a binary month-

wise trend prediction of target stocks, based on historical stock market data of the

preceding 12 months, with resulting accuracies of 53.36% and 52.89% respectively. A

direct comparison is still an approximation, as this thesis addresses the prediction of

up- and downward changes in the trend gradient instead of the target gradient’s sign,

but the binary prediction of either targets is comparable in their perceived difficulty

and exclusion by the efficient-market hypothesis and the random walk hypothesis.
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An additional difference is the time frame that is used for predictions, as this thesis is

validated by one-day, one-hour and half-an-hour predictions instead of full months, as

well as the richness of the training inputs, for which this thesis uses only the price gra-

dients, and only for the time interval directly preceding the prediction target. Despite

the more limited features, the accuracies for one-day and one-hour predictions surpass

both Takeuchi and Lee (2013) and Batres-Estrada (2015), with 56.02% and 53.95%.

The approach of this thesis also proved to be capable of extracting additional infor-

mation in high-volatility scenarios with imbalanced trend targets, albeit with a higher

variance of the accuracies than in non-volatile market environments. Notably, one of

the findings is that accuracies decrease with smaller time intervals, which would make

a comparison with one-day intervals for the two comparable publications an interest-

ing research topic, increasing the comparability of these different approaches.

In summary, the approach taken for the development of this thesis outperforms both

examples of binary trend prediction using past stock market time series, without the

utilisation of information about the target stock itself, as the goal was to show time-

shifted correlations of stock prices. It can therefore be inferred that the presented

research could potentially be applied to profitable stock trading, although prediction

accuracies are only the success metric used for the testing of economic theory in the

context of this thesis, making such a usage a practical application of the results. In

such a case, it is recommended to include information of the target stock in the inputs.

5.1.3 Discussion of possible shortfalls

During the cleansing and pre-processing of the datasets, missing observations for

stocks, the absence of which is not consistent for all stocks represented in the dataset,

are approximated by the next time-wise adjacent intact observation for the same stock,

as described in Section 3.1.3 and using the algorithm in Appendix A. This approx-

imation process, although not resulting in a comparably large amount of insertions,

represents a marginal distortion of the data and could influence the results. As histor-

ical stock market data is often faulty, even for the professional data provider used for

this thesis, this is a necessary evil, but it should be mentioned here. In addition, the

datasets cover only the S&P 500 stocks, and it remains an interesting research ques-

tion whether the inclusion of less prominent stocks further boosts the models’ perfor-

mances, or whether the same time-shifted correlations exist in other sets of stocks.
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5.2 Findings for bottlenecks and crisis scenarios

5.2.1 Interpretation of the bottleneck results

As depicted in Section 4.2.1, the inclusion of a bottleneck layer in the used neural

network model hinders the performance of the latter, with the number of nodes forming

the bottleneck being the deciding factor. If judged via the notches of the box plots, the

step-wise increases from one to three, then five and finally ten nodes each time leads to

a statistically significant rise in performance. While a one-node bottleneck results in an

average accuracy of 51.07%, the result for a ten-node bottleneck, with 55.03%, differs

only by 0.99% from the accuracy of the same model and dataset without a bottleneck

layer. The possibility of the model not learning anything new after the bottleneck, i.e.

the performance being identical to a model with less hidden layers, has to be taken

into account, but can be dismissed due to the accuracies for 3, 5 and 10 nodes notably

differing from each other. The results suggest that a large portion of the information

can be compressed in ten weighted variables half-way through the model, which gives

a rough indication of the overall complexity of the prediction problem itself.

5.2.2 Economic framework and crisis data performance

The results for a high-volatility environment during the financial crisis of 2007/2008 in

Section 4.2.2 show a large spread of the accuracies for different stocks, with a box plot

that has to be extended in the range of depicted accuracies in order to accommodate

all values. In addition, the distribution of the model’s accuracies is also skewed below

the median, e.g. the accuracies are spread wider upwards from the median, and the in-

terquartile ranges are wider than for non-crisis scenarios. While the average accuracies

for predicting exclusively down- or upwards trend changes do not differ by more than

0.9% for experiments in Section 4.1, this difference grows to 11.90% for the crisis data.

