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Abstract

Quantum computer provide great promise in terms of the computational speed-up that

they could provide. Less than universal quantum computers too show promise and

it is believed that some of these models of computation will prove classically hard

to simulate. As such, it would be of great benefit, if only as a proof of principle

demonstration of our ability to perform quantum computations, to construct such a

device.

It is necessary then that a computer we believed to be more than classical can prove

it is such. To do so it should pass a hypothesis test. In this work we move towards de-

veloping a hypothesis test to convince a sceptic of the capability of a device to perform

temporally unstructured quantum computations. In particular we consider the instan-

taneous quantum polytime (IQP) machine developed by Shepherd and Bremner [1]

which constructs computations from a commuting gate set.

We adapt the hypothesis test developed in [1] by re-framing IQP machine programs

in the measurement based model for quantum computation. In doing so we are able to

exploit tools from blind quantum computing and strengthen some of the claims made

in [1] about their hypothesis test.

By developing a blind graph state creation resource we are able to conceal many

of the details of the hypothesis test that a server must pass, weakening their ability to

cheat. In doing so we develop a stronger hypothesis test based on fewer computational

complexity assumption and instead on information theoretic assumptions.
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Chapter 1

Introduction and Background

1.1 Introduction

Initially the quantum computer was suggested as a way of simulating quantum systems

[2, 3] but it has since been shown to have many other applications [4]. Protocols

demonstrating the power of quantum computers include Shor’s algorithm for prime

factorisation [5], Grover’s algorithm for unstructured search [6], and the BB84 protocol

for public key exchange [7].

That said, it may be some time before a large scale universal quantum computer

capable of demonstrating the computational power of these protocols is built. In the

meantime several intermediate, non universal models of quantum computation, which

may be easier to implement, have been developed. Examples include the one clean

qubit model [8, 9] and the boson sampling model [10].

The instantaneous quantum poly-time (IQP) machine [1] is another, less than uni-

versal machine, with practical advantages [11]. This model uses a commuting gate

set and although a universal gate set would be non-commuting this simple model is

still thought not to be classically simulatable [12, 13]. This fact demonstrates why it

would constitute exciting progress for such a machine to be built as it would prove our

capacity to build quantum computers.

Simply claiming to have build such a machine would not, on its own, be sufficient

and we must be able to prove this achievement. Indeed in [1] the authors develop a hy-

pothesis test designed to be passable only by devices capable of efficiently simulating

an IQP machine. Their protocol employs binary matroid theory and arguments about

the computational complexity of finding hidden sub-matroids to achieve this goal.

In our work we build on the scheme of [1]. By framing the IQP machine in the

1



2 Chapter 1. Introduction and Background

setting of measurement based quantum computing (MBQC) [14, 15] we are able to

use tools taken from blind quantum computing [17, 18] to develop a hypothesis test

strengthening that of [1] by removing some of the conjectures they make. These con-

jectures relate to the computational complexity of the hidden sub-matroid problem

which we will introduce and discuss.

The structure of this work will be first to provide the necessary background in

quantum computing and quantum mechanics. We will then formally introduce the IQP

machine and the hypothesis test developed by [1] before moving to develop a protocol

to implement an IQP computation distributively. Importantly we will do so without

revealing the details of the computation to the device performing it. This property, in

particular, will be of use in our hypothesis test, a description of which will then follow.

We proceed by introducing some of the key tools that will be used throughout.

In section 1.2 we introduce some basics of quantum computing before coming, in

section 1.3, to the aforementioned measurement based quantum computing. Our final

introductory section is on the vital proof tool of abstract cryptography. This is found

in section 1.4.

1.2 Quantum Mechanics and Computing

In this section, we will not cover all the necessary linear algebra but such background

may be found in [4, 19]. There, a more thorough introduction to quantum computing

generally may also be found and much of the work of this section relies on it.

Many texts provide good introductions to quantum physics but, in particular, [20]

is of quality. Throughout, and when it becomes appropriate, we will also introduce the

postulates of quantum mechanics.

1.2.1 The Qubit

The primary tool used in quantum computing is the qubit. While a classical bit exists

in the state 0 or 1 the qubit may exist in a superposition of these states. We write a

general qubit in the form of (1.1) where α,β ∈ C and where |a|2 + |b|2 = 1. We can

loosely understand this superposition as being ‘α much of the |0〉 state and β much of

the |1〉 state’.

|ψ〉= α |0〉+β |1〉 (1.1)

Notice that with a basis {|0〉 , |1〉}, which we refer to a the computational basis,
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we have defined a two dimensional vector space over the field C. With the addition

of an inner product, 〈·|·〉, with 〈0|1〉= 0 and 〈1|1〉= 〈0|0〉= 1 we have defined a two

dimensional Hilbert space

We would typically expect to write 〈|0〉||1〉〉 when talking about the inner product

of vectors. We will, however, often resort to the above, more convenient, Bra-Ket

notation. Using this notation, the state 〈ψ| is the complex conjugate of the state |ψ〉.
The reader will realise that any qubit may be written in the form of expression

(1.2). Since we will later see that the factor eiγ in that expression can be ignored, we

can handily represent a single qubit as a point on surface of the Bloch sphere of Figure

1.1. The positive and negative Z axis of the Bloch sphere are the |0〉 and |1〉 states

respectively.

|ψ〉= eiγ
(

cos
(

θ

2

)
|0〉+ eiφ sin

(
θ

2

)
|1〉
)

(1.2)

Y

Z

X

φ

|ψ〉
θ

Figure 1.1: The Bloch sphere provides an intuitive way of representing any single qubit

|ψ〉. Referring to expression (1.2) helps to understand the notation used. The state of

a single qubit can be represented by a point on the surface of the sphere.

We note now that, as well as the computational basis mentioned, the Hadamard

basis of expression (1.3) is also commonly used as a basis for this same space. These

states are found on the X axis of the Bloch sphere.

|+〉= 1√
2
(|0〉+ |1〉) and |−〉= 1√

2
(|0〉− |1〉) (1.3)
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1.2.2 Entanglement, Non-locality and the Tensor Product

Previously, we have considered single qubit systems but we can use the tensor product

to construct larger, multi-qubits systems.

Definition 1.2.1. The elements on the tensor product, V ⊗W, of two vector spaces V

and W, are linear combinations of vectors |v〉⊗ |w〉 where |v〉 ∈V and |w〉 ∈W.

If |i〉 and | j〉 form an orthonormal basis of V and W respectively, then vectors of

the form |i〉⊗ | j〉 forms an orthonormal basis of V ⊗W.

