
Idiom Specific Code
Transformations for

Parallelising Compilers

Philip Ginsbach

Master of Science
School of Informatics

University of Edinburgh
2016

Abstract
Parallel computing has become pervasive in most computational domains and this
has lead to profound changes to programming languages, compilers and software
libraries. The advent of heterogeneous computing requires a reevaluation of the
currently established approaches to parallel computing, as many of them do not
generalise well to heterogeneous parallelism.

The concept of computational idioms is well suited to describe the specific
computational capabilities of individual components in heterogeneous systems.
Furthermore, computational idioms contain contextual information that could
enable compilers to reason about parts of code that are unsuited for traditional
static analysis due to irregularities such as indirect memory accesses. The lack
of formal specifications for computational idioms however prevents their use in
automatic compiler analysis.

We investigate an idiom based approach to automatic parallelisation using a
formal specification language for the description of computational idioms. We
develop algorithms to automatically detect computational idioms in single static
assignment intermediate representation code and implement idiom specific code
transformations. Our evaluation is based on homogeneous systems, which allows a
meaningful comparison to established methods for automatic parallelisation. We
intend to extend the approach to heterogeneous computing in future research.

In a case study, we analyse the performance bottlenecks of two established
benchmark collections and classify the identified bottlenecks according to the
computational idioms that they represent. We establish the three most important
computational idioms in these benchmarks and study the relevant parallelisation
and optimisation techniques that can be applied to them.

We use the results from this case study to implement an optimisation pass
in the LLVM infrastructure that is able to automatically detect computational
idioms and apply idiom specific parallelisation transformations. We prove the
general feasibility of the approach for a limited set of computational idioms.
Further work is necessary to show that the approach can be extended to more
complex programs and additional computational idioms.

i

Acknowledgements
I would like to thank my supervisor Michael O’Boyle for his scientific advice,
his helpful feedback and the many interesting discussions about our research.
Furthermore I want to thank my supervisor Björn Franke for new perspectives
and interesting conversations about reduction operations and other topics.

I want to thank ARM and in particular my industrial supervisor Chris Ryder
for the support and the opportunity to work together with one of the most exciting
technology companies in Europe.

ii

Declaration
I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualification except
as specified.

(Philip Ginsbach)

iii

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Idiom Specific Parallelisation . 3
1.3 Work Undertaken . 3
1.4 Contributions in this Dissertation 4

2 Background 5
2.1 Computational Idioms . 5

2.1.1 Higher Order Functions 6
2.1.2 Parallel Dwarfs . 7
2.1.3 Algorithmic Skeletons . 8

2.2 Idiom Specific Parallelisation Techniques 9
2.2.1 Stencil Computations . 9
2.2.2 Linear Algebra . 10
2.2.3 Reduction Operations . 11

2.3 The LLVM compiler infrastructure 14
2.4 Benchmark Software . 15

3 Related Work 17
3.1 Idiom Specific Optimisations . 17
3.2 Compilation for Heterogeneous Computing 19
3.3 Summary . 21

iv

4 Idiom Based Code Transformations - A Case Study 22
4.1 Identification of Relevant Patterns 22

4.1.1 NAS Parallel Benchmarks 23
4.1.2 Parboil Benchmarks . 24
4.1.3 Bottleneck identification 24
4.1.4 Bottleneck classification 26
4.1.5 The Reduction Idiom in NPB EP 26
4.1.6 Summary . 29

4.2 Fast Pattern Implementations . 30
4.2.1 Linear Algebra . 30
4.2.2 Stencil Kernels . 31
4.2.3 Reduction Computations 32

4.3 Evaluation . 34
4.3.1 Experimental Setup . 34
4.3.2 Results . 36

4.4 Summary . 37

5 Constraint Based Idiom Detection - Theory and Practice 38
5.1 Problems with Syntax . 38
5.2 Arguments for LLVM . 41
5.3 Formal Problem Description . 42
5.4 Constraint Based Idion Specification 43

5.4.1 Graph Based Constraints 44
5.4.2 Miscellaneous Constraints 45
5.4.3 Formal Language Specification 46

5.5 Some Constraint Examples . 47
5.6 Solving the Constraints . 48

5.6.1 The Detection Algorithm 50
5.6.2 Interpretation as Graph Search 51
5.6.3 Generating Restricted Constraints 52

5.7 Prototype Implementation Architecture 52
5.7.1 Implementation Overview 53

5.8 Automatic Pattern replacement 58
5.9 Summary . 59

v

6 Evaluation 60
6.1 Experimental Setup . 60
6.2 Results . 61
6.3 Summary . 63

7 Conclusion 65
7.1 Summary . 65
7.2 Critical Discussion . 67
7.3 Future Work . 68

Bibliography 70

vi

Chapter 1

Introduction

Writing parallel computer programs is difficult and no single satisfactory solution
to this problem has been found. Multi-core processors are now pervasive in most
computational domains, resulting in profound changes to programming languages,
compilers and software libraries. The advent of heterogeneous computing requires
a reevaluation of currently established approaches to parallel computing, as many
of them do not generalise well to heterogeneous parallelism.

In this thesis we introduce a new approach to automatic parallelisation based
on the concept of computational idioms. It involves the formal specification of
computational idioms and the integration of idiom specific transformations into
compilers. With an idiom based approach, we can circumvent shortcomings of
conventional static analysis by relying on idiom specific contextual information.

1.1 Motivation

Uncovering, expressing and exploiting parallelism in computer programs remains
a big challenge. Ever since multi-core processors became mainstream in desktop
computing, finding efficient and usable approaches to developing multithreaded
applications has been a major research topic (Asanovic et al. (2006)).

Early hopes of avoiding profound changes to the established programming
stack by enabling compilers to parallelise sequential source code automatically
were largely disappointed. Instead of a single-size-fits-all solution, almost every
aspect of application development was touched by efforts to mainstream parallel
programming. This includes the development of parallel programming languages,
supporting software libraries and modifications to the compiler infrastructures.

1

Chapter 1. Introduction 2

Compiler based parallelisation approaches were for a long time confined to
very limited forms of parallelism, such as instruction level parallelism in the
form of automatic vectorisation (Larsen and Amarasinghe (2000)). Exploiting
thread level parallelism of larger scopes on the other hand turned out to be a
very difficult problem. This is mostly due to the conservative nature of static
program analysis. In many cases, it can not provide conclusive evidence for
the validity of parallelising program transformations (Niall Murphy and Mullins
(2015)). Speculative parallelisation with dynamic validity verification has helped
to overcome the limitations of traditional static program analysis and revitalised
interest in compiler based parallelisation (Tournavitis et al. (2009); Wang et al.
(2014)).

The emerging awareness that future hardware platforms will be increasingly
heterogeneous (Chung et al. (2010)) demands the reevaluation of the established
parallelisation techniques and the development of new approaches. Heterogeneous
computing in this context means the use of structurally different processing cores
together in a single computing system. This can mean central processor cores
working more closely together with accelerator hardware such as graphics pro-
cessors. Other examples are platforms like ARM big.LITTLE, which pair very
energy efficient processor cores with high performance cores to be able to provide
the potential for high performance with very low energy consumption during idle
times.

Heterogeneous multi-core systems can feature multiple different instruction
sets, distinct memory spaces and complicated performance characteristics. This
makes reasoning about efficient parallel implementations much more difficult.
Heterogeneous computing is mostly a generalisation of parallel computing, but
not all of the established approaches to parallel computing can be extended easily
to support heterogeneity. This is because the main challenge of parallel computing
on homogeneous systems is the exposure of parallelism, where in heterogeneous
computing the scheduling of parallelism and the distribution of memory become
an additional difficulty (Cong and Yuan (2012); Emani and O’Boyle (2015)).

In this dissertation we present a new approach to compiler based automatic
program parallelisation that is designed around the concept of computational
idioms. This concept allows us to integrate domain specific parallelisation and
optimisation approaches into general purpose compilers.

Chapter 1. Introduction 3

1.2 Idiom Specific Parallelisation

Heterogeneous computing hardware often consists of general purpose processor
cores together with other, more specialised processing hardware. An example of
this concept is a desktop computer with a multi-core main processor and a general
purpose programmable graphics processing unit (GPU). In mobile platforms there
are often additional hardware accelerators, such as hardware media codecs and
digital signal processors.

The individual processing devices in heterogeneous systems are optimised for
specific computational workloads that occur frequently and are critical to the
performance of the device. In software, such reoccurring computational structures
can be classified as computational idioms. We argue that the capabilities of
heterogeneous are therefore naturally described by computational idioms. This
makes an idiom based approach to parallelisation very natural in the context of
heterogeneous computing.

The fundamental approach is to detect idioms in program code and to then
use domain specific knowledge of these idioms to achieve optimal parallelisation.
As opposed to standard approaches, the awareness of higher level structures gives
our system additional contextual information to resolve irregularities in program
code that normally inhibit static analysis. This includes in particular pointer
arithmetic and indirect memory access.

1.3 Work Undertaken

The work undertaken for this dissertation can be split into several distinct parts.
The individual sections cumulate in the implementation of an optimisation pass
in the LLVM infrastructure that uses the concept of computational idioms to
apply code transformations that result in better hardware utilisation and runtime
speedup by better exploiting available parallelism.

In the first stage of our research, we performed an explorative study of some
established benchmark suites to assemble the computational idioms that are most
pervasive in common computational workloads. To achieve this, we used profiling
techniques to establish the bottleneck computations of the individual benchmark
programs. We then classified the bottlenecks in terms of computational idioms
and established which of them we need to support for significant coverage.

Chapter 1. Introduction 4

For each of the identified computational idioms, we investigated in what way
we can best achieve runtime performance. This involved comparing alternative
implementations of the functionality both using optimised libraries and manual
code transformations. Most important was the efficient parallelisation of the
performance critical program parts. We performed extensive measurements of
the resulting runtime behaviour and compared the results to optimised parallel
versions of the benchmarks that were created by the original implementers.

Using the results from the previous steps, we devised a formal language to
specify computational idioms in a constraint based fashion that can be evaluated
mechanically and we developed algorithms to efficiently process the specifications.

We then implemented a constraint based idiom detection system in the LLVM
infrastructure based on this formal specification language to enable compilers
based on LLVM to automatically spot computational idioms. We evaluated this
system on the selected benchmark suites and compared the findings to the manual
classification that we performed earlier.

Finally, we added routines to the LLVM optimiser to recreate our manual
idiom specific code transformations based on this constraint based automatic
idiom detection functionality. The results of this were compared to the runtime
speedups that were previously attained by manual optimisations.

1.4 Contributions in this Dissertation

The following contributions are part of this MSc dissertation.

• An analysis of relevant computational idioms in two benchmark suites.

• A survey and evaluation of idiom-based optimisation and parallelisation
strategies.

• The specification of a formal language for the description of computational
idioms in LLVM IR.

• The derivation of an algorithm for the automatic detection of computational
idioms in LLVM IR.

• An LLVM optimisation pass for idiom specific parallelisation.

Chapter 2

Background

The concept of computational idioms is central to our research. We use it as
an umbrella term for several related concepts that have been studied by distinct
research communities. We introduce the particular challenges of some individual
computational idioms and describe the most commonly used parallelisation and
optimisation strategies.

The LLVM compiler infrastructure will be used for implementing a prototype
in a later chapter, we give an overview of the basic principles of the LLVM code
base and intermediate representation language. We give some background on the
benchmark software that we used.

2.1 Computational Idioms

Computational idioms are program structures that occur frequently and can be
exploited via specific optimisation techniques to achieve performance increases.
Examples of computational idioms are linear algebra, stencil computations and
reduction operations. We will discuss each of these examples in more detail in
later sections.

Several groupings and classifications of program structures were introduced
by different scientific communities. They differ in their formality and motivation.
We understand the term computational idiom as an umbrella term to encompass
these different conceptualisations. We will use this concept of computational
idioms as a vehicle to transfer parallelisation and optimisation techniques from
well studied groups of programs into general purpose compilers.

5

Chapter 2. Background 6

2.1.1 Higher Order Functions

In functional programming languages, such as Haskell and OCaml, some idioms
can be expressed very elegantly as higher order functions. Higher order functions
take other functions as parameters to implement the actual function behaviour.
Examples for this are most notably map and fold, which are used to implement
two fundamental groups of computations, both with an inherent potential for
parallelism. There are many more examples of higher order functions, among
them filter and scan.

Functions that can be implemented via map take as their input an array and
perform a per element operation to generate an output array of the same size.
Crucially the same computation is performed for each value in the input array
and each value in the output array is only dependent on the corresponding input
value. In Haskell, map is defined as follows.

map :: (a -> b) -> [a] -> [b]

map f [] = []

map f (x:xs) = f x : map f xs

In contrast, the fold idiom takes an array as input but computes only a single
value. The following Haskell function definition fully specifies its functionality.
The most common example of fold operations are sums over arrays.

foldl :: (a -> b -> a) -> a -> [b] -> a

foldl f z [] = z

foldl f z (x:xs) = foldl f (f z x) xs

Higher order functions can be used to describe many common computational
workloads. The popularity of the MapReduce framework (Dean and Ghemawat
(2008)) for example stems from the observation that many big data workloads
exhibit characteristics that can be expressed efficiently using a combination of
the higher order functions map and reduce (another name for fold). It provides
an idiom based approach to the development of big data applications, enabling
shorter development times and more predictable performance. The inspiration for
this framework came from the observation that much of the existing, individually
programmed software algorithms at Google implicitly used similar programming
models already.

Chapter 2. Background 7

The implementation of higher level functions requires a powerful type system
and can be only partially realised in most mainstream programming languages,
such as C and Fortran. Template meta-programming in C++ is fundamentally a
functional programming language and therefore allows for many of these concepts
to be transferred to C++, but this is a painful endeavour.

The awareness of higher order functions can however still help to reason about
potential parallelism and the best approach to uncover it. This was the main
inspiration for the study of algorithmic skeletons as described in section 2.1.3. For
example, the nature of the map function implies data-parallel behaviour. With a
bit more sophistication, the fold function captures inherent parallelism as well,
as will be discussed in detail in section 2.2.3.

2.1.2 Parallel Dwarfs

The so called Berkeley Dwarfs are a collection of 13 computational methods that
together comprise a large portion of the common parallel computing workloads
(Asanovic et al. (2006)). Each Dwarf is a computational pattern that is common
in important applications and has persisted more or less unchanged for many
years. The Dwarfs are inspired by numerical computations that arise in the
scientific computing community, although the authors claim that the knowledge
from this domain may prove useful in other areas as well.