The model’s high accuracy of 61.13% can partly be explained by this difference, as the

mean accuracy for predicting exclusively negative gradient changes is 55.95% for the

model’s predictions. The latter results are consistent with the general downwards-

oriented trend of the whole market during a financial crisis, yet the additional accuracy

of the model, combined with the accuracy of the randomised mock predictions be-

ing below the exclusive predictions for negative trend changes, demonstrates that the

model is able to exploit existent correlations in this high-volatility environment.



Chapter 6

Conclusion

Chapters 1 to 5 introduce, describe and discuss the hypothesis, background research

and experimental evidence gathered during the course of this project. As the final part

of this thesis, this chapter concludes the presented research by summarising the im-

plications of the findings and the contributions to the involved fields of research. In

addition, suggestions for further research are given to inspire future investigative en-

deavours at the intersection of deep learning, economic theory and time series analysis.

6.1 Summary of the findings

The findings of the presented research deliver evidence for time-shifted correlations

between the price behaviour of S&P 500 stocks in contradiction to both the random

walk hypothesis and the efficient-market hypothesis in all three forms, and for the vi-

ability of using deep-layered neural networks for trend prediction in intercorrelated

time series. The hypothesis described in Section 1.3. is, within the margins of empir-

ical evidence and its statistical validation, confirmed and outperforms the predefined

baselines for strict statistical key performance indices and within all performed experi-

ments. Predictions of one stock’s trend changes based on other stock’s price trend gra-

dients in the preceding time step show an improved accuracy for larger time intervals,

with average accuracies and maximum accuracies of 56.02% and 63.95% respectively

for one-day predictions. They retain large parts of their accuracy for a minimum of 10

nodes for mid-model bottleneck layers, and show equally above-baseline predictions in

high-volatility market scenarios, albeit with the cost of a higher variance for different

stocks. In conclusion, the results of this thesis in regard to the investigated hypothesis

are positive under conscientious observance of statistical validation measures.

44
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6.2 Contributions to existing theory

This thesis delivers strong evidence against the random walk hypothesis and the efficient-

market hypothesis. The postulates of the latter can, however, be adapted to allow

for these findings: While all forms of the efficient-market hypothesis contradict the

presented evidence due to the prohibition of successful technical analysis, a possible

change to the weak-form efficient market hypothesis’ postulates is to include prediction

methods that are able to reliably outperform the market and implemented by a suffi-

ciently small number of investors to not result in a new equilibrium. With a negligible

amount of capital involved in the context of the whole market, some agents, e.g. select

quantitative hedge funds or individuals, could consistently realise above-average re-

turns, reducing the weak-form efficient-market hypothesis to a context-based version.

A time-specific weak-form efficient-market hypothesis would state that the postulates

do not apply for general market dynamics, but are true for the majority of the trad-

ing entities due to restrictions regarding the methodology and the capital involved in

the latter. Stock markets would therefore not be seen as inherently efficient, but as

efficient for the majority in the current state of the market. Due to the dismissal of

inherent informational efficiency, the large-scale availability of such methods would

not reinstate the current forms of the efficient-market hypothesis via an equilibrium, as

they categorically prohibit the viability of technical analysis. In addition, the results for

volatile environments, by using pre-crisis data to for the training process, contributes

some evidence for the Dragon King Theory of Sornette (2009) and the research de-

scribed in Section 2.1.2. The large difference in accuracies for the model’s predictions

and the baselines can not be explained by the shift to a skewed distribution in favour of

negative trend changes, given that the training data does not contain such an imbalance.

In regard to the application of deep learning to time series analysis, the results pre-

sented in this thesis deliver evidence for the viability of deep-layered neural networks

and gradient features for trend change prediction with non-linear correlations of a large

number of time series, with possible areas of application proposed in Section 5.1.1. As

discussed in Section 1.4.3, the positive results of this thesis demonstrate the value of

deep learning approaches to time series analysis and show the utility of linear regres-

sion derivatives as features, offering a simple trend indicator with a high predictive

value in order to further the understanding of highly complex time series correlations.
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6.3 Suggestions for further research

6.3.1 Investigation of high frequency data

High frequency trading refers to the utilisation of high frequency market data with

short holding periods and high cancellation rates for automated equities and futures

trading (Menkveld, 2013). Although its share of all implemented trades decreased after

the financial crisis of 2007/2008, high frequency trading remains a driving force on

financial markets, with a double-digit share of total trading volumes across markets and

competition existing mostly between different algorithms (Easley et al., 2010). With

the presented model structure, the presence of small-scale time-shifted correlations

could be detected to investigate the interdependence of high frequency trading systems.