If systems 1 to n are prepared in the states |ψ1〉 , ..., |ψn〉 then the joint state of the

system is |ψ1〉⊗ ...⊗|ψn〉.

More complicated systems can result from building states which cannot be de-

scribed as the joint state of single qubit systems. It is these states that bring the power

of quantum computing and which introduce entanglement into quantum mechanics.

Entanglement is what introduces non-locality, or ‘spooky action at a distance’; the

phenomenon found so unpalatable by Einstein [21].

Definition 1.2.2. A state is called entangled if the state of the composite system cannot

be written as the tensor product of its components.

The typical example of an entangled state is as in expression (1.4) which the reader

can verify meets the conditions of Definition 1.2.2.

1√
2
(|00〉+ |11〉) (1.4)

We now have sufficient terminology to introduce the first postulate of quantum

mechanics.

Postulate 1: Associated to any physical system is a complex vector space
with inner product known as the state space of the system. The system
is completely described by its state vector, which is a unit vector in the
system’s state space.

1.2.3 Operators on Quantum States

Qubits can be acted upon and altered by operators. These operators can be represented

by m× n matrices acting on the state space of the system. This representation may

be arrived at by considering expression (1.5) where vectors, of the form |k〉, form an

orthonormal basis.
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A = ∑
i j
|i〉〈 j|Ai j where Ai j = 〈i|A | j〉 (1.5)

Operators can also be formed from vectors by considering the outer product as

outlined in expression (1.6). A description as a matrix can be found as in equation

(1.7).

(|w〉〈v|) |v̂〉= 〈v|v̂〉 |w〉 (1.6)

|w〉〈v|= ∑
i, j

wiv∗j |i〉〈 j| (1.7)

Some useful definitions regarding operators are found in Definition 1.2.3. These

definitions will leave us sufficiently prepared to introduce the second postulate of quan-

tum mechanics.

Definition 1.2.3. The adjoint, A†, of an operator, A, is that satisfying expression (1.8).

An operator is said to be Hermitian if it is self adjoint and unitary if its adjoint is

its inverse.

〈|v〉|A |w〉〉=
〈

A† |v〉
∣∣∣|w〉〉 (1.8)

Postulate 2: The state of the system at time t1 is related, as seen in expres-
sion (1.9), to the state of the system at time t2 by the unitary operator U
which depends only on the times t1 and t2.

|ψt2〉=U |ψt1〉 (1.9)

A second and similar postulate addressing the matter of continuous evolution of

states in time is that of postulate 2’.

Postulate 2’: In the absence of any external influence the state of the sys-
tem changes smoothly in time according to the Scrödinger equation seen
in line (1.10). Here H is the hermitian operator, called the Hamiltonian,
corresponding to the energy of the system.

i~
d |ψt〉

dt
= H |ψt〉 (1.10)
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1.2.4 Operators as Part of Quantum Circuits

In quantum computing all gates are unitary operators and we now consider some com-

mon examples.

The quantum equivalent of the classical NOT gate is the Pauli-X gate which, when

acting on the computational basis states, behaves according to expression (1.11). It

may also be summarised in matrix notation as in expression (1.12).

|0〉 → |1〉 , |1〉 → |0〉 (1.11)

X =

[
0 1

1 0

]
(1.12)

Expression (1.13) shows, in matrix notation, the Pauli-Y gate, the Pauli-Z gate, the

Hadamard gate, H, and the phase gate, Rθ. These too are commonly used gates. One

may note, in particular, that the Hadamard gate can be used to change between the

computational and Hadamard basis of (1.3) and that Rπ = Z.

Y =

[
0 −i

i 0

]
, Z =

[
1 0

0 −1

]
, H =

1√
2

[
1 1

1 −1

]
, Rθ =

[
1 0

0 eiθ

]
(1.13)

On a notational note, if there is ambiguity as to which qubit the gates are being

applied, we will use a subscript, such as Xi, to indicate that it is applied to the ith qubit.

The above are only a few examples of a single qubit gates and any of the uncount-

ably many unitary operators may perform this role.

Some simple examples of two qubit gates are the controlled gates. This simply

means applying an operation to a target qubit depending on the value of a control

qubit. Two examples of these are the controlled-X (also known as the CNOT gate) and

the controlled-Z gates which are seen in expression (1.14). These matrices are written

using the basis {|00〉 , |01〉 , |10〉 , |11〉}.

controlled-X =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 , controlled-Z =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

 (1.14)

One may write the controlled-X and controlled-Y gates as Xi, j and Zi, j respectively

when they are applied to the control qubit, i, and the target qubit, j. In the case of the
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controlled-Z gate, which of the two qubits is the control and which is the target makes

no difference while in the case of the controlled-X gate this choice is important.

Later, we will draw these gates as part of quantum circuits and will use the rep-

resentation as in Figure 1.2. The flow of time is from left to right and the horizontal

wires carry qubits.

controlled-X controlled-Z

Figure 1.2: The controlled-X and controlled-Z gates in circuit notation.

As mentioned, the set of all possible unitary gates is uncountable. However all

gates, including multi-qubit gates, may be approximated by some finite set of gates

called a finite universal gate set. One such set is that of expression (1.15).

{
H,R π

4
,CNOT

}
(1.15)

If we allow for infinitely many gates to be in our universal gate set then we can

exactly recreate any gate1. Two such examples are the sets of expression (1.16) where

Rθ represent phase gates for all θ and U represents all single qubit gates.

{X ,Rθ,CNOT} and {CNOT,U} (1.16)

1.2.5 Measurement

As well as the smooth evolution under a unitary operator, a system may undergo a

change due to measurement. This fact is addressed in the third postulate of quantum

mechanics.

Postulate 3: A measurement may have m different outcomes. Each is
represented by an operator acting on the Hilbert space of the system being
measured. Together these operators form the collection {M1, ...,Mm} and
must satisfy the completeness equation of expression (1.17).

∑
m

M†
mM = 1 (1.17)

1I.e. not just approximately like in the finite gate set case.
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The probability of each outcome depends on the initial state2 |ψ〉 of the
system according to the relationship of expression (1.18).

p(m) = 〈ψ|M†
mMm|ψ〉 (1.18)

The state of the system after a measurement outcome of m is as in expres-
sion (1.19).

|ψ〉 → 1√
p(m)

Mm |ψ〉 (1.19)

The completeness equation ensures the total probability of all measurement out-

comes is 1 while the reader may check that the outcome of the measurement, as seen

in expression (1.19), is a unit vector.