As opposed to higher order functions, the Berkeley Dwarfs are a much more
informal concept that was not developed for the use in programming languages
and compilers. They were instead intended as a guideline for the evaluation of new
hardware architectures and as a basis for new benchmarking tools. The Berkeley
Dwarfs group applications mostly by the underlying mathematical methods that
are used instead of specifying the algorithmic behaviour of the idioms.

The complete list of Berkeley Dwarfs as outlined in the technical report are
Dense Linear Algebra, Sparse Linear Algebra, Spectral Methods, N-
Body Methods, Structured Grids, Unstructured Grids, Monte Carlo,
Combinatorial Logic, Graph Traversal, Graphical Models, Finite State
Machines, Dynamic Programming, Backtrack and Branch-and-Bound.
The first seven of these are taken directly from a previous work by Colella (2004).

Chapter 2. Background 8

Due to the lack of formality, the definition of the Berkeley Dwarfs is not
directly suitable for compiler analysis. In later sections, we will show how parts
of the Berkeley Dwarfs can be described in a more formal way however and some
of them will prove useful for our approach.

2.1.3 Algorithmic Skeletons

Another concept that can be considered a subset of computational idioms is the
notion of “Algorithmic Skeletons” (Cole (1991)). It was introduced as a way
to classify the behaviour of parallel programs according to their organisation of
workload distribution. This is mostly done with the motivation to introduce
new, higher level programming models and tools for parallel programming. One
major inspiration to the concept was the lack of functionality in mainstream
programming languages to equal the well established higher order functions of
functional programming languages, such as the map function to express element
wise application of a single function to an array.

Among the “Algorithmic Skeletons” are Fixed Degree Divide & Conquer
and the Task Queue. The concept of “Algorithmic Skeletons” has been used
to implement many programming frameworks and libraries, including Skandium
(Leyton and Piquer (2010)), Eden (Loogen et al. (2005)), eSkel (Cole (2004)) and
SkelCL (Steuwer et al. (2011)). Furthermore, the Intel Thread Building Blocks
library (Reinders (2007)) is based on this concept.

As opposed to the higher order functions used in functional programming
and similarly to the Berkeley Dwarfs, the definitions for algorithmic skeletons are
informal and not intended for automated reasoning. They are however heavily
inspired by higher order functions and similarly describe the algorithmic structure
of computations. This distinguishes them from the Berkeley Dwarfs, which are
more focused on mathematical domains.

Chapter 2. Background 9

2.2 Idiom Specific Parallelisation Techniques

In this section we will discuss three specific computational idioms in more detail:
stencil computations, linear algebra and reduction operations.

Stencil kernels and linear algebra are particularly important in the domain
of scientific computing. Parallelism is generally easy to expose in many stencil
computations. Achieving good performance however requires sophisticated code
transformations to guarantee good cache locality. Numeric linear algebra is one
of the best understood computational patterns and fast implementations of the
relevant linear algebra operations have existed for many years. Different reduction
operations are widespread in all of computing. We introduce basic parallelisation
techniques and discuss the generalisation of reduction operations beyond their
usual scope using insights from functional programming.

2.2.1 Stencil Computations

Stencil computations are a class of iterative computational kernels that operate
on multidimensional arrays of floating point values. In each iteration, the values
of each cell in the array are updated with a value computed as some function of
a neighbourhood of that cell. The crucial feature of the stencil idiom is that the
precise shape of the neighbourhood as well as the function applied to it are the
same over the entire domain of the array.

A typical example of a stencil computation is the Jacobi kernel, where the new
value of each cell is the average of the previous values of its four direct neighbours.

for(i = 1; i + 1 < n; i++)

for(j = 1; j + 1 < n; j++)

new[i][j] = 0.25 * (old[i][j+1] + old[i+1][j]

+ old[i -1][j] + old[i][j -1]);

Stencil kernels are crucial in many computational domains, including most
notably image processing and many areas of scientific computing, particularly
computational fluid dynamics. While stencil computations are very regular and
exposing parallelism is often easy, naive implementations can be very inefficient
in their cache utilisation. The result of this is that stencil specific optimisation
techniques can result in speedup of orders of magnitudes due to increased cache
locality. Particularly important optimisation techniques in this context are the
different forms of multidimensional iteration space tiling.

Chapter 2. Background 10

Traditional optimising compilers are generally unable to automatically apply
these optimisation transformations, as they require higher-level reasoning about
the code. This makes stencil kernels the perfect candidate for idiom specific
compiler optimisations.

These characteristics also make stencil computations well suited for domain
specific languages that can use domain specific knowledge to reason automatically
about best cache utilisation and often create faster code than programmers using
traditional languages. We want single out Halide (Ragan-Kelley et al. (2013))
here, that we intend to use in future iterations of our research to generate even
faster stencil codes.

2.2.2 Linear Algebra

Efficient implementations of numeric linear algebra have been studied for many
decades. A major advantage of linear algebra over the previously mentioned two
computational idioms is the more restricted nature of linear algebra operations.
While reduction operations and stencil kernels contain arbitrary computations as
part of the computational idioms, linear algebra functionality can be implemented
as a set of cleanly encapsulated subroutines.

The Basic Linear Algebra Subprograms (Anderson et al. (1999)) define a set of
standard function interfaces that many library implementations of linear algebra
functionality use. There are many competing library implementations of linear
algebra functionality, in our research we used the Intel Math Kernel Libraries and
OpenBLAS.

The most computationally intense linear algebra function is usually the multi-
plication of two large matrices. Similarly to stencil kernels, the tiling of the data
into smaller chunks for increased cache locality is the most important optimisation
strategy for optimising matrix multiplications and is used by most professional
implementations. Furthermore the use of vector intrinsics for instruction level
parallelism can lead to additional speedups.

Aside from the traditional dense linear algebra routines that are represented
in the BLAS specification, there is sparse linear algebra. It deals with matrices
that have almost all entries set to zero, making the standard approaches to linear
algebra inefficient. The Intel Math Kernel Libraries implement sparse linear
algebra routines that more or less mirror the BLAS interfaces.

Chapter 2. Background 11

2.2.3 Reduction Operations

2.2.3.1 Simple Reductions

The term reduction operation is generally used for simple computations that
reduce the elements of an array of scalars onto a single output value. Other
names for the same class of operations are fold, accumulate and aggregate.
The most prototypical reduction operation is the sum over an array of integers.

for(i = 0; i < n; i++)

output += input[i];

Reduction operations are of particular interest in the context of optimising and
parallelising compilers as they exhibit inter-iteration dependencies but can still be
mechanically parallelised. This works fundamentally by utilising the associativity
of the underlying operation (in our example the addition). The simplest way to
achieve this is as follows.

int temp = 0;

for(i = 0; i < n/2; i++)

output += input[i];

for(i = n/2; i < n; i++)

temp += input[i];

output += temp;

The two loops in the above code snippets have no interdependencies and can
be executed concurrently. In the same way, the workload can be distributed over
more than two processors by privatising the reduction variable to each thread as
shown above (temp is a private copy of the reduction variable output).

The above example holds more generally for all binary operators that are
associative, for example multiplication, minimum or bitwise union. It also extends
to numeric data types besides integers, although there are subtle problems when
working with floating point variables. This is because the approximate nature
of floating point numbers does not preserve the law of associativity in all cases
and the results of the above parallelisation approach are thus not guaranteed to
be bitwise equal to the sequential implementation. The detailed investigation of
these problems is beyond the scope of this work.

Chapter 2. Background 12

2.2.3.2 Insights from the Functional World

The concept of reduction operations can be extended far beyond the scope of sums
and associative operations on scalars. To understand better the full generality
of reduction operations, we can study the definition of reduction operations in
the context of functional languages, which provide much more expressiveness for
higher order functions than traditional programming languages.

In Haskell, one of the functions to implement reduction operations is foldl
(fold left, corresponding to the order in which the loop is traversed).

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f z [] = z

foldl f z (x:xs) = foldl f (f z x) xs

This function can be used to generate code that is equivalent to the C snippets
in the previous subsection.

let output = foldl (+) 0 input

The function interface allows for much more however. The elements of the
array being reduced can be of any type, in particular it allows arrays and complex
composite types. The same is true for the resulting value, which is also not
restricted to be of the same type as the array elements.

For example, a simple integer histogram computation with four bins can be
implemented as a reduction operation in the following way using foldl.

incBin ::[Int]->Int ->[Int]

incBin (x:xs) 0 = x+1 : xs

incBin [] n = []

incBin (x:xs) n = x : increment_bin xs (n -1)

histogram ::[Int]->[Int]

histogram input = foldl increment_bin [0 ,0 ,0 ,0] input

Indeed histogram operations as above can be parallelised in much the same
way as the simple sum of integers that was used as an example before. There are
however a some difficulties with this.

The operator incBin in this example is an external binary operator meaning
that it operates on two different types (Int and [Int]) and returns a value of one
of those types ([Int]). It can therefore not be associative in the classical sense,
as reordering computations naively would result in a type error.

Chapter 2. Background 13

incBin (incBin (incBin [1 ,2 ,3] 1) 2) 3 -- [2 ,3 ,4]

incBin (incBin [1 ,2 ,3] 1) (incBin 2 3) -- type error

There is however a way to make this work using an additional binary operator,
in this example the element wise list addition.
addBins ::[Int]->[Int]->[Int]

addBins [] [] = []

addBins (x:xs) (y:ys) = (x+y) : add_lists xs ys

We can now meaningfully change the parentheses by inserting the neutral
element of the binary operator addBins, which is a list of zeros. The resulting
values coincide and we get a relationship that resembles the law of associativity.
addBins (incBin (incBin [1 ,2 ,3] 1) 2) 3 -- [2 ,3 ,4]

addBins (incBin [1 ,2 ,3] 1)

(incBin (incBin [0 ,0 ,0] 2) 3) -- [2 ,3 ,4]

Using a more more abstract and lucid mathematical notation, writing incBin
as ‘+’ and addBins as ‘*’, we get the following relationship for all n,m ∈ N,
integers xi and starting histogram H (parentheses are omitted where enforced by
type constraints to increase the readability).

(H +x1 + · · ·+xn+m) = (H +x1 + · · ·+xn)∗([0,0,0]+xn+1 + · · ·+xn+m) (2.1)

It is now clear that the terms on both sides of the ‘*’ operator can be computed
in parallel and thus the same methodology that was used for sums in our original
example applies equally to histograms. This works whenever a complementing
binary operator ‘*’ exists to achieve the generalised definition of associativity
that is implicit in the equation above. Simple reductions fit this scheme as well,
the complementing operator in those cases simply happens to be the same as the
original operator.

We have collected some examples of computations that can be written as
reduction operations and parallelised using this approach.

computation binary operator complementing operator
sum addition addition
product multiplication multiplication
minimum binary minimum binary minimum
histogram incBin addBins
insertion sort order preserving insertion order preserving merge

Chapter 2. Background 14

2.3 The LLVM compiler infrastructure

LLVM is a compiler infrastructure and serves as the technical underpinning of
many newer compilers, among them in particular the clang C/C++ compiler.
The LLVM project encompasses many different components that are required
for the development of high quality optimising compilers, all built around an
intermediate program representation called LLVM IR.

One exceptional feature of LLVM is that it fully specifies its internal inter-
mediate representation and freely exposes it to external programs. The LLVM
intermediate representation (LLVM IR) is a fully typed, static single assignment
assembly style language. Most LLVM optimising passes work on the level of
LLVM IR and there are many tools in the LLVM infrastructure to handle LLVM
IR, including an assembler, an interpreter and a linker to merge multiple LLVM
IR modules. The significance of this intermediate representation in the design
philosophy of LLVM is reflected in the former name of the project: “Low Level
Virtual Machine”.

The LLVM IR is designed to be agnostic to both programming languages and
target hardware architecture. Most of LLVM is built around the intermediate
representation and therefore the code base is very portable, supporting a plethora
of different source languages and backends.

The presence of a well specified and accessible intermediate representation
and the modular structure of the project make the LLVM infrastructure very
extensible and allow its functionality to be easily utilised in external programs.
This is reinforced by its permissive open source license, the LLVM Release License,
which is based on similar terms as the BSD and MIT software licenses.

LLVM is a mature software project with backing from some of the most im-
portant technology companies of today, most notably Apple Inc. The optimiser is
state of the art and the clang compiler is one of the most advanced and standard
compliant C/C++ compilers and the default choice in several commercially used
programming environments such as the XCode IDE.

Many device drivers use parts of the LLVM infrastructure to compile OpenCL
source code and LLVM IR serves as the basis for the upcoming heterogeneous
computing standard Standard Portable Intermediate Representation (SPIR). All
these factors make LLVM the obvious choice as a code basis to prototype the
ideas that we develop in this work.

Chapter 2. Background 15

2.4 Benchmark Software

The NAS Parallel Benchmarks (Bailey et al. (1991)) were developed by the NASA
Advanced Supercomputing Division as a software tool to measure the capabilities
of parallel supercomputers. The individual programs are specified algorithmically
without stipulating implementation characteristics, explicitly allowing competing
implementations. The individual benchmark programs perform computational
tasks that are typical for computational fluid dynamics. In total, the benchmark
suite consisted of five kernels and three more complex “simulated applications”. It
was further extended multiple times, adding four additional benchmark programs
for unstructured computations, parallel I/O and data movement.

The Rodinia benchmarks (Che et al. (2009)) were developed specifically for
heterogeneous computing environments. The collection includes OpenMP as well
as CUDA versions to measure the impact of heterogeneous hardware accelerators
on program performance. The individual benchmark programs are taken from
scientific computing, engineering and data mining applications.

The PARSEC benchmark suite (Bienia (2011)) bundles thirteen benchmark
applications from a number of different computational domains, including data
mining, computer vision and financial analysis. Particular focus was put into
selecting a representative range of programs that are not biased toward particular
domains and to capture diverse program characteristics.

The Parboil Benchmarks (Stratton et al. (2012)) are a collection of benchmark
programs that are each provided in different versions, including multiple levels
of optimisation and heterogeneity. The individual programs are collected from
different scientific and commercial fields including image processing, biomolecular
simulation, fluid dynamics, and astronomy.