6.3.2 Integration of text-based approaches

As described in Section 2.1.4, research on text analysis-based stock market prediction

has been shown to be capable of profitable returns. The combination with time series-

based predictions has been tested before, with indications that such a combination of

information gathered from both finance-related textual news and historical stock mar-

ket data is viable (Cao et al., 2012). Given that the analysis of news feeds constitutes

new information, related experiments could not be used to test market efficiency and

would be a practical application of this thesis for optimised stock market prediction.

6.3.3 Wavelets as advanced features

Wavelets are the result of time-frequency transformations to obtain a representation of

local variations on different scales. An example of a comprehensive introduction to

their usage for time series analysis is Nason and von Sachs (1999). Section 2.3.3 gives

an overview of gradient-based wavelet approaches to practical applications in regard to

time series, and it is proposed that wavelets could be used as a more sophisticated way

to extract relevant information from time intervals of stock price series. As wavelets are

useful for denoising signals, the research question in this case would be whether this

elaborate form of information extraction yields better model performances for stock

price predictions than trend approximations via linear regressions over time intervals.
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Main function for the substitution of missing instances:

# F u n c t i o n t o a c c o u n t f o r m i s s i n g t ime s tamps

m i s s i n g i n s t a n c e s <− f u n c t i o n ( da t a , s t o c k s . num , v a l i d . t imes , ) {
d a t a . l i s t <− l i s t ( ) ;

f o r ( i i n 1 : s t o c k s . num ) {
d a t a . l i s t [ [ i ] ] <− d a t a [ ( data$X . RIC == un iq ue . r i c [ i ] ) , ] ;

}
c o u n t . l i s t <− l i s t ( ) ;

f o r ( i i n 1 : s t o c k s . num ) {
c o u n t . l i s t [ [ i ] ] <− d a t a . l i s t [ [ i ] ] $Time . L . [ 1 ] ;

}
c o u n t . wrong <− u n l i s t ( c o u n t . l i s t ) ;

c o u n t . wrong <− which ( c o u n t . wrong != v a l i d . t i m e s [ 1 ] ) ;

f o r ( i i n c o u n t . wrong ) {
d a t a . s t a r t <−

as . i n t e g e r ( s u b s t r i n g ( d a t a . l i s t [ [ i ] ] $Time . L . [ 1 ] , 1 , 2 ) ) ;

v a l i d . s t a r t <− as . i n t e g e r ( s u b s t r i n g ( v a l i d . t i m e s [ 1 ] , 1 , 2 ) ) ;

s t a r t . d i f f <− d a t a . s t a r t − v a l i d . s t a r t ;

d a t a . l i s t [ [ i ] ] [ ( 1 + s t a r t . d i f f ) : ( dim ( d a t a . l i s t [ [ i ] ] ) [ 1 ]

+ s t a r t . d i f f ) , ]

<− d a t a . l i s t [ [ i ] ] [ 1 : dim ( d a t a . l i s t [ [ i ] ] ) [ 1 ] , ] ;

f o r ( j i n 1 : s t a r t . d i f f ) {
d a t a . l i s t [ [ i ] ] [ j , ] <− d a t a . l i s t [ [ i ] ] [ ( 1 + s t a r t . d i f f ) , ]

d a t a . l i s t [ [ i ] ] $Time . L . [ j ] <− v a l i d . t i m e s [ j ] ;

}
}
f o r ( i i n 1 : s t o c k s . num ) {

d a t a . l i s t [ [ i ] ] <− f i l l i n s t a n c e s ( d a t a . l i s t [ [ i ] ] , v a l i d . t i m e s ) ;

d a t a . l i s t [ [ i ] ] <− na . omi t ( d a t a . l i s t [ [ i ] ] ) ;

}
r e t u r n ( d a t a . l i s t ) ;

}

x



xi

Auxiliary function for missinginstances():