One will also note that the leading factor of expression (1.2) does not contribute to

the value of the probability as calculated in expression (1.18). Hence, as mentioned

previously, it is often ignored.

Measurement, in circuit notation, will appear later as in Figure 1.3 where a double

wire carries classical information.

Figure 1.3: A representation of a measurement in circuit notation.

A particularly important class of measurements are the projective measurements.

These occur when all operators Mi are projective operators, which we will now define.

Definition 1.2.4. A Hermitian operator, P, is called a projection operator if P2 = P

These operators restrict a vector to a particular subspace of the total Hilbert space

and, in particular, P = |ψ〉〈ψ| gives a projection onto the subspace defined by |ψ〉. Of-

ten we will refer to things like an Z basis measurement which will involve, when con-

sidering only a single qubit measurements, the projective operators |0〉〈0| and |1〉〈1|
defined by the eigenvectors of the Z operator.

The spectral decomposition of expression (1.20) allows us to write any hermitian

matrix, A, in terms of projection operators, Pa, projecting along the substance defined

by eigenvectors, |a〉, of A and the corresponding eigenvalues, a. This fact, along with

proposition 3, allows us to write the expected value, 〈A〉ψ, of measuring the state |ψ〉
with the observable A as that of expression (1.21).

2By initial we here mean immediately prior to the measurement.
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A = ∑
a

aPa (1.20)

〈A〉ψ = ∑
a

a〈ψ|Pa |ψ〉= 〈ψ|∑
a

aPa |ψ〉= 〈ψ|∑
a

A |ψ〉 (1.21)

Finally, although we do not go through the details of the proof, instead referring

the reader to [4] for this, it is true that no measurement can ever distinguish between

non-orthogonal pure states with certainty. For completeness we state this now.

Theorem 1.2.1. Non-orthogonal quantum states cannot be distinguished with cer-

tainty.

1.2.6 Density Matrices And Mixed States

We may represent states, not just by vectors |ψ〉, but also as operators ρψ = |ψ〉〈ψ|.
This description of a state is known as a density matrix and using this notation allows

us to represent our own uncertainty about the system, as well as the uncertainty which

arises from the nature of quantum mechanics, as described by postulate 3.

Suppose we have an ensemble, {pi, |ψi〉}, of states, where the state we have in our

possession is the state |ψi〉 with probability pi. Then we can describe this state as in

expression (1.22).

ρ = ∑
i

pi |ψi〉〈ψi| (1.22)

Considering states as linear compilations of basis states lead us to introduce the,

rather counter intuitive, entangled states. Now, considering states as linear combina-

tions of density matrices leads us to define mixed states which expand our repertoire

of states yet further.

Definition 1.2.5. If the state ρ cannot be expressed in terms of a single pure state then

we call it a mixed state.

Of particular use to us in this work is the observation that different ensembles give

rise to the same density matrices. One will note that this is true for the particular case

of expression (1.23) were I is the identity operator.

1
2
|0〉〈0|+ 1

2
|1〉〈1|= I=

1
2
|+〉〈+|+ 1

2
|−〉〈−| (1.23)

In fact, states having density matrices equal to the identity I, as in expression (1.23),

are referred to as maximally mixed.
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This section requires us to re-express the unitary evolution, expectation value and

measurement operations mentioned before.

• Unitary evolution: ρ→UρU†.

• Expectation value: 〈A〉ρ = Tr (ρA)

• Measurement: p(m) = Tr
(
MmρM†

m
)

and the state become 1
p(m)MmρM†

m.

1.2.7 No Cloning Theorem

We bring this introduction to quantum computing to a close by mentioning one final

theorem which we will use implicitly throughout. We refer the reader to [4] for the

proof.

Theorem 1.2.2. It is impossible to clone (i.e. to make two identical copies of) unknown

quantum states.

1.3 Single Party MBQC

We now introduce measurement based quantum computing (MBQC) which was men-

tioned in the introduction. The tools we discuss here are sufficient for the construction

of a universal quantum computer. The reader should, however, keep in mind that these

tools will be altered somewhat in later sections to add the blindness mentioned and to

adapt to the IQP machine.

Measurement based quantum computing (MBQC) [14, 15, 16] is a method of per-

forming quantum computations which uses measurement to drive the process. This

is as opposed to the circuit model discussed in Section 1.2 and the adiabatic quantum

computing model [22], for example. Recalling the randomness of measurements, as

noted in postulate 3 of quantum mechanics, it seems surprising that it can be used as

a tool for computation. However, MBQC and, in particular, blind quantum computing

[17] which relies on it, are tools key to the development of our protocol. We introduce

some background to MBQC now.

There are three steps to implementing a computation in MBQC.

1. A collection of qubits are set up in an entangled state.

2. Measurements are made on individual qubits. The results of measurements on

some qubits may be used to determine measurements basis of others.
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3. Depending on the outcome of these measurements, unitary operators, called cor-

rections, may be applied to some qubits.

The entangled state required for a measurement based quantum computation has a

description in the form of an open graph.

Definition 1.3.1. A graph G=(V,E) is a pair consisting of the vertex set, V , containing

vertices, vi, and edge set E described by an adjacency matrix. The adjacency matrix,

E has a 1 in entry (i, j) if there is an edge from vertex vi to the vertex v j. This entry

should be 0 if there is no edge. The adjacency matrix will be symmetric in the case that

the graph is undirected.

Definition 1.3.2. An open graph is a triplet (G, I,O), where G=(V,E) is an undirected

graph, and I,O⊆V are respectively called input and output vertices.

A uniformity condition ensures that unreasonable computational power is not hid-

den in the description of the graph. This condition limits the graphs we consider to

those that, for a given input, can be classically efficiently described. Hence each com-

putation is associated with a uniform family of open graphs {(Gn, In,On)}n describing

the initial entangled state. Often it is the case that the open graph depended only on

the input size rather than the exact input.

An MBQC graph state, or just graph state, |G〉, is constructed as follows. Given an

input state, corresponding to the input vertices of the graph, |V |− |I| qubits in the state

|+〉 are prepared and assigned a correspondence to non-input vertices Ic. A controlled-

Z operation is then applied between two qubits if the corresponding vertices in the

graph G are connected by the edge set E.

In our protocols we require a different process of building graphs state which we

will introduce later but which only requires some alterations be made to the initial

states of the non-input qubits. When the time comes, we must then also ensure that

unreasonable computational power is used to determine the initial state of the qubits.