The PolyBench collection was conceived to assess the impact of compiler
optimisations based on the Polyhedral Framework. It is a collection of simple
computation kernels that are made up of nested loops that can be modelled
using this mathematical framework. In total there are 30 individual benchmarks
(version 3.2) implemented in plain C.

Chapter 2. Background 16

The San Diego Vision Benchmark Suite (Venkata et al. (2009)) is a collection
of applications from the computer vision domain. It contains nine individual
programs, each in a MATLAB and a C version. The reasoning for this is that
MATLAB is the preferred language of researchers in computer vision, whereas
C is the traditional systems programming language. As the intention of the
benchmark collection is to enable platform developers to reason better about
the performance of computer vision applications, the inclusion of the established
languages of both communities is helpful. The applications are typically adopted
from previously established MATLAB programs and have been ported by the
authors to a subset of C that more or less directly adopts the original MATLAB
program structure.

Chapter 3

Related Work

Related work to this dissertation comprises research from two different areas.
First there is research on idiom specific compiler optimisation and parallelisation.
Much of this work uses different terminologies and perspectives than we do, but
they try to achieve similar goals.

Other relevant work is on automatic compiler based parallelisation in the
context of heterogeneous hardware. This is not limited to idiom based approaches
but comprises many different methodologies.

3.1 Idiom Specific Optimisations

The polyhedral framework (Kelly and Pugh (1995)) is a mathematical framework
for the optimisation of well behaved nested loops. As the polyhedral framework
requires particular algorithmic structures in the source code (well behaved nested
loops), we consider it an idiom specific optimisation approach. It essentially
defines an internal representation for instructions in nested loops that is well
understood mathematically and can be manipulated with well defined mathe-
matical transformations to expose parallelism and to improve runtime behaviour
(e.g. cache locality).

Many domain specific languages have been build to perform optimisations
based on the polyhedral framework, for example the PolyMage (Mullapudi et al.
(2015)) system. Optimising functionality based on this system has also been
integrated as a compiler pass into LLVM by the Polly project (Grosser et al.
(2012)).

17

Chapter 3. Related Work 18

Extensions to the Polyhedral Framework have been proposed to allow it to
capture more computational idioms as well, in particular regarding reductions.
Such efforts are for example described in Doerfert et al. (2015). The authors
discuss and implement a reduction-enabled scheduling approach as part of Polly
and use the Polybench benchmark suite to evaluate it, achieving speedups of up
to 2.21x.

Another approach to incorporate the reduction idiom into the Polyhedral
Framework is described in Chandan Reddy and Cohen (2016), based on the
Platform-Neutral Compute Intermediate Language (Baghdadi et al. (2015)). The
approach in this publication is based on the Polyhedral Parallel Code Generator
(Verdoolaege et al. (2013)) to generate CUDA and OpenCL code for multiple
compute platforms.

The Halide domain specific programming language (Ragan-Kelley et al. (2013))
has been developed specifically for stencil kernels in the context of image pro-
cessing. It allows programmers to specify optimisation techniques such as loop
tiling and parallelisation strategies independent from the implementation of the
functional logic. Halide can be used in conjunction with OpenTune, a program
autotuner (Ansel et al. (2014)).

The authors of Mendis et al. (2015) use Halide to optimise stencil kernels that
they reconstruct from compiles x86 binaries. Similar methods of code tuning using
Halide are used by Kamil et al. (2016) but starting from Fortran code and using
sophisticated automatic verification to guarantee correctness.

Andión (2015) describes a compiler based parallelisation approach for het-
erogeneous computing that is based on an idiomatic intermediate representation
called KIR. This intermediate representation is based on the concept of diKiernels,
which constitute algorithmic building blocks and are used to automatically gener-
ate OpenMP and OpenHMPP code. The authors propose a system that detects
diKernels in conventional compiler IR and concatenates them to form contigu-
ous sections of KIR. Individual examples of diKernels are scalar reductions and
irregular assignments.

Chapter 3. Related Work 19

3.2 Compilation for Heterogeneous Computing

Much work has been done to improve the situation for heterogeneous systems
consisting of CPUs and GPUs. The OpenCL standard Stone et al. (2010) pro-
vides a unified language and interface for compatible GPUs and CPUs, enabling
a degree of portability between devices of different vendors. Several device depen-
dent considerations remain important in practice, in particular the distribution of
work among multiple available OpenCL devices, as OpenCL offers no scheduling
capabilities. Several approaches have been proposed as abstraction layers on top
of OpenCL to improve the ease of use and device utilisation by implementing
rudimentary scheduling capabilities.

Sun et al. propose an interface that allows applications to enqueue OpenCL
kernels for execution without explicitly assigning target devices Sun et al. (2012).
The application may further stipulate interdependencies between these kernels to
enforce sequential execution. The kernels are then scheduled to available OpenCL
devices at runtime, using a scheduling policy that is provided by the user appli-
cation. The runtime manages the individual OpenCL contexts and takes care of
the necessary data transfers for devices with separate address spaces.

The PALMOS (Margiolas and O’Boyle (2015)) software is implemented as a
separate process that runs in Linux user space and intercepts all communication
between user programs and the actual OpenCL interface. PALMOS exposes a
single, virtual OpenCL device to the user applications and manages the assign-
ment of kernels to specific computing devices autonomously. This approach has
advantages in that it requires no modification of existing software and enables
the sharing of a pool of OpenCL devices amongst multiple applications.

Lee et al. take a different approach with the proposed Single Kernel Multiple
Devices (SKMD) system Lee et al. (2013). It implements the OpenCL API and
provides the user program with the illusion of a single OpenCL device. Instead
of relying on the user program to provide multiple OpenCL kernels for effectively
utilising multiple devices, SKMD distributes the threads of individual kernels
across the available devices. In doing so, SKMD can simultaneously use several
CPUs and GPUs.

Chapter 3. Related Work 20

These approaches still require the programmer to explicitly determine which
parts of the program to run via OpenCL but remove the necessity to specify
which of the available OpenCL devices to use. Other approaches that do not
require the programmer to use OpenCL or similar APIs in the first place have
been less successful and generally have to impose heavy restrictions on the initial
program.

Notable in this context is the research by Barik et al. on the Concord sys-
tem Barik et al. (2014). They present an approach for targeting heterogeneous
architectures consisting of a CPU with an integrated GPU without the necessity
for the programmer to use SPMD programming languages such as OpenCL or
CUDA explicitly. The proposed system is build around a clang-based compiler
for a subset of C++, lacking in particular the support for proper recursion, func-
tion pointers and exceptions and is limited to specific integrated GPUs by Intel
that use the same physical memory as the CPU.

Approaches for automatically targeting heterogeneous MPSoCs include an
article by Sheng et al., in which they investigate the difficulties of programming
these platforms. They argue that the relatively short life cycle of embedded prod-
ucts call for a compiler framework that is adaptable and quickly retargetable for
new platforms. Based on the model of Kahn process networks, the authors pro-
pose a C language extension called C for Process Networks (CPN) that requires
the programmer to heavily annotate the code with data flow directives. The
proposed compilation system is centred around a source-to-source compiler that
generates C code for the individual components of the MPSoC.

Instead of relying on custom annotations, Chandramohan and O’Boyle imple-
mented compiler based methods for targeting the processing cores of the Texas
Instruments OMAP4430 MPSoC using the well established OpenMP program-
ming model Chandramohan and O’Boyle (2014). The MPSoC consists of several
processor cores using different ISAs that share the same physical main mem-
ory but provide no cache consistency and by default use distinct address spaces.
Barrier placement and cache flush minimisation turned out to be crucial for per-
formance and were optimised using cross-processor data dependence analysis.
The system achieves a speedup of 38% and an improvement in energy efficiency
of 40% on average over execution on the big cores alone.

Chapter 3. Related Work 21

3.3 Summary

There is a large body of work on compilation techniques for targeting hetero-
geneous architectures. Much of it is based on languages such as OpenCL and
CUDA that are made specifically for heterogeneous computing but require expe-
rienced programmers. Other work that uses source code written in conventional
languages such as C and Fortran generally relies on complex library interfaces
and runtime systems. Some work based on the OpenMP programming model
exists as well.

Idiom specific optimisation and parallelisation techniques have been studied
extensively in the context of reduction operations and in the polyhedral frame-
work. The notion of idiom specific approaches is not generally established in this
research however, instead each of the approaches are confined to their own set
of constraints. Some of the idiom based parallelisation techniques incorporate
heterogeneous computing as well.

Chapter 4

Idiom Based Code Transformations
- A Case Study

We study in detail the performance bottlenecks of two established benchmark
collections. After extensive profiling work, we classify the identified bottlenecks
according to the computational idioms that they represent, wherever we are able
to identify such idioms. We establish the three most important computational
idioms in the context of our benchmarks and study the relevant parallelisation
and optimisation techniques that can be applied to them. Using only these idiom
specific techniques, we develop parallel benchmark versions of the benchmarks
and compare them to the optimised parallel versions of the original benchmark
implementers.

4.1 Identification of Relevant Patterns

The underlying approach of this research project is to enable compilers to recog-
nise specific computational idioms and to implement optimisation routines that
exploit the knowledge of these idioms for parallelisation and runtime speedup. In
this chapter, we seek to justify this approach by substantiating our expectation
that a lot of bottleneck computations in common software can be described in
terms of a limited set of specific computational idioms. We therefore performed
an explorative study to identify the most important computational idioms and
to find ways to exploit their characteristics to achieve runtime speedup.

Benchmark suites are generally designed to contain programs that accurately
represent a cross section of specific computational domains in terms of the most

22

Chapter 4. Idiom Based Code Transformations - A Case Study 23

common computational workloads. It was therefore a natural choice to evaluate
our hypothesis on several widely established benchmark collections.

Most benchmark programs are designated to evaluate the capabilities and
performance characteristics of hardware platforms, but since they are usually
distributed as source code, they are regularly used to compare the quality of
the optimisers and code generators of different compilers as well. There exist
some benchmarks that were developed specifically to test particular capabilities
of optimising compilers, notably the PolyBench collection. These are however
often less inspired by existing code bases and can misrepresent the effectiveness
of optimisation techniques due to their benign and artificial nature. We therefore
focused our efforts on more standard, widely accepted alternatives that originate
from outside the compiler community.

We examined several established benchmark suites to get an understanding
of the most important computational patterns. Particular benchmark suites that
we considered for our work are the NAS Parallel Benchmarks, Rodinia, Parsec,
Parboil and the San Diego Vision Benchmarks.

Different benchmarks of course focus on different computational domains and
therefore the appropriate choice of benchmarks is of particular importance for our
work. After some explorative analysis of the mentioned benchmark collections,
we focused our efforts on two benchmarks suites, the Parboil benchmarks and the
NAS Parallel Benchmarks. Both of these collections have their roots in scientific
computing, where parallel computing and heterogeneous computing in the form
of general purpose graphics processing units (GPGPUs) are firmly established
and recognised as critical to performance.

4.1.1 NAS Parallel Benchmarks

The NAS Parallel Benchmaks (NPB) are a very mature and well studied set of
programs from the domain of computational fluid dynamics. They were devised
by the NASA Advanced Supercomputing Division to supersede previously used
benchmarks such as the Livermore loops and the LINPACK benchmark, which
suffered from many inadequacies, including their limited problem sizes. The
original benchmark collection consisted of five computational kernels and three
pseudo applications that attempt to cover the most important computational
workloads that occur in computational fluid dynamics. Several smaller additions

Chapter 4. Idiom Based Code Transformations - A Case Study 24

have been made to the original set of programs but those will not be of major
importance for this work.

In contrast to all the other benchmark suites that we investigated, the NAS
Parallel Benchmarks are specified in a “pencil-and-paper” fashion. This means
that the original developers specified what exactly an implementation of the NAS
Parallel Benchmarks has to compute but implementation details such as the used
programming languages are not stipulated. As a result, there are competing
implementations written in different languages by multiple implementers. The
NAS Parallel Benchmarks were originally conceived in the early 1990s and as
such they are very well established and there are mature and extremely well
optimised implementations available. This makes them very useful to explore
the limits of our approach, as the parallel versions of the NPB are quite hard to
optimise any further.

For our experiments, we used the implementation by Seoul National University
(SNU NPB Suite). This is due to their choice of the programming language
C and the very carefully crafted, high quality source code. Furthermore this
implementation ships with multiple versions, including sequential, OpenCL and
OpenMP based versions.

4.1.2 Parboil Benchmarks

The Parboil Benchmarks were developed at the University of Illinois and span a
larger amount of computational domains than the NAS Parallel Benchmarks.
It comprises eleven individual programs from the fields of image processing,
biomolecular simulation, fluid dynamics and astronomy. Each of he individual
benchmark programs comes in several varieties, including sequential, parallel and
OpenCL versions.

The Parboil Benchmarks are less mature than the NAS Parallel Benchmarks
and the implementation is not as carefully optimised. This makes the Parboil
Benchmarks more representative of average real code bases and helps us highlight
the strengths of our approach in a less unforgiving environment.

4.1.3 Bottleneck identification

Using profiling techniques we identified the bottleneck computations of each of
the benchmark programs. We first used gprof to establish the bottleneck to

Chapter 4. Idiom Based Code Transformations - A Case Study 25

a function level granularity and then inserted manual timing routines into the
original source code to narrow down the crucial computations. We then tried
to express each bottleneck in terms of computational idioms and grouped the
benchmark programs by our findings. In some cases, the bottlenecks did not
correspond to any computational idiom that we are aware of.

For most of the computational kernels in the NAS benchmarks, the important
performance bottlenecks were very clearly identifiable and corresponded perfectly
to a narrow range of computational idioms.

The Conjugate Gradient kernel spends the majority of its runtime in a
basic sparse matrix vector multiplication. The Integer Sort kernel has its only
relevant performance bottleneck in a simple integer histogram computation that
comprises only two source code lines in the sequential version of the benchmark.
The Multi-Grid kernel spends most of its runtime in two routines that perform
standard three dimensional first order stencil computations. Roughly half of the
runtime of the Embarrassingly Parallel kernel is spent on a complex reduction
computation to generate a histogram of previously generated (pseudo-)random
variables. We were unable to classify the Discrete 3D Fast Fourier Transform
kernel as well as the two additional kernels (Unstructured Adaptive Mesh
and Data Cube) that were not part of the original version of the NAS Parallel
Benchmarks into any computational idiom that would be useful for our further
methodology.