# F u n c t i o n t o d e t e c t and f i l l m i s s i n g i n s t a n c e s

f i l l i n s t a n c e s <− f u n c t i o n ( da t a , v a l i d . t i m e s ) {
r u l e r <− dim ( d a t a ) [ 1 ] ;

i n p u t . l e n g t h <− r u l e r ;

d a t a <− r b i n d ( da t a , d a t a ) ;

d a t a . l e n g t h <− dim ( d a t a ) [ 1 ] ;

da ta$Type [ ( i n p u t . l e n g t h + 1 ) : d a t a . l e n g t h ] <− NA;

t i m e s <− da ta$Time . L . ;

t i m e s . new <− r e p ( v a l i d . t imes , l e n g t h . o u t = i n p u t . l e n g t h ) ;

i d . t i m e s <− FALSE ;

w h i l e ( ! ( i d . t i m e s == TRUE ) ) {
l o c . d i f f <− min ( which ( ( t i m e s == t i m e s . new ) == FALSE ) ) ;

i f ( ( l o c . d i f f == I n f ) | | i s . na ( da ta$Type [ l o c . d i f f ] ) ) {
i d . t i m e s <− TRUE;

} e l s e {
d a t a [ ( l o c . d i f f + 1 ) : ( r u l e r + 1 ) , ] <− d a t a [ l o c . d i f f : r u l e r , ] ;

ho ld . t ime <− t i m e s . new [ l o c . d i f f ] ;

i f ( data$X . RIC [ l o c . d i f f ] == data$X . RIC [ l o c . d i f f − 1 ] ) {
d a t a [ l o c . d i f f , ] <− d a t a [ l o c . d i f f − 1 , ] ;

} e l s e {
d a t a [ l o c . d i f f , ] <− d a t a [ l o c . d i f f + 1 , ] ;

}
da ta$Time . L . [ l o c . d i f f ] <− ho ld . t ime ;

r u l e r <− r u l e r + 1 ;

t i m e s <− da ta$Time . L . ;

}
}
d a t a <− d a t a [ 1 : ( min ( which ( i s . na ( da ta$Type ) ) ) − 1 ) , ] ;

d a t a <− d a t a [ , ! ( names ( d a t a ) %i n% ’ Type ’ ) ] ;

r e t u r n ( d a t a ) ;

}

Input explanation:

data is a matrix without NA values containing a dataset with a structure as described

in Section 3.1.2. stocks.num is the number of unique stocks represented in data, and

valid.times is a vector of valid successive time stamps of the same length as the

number of rows in data. The output of missinginstances() is a list with one list

place for each unique stock in data that contain matrices that can be aligned perfectly.



Appendix B

Reuters Instrument Codes for the primary and bottleneck experiments:

AA.N AAPL.OQ AAP.N ABC.N ABT.N ACN.N ADBE.OQ

ADM.N ADP.OQ ADSK.OQ ADS.N AEE.N AEP.N AES.N

AET.N AFL.N AIG.N AIV.N AIZ.N AKAM.OQ ALL.N

ALXN.OQ AMAT.OQ AME.N AMG.N AMGN.OQ AMP.N AMT.N

AMZN.OQ A.N AN.N AON.N APA.N APC.N APD.N

APH.N ARG.N ATVI.OQ AVB.N AVGO.OQ AVY.N AWK.N

AXP.N AZO.N BAC.N BA.N BAX.N BBBY.OQ BBT.N

BBY.N BCR.N BDX.N BEN.N BFb.N BHI.N BIIB.OQ

BK.N BLK.N BLL.N BMY.N BRKb.N BSX.N BWA.N

BXP.N CAG.N CAH.N CA.OQ CAT.N CBG.N CB.N

CBS.N CCE.N CCI.N CCL.N CELG.OQ CERN.OQ CF.N

CHD.N CHK.N CHRW.OQ CI.N CINF.OQ CL.N CLX.N

CMA.N CMCSA.OQ CME.OQ CMG.N CMI.N CMS.N C.N

CNC.N CNP.N COF.N COG.N COH.N COL.N COP.N

COST.OQ CPB.N CRM.N CSCO.OQ CTAS.OQ CTL.N CTSH.OQ

CTXS.OQ CVC.N CVS.N CVX.N CXO.N DAL.N DD.N

DE.N DFS.N DG.N DGX.N DHI.N DHR.N DISCA.OQ

DISCK.OQ DIS.N DLTR.OQ D.N DNB.N DO.N DOV.N

DOW.N DPS.N DRI.N DTE.N DUK.N DVA.N DVN.N

EBAY.OQ ECL.N ED.N EFX.N EIX.N EL.N EMC.N

EMN.N EMR.N ENDP.OQ EOG.N EQIX.OQ EQR.N EQT.N

ESRX.OQ ESS.N ETFC.OQ ETN.N ETR.N EW.N EXC.N

EXPD.OQ EXPE.OQ EXR.N FAST.OQ FCX.N FDX.N FE.N

FFIV.OQ FIS.N FISV.OQ FITB.OQ FLIR.OQ FL.N FLR.N

FLS.N FMC.N F.N FRT.N FSLR.OQ FTI.N GD.N

GE.N GGP.N GILD.OQ GIS.N GLW.N GME.N GM.N

GOOG.OQ GPC.N GPN.N GPS.N GRMN.OQ GS.N GWW.N

HAL.N HAR.N HAS.OQ HBAN.OQ HBI.N HCA.N HCN.N

xii



xiii

HCP.N HD.N HES.N HIG.N HOG.N HOLX.OQ HON.N

HOT.N HP.N HPQ.N HRB.N HRL.N HRS.N HSIC.OQ

HST.N HSY.N HUM.N IBM.N ICE.N IFF.N ILMN.OQ

INTC.OQ INTU.OQ IPG.N IP.N IRM.N IR.N ISRG.OQ

ITW.N IVZ.N JBHT.OQ JCI.N JEC.N JNJ.N JNPR.N

JPM.N JWN.N KEY.N KIM.N KLAC.OQ KMB.N KMI.N

KMX.N K.N KO.N KR.N KSS.N KSU.N LEG.N

LEN.N LH.N LLL.N LLTC.OQ LLY.N LM.N LMT.N

L.N LNC.N LOW.N LRCX.OQ LUK.N LUV.N LYB.N

MAC.N MA.N MAS.N MAT.OQ MCD.N MCHP.OQ MCK.N

MCO.N MDT.N MET.N MHK.N MJN.N MKC.N MLM.N

MMC.N MMM.N M.N MO.N MON.N MOS.N MRK.N

MRO.N MSFT.OQ MSI.N MS.N MTB.N MU.OQ MUR.N

MYL.OQ NBL.N NDAQ.OQ NEE.N NEM.N NFLX.OQ NFX.N

NI.N NKE.N NLSN.N NOC.N NOV.N NRG.N NSC.N

NTAP.OQ NTRS.OQ NUE.N NVDA.OQ NWL.N NWSA.OQ NWS.OQ

OI.N OKE.N OMC.N O.N ORLY.OQ OXY.N PAYX.OQ

PBCT.OQ PBI.N PCAR.OQ PCG.N PCLN.OQ PDCO.OQ PEG.N

PEP.N PFE.N PFG.N PG.N PHM.N PH.N PKI.N

PLD.N PM.N PNC.N PNR.N PNW.N PPG.N PPL.N

PRU.N PSA.N PVH.N PWR.N PXD.N PX.N QCOM.OQ

RAI.N RCL.N RF.N RHI.N RHT.N RIG.N RL.N

R.N ROK.N ROP.N ROST.OQ RRC.N RSG.N RTN.N

SBUX.OQ SCG.N SCHW.N SEE.N SE.N SHW.N SIG.N

SJM.N SLB.N SLG.N SNA.N SNDK.OQ SO.N SPG.N

SPLS.OQ SRCL.OQ SRE.N STI.N STJ.N STT.N STX.OQ

STZ.N SWK.N SWKS.OQ SWN.N SYK.N SYMC.OQ SYY.N

TAP.N TDC.N TEL.N TE.N TGT.N TIF.N TJX.N

TMK.N TMO.N T.N TROW.OQ TRV.N TSCO.OQ TSN.N

TSO.N TSS.N TWC.N TWX.N TXT.N TYC.N UAL.N

UA.N UDR.N UHS.N ULTA.OQ UNH.N UNM.N UNP.N

UPS.N URBN.OQ URI.N USB.N UTX.N VAR.N VFC.N

VLO.N VMC.N V.N VNO.N VRSK.OQ VRSN.OQ VRTX.OQ

VTR.N VZ.N WAT.N WEC.N WFC.N WHR.N WMB.N

WM.N WMT.N WU.N WY.N WYN.N WYNN.OQ XEC.N

XEL.N XL.N XOM.N XRAY.OQ XRX.N YHOO.OQ YUM.N

ZION.OQ



xiv

Reuters Instrument Codes for the high-volatility experiments:

AA.N AAP.N ABC.N ABT.N ACN.N ADM.N ADS.N

AEE.N AEP.N AES.N AET.N AFL.N AGN.N AIG.N

AIV.N ALL.N AME.N AMG.N AMT.N A.N AN.N

APA.N APC.N APD.N APH.N ARG.N AVB.N AVY.N

AXP.N AZO.N BAC.N BA.N BAX.N BBT.N BBY.N

BCR.N BDX.N BEN.N BFb.N BHI.N BK.N BLK.N

BLL.N BMY.N BRKb.N BSX.N BWA.N BXP.N CAG.N

CAH.N CAT.N CB.N CCE.N CCI.N CCL.N CHD.N

CHK.N CI.N CL.N CLX.N CMA.N CMS.N C.N

CNP.N COF.N COG.N COH.N COL.N COP.N CPB.N

CTL.N CVC.N CVS.N CVX.N DD.N DE.N DGX.N

DHI.N DHR.N DIS.N D.N DNB.N DO.N DOV.N

DOW.N DRI.N DTE.N DUK.N DVA.N ECL.N ED.N

EFX.N EIX.N EL.N EMC.N EMN.N EMR.N EOG.N

EQR.N EQT.N ESS.N ETN.N ETR.N EW.N EXC.N

FCX.N FDX.N FE.N FLR.N FLS.N FMC.N F.N

FRT.N FTI.N GAS.N GD.N GE.N GIS.N GLW.N

GME.N GM.N GPC.N GPN.N GPS.N GS.N GWW.N

HAL.N HAR.N HCN.N HCP.N HD.N HIG.N HON.N

HOT.N HP.N HPQ.N HRB.N HRL.N HRS.N HSY.N

HUM.N IBM.N IFF.N IPG.N IP.N IRM.N IR.N

ITW.N JCI.N JEC.N JNJ.N JPM.N JWN.N KEY.N

KIM.N KMB.N KMX.N K.N KO.N KR.N KSS.N

KSU.N LEG.N LEN.N LH.N LLL.N LLY.N LM.N

LMT.N LNC.N LOW.N LUK.N LUV.N MAC.N MAS.N

MCD.N MCK.N MCO.N MDT.N MET.N MHK.N MKC.N

MLM.N MMC.N MMM.N MO.N MON.N MRK.N MRO.N

MTB.N MUR.N NBL.N NEM.N NFX.N NI.N NKE.N

NOC.N NSC.N NUE.N NWL.N OI.N OKE.N OMC.N

O.N OXY.N PBI.N PCG.N PEG.N PEP.N PFE.N

PFG.N PG.N PGR.N PHM.N PH.N PKI.N PLD.N

PNC.N PNR.N PNW.N PPG.N PPL.N PRU.N PSA.N

PVH.N PWR.N PXD.N PX.N RCL.N RF.N RHI.N

RIG.N RL.N R.N ROK.N ROP.N RRC.N RSG.N

RTN.N SCG.N SEE.N SHW.N SJM.N SLB.N SLG.N

SNA.N SO.N SPG.N SRE.N STI.N STJ.N STT.N



xv

STZ.N SWK.N SWN.N SYK.N SYY.N TE.N TGT.N

TIF.N TJX.N TMK.N TMO.N T.N TSN.N TSO.N

TSS.N TXT.N TYC.N UDR.N UHS.N UNH.N UNM.N

UNP.N UPS.N URI.N USB.N UTX.N VAR.N VFC.N

VLO.N VMC.N VNO.N VTR.N VZ.N WAT.N WEC.N

WFC.N WHR.N WMB.N WMT.N WY.N XEC.N XEL.N

XL.N XOM.N XRX.N YUM.N
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