For each non-output qubit, j, there is a corresponding angle φ j ∈ [0,2π) defining

an initial measurement in the basis of (1.24).{
1√
2

(
|0〉+ eiφ j |1〉

)
,

1√
2

(
|0〉− eiφ j |1〉

)}
. (1.24)

These measurement basis may need to change as the computation proceeds and it is

by building a structure of dependency into the measurements (i.e. measurement basis

used to measure one qubit can depend on the outcome of measurements of another)
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that MBQC overcomes the probabilistic nature of quantum computing to perform de-

terministic computations.

A measurement on a qubit i can be either X or Y dependent on s j; the outcome of

measuring qubit j. The actual measurement angle we use is then (−1)s j φi or φi + s jπ

respectively. Formalising this dependency requires the introduction of the concept of

flow.

Definition 1.3.3. An open graph (G, I,O) has flow if there exists a map f : Oc → Ic

from the measured qubits to the non input qubits and a partial order� over the qubits.

Using the notation NG (i) to mean the vertices in G which neighbour the vertex i

we have the following conditions.

1. i ∈ NG ( f (i))

2. i� f (i)

3. ∀ j ∈ NG ( f (i)) we have i� j

The order of measurement should respect this partial order and one may choose to

read � as ’in the past of’. Condition 3 ensures that there are no cyclic dependencies.

Each qubit k is X dependent on f−1 (k) and Z dependent on all qubits l such that

k ∈ NG ( f (l)). We now have an exact expression for the actual measurement angles

that we should use.

φ
′
i = (−1)s f−1(i) φ1 +π

(
∑

j:i∈NG( f ( j))
s j

)
(1.25)

This sequence of dependent measurements is referred to as an MBQC measurement

pattern.

1.4 Introduction to Abstract Cryptography

The approach originally used to prove the security of early quantum key distribu-

tion protocols was to show the mutual information content3, between the information

gained by the eavesdropper and the key produced, is small. However, the BB84 [7]

and E91 protocols [24], which satisfied this condition, where shown [25] to be secure

only if the key is never used.

3Background in Information theory is not given her but can be found in [4] or [23]
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It was later found [26] that proving the joint state of the final key and quantum

information obtained by the eavesdropper was close to an ideal key, which is inde-

pendent of the adversaries information, provided a better security criterion than the

mutual information content. This idea was originally a classical technique [27, 28]

but was adapted to quantum computing [29, 30] and has since been simplified by the

introduction of abstract cryptography[31, 32].

We introduce some of the necessary methodology and definitions now. Much of

this section relies on [32] and the reader will also find illustrative examples in that

work. The work in that paper is re-framed here to change the setting to that of two

party distributed computation and may be compared to [33, 34].

The intuition on which this technique is based is that an author, hoping to develop

a secure protocol, will define first the ideal functionality of their resource which will

complete perfectly, but without considering the details of the computation, the task

in mind. The real functionality, which must take into consideration these details, can

then be introduced and compared. By showing the two to be indistinguishable we

prove they may be reasoned about interchangeably.

We will formalise this intuition and begin by defining a resource.

Definition 1.4.1. An I -resource is an abstract system with interfaces specified by a set

I . Each interface i ∈ I is accessible to a user i and provides them with the ability to

present inputs and read outputs.

Resources are equipped with a parallel composition operator, ||, that maps two

resources to another.

The real functionality will be more complicated than the ideal one and could in-

volve many rounds of communication between the honest player and adversary. The

communication and computations are defined by the protocols πA and πB of each player

respectively. Resources implementing the real and ideal functionality, called the real

and ideal resource respectively, can be compared by observing Figure 1.4.

The approach of abstract cryptography is to abandon the notion of the eavesdrop-

per’s information in favour of the distinguisher’s state. The distinguisher may pick the

inputs of the honest players and collect their outputs while, all the time, playing the

role of the adversary. In that way the distinguisher acts as everything outside of the

honest player.

The distinguisher is given access to the either the real or ideal system and must

decide which of the two it has in it’s possession. If they are unable to do so then the
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Ideal Resource R

πA πB

Real resource S

Figure 1.4: A comparison of the real, S , and ideal, R , resources. R does not have any

consideration for the details of the computation while S must. The protocols πA and πB

are used, in S , to achieve the security of R . The honest party is on the left while the

adversary is on the right.

resources are indistinguishable. This can be visualised in Figure 1.5.

Real/Ideal

Resource

Distinguisher 0,1

Figure 1.5: The distinguisher interacts with one of either the real and ideal resources

with the aim of guessing which of the two the are interacting

Figure 1.6 illustrates that, as discussed, the distinguisher may interact with the

communication during the protocol as well as the inputs and outputs of the adversary.

As such the outputs of the real resource are more complicated than those of the ideal

resource and we summarise this in Figure 1.7.

The distinguisher may than realise that they are interacting with a real system sim-

ply because the interface is different. To address this we introduce a simulator which

acts as an interface between the ideal resource and the adversary and which produces

outputs indistinguishable from the communication of the real resource.
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Distinguisher

πA πB

0,1

Figure 1.6: The distinguisher interacts with the real resource. The distinguisher has

control over both parties inputs and outputs and has the responsibility of implementing

the adversaries protocol, πB. This fact is captured by the envelopment of this protocol

by the box representing the distinguisher.

The simulator only learns that which is outputted by the ideal resource and so only

weaken the adversary as they could reproduce the simulators behaviour on their own.

Then, if the ideal resource along with the simulator is indistinguishable from the real

resource, the real resource is considered secure as it does not reveal anything more than

the ideal resource. We now formalise what is meant by a simulator in Definition 1.4.3

but first introduce a converter. The simulator may be visualised in Figure 1.8.

Definition 1.4.2. A Converter transforms one resource into another. These are ab-

stract systems with two interfaces, an inside interface and an outside interface. The

inside interface connects to an interface of a resource and the outside becomes the new

interface of the constructed resource.

We write αiR to denote the new resource with the converter α connected to the

interface i of the resource R and αR for a set of converters α = {αi}i, for which it is

clear to which interface they are connected.

Serial and parallel composition of converters is defined as in (1.27) and (1.26)

respectively.

(αβ)i R := αi (βiR ) (1.26)

(α||β)i (R ||S) := (αiR ) ||(βiS) (1.27)
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Real

Resource

Distinguisher 0,1

Figure 1.7: It was demonstrated in Figure 1.6 that the interactions between the distin-

guished and the real resource are more complicated than implied by Figure 1.5. This is

summarised here with some of the redundant arrows implying communication with the

distinguisher and itself having been removed.