All the three pseudo applications contained in the NAS Parallel Benchmarks
(Lower-Upper Gauss-Seidel solver, Block Tri-diagonal solver and Scalar
Penta-diagonal solver) spend significant portions of their runtime performing
stencil computations.

The programs of the Parboil Benchmarks paint a similar picture. Two of them
have clear-cut stencil computations as their bottleneck, the Lattice-Boltzmann
Method Fluid Dynamics benchmark and the unambiguously named stencil
program. The Breadth First Search kernel unsurprisingly performs breadth
first graph traversal. The sgemm and spmv programs implement undisguised
dense and sparse linear algebra respectively. The histo program implements
a saturating histogram and the Two Point Angular Correlation Function
program spends the vast majority of its runtime on a rather complex computation
that fundamentally is a histogram.

Chapter 4. Idiom Based Code Transformations - A Case Study 26

4.1.4 Bottleneck classification

Using the previous findings, we came up with a set of three computational idioms
that cover more than 60% of the identified bottlenecks of both benchmark suites.
We decided to focus on these three idioms for our further investigations.

The first computational idiom is linear algebra. This finding should be entirely
uncontroversial as linear algebra has for a long time been studied in the context of
high performance computing and there is a broad consensus on its importance. In
practice, the term linear algebra of course actually covers quite a lot of different
computations (BLAS alone specifies several dozen function interfaces), but we
found only a very limited set of them to be performance critical in the studied
benchmarks, namely dense matrix-matrix multiplications sparse matrix-vector
computations.

Stencil computations form the second relevant computational idiom. This
again is entirely unsurprising, as stencil computations, like linear algebra, are a
widely studied subject in high performance scientific computing. Sophisticated
optimisation approaches such as the polyhedral model stem from the recognition
of stencil computations as a crucial and well-understood computational pattern.
All of the stencils that we found came in fact from a very restricted subset of
general stencil computations, namely first order stencil computations.

The third computational idiom that we identified as pervasive are complex
generalised reduction operations. While scalar reductions are a well studied sub-
ject, we feel that our identification of more complex reduction operations as an
important computational idiom needs some further elaboration (cf. the corre-
sponding section in the Background chapter). We will address one example here
in detail to make clear what kind of reduction operations we mean in this context.

4.1.5 The Reduction Idiom in NPB EP

We use as an example one of the two computational bottlenecks of the Embar-
rassingly Parallel benchmark from the NAS Parallel Benchmarks. The bench-
mark performs statistical calculations using Monte-Carlo methods. It comprises
the following short code snippet. We omit the variable declarations, as most of
the types are implicit from the shown source code.

Chapter 4. Idiom Based Code Transformations - A Case Study 27

for (i = 0; i < NK; i++) {

x1 = 2.0 * x[2*i] - 1.0;

x2 = 2.0 * x[2*i+1] - 1.0;

t1 = x1 * x1 + x2 * x2;

if (t1 <= 1.0) {

t2 = sqrt (-2.0 * log(t1) / t1);

t3 = (x1 * t2);

t4 = (x2 * t2);

l = MAX(fabs(t3), fabs(t4));

q[l] = q[l] + 1.0;

sx = sx + t3;

sy = sy + t4;

}

}

We claim that this is a complex reduction operation and can be parallelised
in the mechanical way set out in the Background section. To prove this, we need
to find the two binary operators as described before. First we need to indentify
the types and the resulting function signatures for the operators that will be used
in the reduction definition.

struct Type1

{

double q[10];

double sx;

double sy;

};

struct Type2

{

double x1;

double x2;

};

Type1 & operator +=(Type1 & a, const Type2& b);

Type1 & operator *=(Type1 & a, const Type1& b);

Now we can implement the operators. The “+=” operator can be taken more
or less directly from the original source code. The complementary “*=” operator
on the other hand is implied by the definition of the “+=” operator.

Chapter 4. Idiom Based Code Transformations - A Case Study 28

Type1 & operator +=(Type1 & a, const Type2& b) {

double x1 = 2.0 * b.x1 - 1.0;

double x2 = 2.0 * b.x2 - 1.0;

double t1 = x1 * x1 + x2 * x2;

if (t1 <= 1.0) {

double t2 = sqrt (-2.0 * log(t1) / t1);

double t3 = (x1 * t2);

double t4 = (x2 * t2);

int l = MAX(fabs(t3), fabs(t4));

a.q[l] = q[l] + 1.0;

a.sx = a.sx + t3;

a.sy = a.sy + t4;

}

return a;

}

Type1 & operator *=(Type1 & a, const Type1& b) {

for(int i = 0; i < 10; i++) a.q[i] += b.q[i];

a.sx += b.sx; a.sy += b.sy;

return a;

}

Using these definitions we can now rewrite the original code snippet in a way
that makes the reduction character of the performed computations immediately
obvious. The code below is still sequential but can be parallelised using the “*=”
operator in the way described in the background section 2.2.3.

Type1 result ;

for(i = 0; i < 10; i++) result .q[i] = q[i];

result .sx = sx; result .sy = sy;

for (i = 0; i < NK; i++) {

Type2 value = {x[2*i], x[2*i +1]};

result += value;

}

for(i = 0; i < 10; i++) q[i] = result .q[i];

sx = result .sx; sy = result .sy;

Chapter 4. Idiom Based Code Transformations - A Case Study 29

4.1.6 Summary

The tables 4.1 and 4.2 summarise how we classified the performance bottlenecks
in the individual programs making up the two studies benchmark suites.

Table 4.1: Computational Patterns in the NAS Parallel Benchmarks

Name Description Bottleneck

BT Block Tri-diagonal solver stencil computation
CG Conjugate Gradient sparse linear algebra
DC Data Cube other
EP Embarrasingly parallel reduction operation
FT Discrete 3D fast Fourier Transform other
IS Integer Sort reduction operation
LU Lower-Upper Gauss-Seidel solver stencil computation
MG Multi-Grid stencil computation
SP Scalar Penta-diagonal solver stencil computations
UA Unstructured Adaptive Mesh other

Table 4.2: Computational Patterns in the Parboil Benchmarks

Name Description Bottleneck

bfs Breadth-First Search other
cutcp Distance-Cutoff Coulombic Potential other
histo Saturating Histogram reduction operation
lbm Lattice-Boltzmann Fluid Dynamics stencil computation
Mri-gridding Magnteic Resonance Imaging Gridding other
Mri-q Magnetic Resonance Imaging Q other
sad Sum of Absolute Differences other
sgemm Dense Matrix-Matrix Multiply dense linear algebra
spmv Sparse-Matrix Dense-Vector Multiply sparse linear algebra
stencil 3-D Stencil Operation stencil computation
tpacf Two Point Angular Correlation reduction operation

We were particularly encouraged by the similarity of the results in both bench-
mark suites, hinting at a generalisability of our findings. The prevalence of the
three identified important bottlenecks is shown in figure 4.1.

Chapter 4. Idiom Based Code Transformations - A Case Study 30

Figure 4.1: Prevalence of individual computational idioms

stencil reduction linear algebra other

1

2

3

4

5

6

7

8

9

10

computational idioms

nu
m

be
r

of
co

m
pu

ta
tio

na
lb

ot
tle

ne
ck

s

4.2 Fast Pattern Implementations

After having identified the most important computational idioms in both exam-
ined benchmark collections we then looked for their best performing implemen-
tations. We did this by experimenting on the original benchmark source codes
while keeping track of our modifications and their impact, trying to single out
the most effective code transformations.

4.2.1 Linear Algebra

Linear algebra is a very well studied field of numerical mathematics and there
are many established library implementations of it. The specification of the
Basic Linear Algebra Subprograms (BLAS) serves as an common established
interface to many different library implementations of fundamental linear algebra
functionality.

We experimented with two well known implementations of BLAS, the Intel
Math Kernel Libraries (Intel MKL) and OpenBLAS. Both of them performed very
similar in our experiments and we decided on OpenBLAS for dense linear algebra
in the end, due to its open source nature and better performance portability. For

Chapter 4. Idiom Based Code Transformations - A Case Study 31

sparse linear algebra, we experimented with the corresponding implementations
in Intel MKL but achieved no significant speedups over naive parallelisation for
sparse matrix vector products.

The BLAS specification subdivides its functionality into three levels, level 1
for vector operations only involving vectors, level 2 for matrix-vector operations
and finally level 3 for operations involvng multiple matrices. We found only the
functionality of level 3 to be beneficial to performance, presumably by superior
cache behaviour when compared to naive C code. Implementing the functionality
of the first two levels using function calls to BLAS on the other hand frequently
was detrimental to performance in the benchmarks. We assume that this is
because such an approach impedes the compiler from optimising properly, for
example by fusing the loops of consecutive vector additions.

4.2.2 Stencil Kernels

Stencil computations are also well studied but do not fit a library interface as
nicely as linear algebra. This is because the concept of stencil kernels is parame-
terised by arbitrary neighbourhoods as well as update functions. Implementations
using compile time concepts such as template meta-programming in C++ could
be conceived but a concise specification like BLAS for linear algebra is not viable
for stencil computations.

The optimisation of Stencil computations and in particular the efficient distri-
bution of stencil workloads with associated synchronisation constructs is however
a very well studied subject. Exposing parallelism in stencil computations is gener-
ally relatively easy. The main challenge is instead to achieve good cache locality,
which often requires optimisations across several stencil codes. Techniques such
as overlapped tiling and split tiling have been developed to this aim.

This knowledge used to be mostly preserved in terms of best practices in the
high performance computing community. It would be very desirable to conserve
this knowledge into reusable libraries, but as mentioned above this is not easily
achievable. In the last years however, several domain specific languages have
been developed to specifically generate fast stencil computations, most notably
Halide. We experimented with it but found that for the relatively benign stencil
computations in our benchmark programs we were able to match its performance
by handwritten code. We found it sufficient to fuse together consecutive stencils

Chapter 4. Idiom Based Code Transformations - A Case Study 32

where possible and to use overlapped tiling. In later stages of our research, we
plan to revisit Halide more in depth.

4.2.3 Reduction Computations

Reduction operations are well established as well, but rarely in the generality
that we require. The way to implement fast parallel reduction operations how-
ever is well established and relies on privatising the reduction variable(s) and
then merging the results at the end. This of course adds some overhead but is
generally faster than using a mutex for every single read modify write access to
the reduction variable, which would otherwise be necessary.

For histogram operations in particular (a subset of reduction operations) it
can also be possible to guarantee the access keys of the different threads to be
distinct. This however generally requires knowledge about the distribution of the
key values. We demonstrate we will demonstrate this on a simple code example
from the NAS Integer Sort benchmark.

for(i=0; i< NUM_KEYS ; i++)

key_buff_ptr [key_buff_ptr2 [i]]++;

We evaluated three different possibilities to split this loop into parts that can
be executed in parallel. Firstly, the read-modify-write access to the histogram
array can be treated as a critical section. This results in significant performance
degradation, as almost the entire loop content becomes serialised (with the ex-
ecption of reading values from the second array).

Secondly, we can use the approach outlined in the corresponding Background
chapter, namely privatising the reduction variables and merging them afterwards.

int local_key_buff [MAX_KEY];

for(i = 0; i < MAX_KEY ; i++)

local_key_buff [i] = 0;

for(i = 0; i < NUM_KEYS /2; i++)

key_buff_ptr [key_buff_ptr2 [i]]++;

for(i = NUM_KEYS /2; i < NUM_KEYS ; i++)

local_key_buff [key_buff_ptr2 [i]]++;

for(i = 0; i < MAX_KEY ; i++)

key_buff_ptr [i] += local_key_buff [i];

Chapter 4. Idiom Based Code Transformations - A Case Study 33

As a third option, we can split the second array in two parts in such a way
that we can guarantee their contents to be disjunct. This would typically be done
by a threshold value, which should be as close as possible to the median value
of the array contents to result in an even split. This method can therefore not
be applied in general, only when the distribution of the values is known at least
approximately.

int buff_part1 [NUM_KEYS];

int buff_part2 [NUM_KEYS];

int num_buff_part1 = 0;

int num_buff_part2 = 0;

for(i = 0; i < NUM_KEYS ; i++)

if(key_buff_ptr2 [i] < MAX_KEY /2)

buff_part1 [num_buff_part1 ++] = key_buff_ptr2 [i];

else

buff_part2 [num_buff_part2 ++] = key_buff_ptr2 [i];

key_buff_ptr [key_buff_ptr2 [i]]++;

for(i = 0; i < MAX_KEY ; i++)

local_key_buff [i] = 0;

for(i = 0; i < num_buff_part1 ; i++)

key_buff_ptr [buff_part1 [i]]++;

for(i = 0; i < num_buff_part2 ; i++)

key_buff_ptr [buff_part2 [i]]++;

The reference parallel implementation of NAS Integer Sort uses an approach
along the lines of the third option. In our evaluations this turned out to be
generally the fastest approach (20% to 50% faster than the second approach on
an Intel processor with 8 threads depending on the data sizes). This is mostly
due to the relatively large histogram size with associated privatisation costs as
well as due to the completely uniform distribution and hence perfect division of
the values in the second array.

Chapter 4. Idiom Based Code Transformations - A Case Study 34

4.3 Evaluation

In most cases idiom specific parallelisation approaches can match or even out-
perform parallel versions implemented by expert programmers. The one major
exception to this is the Embarrassingly Parallel benchmark of the NAS parallel
benchmark suite, where the parallelism is not contained in a computational idiom
but instead encompasses the entire program.

4.3.1 Experimental Setup

We used our findings of the previous section to devise optimisation ‘recipes’ for
the different computational idioms.

In dense linear algebra the performance critical sections were always matrix
matrix multiplications, operations that involved only vectors never constituted
performance bottlenecks. As an optimisation recipe we simply replaced all naive
implementations of dense generalised matrix matrix multiplications with calls
to the appropriate OpenBLAS *gemm routine. OpenBLAS then automatically
parallelises the operation. For sparse linear algebra we parallelised instances
of sparse matrix dense vector multiplications using simple OpenMP directives. As
mentioned previously, more sophisticated approaches using the Intel MKL library
did not provide additional speedup versus this naive parallelisation approach and
performed worse on our AMD Opteron based test system.

Sencil computations required more sophisticated methods. In a fist step,
we parallelised stencil computations whenever possible using OpenMP directives.
Whenever possible we merged consecutive stencils. Finally we applied overlapped
tiling strategies wherever possible and experimented manually with different tile
sizes to get maximum performance.