Definition 1.4.3. A simulator, σ, is a converter connected to the adversaries interface

to the ideal system. It is defined by a set of operations (σ1, ...,σt), one for each step of

the protocol. The simulator may call the ideal resource at any time.

A final converter to be introduced before we can move to the formal definition of

cryptographic security is the filter. The adversary having control of one half of the

protocol means they may choose to deviate from it. We prevent this with a filter. We

also use the filter to prevent the adversary from interacting with the communications

during the computation.

Definition 1.4.4. A filter is a converter which, when placed over the adversaries in-

terface, prevents access to controls necessary to act maliciously and to anything other

than the standard inputs and outputs.

The reader will notice that the filter makes the simulator irrelevant as it is no longer

necessary that the communications of the resource be reproduced. If the filtered ideal

and filtered real resource are indistinguishable then we know that, in the case the ad-

versary behaves honestly, the real resource is correct.

Definition 1.4.4 can, and will, be understood as defining a filter to prevent an ad-

versary inputting deviation instructions. In this way we will always assuming that

one of the adversaries inputs is instructions on how to deviate from honest behaviour.

Blocking this interface then simulates honest behaviour.
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Distinguisher

Ideal

Resource
σ

0,1

Figure 1.8: As noted in Figure 1.7 the interface between the real system is different from

that of the ideal system alone. This is addressed with the definition of the simulator σ.

Intuitively, the dotted region of this figure is now interfaced with in an equivalent way to

the real resource of Figure 1.7.

Definition 1.4.5. A pair, (R ,#), of a resource R and a filter # together specify define

a filtered resource which may be written R#.

Throughout this section we have spoken about the distinguisher ability to guess

which of either the real or the ideal resource they are interacting with. Intuitively

guessing correctly half of the time means the resources are indistinguishable and the

real resource may be considered secure. To define this notion more formally we must

define a metric which enumerates the degree to which resources are distinguishable.

Actually we use a pseudo-metric, defined in Definition 1.4.6.

Definition 1.4.6. A pseudo-metric d (·, ·) on the space of resources has the following

properties. Consider the three resources R , S , T .

• d (R ,R ) = 0

• d (R ,S) = d (S ,R )

• d (R ,S)≤ d (R ,T )+d (T ,S)

The pseudo metric we require is further restricted by demanding it is also non-

increasing under composition with resources and converters. Intuitively, this is because

a converter should not be able to make it easier to distinguish between two resources.

This would otherwise mean the converter has added some information, separate from
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the outputs of the resources, that helps with distinguishing them. So, for any converter

α and resources R ,S ,T , we require the relations of expression (1.28).

d (αR ,αS)≤ d (R ,S) and d (R ||T ,S ||S)≤ d (R ,S) . (1.28)

Finally we can formalise what it means to achieve cryptographic security.

Definition 1.4.7. Let πAB = (πA,πB) be a protocol and R# = (R ,#) and S♦ = (S ,♦)
denote two filtered resources. we say that πAB constructs S♦ from R# within ε if the two

following conditions hold.

1. Correctness condition: We have

d (πABR #E ,S♦E)≤ ε (1.29)

2. Security condition: There exists a converter σE - which we call simulator - such

that

d (πABR ,SσE)≤ ε (1.30)

The two conditions in definition 1.4.7 capture, respectively, the notions of correct-

ness and security. Condition 1 tells us that, when the adversary behaves honestly, the

resources are indistinguishable. I.e. the outcome of the protocol is correct if it is not

deviated from. Condition 2 tells us that the resources are indistinguishable even if the

adversary behaves maliciously. I.e. try as they might, the adversary cannot extract

more information from the real resource than the ideal one.

We can now be more specific and define the pseudo-metric we will use.

Definition 1.4.8. The distinguishing advantage that a computationally unbounded dis-

tinguisher, which can guess with probability pdistinguish whether it is interacting with

the resource R or S , as is given by (1.31).

d (R ,S) := 2pdistinguish (R ,S)−1 (1.31)

One may choose to define a weaker distinguisher than that of Definition 1.4.8 and,

as a result, build a different metric. Here we are concerned with only information

theoretic security and so we do not do this.

This definition adheres to our intuition that when the resources can be correctly

identified with probability pdistinguish =
1
2 the distinguisher has no knowledge of the re-

source they are interacting with. In that case the distinguishing advantage is d (R ,S) =
0.



Chapter 2

The Instantaneous Quantum Polytime

Machine

2.1 X-Programs and the IQP Oracle

In this section we formally introduce the IQP oracle first defined in [1]. This machine

will be defined by its capacity to implement a so called X-program which we will now

introduce.

Definition 2.1.1. An X-program is characterised by a polysize1 list of pairs (θp,p) ∈
[0,2π]× Fn

2. Each pair is interpreted as the action of a Hamiltonian given by the

product of Pauli X operators. The product is over all qubits i for which pi = 1 and the

Hamiltonian is applied for action θp.

The program input is the computational basis state |0n〉. The output is a classical

vector x ∈ Fn
2 corresponding to the outcome of a computational basis measurement

after all Hamiltonians have been applied.

Throughout this work we will refer to the pairs (θp,p) ∈ [0,2π]×Fn
2 as program

elements.

Using the random variable X to represent the distribution of output samples we are

able to use definition 2.1.1 to derive equation (2.1) as the probability distribution for

the outcomes.

P(X = x) = |〈x|exp

∑
p

iθp
⊗

j:p j=1

X j

 |0n〉|2 (2.1)

1I.e. can be described by a classical Turing machine in polynomial time

19
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As discussed, an IQP oracle is defined by its capability to implement an X-program.

We now understand this as the ability to draw a sample from the distribution of (2.1).

We formalise this now.

Definition 2.1.2. Given some X-program an IQP oracle is any computational method

capable of efficiently returning a sample x ∈ Fn
2 from the probability distribution given

in (2.1).

In fact, in all applications of interest in this work, the action, θp, for each program

element will be the same (i.e. θp = θ for all p). As such we will talk about the action

as applied to the the X-program as a whole while the reader should now understand

the term program element to refer only to the individual vectors p.

Say that there are m program elements, p, each being of length n. An X-program

can now be referred to simply by the pair (P,θ) ∈ Fm×n× [0,2π] where Pi, the ith rows

of the matrix P, is the ith program element.

We mention, although do not explore the reasoning, that it is widely believed

[12] that a machine of this description is classically hard to simulate, amusing a non-

collapse of the polynomial hierarchy to it’s third level. This result is further strength-

ened by [13].

Similar results can be shown for the slightly different IQP* machine [35] which

differs in the uniformity condition used. Where, as the reader will notice from Defini-

tion 2.1.1, the IQP machine of [1] allows the circuit to depend only on the input, in the

case of the IQP* machine it depends on the input size.

2.2 The Hypothesis Test

In [1] the authors develop a hypothesis test designed as a way for a server to convince

a classical client that they are in possession of an IQP oracle.

The idea used is that the client should conceal some structure in the program ele-

ments, p, used to build an X-program defining an IQP-hard problem. This would then

result in some known (to the client) structure in the distribution of the outputs from

implementing said X-program. The server should, however, remain oblivious to the

form of this structure.

A server possessing an IQP oracle can reproduce this structure by implementing the

X-program while a server not in possession of an IQP oracle, being unable to return
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samples from the correct distribution, could not generate outputs obeying the same

rules. As such, they would expose themselves as a fraud.

We may summarise this discussion by three conditions that a hypothesis test using

this method must meet.

1.1 The client asks the server to perform an IQP-hard computation.

By testing that the server solves an IQP-hard problem we ensure that they can solve

all problems in the IQP class.

1.2 The client can check the solution to this computation because they know some

secret structure that makes this checking processes efficient.

The intuition behind the contribution of this second point is that the client can effi-

ciently check the output because they ‘know where to look’ for its important features.

This is the point eluded to by the above discussion of hidden structure.

1.3 The server must be unable to uncover this structure in polynomial time.

Demanding that the server cannot access the secret structure prevents them from

using it, rather than an IQP machine, to solve the problem. It should also be the case

that there is no other piece of knowledge that the sever knows which helps them, thus

making the IQP-hard computation unavoidable

During the remainder of this work we discuss hypothesis tests which use these

conditions. One method, which can be found in chapter 4, is our own but is motivated

by that of [1] which we recall this now.

The particular ‘known structure’ of the output which is used in [1] to satisfy con-

dition 1.2 is its bias in some direction. We define this object in Definition 2.2.1.

Definition 2.2.1. If X is a random variable taking values in Fn
2 and s∈ Fn

2 then the bias

of X in the direction s is P(X · s = 0) where · is the usual dot product in F2.

We may say then that the bias of a distribution in the direction s is the probability

of a sample from the distribution being orthogonal to s.

In [1] the authors are able to derive an expression for the value of the bias for

the distribution of outputs of an X-program. This expression can be used to make

predictions about the output from a true IQP oracle.

Before stating this quantity we must introduce some other mathematical objects.

We refer the reader to [23] for an extensive study of the information theoretic objects

discussed now.
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Definition 2.2.2. A linear binary code, C , of length k is a linear subspace of the vector

space Fk
2. Elements c ∈ C are called codewords and each has a Hamming weight,

wt (c) ∈ [0, ...,k], defined by the number of 1s it has as entries.

Linear binary codes are frequently represented using a generator matrix, G, whose

columns form a basis for the code. Then C =
{

G ·d : d ∈ Fk
2
}

.

We can form a linear code Cs from the combination of an X-program, (θ,P) ∈
[0,2π]×Fm×n

2 , and a vector, s ∈ Fn
2, by selecting all rows, Pi, of P such that Pi · sT = 1

and forming the rows of the generator matrix, Ps, of Cs, from these Pi. Defining ns to

be the number of such Pi (i.e. the number of rows of Ps) allows us to understand the

following expression for the bias of the distribution of the outputs from an X-program.

The derivation of this can be found in [1].

P
(
X · sT = 0

)
= Ec∼Cs

[
cos2 (θ(ns−2 ·wt (c)))

]
(2.2)

Interestingly, we find that the probability of an output from an X-program being

orthogonal to the vector s depends only on θ and the linear code defined by a generator

matrix Ps.

One can imagine a hypothesis test which could be derived from these facts. Al-

though the X-program, (θ,P), to be implement needs to be made public, the value of

s, and so which of those program elements are non-orthogonal to s (the ones that are

important in calculating the bias value of expression (2.2)), need not be. This gives

a client, with the computational power to calculate the quantity of expression (2.2),

knowledge of the bias, but, assuming s cannot be derived from the X-program, does

not afford the server the same privilege. In that case we hope the only way the servers

could produce an output with the correct bias is to reproduce the distribution of out-

comes in expression (2.1), i.e. to use an IQP oracle. If the server could, however,

uncover s then they could calculate the value of the expression in (2.2) and return

vectors to the client which are orthogonal to s with the correct probability.

Intuitively, we can now see the way in which s produces the required hidden struc-

ture and also tells us ‘where to look’ when checking the output. Without knowing s the

server does not know where the client will look and so must be faithful everywhere.

We can now specialise the conditions we mentioned at the beginning of this section

to this particular method.

2.1 The X-Program send to a server must represent an IQP-hard computation.
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2.2 It must be possible for a client, having knowledge of s and the X-program, to

calculate the quantity of expression (2.2).

2.3 Knowing the X-program to be implemented is not enough to learn the value of s
in polynomial time forcing the server to perform the original IQP-hard compu-

tation in order to create the correct bias value.

Beginning with condition 2.2, let us now work through the solutions [1] provide to

address these conditions.

Knowing the value of s is enough to produce, from the X-program (θ,P), the code

Cs used to calculate (2.2). In general, however, the calculation of (2.2) is not efficient

as the expectation value is calculated over exponentially many terms. Ensuring that

this calculation can be performed efficiently requires adding some structure to the X-

program but the reader may notice that it is not given that this is achievable without

revealing s.

In [1] the authors develop a protocol, which we include in Algorithm 2.1, for build-

ing an X-program and vector s to be used in this type of hypothesis test. In that case the

code Cs in expression 2.2 is a quadratic residue code. They demonstrate that condition

2.2 is satisfied by calculating, for their choice of X-program and s, that the bias value

is cos2 (π

8

)
and, in doing so, prove that it can be calculated in polynomial time.

Condition 2.1 is, only in part, satisfied by their X-program by introducing a distri-

bution which is a classically optimal simulation of the IQP distribution and showing

that the server cannot recreate the same output properties as an IQP oracle. They cal-

culate that a bias value of a distribution produced by such a simulation would be 0.75,

differing from the cos2 (π

8

)
of an IQP oracle.

This dies not meet condition 2.1 as t only shows the problem to be outside of

classical, and not necessarily IQP-hard. This is, however, progress as it demonstrates,

at least, that the machine is more powerful than classical.

For the construction of the distribution we direct the reader to [1] but we refer to

it by the random variable Y and include below the conjuncture which motivated its

derivation.