Reduction computations required the most drastic changes to the original
source code. For each reduction bottleneck we generated several functions and
used the pthreads library to orchestrate them according to the approach that we
outlined in section 2.2.3. First we defined structures to hold the reduction vari-
ables. We then created a function that contains a modified version of the original
source code of the reduction operation that uses this structure to encapsulate
the reduction variables and that can be restricted to a subsection of the iteration
space. Another function was generated to coordinate the creation of threads,
each of which call the aforementioned function. Finally a third function is used

Chapter 4. Idiom Based Code Transformations - A Case Study 35

to merge the reduction variables of the individual reduction threads together at
the end. We then replaced the original reduction source code with a call the the
thread coordinating function and determined the optimal number of threads to
spawn.

We ended up with three versions for each of the benchmark programs. As
baselines we used both the original sequential and parallel versions of the bench-
marks that were provided by the implementers. As a third version we used the
version that we obtained from applying our idiom based optimisation recipes
to the sequential versions. In cases were the original benchmark shipped with
multiple parallel versions, we always chose the fastest one to compare against.

Since our optimisations were restricted to idiom specific approaches, the orig-
inal parallel versions had more optimisation potential and can therefore expected
to outperform our idiom based parallel versions in many cases. As our idiom
based optimisations relied on established programming techniques, the original
parallel version and our idiom based parallel version were in same cases quite
similar. This concerns mainly the stencil based benchmarks. For two of the
benchmarks of the NPB collection the original parallel version was entirely par-
allelised using idiom based approaches and we did not develop a separate version
(LU and MG). The same is true for the CG and spmv benchmarks.

We built the three versions of each benchmark with the highest compiler
optimisation setting -O3 using the clang and clang++ compilers version 3.8. All
performance measurements were done on a single computer featuring four AMD
Opteron processors with 16 processor cores each. Each benchmark version was
executed five times to avoid random fluctuation in the runtime measurements
and the average runtime was recorded. When benchmark programs required
additional data input (Parboil Benchmarks), we used the original input files that
are provided with the benchmark source code. For the NAS Parallel Benchmarks
we used the problem size class A.

Chapter 4. Idiom Based Code Transformations - A Case Study 36

4.3.2 Results

In most of the NAS Parallel Benchmarks we are able to match the original parallel
versions. unsurprisingly there is not a lot of optimisation potential over the
original parallel versions as they have been hand tuned by expert programmers
over several decades. The fusing of consecutive stencil computations in the BT
SP benchmarks resulted in minor speedups but the difference is close to negligible.

We achieve good speedup against the sequential baseline in the IS benchmark
but reach only about 50% of the performance of the original parallel version. This
is because the original parallel version uses an approach that is based on the fact
that the computation performed is a histogram with uniformly distributed input
data. This allows the implementers to sort the keys into disjunct buckets and
then to parallelise the histogram computation very efficiently.

The parallelism of the EP is not contained in a computational idiom and
instead encompasses the entire program. Although our idiom based approach
achieves more than an order of magnitude of speedup on the main bottleneck
of the program (a reduction operations), the remaining sequential section of the
program results in a mere 1.6x speedup against the sequential baseline.

Figure 4.2: NAS Parallel Benchmarks, sequential baseline

BT CG EP IS LU MG SP
1
5

10

15

20

25

30

35

40

individual benchmark programs

sp
ee

du
p

expert manual parallelisation
idiom based parallelisation

The Parboil Benchmarks offered much more unused parallelisation and op-
timisation opportunity over the original parallel versions than the NAS parallel
Benchmarks. We were able to outperform all of the benchmarks aside from the

Chapter 4. Idiom Based Code Transformations - A Case Study 37

spmv program.
The original parallel reduction operations were implemented using critical

sections, resulting in abysmal scalability. For the tpacf benchmark, we achieved
very good scalability and a 35.7x speedup versus the sequential benchmark ver-
sion. No parallel implementation of the histo program was able to beat the
sequential version. This was due to the very unfavourable input data that was so
small that the overhead of multithreading ruined all potential parallel speedup.

On the linear algebra benchmark sgemm we achieved 104x speedup against
the sequential baseline using 64 processor cores, compared to 22.8x speedup of the
original parallel version. This was mostly due to the superior cache locality of the
OpenBLAS implementation. On the stencil benchmark the use of efficient tiling
strategies resulted in 5.1x speedup when compared against the original parallel
version.

Figure 4.3: Parboil Benchmarks, sequential baseline

histo lbm sgemm spmv stencil tpacf
1

10
20
30
40
50
60
70
80
90

100
110

individual benchmark programs

sp
ee

du
p

expert manual parallelisation
idiom based parallelisation

4.4 Summary

The computational bottlenecks of many important programs can be meaningfully
classified into different computational idioms. Important computational idioms
include linear algebra, reduction operations and stencil kernels. Computational
idioms contain contextual information that is often sufficient to parallelise se-
quential code efficiently.

Chapter 5

Constraint Based Idiom Detection -
Theory and Practice

In this chapter we specify a formal language for the description of computational
idioms. We develop algorithmic methods to identify the specified computational
idioms in LLVM intermediate representation code. We implement thee algorithms
in a modified version of the LLVM opt optimising tool and analyse to what extend
we can recreate the manual results from the previous chapter.

5.1 Problems with Syntax

In the previous chapter we showed that computational idioms in many cases
contain all the contextual and semantic information that is necessary to optimise
and parallelise applications. The proof of concept study in that chapter relied on
manually applying the idiom based code transformations to the program source
code however. In this chapter, we will develop the methodology to automatise
this process and draft a prototype implementation as a compiler optimisation
pass in the LLVM compiler infrastructure.

For compilers to automatically recognise and replace specific computational
idioms, we needed to specify them in a way that can be evaluated automatically
inside the optimisation infrastructure. We considered several different approaches
to this challenge. Maybe the most obvious approach, at least from a linguistic
perspective, is to define the idioms as grammatical structures in the syntax of a
specific programming language. This is a very natural approach to formalising
computational idioms but it has some severe shortcomings, the limited portability

38

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 39

between programming languages being only the most superficial of them.
Programming languages generally contain multiple syntactic structures for

similar underlying algorithmic concepts. A typical example of this is the presence
of ‘for’ and ‘while’ loops in languages inspired by the programming language C,
both of which can be used to implement the exact same functionality. While
these semantically redundant syntactic constructs add to the complexity of the
programming language, they can serve as syntactic sugar and make programmer
intentions more explicit.

Any syntax based idiom specification would be massively complicated by these
redundancies however, as its grammatical rules would have to consider all of
them. This would likely make those rules too complicated to be practically viable.
Instead we need a normalised form of the source code that removes as much as
possible the programmer’s freedom to express the same algorithmic concepts in
multiple different ways.

Furthermore an approach based on syntax alone can not enforce semantic
constraints that are outside the scope of the grammatical structure. This is
the more fundamental of the two shortcomings because the syntax of complex
programming languages is often next to meaningless without a significant amount
of contextual information, in particular concerning types. The syntactic structure
is quite hollow in C++ for example, because all values could be objects of classes
with overloaded operators. As an example consider this C++ source code.

for(i = 0; i < n; i++)

output += input[i];

This looks like a typical reduction operation when only the syntax is known.
However without exact knowledge of the types of all the variables, this can be a
very misleading assumption. For example, the variable output could be an object
of the following class.

class Duplicator

{

public :

Duplicator & operator += (int& operand) {

operand *= 2;

return this;

}

};

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 40

This changes the meaning of the above syntax completely and the performed
computation is actually a mapping operation without reduction characteristics.
This problem can be partially solved by using grammatical patterns only as a
preprocessing pass to find idiom candidates and then resorting to additional,
custom rules that use contextual information and type constraints to weed out
false positives. This however then simply moves the crucial bits of the idiom
detection methodology into these additional rules and prevents any systematic
and unified analysis.

We therefore concluded that an approach based on the syntactic structure of
the source programming language is fundamentally flawed, as it struggles to deal
with syntactic sugar and generally with grammatically complex languages and
fails almost entirely in the presence of complex type systems. Instead we formalise
the idioms not in the source programming language but on a less ambiguous level
in modern compilers, more concretely on single static assignment intermediate
representation.

Such an intermediate representation has multiple desirable properties. Firstly
it is designed to be a suitable language for compiler optimisation transformations.
This means that it is relatively easy to reason about, syntactically primitive and
its semantics are well specified. Secondly the embedding into an existing compiler
means that we can use optimisation passes to normalise the code. Furthermore
an approach based on an intermediate representation is agnostic to the source
programming language and the target hardware architecture.

The main disadvantage of this approach is however that we can not use the
established techniques from domains such as formal languages, as all meaningful
information of intermediate representation code is contained in the semantics and
the syntactic structure is very primitive and useless for analysis. Instead of being
able to rely on algorithms like AST matching or acceptors for formal languages
we therefore had to come up with a novel way of detecting structure in single
static assignment intermediate representation.

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 41

5.2 Arguments for LLVM

Most modern optimising compilers for traditional programming languages utilise
an intermediate representation based on the Static Single Assignment form. This
is mainly because it offers desired properties that make reasoning about it rela-
tively easy in the context of valid optimisation transformations.

Instead of relying on an abstract definition of SSA intermediate representa-
tions, we decided to use LLVM IR as a concrete implementation of the concept.
This gives us the advantage that we are able to quickly transition from our the-
oretical underpinnings to a functioning prototype implementation at the cost of
some loss of abstraction. We think that this is a favourable tradeoff but are aware
of a certain dichotomy when formalising abstract concepts such as computational
idioms in something very concrete and somewhat arbitrary like LLVM IR.

The choice for LLVM IR in particular was made for the following reasons.

• The code base of LLVM is generally considered of high quality and more
accessible than those of competing projects, gcc in particular. It is well
documented, state of the art, under active development and designed to be
easily extensible and reusable.

• LLVM supports a wide variety of popular programming languages as well
as target architectures.

• We can use the already existing optimisation and code transformation
passes to complement our own work.

• It is used by many device drivers for compiling OpenCL and upcoming
standards such as SPIR will also be based on LLVM IR.

All the concepts that we introduce can easily be transferred to other SSA
based intermediate representations. Since most modern compilers use such a form
of intermediate representation internally, this makes our general methodology
independent of the LLVM infrastructure. However we did not see any gains in
understanding to be achieved from abstracting away the concrete LLVM based
details such as the names of instruction opcodes.

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 42

5.3 Formal Problem Description

To understand our problem at a deeper level, we want to formalise the task that
we try to achieve. It is our goal to specify computational idioms in such a way
that for a given segment of LLVM IR code, a program can tell us whether this
code contains the computational idiom or not. Futhermore the program should
be able to tell us which exact part of LLVM IR corresponds to which component
of the idiom.

If the computational idiom is for example a matrix vector multiplication, then
the program should tell us which exact LLVM IR value constitutes the array that
contains the vector elements. We can express this in the following entirely shallow
definition.

Definition 1 A computational idiom is defined as a pair (I, c), where I is an
index set and c is a binary predicate on (V∪{∗})I , where V is the set of all LLVM
IR values, corresponding to the llvm::Value class.

In prose this simply means that a computational idiom consists of a certain
number of LLVM IR elements, some of which can be omitted using ∗, and each
tuple of that many elements either is or is not an implementation of the idiom.
To give a bit more meaning to this formalism, we give an example.

Example 1 To specify the sum of two integers as a computational idiom, let

I = {first summand,second summand,result}.

We can then specify the binary predicate c as follows

c(x) = true ⇐⇒ xresult is an add instruction and

xresult is of integer type and

xfirst summand is the first operand of xresult and

xsecond summand is the second operand of xresult.

Notice how some properties in the example are left unspecified, for example
the summands do not have to be instructions but can also be constants, function
arguments etc. Furthermore the type of the summands is enforced by LLVM IR,
so we do not have to explicitly mention it.

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 43

We need to find a good way to encode the binary predicates in some descriptive
language that we can then realise in our prototype implementation. The above
example gives a good indication as to how we can achieve that. It shows two of
the main characteristics of the description language that we devised. Firstly, the
predicate c is made up by logically concatenating several conditions that form the
building blocks of our description language. Secondly, the individual conditions
are based on the LLVM type system, instruction opcodes and on the structure of
the data flow graph.

5.4 Constraint Based Idion Specification

Idiom specifications in our system are constructed by hierarchically combining
simple conditions using logical operators. This means that fundamentally we
are not defining ‘bottom-up’ what a computational idiom looks like but instead
restrict the space of all programs down until only the constructs remain that we
desire. Therefore we call this a constraint based approach.

In this section we will introduce a formal language for the specification of
computational idioms. From what was already discussed, part of the language
specification in Backus-Naur Form is already implicit.

constraint ::= (<constraint >) | <or -constraint >

| <and - constraint > | <atomic -constraint >

or - constraint ::= <constraint > or <constraint >

and - constraint ::= <constraint > and <constraint >

The semantics of this part of the language should be immediately obvious,
the crucial missing part is only the specification of the atomic constraints that
are supported by the system. They can be grouped roughly into two different
groups. Firstly there are graph based constraints that are based on the different
dependency graphs underpinning the structure of the intermediate representation
code. Secondly there are constraints that are restrict the properties of individual
values by determining types, constant values etc.

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 44

5.4.1 Graph Based Constraints

The graphs that capture the dependencies between individual instructions are
an important source of semantic information in SSA intermediate representation
languages. These include the data flow graph (DFG), control flow graph (CFG),
control dominance graph (CDG) and program dependence graph (PDG).

Enforcing certain graph edges, reachability and graph domination properties
and excluding others therefore has to be the basis of any idiom specification
system. This gives rise to the following specifications.

graph ::= DFG | reverse DFG | CFG | reverse CFG

| CDG | reverse CDG | PDG | reverse PDG

two -element -graph - constraint ::=

<element > has edge to <element > in <graph > |

<element > dominates <element > in <graph > |

<element > strictly dominates <element > in <graph > |

<element > can reach <element > in <graph >

In these definitions, <element> is an element of the set I that was introduced
in the formal definition of computation idioms that we introduced previously.

Aside from the standard graph constraints, we perceived the need for two
generalisations of the concept of graph dominance. Graph dominance means
roughly speaking that one node ‘blocks’ the reachability of the other when starting
from the graph origin. This concept is very powerful but the use of the global
origin of the graph can be limiting. For our methods we need a concept of local
dominators, which we specify as follows.

three -element -graph - constraint ::=

<element > can not reach <element >

without passing <element > in <graph >

The second generalisation that we need is the concept of joint dominance.
This concept simply requires that any path from the graph origin to a specific
node has to pass through at least one of a specified set of nodes. In general, none
of the nodes in that set have to dominate the destination node on their own.

n-element -graph - constraint ::=

<element > can not reach <element >

without passing any of <element -list > in <graph >

element -list ::= <element > | <element >,<element -list >

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 45

5.4.2 Miscellaneous Constraints

Aside from the graph constraints, we use constraints that restrict the properties of
individual values. These include firstly constraints based on the type of an LLVM
IR value, the value of LLVM IR constants and the opcodes of instructions. We
added new constraints to this collection whenever the need arose and there is
no overarching theory for them, they are simply an agglomeration of things that
proved useful for describing computational idioms.

llvm - constraint ::= <element > is any instruction |

<element > is an <opcode > instruction |

<element > is a basic block label |

<element > is a constant |

<element > is a global variable |

<element > is a function argument |

<element > is an integer value |

<element > is a floating point value |

<element > is a pointer value |

<element > is integer constant <integer >

Finally we need a way to specify optional parts of computational idioms to
make our specifications more flexible. We achieve this with an ‘unused element’
constraint, corresponding to the ‘*’ in our original idiom definition.

unused -element - constraint ::= <element > is not used

We can now combine the previous derivation into a formal language specification.

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 46

5.4.3 Formal Language Specification

constraint ::= (<constraint >) | <or -constraint >

| <and - constraint > | <atomic -constraint >

or - constraint ::= <constraint > or <constraint >

and - constraint ::= <constraint > and <constraint >

atomic - constraint ::= two -element -graph - constraint |

three -element -graph - constraint |

n-element -graph - constraint |

llvm - constraints |

<element > is not used

two -element -graph - constraint ::=

<element > has edge to <element > in <graph > |

<element > dominates <element > in <graph > |

<element > strictly dominates <element > in <graph > |

<element > can reach <element > in <graph >

three -element -graph - constraint ::=

<element > can not reach <element >

without passing <element > in <graph >

n-element -graph - constraint ::=

<element > can not reach <element >

without passing any of <element -list > in <graph >

llvm - constraints ::= <element > is any instruction |

<element > is an <opcode > instruction |

<element > is a basic block label |

<element > is a constant |

<element > is a global variable |

<element > is a function argument |

<element > is an integer value |

<element > is a floating point value |

<element > is a pointer value |

<element > is integer constant <integer >

unused -element - constraint ::= <element > is not used

element -list ::= <element > | <element >,<element -list >

graph ::= DFG | reverse DFG | CFG | reverse CFG

| CDG | reverse CDG | PDG | reverse PDG

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 47

5.5 Some Constraint Examples

In the previous section we drafted a description language for the specification of
computational idioms. To prove the expressiveness of the language, we will give
some examples.

Example 2 The first example is a staple of any program analysis, the single
entry single exit (SESE) region.

ISESE = {precursor,begin,end,successor}

c(x) = true ⇐⇒

xbegin dominates xend in CFG and

xend dominates xbegin in reverse CFG and

xprecursor has edge to xbegin in CFG and

xprecursor dominates xbegin in CFG and

xend has edge to xsuccessor in CFG and

xend dominates xsuccessor in CFG and

xbegin can not reach xprecursor without passing xend in CFG and

xsuccessor can not reach xend without passing xbegin in CFG

Example 3 The second simple example specifies a simple loop that has not been
inverted. The above defined SESE region is used as a language construct for
brevity. The atomic constraints “is the same as” as well as “is different from”
should be self-explanatory.

Iloop = {head,body}×ISESE

c(x) = true ⇐⇒

xbody,successor is the same as xhead,begin

xhead,end is conditional branch instruction

xbody,precursor is same as xhead,end in CFG and

xhead,- is SESE

xbody,begin is different from xhead,successor in CFG and

xbody,end is branch instruction

xbody,- is SESE

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 48

5.6 Solving the Constraints

The idiom specification language that we use is designed such that it is easy to
implement functionality that checks whether or not some chunk of intermediate
representation corresponds to a specific computational idiom. All that is required
is to check the atomic constraints, all of which can be evaluated using standard
methods. What we actually need however is an algorithm that lists all occurrences
of a computational idiom (if there are any). In other words, we want to search
for subsets in intermediate representation code that confirm to a given idiom
specification.

This is a very computationally expensive task when approached naively. We
can formalise it as follows. Let D the set of instructions, constants, globals, basic
block labels and function arguments of a given section of LLVM IR code und
let (I, c) be the specification of a computational idiom. We are looking for an
algorithm that enumerates the set S of all idiom occurrences.

S = {x ∈ DI | c(x) = true}. (5.1)

For complex idioms in realistically sized functions we often have #I > 100 and
#D > 50 and so the direct computation of this set by enumerating DI is clearly
not viable as it contains more elements than the total number of atoms in the
universe. Instead, we need a smarter approach that utilises the knowledge that
we have about the composition of the binary predicate c to get a more efficient
algorithm.

The main idea that we use is that idioms are made up in a modular fashion.
Instead of testing every appropriately sized tuple of LLVM IR values for adherence
to the idiom specification, we identify characteristic smaller parts of the idiom
and look for those. We then extend the subset of the idiom that we are looking
for until we capture it entirely. To formalise this approach we introduce some
additional notation.

Definition 2 For a given constraint (I, c) and a subset J ⊂ I we define the
restricted constraint (J , cJ) as follows. For any valid LLVM IR function F and
D as defined above and any x ∈ DJ the following equation holds.

cJ (x) = true ⇐⇒ ∃y ∈ DI : c(y) = true and ∀j ∈ J : yj = xj

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 49

The existence quantor makes such a construct very difficult to implement.
In particular a restricted constraint of a constraint that can be formulated in
our description language does not always inherit that property. We therefore
introduce a second, weaker concept.

Definition 3 For a given constraint (I, c) and a subset J ⊂ I we call (J , cJ)
an approximated restricted constraint if for any valid LLVM IR function F and
D as defined above and any x ∈ DJ the following holds.

cJ (x) = true ⇐= ∃y ∈ DI : c(y) = true and ∀j ∈ J : yj = xj

This definition is of course very broad, as it allows the approximated restricted
constraint to be true everywhere without any constraints being enforced. We will
later see that sharpness of the chosen approximation will be crucial for the runtime
behaviour of our system but irrelevant to its correctness. In the aforementioned
case of a constantly true approximated restricted constraint, the algorithm will
degenerate to the naive search through all tuples. To better understand the
significance of these definitions, we give an example.

Example 4 We define the computational idiom “addition involving a constant”
as the pair (I, c) with the following properties.

I = {constant summand,other summand,result}

c(x) = true ⇐⇒

xresult is an add instruction and

xconstant summand is a constant value and

((xconstant summand is the first operand of xresult and

xother summand is the second operand of xresult) or

(xother summand is the first operand of xresult and

xconstant summand is the second operand of xresult))

To find this idiom in a function naively, one has to check all these constraints
for each triple of LLVM IR values. Intuitively it is a much better idea to instead
look for all addition instructions and to then check whether one of their operands
is a constant. This approach is expressed in the following approximated restricted
constraint (J , cJ) where J = {result} and cJ is defined as follows.

cJ (x) = true ⇐⇒ xresult is an add instruction

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 50

We can furthermore construct a restricted constraint (J ′, cJ ′) using the index
set J ′ = {constant summand,result} and the following definition of cJ ′.

cJ ′(x) = true ⇐⇒

xresult is an add instruction and

xconstant summand is a constant value and

(xconstant summand is the first operand of xresult or

xconstant summand is the second operand of xresult)

With these definitions we can now construct an algorithm to find compu-
tational idioms in intermediate representation code in a very efficient way. It
works fundamentally by constructing a chain of iteratively larger approximated
restricted constraints and using them to sieve out more and more idiom candi-
dates.

5.6.1 The Detection Algorithm

Let (I, c) be a computational idiom amd F a function with D defined as before.
We choose an enumeration i1, . . . , in of I and an enumeration d1, . . . ,dK of D such
that I = {i1, . . . , iN} and D = {d1, . . . ,dK}, where N = #I and K = #D.

Furthermore, we choose a finite sequence of constraints ((In, cn))n=1,...,N such
that In = {i1, . . . , in} and (In, cn) is an approximated restricted constraint for
n < N and cN = c. How such a sequence of approximations can be constructed will
be discussed in a later section of this chapter. The correct choice of enumerations
for D and I will also be discussed in that section.

We define a total order on D as induced by the enumeration d1, . . . ,dK . For
convenience we introduce the symbols −∞ and ∞ as values being smaller than
or greater than any other value of D to avoid complex case distinctions.

We can now search for computational idioms using the following algorithm.

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 51

Algorithm 1 Constraint Solver Algorithm
1: n← 1
2: x =−∞∈DI1

3: while n > 0 and n≤N do
4: y←min{xn < x′ ∈ D | cn(x1, . . . ,xn−1,x′) = true}
5: if y <∞ then
6: n← n+1
7: x← (y1, . . . ,yn,−∞) ∈ DIn+1

8: else
9: n← n−1

10: x← (x1, . . . ,xn−1)

11: if n=0 then
12: Function F does not contain idiom (I, c).
13: else
14: The tuple x ∈ DIn =DI matches to the idiom specification.

5.6.2 Interpretation as Graph Search

The algorithm is fundamentally a depth-first graph search algorithm in the graph
(V,E) where the vertices and edges are defined as follows.

V ={∗}∪DI1 ∪·· ·∪DIN

E ={(∗, b) ∈ V ×V | b ∈ DI1 , c1(b) = true}∪

{(a,b) ∈ V ×V | ∃n : a ∈ DIn , b ∈ DIn+1 , cn+1(b) = true}

In this graph, all the elements of DIN that are reachable from the origin ∗
fit the specification of the idiom. This property is independent of the choice
of the approximated restricted constraints, which is clearly a requirement for
correctness. The less precise the approximations are however, the more ‘dead
ends’ there are in the graph. In the most extreme case of all the approximations
being true constants, the algorithm degenerates to a lexicographic search through
DI with very undesirable runtime properties as described before.

In the case of non approximated restricted constraints on the other hand, the
time complexity of the algorithm is O(NK) when assuming that the restricted
constraints can be evaluated in constant time (this breaks down in practice).

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 52

5.6.3 Generating Restricted Constraints

We now have an algorithm to solve constraints but it requires not only the id-
iom specification itself but also total orders on D and I as well as a sequence of
approximated restricted constraints. In the previous subsection we saw that the
choice of approximated restricted constraints is very important to achieve good
runtime behaviour. How can we however automatically generate an approximate
constraint decomposition from a given idiom? The formal specification of compu-
tational idiom clearly can not help us a lot here but we can use knowledge about
how constraints are constructed in our specification language. In particular, we
can use the modularity of the construction process.

The order on D is mostly irrelevant, so we simply use the order of occurrence
in the LLVM function for this. The order on I is extracted from the idiom
specification by ordering the elements according to their first occurrence. This is
by no means a substantiated approach but it turned out to work better than other
methods. Among other things we also tried to use the Cuthill-McKee algorithm
to order I by treating each atomic constraint as an edge between elements of I
but the results were disappointing. Finally we can construct a specialisation of
a constraint specification by simply discarding all atomic constraints which use
elements of I not contained in the specified subset. The details of this approach
will become clearer in a later section that describes our C++ implementation.

5.7 Prototype Implementation Architecture

We extended the LLVM infrastructure to test our methodology in a real world
compiler infrastructure. Our modifications consist of two additional optimisation
passes that can be enabled in a modified version of the LLVM “opt” program,
a normalisation pass and a replacement pass. The replacement pass implements
the functionality that we derived in the previous sections.

The normalisation pass applies several relatively simple code transformations
to the LLVM IR that result in normalised structures to make the idiom detection
easier. In particular, it normalises the way in which multidimensional arrays
of dynamic size are accessed and it helps restructure polynomial computations
to Horner’s scheme. We will not go into details of the implementation of the
normalisation pass here.

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 53

The normalisation pass is intended to be used in conjunction with the default
LLVM optimisation passes, which also result in normalised IR. In our experimen-
tal setup, we run all the optimisation passes from optimisation level ‘-O2’ with
the exception of loop unrolling and vectorisation passes. After this, we execute
our custom normalisation pass, followed again by all ‘-O2’ passes with the afore-
mentioned exceptions. After these passes, the IR is normalised enough to run the
replacement pass, followed by a final ‘-O3’ to achieve maximum performance.

5.7.1 Implementation Overview

In our prototype implementation of this system, several class interface interact
to provide the functionality described above. We will describe only the rough
structure of the implementation due to space constraints. In total, our additions
to the LLVM code base consist of 7017 lines of code.

The most important class of the system is the abstract class Constraint with
its nested classes Constraint::Specialized and Constraint::Solver. This
class provides only a single member function, get specialisations, with return
type std::vector<std::pair<T*,Constraint::Specialized*>>. This vector
of pairs contains two structures at once. The first elements together form I and
the second elements are corresponding to the previously defined approximate
restricted constraints.

template < typename T>

class Constraint

{

public :

virtual ˜ Constraint () { }

enum class SkipResult ;

class Specialized ;

class Solver ;

virtual std :: vector <std ::pair <T*, Specialized *>>

get_specializations () = 0;

};

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 54

The most important member function of the Constraint::Specialized class
provides functionality to find the minimum as required by the detection algorithm
that we introduced in section 5.6.1. This is encapsulated in the member function
skip invalid, which increments the provided value reference if the approximate
restricted constraint is not already valid (thus halting at the minimal value that
adheres to the constraints).

Depending on the outcome, the function returns PASS if the constraint was
already fulfilled, FAIL if it can not be fulfilled by incrementing, CHANGEPASS

if the constraint is fulfilled after incrementing and CHANGE if the constraint is
not fulfilled after incrementing (but not obviously unfulfillable). This function
behaviour might seem unnecessary complicated but the choice of possible return
values allows for very performance efficient implementations of this interface.