Conjecture 2.2.1. The random variable Y is asymptotically classically optimal (when

compared with the worst-case behaviour and restricting to polynomial time) for the

simulation of IQP distributions arising from constant-action θ = π

8 X-programs.

The contribution of our work is a method for addressing condition 2.3 in a way
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which differers from that developed by [1]. We will first introduce their argument as

many of the tools they develop we will employ in our work.

Consider expression (2.3) which should be compared to the right hand side of equa-

tion (2.2).

Ec∼C
[
cos2 (θ(k−2 ·wt (c)))

]
(2.3)

Suppose the linear binary code C has the generator matrix G ∈ Fk×n
2 and notice the

following two things.

• The expression depends only on the code C . Importantly it is independent of G
and one would even obtain the same result using a generator matrix with more

columns than the rank of C .

• For each code word c, the only property used in calculating (2.3) is the number

of zeros it contains. This would not change if, for example, we permuted the

rows of G.

Together theses two facts mean that the value of the quantity in (2.3) is actually

equal for all generator matrices in a much larger collection of matrices. We define this

collection as an equivalence class called a matroid.

Definition 2.2.3. A k-point binary matroid is an equivalence class of matrices defined

over F2 where each matrix in the equivalence class has k rows. Two matrices, M1 and

M2, are said to be equivalent if, for some permutation matrix Q, the column echelon

reduced form of M1 is the same as the column echelon reduced form of Q ·M2.

We define equivalence in the case where the column dimensions do not match by

deleting columns containing only 0s after column echelon reduction and comparing

the result.

Throughout we will use M to refer to the matrix itself and to the matroid to which

it belongs.

Hence, given a matrix P, there are four operations we can perform on this matrix

while remaining in the same matroid. Namely, we can permute its rows with each

other, we can permute its columns with each other, we can add multiples of columns to

one and other and we can add additional columns to the matrix if they are picked from

the code generated by P. As discussed, none of these operations change the value of

expression (2.3) and so we call it matroid invariant.

In equation (2.2) we constructed our generator matrix, Ps, from the rows of P which

are non-orthogonal to s. We now understand that we would not alter the value of the
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quantity in expression (2.3) if we used a different matrix but remained in the same

matroid as Ps. If we performed a sequence of operations on the matrix Ps which did

not cause us to leave its matroid it would not, however, be true that the rows of the new

matrix would be orthogonal to s. To address this we conduct the following discussion.

Suppose we had performed a sequence of operations on P in order to generate a

new matrix which belongs to the same matroid as P. We would like still to be able to

locate a sub-matrix of this new P which is in the same matroid as Ps. This is made

possible by making the following observation. If we acted the invertible matrix A on

P to move to a new matrix within the matroid then notice how p · sT = p ·AA−1 · sT =

(p ·A)
(
s ·A−T)T . We can see that rows which were originally non-orthogonal to s are

now non-orthogonal to s ·A−T while the orthogonal rows are similarly orthogonal to

s ·A−T . Hence we can locate the matroid Ps in P but we need to use the vector s ·A−T

and not s.

One can now imagine that a way of ensuring that the server could not know s would

be to randomise it with some set of operations A. We now understand what we would

have to do to the X-program we are considering in order to not change the value of the

bias. This is the approach used by [1] and is the way in which they address condition

2.3.

We now have sufficient background to understand the approach of Algorithm 2.1

as introduced in [1]. We introduce it now before formally introducing the details of

how it addresses condition 2.3.

Algorithm 2.1. Generation of X-program used in the hypothesis test of [1]

This protocol describes how a sceptical client should design an X-program that can be

used to test a server’s ability to perform IQP computations. This protocol concerns a

vector s and the bias of the distribution produced by the X-program built with respect

to s is known.

Input:

1. q (a prime) chosen so that q+1 is a multiple of 8.

Output:

1. X-program, (θ,P) ∈ [0,2π]×F2q× q+1
2

2 .

2. A vector, s ∈ {0,1}
q+1

2 .
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Algorithm:

1. Generate the generator matrix, G ∈ Fq× q+1
2

2 , for a quadratic residue code, over

F2, of length q.

2. To this matrix, the client appends an additional column consisting entirely of

ones. Call this new matrix P̂s ∈ F
q×
(

q+1
2 +1

)
2 .

3. Append q additional rows to the matrix which have random entries with the

exception of the last entry (the final column) which must contain 0. Call this

new matrix P̂ ∈ F
2q×

(
q+1

2 +1
)

2 .

4. Reorder the rows of P̂ randomly.

5. Column reduce this new matrix to obtain P.

6. Output the X-program
(

π

8 ,P
)
.

7. Suppose this reordering of rows and column reduction can be achieved by apply-

ing the matrix A ∈ F
(

q+1
2 +1

)
×
(

q+1
2 +1

)
2 . Return the vector s = (0, ...,0,1)A−T ∈

{0,1}
q+1

2 .

We now justify that, in the setting of Algorithm 2.1, condition 2.3 is met and that

the server could not know the value of s. This requires us to be able to say that we could

not find the matrix Ps in the matrix P given only; the matrix P, an understanding of

the randomisation process and that the matrix Ps is in the same matroid as a generator

matrix for the quadratic residue code. More formally we would like to be able to say

that it is NP complete to decide whether or not P contains a Ps of the appropriate form.

The authors of [1] make the following conjecture.

Conjecture 2.2.2. The language of matroids P that contain a quadratic residue code

submatroid Q by point deletion, where the size of Q is at least half the size of P, is NP

complete under polytime reduction.

Their reasoning for making this conjecture is that it is similar to following theorem

which is a classical result and may be found in [37].

Theorem 2.2.1. The language of graphs G that contain a complete graph K by vertex

deletion, where the size of K is at least half the size of G, is NP complete under polytime

reduction.
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In this work we move to developing a protocol based on information theoretic

assumptions rather than assumptions based on the computational complexity of the

hidden matroid problem. We proceed towards this goal in the following sections.

However, for completeness and future reference we summarise the solutions found

by [1] for conditions 1.1, 1.2 and 1.3.

3.1 It was shown, for quadratic residue codes, that the bias of the output of an IQP

machine is significantly different to that produced by the best known classical

sampling technique. This point relies on Conjecture 2.2.1.

3.2 It was shown that the value of the bias, in the case of the X-program developed

in Algorithm 2.1, can be calculated explicitly to be cos
(

π

8

)
.

3.3 The randomisation process of Algorithm 2.1 conceals which parts of the X-

program are important. This point relies on Conjecture 2.2.2.