The member function begin, resume, fixate and cancel are used to transi-
tion between different approximate restricted constraints. Whenever the variable
n was incremented by the algorithm in section 5.6.1, this would be reflected by
calls to fixate and begin. Similarly, calls to cancel and resume are necessary
for decrements of n. This will become clearer later, when we show the implemen-
tation of this algorithm in C++.

enum class Constraint :: SkipResult

{

FAIL = 0,

PASS = 1,

CHANGE = 2,

CHANGEPASS = 3

};

class Constraint :: Specialized

{

public :

virtual ˜ Specialized () { }

virtual SkipResult skip_invalid (T& c) = 0;

virtual void begin () = 0;

virtual void resume () = 0;

virtual void fixate () = 0;

virtual void cancel () = 0;

};

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 55

Finally the Constraint::Solver class implements the actual solving func-
tionality, following the previously developed algorithm in spirit.

class Solver

{

public :

Solver (Constraint & constr);

˜ Solver ();

bool next_solution (unsigned max_steps = UINT_MAX);

private :

std :: vector <std ::pair <T*, Specialized *>> specializations ;

unsigned working_index ;

};

The crucial part of the next solution member function should explain the
exact meaning of the Constraint::Specialised interface definitions.

while (n < specializations .size () && (max_steps --)) {

SkipResult result = SkipResult :: CHANGE ;

while(result == SkipResult :: CHANGE) {

result = specializations [n]. second

->skip_invalid (* specializations [n]. first);

}

if(result != SkipResult :: FAIL) {

specializations [n]. second -> fixate ();

n ++;

if(n < specializations .size ()) {

* specializations [n]. first = T();

specializations [n]. second ->begin ();

}

}

else {

specializations [n]. second -> cancel ();

n --;

if(n < specializations .size ()) {

specializations [n]. second -> resume ();

++* specializations [n]. first;

}

}

}

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 56

Most of the source code that we added to the LLVM infrastructure comprises
implementations of classes that implement the the Constraint interface. Many
of them required sophisticated methods for good performance, in particular the
ConstraintAnd and ConstraintOr classes that implement the logical operators
that are used to concatenate constraints. We will not go into any detail here but
the following figure shows the inheritance tree of all classes in our prototype that
implement the Constraint interface. All the constraints under ConstraintAnd

are composed constraints, all others are atomic constraints.

Constraint

ConstraintSingle

ConstraintUnused

ConstraintLLVMSingle

ConstraintLLVMIntConstant

ConstraintConstant

ConstraintPreexecution

ConstraintOpcode

ConstraintIntegerType

ConstraintPointerType

ConstraintFloatType

ConstraintOrdering

ConstraintSame

ConstraintDistinct

ConstraintOrder

ConstraintEdge

ConstraintDFGEdge

ConstraintDFGEdge0

ConstraintDFGEdge1

ConstraintDFGEdge2

ConstraintDFGEdge3

ConstraintCFGEdge

ConstraintCDGEdge

ConstraintReachable

ConstraintDFGReachable

ConstraintCFGReachable

ConstraintCDGReachable

ConstraintPDGReachable

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 57

ConstraintDominate

ConstraintCFGBlocked

ConstraintDFGBlocked

ConstraintDFGDominate

ConstraintDFGPostdom

ConstraintCFGDominate

ConstraintCFGPostdom

ConstraintPDGDominate

ConstraintPDGPostdom

ConstraintDFGDominateStrict

ConstraintDFGPostdomStrict

ConstraintCFGDominateStrict

ConstraintCFGPostdomStrict

ConstraintPDGDominateStrict

ConstraintPDGPostdomStrict

ConstraintOr

ConstraintAnd

ConstraintProduct

ConstraintDistributive

ConstraintPrematureGEP

ConstraintSESE

ConstraintLoop

ConstraintFor

ConstraintNestedFor

ConstraintExtendedInt

ConstraintAffineAccess

ConstraintAffineRead

ConstraintScale

ConstraintWeightedSum

ConstraintSumReduction

ConstraintPermute2

ConstraintMatrixmatrix

ConstraintSparseMV

ConstraintDominatedExprInflow

ConstraintDominatedExpr

ConstraintHistogram

ConstraintOffsetAffineAccess

ConstraintStencilRead

Constraint3DStencil

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 58

5.8 Automatic Pattern replacement

After we have spotted the computational patterns, our system needs to replace
them by optimised implementations, as discussed in a previous section. We will
not go into much detail here due to space limitations of this thesis.

For dense linear algebra, it is simply required to substitute the relevant LLVM
IR instructions with library calls to BLAS routines. We do this by first generating
an IR instruction that calls the appropriate BLAS *gemm function and insert it
before the start of the loop that contains the naive implementation in the original
source code. This step requires the analysis of the detected idiom to extract all the
necessary parameters to the function call. We then erase only the one instruction
in the original code that stores the new cell value into the resulting matrix, as all
other instruction that constitute a matrix multiplication are free of side effects.
The remaining code will be automatically removed by dead code elimination.

The situation for reduction operations was a bit more complex, as it required
some sophisticated code transformations to achieve array privatisation and the
creation and synchronisation of threads. Our replacement system currently only
works for histogram reduction. All the reductions that we found in performance
bottlenecks of the two benchmark collections were histogram reductions.

For each found histogram, our system generates four functions. One func-
tion contains a modified version of the original reduction IR code. The main
modifications stem from the encapsulation into a function that can be passed to
pthread create, meaning that all parameters are contained in a single struc-
ture that is passed by reference as the only function argument. Furthermore the
function can be restricted to perform the reduction on a subset of the original
iteration space to represent the work of an individual thread.

As mentioned before, the operation is assumed to be a histogram reduction,
meaning that the reduction variable is assumed to be an array or pointer. Since
the size of the array can in general not be statically known at compile time
in the second case, we insert boundary checks and generate a second function to
dynamically resize the array. A third function is generated that spawns individual
threads using the first function. This function is also responsible for merging
together the resulting histograms from the individual worker threads.

Finally the original code is replaced by a call to this third function in a similar
fashion as described before in the context of linear algebra.

Chapter 5. Constraint Based Idiom Detection - Theory and Practice 59

5.9 Summary

We constructed a formal language for the specification of computational idioms
and use it to formalise some of the previously studied idioms. After gaining
some formal understanding of the problem at hand we devised algorithms to
automatically detect computational idioms in single static assignment interme-
diate representation code. We implemented a prototype that implements these
methods as an optimisation pass in the LLVM compiler infrastructure. This pro-
totype automatically recognises computational idioms and applies idiom specific
code transformations for parallelisation and optimisation.

Chapter 6

Evaluation

The idiom detection works well but some issues remain. The runtime of the
idiom detection algorithm is generally negligible but for some complex programs
the algorithm seems to almost diverge. The coexistence of many different formats
for sparse matrices requires more complex idiom specifications and hinders the
detection of some legitimate computational idioms as of now.

The replacement approaches for linear algebra using OpenBLAS work well.
For reduction operations we achieve reliable detection and good speedup on a
set of artificial test programs. On the original benchmark collections, the system
works on the IS and tpacf benchmarks but fails on EP due to additional memory
accesses.

6.1 Experimental Setup

For the evaluation of our detection algorithms we used artificial test programs as
well as the original NAS and Parboil benchmark collections. We measured some
preliminary performance results on the same system as in the previous evaluation,
using a four processor machine with 16 core AMD Opteron processors. We did
not yet perform a full evaluation across the entire set of benchmark programs but
intend to due this once our system has been extended to cover stencil kernels as
well. Instead we focused on the individual computational idioms and observed
the behaviour of both the detection and the replacement routines.

The additional test programs consisted mostly of code snippets taken from the
original benchmark programs with slight modifications that we used to investigate
the limits of our detection algorithms.

60

Chapter 6. Evaluation 61

We evaluated the prototype with respect to the following criteria:

• Does the prototype detect all the computational idioms that we classified
manually in the computational bottlenecks?

• Does the prototype detect any additional computational idioms and can we
manually veritfy them as correct?

• Do the automatic code transformations work reliably and produce valid
programs?

• To what extend does the automatically generated parallel version differ
from our manual implementations?

• How fast is the generated code?

6.2 Results

For dense linear algebra, the detection algorithm reliably recognised the matrix
multiplication in the bottleneck of the sgemm benchmark. No other benchmark
program in the two collections that we studied hat a bottleneck comprised of linear
algebra. We ran some additional tests using slightly varying implementations
of matrix multiplications, including the introduction and removal of temporary
variables. Some examples are shown in figure 6.1. None of these superficial
changes affected the reliability of the detection.

There were no additional false of correct examples of matrix multiplications
in any of the other benchmark programs that the compiler pass identified. The
automatic code transformations worked reliably and produced code that was func-
tionally identical to the previously attained manual version. The performance was
therefore identical. In conclusion, our methodology worked reliably and efficiently
for dense linear algebra.

For the sparse linear algebra, the results were more inconsistent. This was due
to the vastly differing implementations of sparse linear algebra in the different
benchmark programs. In the CG benchmark of the NAS Parallel Benchmarks,
the sparse matrix is stored in the Compressed Sparse Row format and the sparse
matrix vector multiplication is implemented accordingly. The detection algorithm
works well for this program but no code transformations are implemented yet

Chapter 6. Evaluation 62

in our optimisation pass for this computational idiom. The other benchmark
with sparse linear algebra in the computational bottleneck was spmv from the
Parboil Benchmarks. This program however uses an entirely different storage
format for the sparse matrix and is thus inaccessible for our system. This could
be solved with additional constraint specifications, we might investigate this in
further work.

Figure 6.1: Different matrix multiplication implementations

for (int mm = 0; mm < m; ++ mm) {

for (int nn = 0; nn < n; ++ nn) {

float c = 0.0f;

for (int i = 0; i < k; ++i) {

float a = A[mm + i * lda];

float b = B[nn + i * ldb];

c += a * b;

}

C[mm+nn*ldc] = C[mm+nn*ldc] * beta + alpha * c;

}

}

for (int mm = 0; mm < m; ++ mm) {

for (int nn = 0; nn < n; ++ nn) {

float c = 0.0f;

for (int i = 0; i < k; ++i) {

c += A[mm + i * lda] * B[nn + i * ldb];

}

C[mm+nn*ldc] = C[mm+nn*ldc] * beta + alpha * c;

}

}

for (int mm = 0; mm < m; ++ mm) {

for (int nn = 0; nn < n; ++ nn) {

float c = 0.0f;

for (int i = 0; i < k; ++i) {f

float b = B[nn + i * ldb];

c = c + A[mm + i * lda] * b;

}

C[mm+nn*ldc] = c;

}

}

Chapter 6. Evaluation 63

There were four reduction operations in the benchmark bottlenecks, all of
which were histogram reduction. The simplest reduction was found in the the
Integer Sort program of the NAS Parallel Benchmarks and the most complex
reduction constituted the bottleneck of the tpacf benchmark from the Parboil
collection. The detection algorithm detected the idiom in the IS and histo bench-
marks reliably. The detection of the EP bottleneck worked reliably when the
bottleneck was separated into its own function but we were unable to reproduce
this in the context of the original source code for reasons unknown to us.

The bottleneck of tpacf was recognised by previous version of our compiler
pass. When implementing our replacement routines we observed some regressions
however and the benchmark is no longer recognised as a reduction computation.
This is due to the use of an additional array structure for a binary seach com-
putation that results in the final index that is used to access the histogram.
This additional array is not accounted for by the computational idiom itself and
confuses our system. The problem will be addressed in further research.

The code transformations for the parallelisation of reduction computations
work reliably on all three detected benchmarks. The resulting code for histo
needs some minor manual adjustment to generate valid results. This is because
our system is unable to properly deduce the complementary operator as described
in section 2.2.3. Instead it always assumes this complementary operator to be an
element wise addition of the histogram bins, which is incorrect for the saturating
histogram that is implemented in histo.

The resulting programs match the performance of our previously implemented
versions. In particular, we achieve 14x speedup on the bottleneck of EP when
compared against the sequential baseline, which is the input source code to our
compiler.

6.3 Summary

The detection and replacement of dense linear algebra works reliably and produces
code that is functionally identical to the parallel versions that we obtained in the
preceding case study. The detection of sparse linear algebra generally works but
is problematic due to the many different storage formats for sparse matrices. No
code transformations for sparse linear algebra were implemented so far.

Chapter 6. Evaluation 64

The detection of reduction operations is much more complex. The general
methodology works but there are still some examples that do not fit our idiom
specification. For the idioms that we detect successfully, the automatic code
transformations are able to reproduce previous results.

Chapter 7

Conclusion

We were able to integrate idiom specific functionality for parallelisation and op-
timisation into an existing compiler infrastructure. Even though our prototype
at this point only implements two computational idioms, we were able to show
the general feasibility and usefulness of the system.

The main limitations of our work are the evaluation on only a small set of
benchmark programs and the lack of actual hardware heterogeneity.

Further work is necessary to prove that the approach extends well to more
complex programs and additional computational idioms. Furthermore the appli-
cation to heterogeneous computation, which was beyond the scope of this project,
will be a major part of subsequent research.

7.1 Summary

We used several established benchmark collections to get an understanding of
typical computational workloads in the domain of scientific computing. Using
profiling techniques, we established the performance critical sections of the source
code of the individual benchmark programs. We collected these benchmark bot-
tlenecks and compared them with each other to find similarities and to group them
together according to computational idioms that they followed. Using a limited
set of only three fundamental computational idioms (stencil kernels, reductions
and linear algebra), we achieved good coverage of the performance bottlenecks in
the studied benchmark collections.

We investigated the performance increases that can be achieved by idiom
specific automatic code parallelisation. Using manual optimisation techniques

65

Chapter 7. Conclusion 66

and domain specific knowledge, we found that many computational idioms can
be parallelised and optimised in a mechanical way.

Using optimised library implementations for linear algebra, established op-
timisation techniques for stencil computations and generalisations of basic par-
allelisation approaches for reduction computations we modified the sequential
benchmark version to get idiom based parallel versions. We compared the results
that we achieved by idiom based code parallelisation with parallel versions of the
benchmark programs that were written by experts. In most cases we were able
to match or even surpass the optimised parallel versions, proving that computa-
tional idioms often contain all the contextual and semantic information that is
required for efficient parallelisation.

We thought of ways to formalise this previously unstructured work and came
up with a description language for computational idioms that turned out to be
sufficiently expressive to formulate many important computational idioms. Using
this language as the basis for our reasoning, we developed an efficient algorithm to
automatically detect computational idioms in real source code. We implemented
this algorithm in C++ and integrated it into a modified version of the LLVM
compiler infrastructure.

We specified formally the computational idioms of dense matrix multiplica-
tion, sparse matrix vector multiplication and general histogram reduction opera-
tions. These patterns represent two of the three three computational idioms that
we originally identified as important. We evaluated the accuracy of our automatic
detection algorithm on them. The results were encouraging as we were able to
recreate our manual classification quite accurately without any false positives.

Finally we tried to reproduce our manual optimisation results by implement-
ing functionality in LLVM to imitate our parallelisation efforts. This was based
on the previous work on the detection of idioms. The necessary effort for this
differed widely between the individual idioms. For linear algebra, all the rele-
vant optimisation work was encapsulated in BLAS implementations and thus the
automatic parallelisation consisted only of inserting BLAS calls. The reduction
idiom on the other hand required complex code generation. While this part of our
research remains unfinished, automatic parallelisation of complex reduction com-
putations appears to be possible on a level that far surpasses previous approaches
in the literature.

Chapter 7. Conclusion 67

7.2 Critical Discussion

Automatic parallelisation approaches have in the past often struggled to scale well
beyond simple benchmark programs. We tried to avoid this problem by choosing
well respected benchmarks from outside the compiler community and a flexible
idiom detection method that is not easily confused by slight syntactic differences.
Despite this, a much larger evaluation on more diverse and complex software will
be necessary to prove the feasibility of our methods in real world code bases. This
will in particular concern the generality of the formal specifications for idioms that
we use. While our approach is independent from the original source code, some
nonstandard implementations of computational idioms might still be obscured in
intermediate representation code. Some of this might be mitigated by additional
normalisation passes, but additional evaluation of the scale of these problems is
necessary.

We chose LLVM IR as the base language for all our detection and replacement
algorithms for computational idioms. We are very confident that this is a better
choice than original source code but it is unclear how well our methods can scale
on intermediate representation code. Fundamentally the choice for LLVM IR
was mostly made due to the easy accessibility and tool support, the obvious
shortcomings of source code analysis approaches and the lack of real alternatives.
Several inconveniences of LLVM IR showed during the implementation of our
prototype that required additional normalisation passes. In the future it might
become useful to put restrictions or extensions onto the language specification for
our purposes.

In this work we were able to express two computational patterns in our formal
idiom specification language. It remains to be shown that the language is also
expressive enough to allow for other computation idioms that arise in different
computational domains. Related to this issue is the question whether any limited
set of idioms can really cover the majority of computational bottlenecks. Maybe
the abundance of discernible computational idioms is just an artefact of our fo-
cus on artificial benchmark programs and does not translate well to large scale
software projects.

One major motivation for this research was the development of parallelisation
techniques that can target heterogeneous hardware. So far we have not given any
proof that idiom specific parallelisation is capable of this transition.

Chapter 7. Conclusion 68

7.3 Future Work

In future work we intend to do a more thorough evaluation of our approach to
automatic parallelisation. This will firstly involve the use of additional benchmark
suites to investigate how well our methods generalise to other computational
domains and alternative implementations. Furthermore, we intend to use more
complex code bases that go beyond the scope of traditional benchmark programs
to investigate the impact of our optimisations on more diverse and unstructured
source code. We plan to use popular open source software from platforms such
as github for this analysis. This work will require much more methodology to
accurately measure the performance implications for interactive software and was
beyond the scope of this project.

We have not implemented detection and parallelisation functionality for the
stencil idiom yet. As this is one of the most common and important computational
idioms in scientific computing and was one of the original three idioms that we
assembled in our case study, it will be crucial to introduce it to our system.
There is a profound body of work on optimising stencil computations and fierce
competition in the field, which is why we decided to implement the other two
idioms first. Aside from adding this new idiom to our system, many of the already
specified idioms could often be implemented more elegantly and in a more generic
way. We will use the experience that we gathered to revise these idioms.

Another direction of further research is the extension of our system to allow for
arbitrarily sized index sets in our idiom specifications. Currently some constraint
definitions require undesirable compile time limits, e.g. for stencil computations
the maximum size of the neighbourhood must be fixed (although it can be set very
large). This is generally not a huge problem but could be solved more elegantly.
Extensions to the specification system and the corresponding idiom detection
algorithms could alleviate this problem and allow for more general idioms to be
implemented.

A more structured approach to idiom replacement will be a central part of
follow up research. While currently we have developed a very structured and
formally substantiated way of specifying and finding computational idioms, the
automatic parallelisation is still quite ad-hoc. As we intend to move on to much
more complicated, heterogeneous parallelism it will be necessary to develop a
more sophisticated and scalable approach for this.

Chapter 7. Conclusion 69

Another interesting research questing is to implement methods not for the
increase of parallelism in programs but for the restructuring of parallelism. Such
approaches would for example take already parallelised code and tune the par-
allelism for new parallel architectures, particularly of course for heterogeneous
ones. This might also expose some problems that arise from our choice of LLVM
IR as our implementation basis, because LLVM IR does not have a native concept
of parallelism.

Bibliography

Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J.,
Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., and Sorensen,
D. (1999). LAPACK Users’ Guide. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, third edition.

Andión, J. M. (2015). Compilation Techniques for Automatic Extraction of Par-
allelism and Locality in Heterogeneous Architectures. PhD thesis, University of
A Coruña.

Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley, J., Bosboom, J.,
O’Reilly, U.-M., and Amarasinghe, S. (2014). Opentuner: An extensible frame-
work for program autotuning. In Proceedings of the 23rd International Con-
ference on Parallel Architectures and Compilation, PACT ’14, pages 303–316,
New York, NY, USA. ACM.

Asanovic, K., Bodik, R., Catanzaro, B. C., Gebis, J. J., Husbands, P., Keutzer,
K., Patterson, D. A., Plishker, W. L., Shalf, J., Williams, S. W., and Yelick,
K. A. (2006). The landscape of parallel computing research: A view from
berkeley. Technical report, TECHNICAL REPORT, UC BERKELEY.

Baghdadi, R., Cohen, A., Grosser, T., Verdoolaege, S., Lokhmotov, A., Absar, J.,
Van Haastregt, S., Kravets, A., and Donaldson, A. (2015). PENCIL Language
Specification. Research Report RR-8706, INRIA.

Bailey, D. H., Barszcz, E., Barton, J. T., Browning, D. S., Carter, R. L., Dagum,
L., Fatoohi, R. A., Frederickson, P. O., Lasinski, T. A., Schreiber, R. S., Simon,
H. D., Venkatakrishnan, V., and Weeratunga, S. K. (1991). The nas parallel
benchmarks—summary and preliminary results. In Proceedings of the
1991 ACM/IEEE Conference on Supercomputing, Supercomputing ’91, pages
158–165, New York, NY, USA. ACM.

70

Bibliography 71

Barik, R., Kaleem, R., Majeti, D., Lewis, B. T., Shpeisman, T., Hu, C., Ni, Y.,
and Adl-Tabatabai, A.-R. (2014). Efficient mapping of irregular c++ applica-
tions to integrated gpus. In CGO ’14, pages 33:33–33:43, New York, NY, USA.
ACM.

Bienia, C. (2011). Benchmarking Modern Multiprocessors. PhD thesis, Princeton
University.

Chandan Reddy, M. K. and Cohen, A. (2016). Reduction drawing: Language
constructs and polyhedral compilation for reductions on gpus. In Proceedings of
the 25rd International Conference on Parallel Architectures and Compilation,
PACT ’16.

Chandramohan, K. and O’Boyle, M. F. P. (2014). A compiler framework for
automatically mapping data parallel programs to heterogeneous mpsocs. In
CASES ’14, pages 9:1–9:10, New York, NY, USA. ACM.

Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J. W., Lee, S.-H., and Skadron,
K. (2009). Rodinia: A benchmark suite for heterogeneous computing. In
Proceedings of the 2009 IEEE International Symposium on Workload Charac-
terization (IISWC), IISWC ’09, pages 44–54, Washington, DC, USA. IEEE
Computer Society.

Chung, E. S., Milder, P. A., Hoe, J. C., and Mai, K. (2010). Single-chip heteroge-
neous computing: Does the future include custom logic, fpgas, and gpgpus? In
Proceedings of the 2010 43rd Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO ’43, pages 225–236, Washington, DC, USA. IEEE
Computer Society.

Cole, M. (1991). Algorithmic Skeletons: Structured Management of Parallel Com-
putation. MIT Press, Cambridge, MA, USA.

Cole, M. (2004). Bringing skeletons out of the closet: A pragmatic manifesto for
skeletal parallel programming. Parallel Comput., 30(3):389–406.

Colella, P. (2004). defining software requirements for scientific computing.

Cong, J. and Yuan, B. (2012). Energy-efficient scheduling on heterogeneous multi-
core architectures. In Proceedings of the 2012 ACM/IEEE International Sym-

Bibliography 72

posium on Low Power Electronics and Design, ISLPED ’12, pages 345–350,
New York, NY, USA. ACM.

Dean, J. and Ghemawat, S. (2008). Mapreduce: Simplified data processing on
large clusters. Commun. ACM, 51(1):107–113.

Doerfert, J., Streit, K., Hack, S., and Benaissa, Z. (2015). Polly’s polyhedral
scheduling in the presence of reductions. CoRR, abs/1505.07716.

Emani, M. K. and O’Boyle, M. (2015). Celebrating diversity: A mixture of
experts approach for runtime mapping in dynamic environments. SIGPLAN
Not., 50(6):499–508.

Grosser, T., Größlinger, A., and Lengauer, C. (2012). Polly - performing poly-
hedral optimizations on a low-level intermediate representation. Parallel Pro-
cessing Letters, 22(4).

Kamil, S., Cheung, A., Itzhaky, S., and Solar-Lezama, A. (2016). Verified lifting
of stencil computations. In Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’16, pages 711–
726, New York, NY, USA. ACM.

Kelly, W. and Pugh, W. (1995). A unifying framework for iteration reordering
transformations. Technical report, College Park, MD, USA.

Larsen, S. and Amarasinghe, S. (2000). Exploiting superword level parallelism
with multimedia instruction sets. In Proceedings of the ACM SIGPLAN 2000
Conference on Programming Language Design and Implementation, PLDI ’00,
pages 145–156, New York, NY, USA. ACM.

Lee, J., Samadi, M., Park, Y., and Mahlke, S. (2013). Transparent cpu-gpu
collaboration for data-parallel kernels on heterogeneous systems. In PACT ’13,
pages 245–256, Piscataway, NJ, USA. IEEE Press.

Leyton, M. and Piquer, J. M. (2010). Skandium: Multi-core programming with
algorithmic skeletons. In 2010 18th Euromicro Conference on Parallel, Dis-
tributed and Network-based Processing, pages 289–296.

Loogen, R., Ortega-mallén, Y., and Peña maŕı, R. (2005). Parallel functional
programming in eden. J. Funct. Program., 15(3):431–475.

Bibliography 73

Margiolas, C. and O’Boyle, M. F. (2015). Palmos: A transparent, multi-tasking
acceleration layer for parallel heterogeneous systems. In ICS ’15, pages 307–
318, New York, NY, USA. ACM.

Mendis, C., Bosboom, J., Wu, K., Kamil, S., Ragan-Kelley, J., Paris, S., Zhao, Q.,
and Amarasinghe, S. (2015). Helium: Lifting high-performance stencil kernels
from stripped x86 binaries to halide dsl code. In Proceedings of the 36th ACM
SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’15, pages 391–402, New York, NY, USA. ACM.

Mullapudi, R. T., Vasista, V., and Bondhugula, U. (2015). Polymage: Automatic
optimization for image processing pipelines. SIGARCH Comput. Archit. News,
43(1):429–443.

Niall Murphy, Timothy Jones, S. C. and Mullins, R. (2015). Limits of static
dependence analysis for automatic parallelization.

Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Durand, F., and Amaras-
inghe, S. (2013). Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. In Proceedings of
the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, pages 519–530, New York, NY, USA. ACM.

Reinders, J. (2007). Intel Threading Building Blocks. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, first edition.

Sheng, W., Schürmans, S., Odendahl, M., Bertsch, M., Volevach, V., Leupers, R.,
and Ascheid, G. (2013). A compiler infrastructure for embedded heterogeneous
mpsocs. In Proceedings of the 2013 International Workshop on Programming
Models and Applications for Multicores and Manycores, PMAM ’13, pages 1–
10, New York, NY, USA. ACM.

Steuwer, M., Kegel, P., and Gorlatch, S. (2011). Skelcl - a portable skeleton
library for high-level gpu programming. In Parallel and Distributed Processing
Workshops and Phd Forum (IPDPSW), 2011 IEEE International Symposium
on, pages 1176–1182.

Stone, J. E., Gohara, D., and Shi, G. (2010). Opencl: A parallel programming
standard for heterogeneous computing systems. IEEE Des. Test, 12(3):66–73.

Bibliography 74

Stratton, J. A., Rodrigues, C., Sung, I.-J., Obeid, N., Chang, L.-W., Anssari, N.,
Liu, G. D., and Hwu, W.-m. W. (2012). Parboil: A revised benchmark suite
for scientific and commercial throughput computing. Center for Reliable and
High-Performance Computing, 127.

Sun, E., Schaa, D., Bagley, R., Rubin, N., and Kaeli, D. (2012). Enabling task-
level scheduling on heterogeneous platforms. In GPGPU-5, pages 84–93, New
York, NY, USA. ACM.

Tournavitis, G., Wang, Z., Franke, B., and O’Boyle, M. F. (2009). Towards a
holistic approach to auto-parallelization: Integrating profile-driven parallelism
detection and machine-learning based mapping. In Proceedings of the 30th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, PLDI ’09, pages 177–187, New York, NY, USA. ACM.

Venkata, S. K., Ahn, I., Jeon, D., Gupta, A., Louie, C., Garcia, S., Belongie,
S., and Taylor, M. B. (2009). Sd-vbs: The san diego vision benchmark suite.
In Proceedings of the 2009 IEEE International Symposium on Workload Char-
acterization (IISWC), IISWC ’09, pages 55–64, Washington, DC, USA. IEEE
Computer Society.

Verdoolaege, S., Carlos Juega, J., Cohen, A., Ignacio Gómez, J., Tenllado, C.,
and Catthoor, F. (2013). Polyhedral parallel code generation for cuda. ACM
Trans. Archit. Code Optim., 9(4):54:1–54:23.

Wang, Z., Tournavitis, G., Franke, B., and O’boyle, M. F. P. (2014). Integrating
profile-driven parallelism detection and machine-learning-based mapping. ACM
Trans. Archit. Code Optim., 11(1):2:1–2:26.