It is now simply a matter for the server to implement the X-program and for the

client to check the outputs are orthogonal to s with the correct probability. To achieve

this the X-program generation and implementation must be completed many times.

The complete hypothesis test would look roughly like indicated by Figure 2.1.

Hypothesis Test

X-program Generation

q

s
(θ,P)

x0,1

Figure 2.1: One round of the hypothesis test algorithm of [1]. The Hypothesis Test X -

program Generation resource is as described in Algorithm 2.1 while the protocol of the

server should be to implement said X -program and return the result, x. The client then

checks if the result is orthogonal to their vector s.



28 Chapter 2. The Instantaneous Quantum Polytime Machine

2.3 IQP In MBQC

In this section we work to understand the implementation of an X-program using mea-

surement based quantum computing.

Recall, definition 2.1.2 taught us the aim of an IQP oracle is to be able to recreate

the distribution of outputs seen in equation (2.1). An equivalent distribution can be

derived from using the relationship in equation (2.4) which uses Hn to represent the

n-qubit Hadamard operator.

exp
(
iθ⊗ j:p j=1 X j

)
= Hn exp

(
iθ⊗ j:p j=1 Z j

)
Hn (2.4)

We now come to realise the equality of equation (2.5).

exp

(
∑
p

iθp⊗ j:pj=1 X j

)
= Hn

(
∏
p∈P

exp
(
iθ⊗ j:p j=1 Z j

))
Hn (2.5)

This, in tern, shows us that the distribution in equation (2.1) can be equivalently rep-

resented by equation (2.7) where we denote by x̃ the vector Hnx for x a computational

basis state (i.e. x̃ is a n qubit Hadamard basis state).

P(X = x) = |〈x|Hn

(
∏
p∈P

exp
(
iθ⊗ j:p j=1 Z j

))
Hn |0n〉|2 (2.6)

= |〈x̃|

(
∏
p∈P

exp
(
iθ⊗ j:p j=1 Z j

))
|+n〉|2 (2.7)

We proceed by developing a circuit which produces distribution of (2.7). As a first

step towards doing so we will derive an implementation the unitary of (2.8).

exp
(
iθ⊗ j:p j=1 Z j

)
(2.8)

Lemma 2.3.1. The circuit seen in figure 2.2 implements the an example unitary of the

form seen in expression (2.8).

In the proof of this lemma we will use the measurement basis and notation of

expression (2.9).

{
1√
2
(exp(−iθ) |+〉+ exp(iθ) |−〉) , 1√

2
(exp(−iθ) |+〉− exp(iθ) |−〉)

}
=

{|0θ〉 , |1θ〉} . (2.9)
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∣∣q j1
〉

∣∣q j2
〉

∣∣∣q jnp

〉
∣∣∣q jnp+1

〉

|qn〉

|+〉

...

...

. . .

Z

Z

...

Z

Figure 2.2: Circuit to implement (2.8). p ji = 1 for i ∈
{

1, ...,np
}

, p ji = 0 for i ∈{
np +1, ...,n

}
and np is the number of 1s in p. {|q1〉 , ..., |qn〉} is the set of all in-

put qubits and the the measurement is in the basis {|0θ〉 , |1θ〉}. We refer to the |+〉
state on the bottom wire in figure 2.2 as an ancilla qubit.

Proof. We develop a complete understanding of the behaviour of the unitary in expres-

sion (2.8) by understanding its effect on basis states. As such we will consider only

the case of computational basis inputs in the following.

Notice that, representing the n qubit identity operator by In, we can rewrite expres-

sion (2.8) in the following way.

In cosθ+ i⊗ j:p j=1 Z j sinθ (2.10)

If we act on a computational basis state |φ〉 with the operator of expression (2.10) then

one of two things will happen.

1. If the state |φ〉 has an even number of 1s in the locations j1, ..., jnp then there will

be a phase change of cosθ+ isinθ as the⊗ j:p j=1Z j operator will extract an even

number of negatives.

2. If the number of 1s is odd then the phase change will be cosθ− isinθ.

As such, the effect is to produce one of the two states in expression (2.11) depending

on the parity of entries j1, ..., jnp of the input.

(cosθ± isinθ) |φ〉= exp(±iθ) |φ〉 (2.11)
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We now need to understand if the effect of the circuit in Figure 2.2 is the same. The

action of the controlled-Z gates is to check the parity of the input as each appearance

of a 1 will flip the ancilla qubit between the states |+〉 and |−〉. Hence, after the action

of all controlled-Z operators we have the state |φ〉 |+〉 if there is an even number of 1s

in the locations j1, ..., jnp and |φ〉 |−〉 if this number is odd.

Making a measurement of the ancilla qubit in the described basis leaves us with

one of the two states ±exp(−iθ) |φ〉 in the odd parity case and the state exp(iθ) |φ〉
in the even parity case. The negative sign preceding the exponential term in the odd

parity case comes from measuring the state |1θ〉 (a measurement outcome of 1) and

the positive sign comes from measuring |0θ〉. By then applying Z operators to all

unmeasured qubits in the case of a measurement outcome of 1 we ensure that the

resulting states are as in expression (2.11) and with the same dependency of the sign

on the parity of |φ〉 as before.

Producing the distribution in equation (2.7) (and so equivalently, that of equation

(2.1)) can be achieved by inputting the state |+n〉 into a circuit made from composing

circuits of the form seen in Figure 2.2 (one for each term in the product of (2.7)) and

measuring the result in the Hadamard basis.

Lemma 2.3.2. A graph and measurement pattern can always be designed to simulate

a X program efficiently.

Proof. Algorithm 2.2 gives a description of a process generating the necessary graph

and measurement pattern. This follows, in part, from the above discussion and, in

particular, lemma 2.3.1.

The creation of a three step entanglement, measurement and correction process

is possible as the Z corrections commute with the controlled-Z operations so can be

moved to the end of the new, larger circuit (i.e. that created by composing multiple

circuits of the form seen in Figure 2.2).

Notice also that without dependency of the measurements on each other they can

be performed in any order (and so simultaneously). The Z corrections, conditional on

the measurement outcomes, are then implemented via bit flips, after the measurements.

Algorithm 2.2. MBQC implementation of X-program.
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Here we develop an MBQC graph and measurement pattern to implement the X-

program, (θ,P). This method of implementation differs from the discussion of Section

1.3 in the measurement basis used. As such we will return the measurement basis itself

and not simple an angle as before. This time there is no input and so we consider the

open graph (G,O).

• Input:

1. The X-program (θ,P).

• Output:

1. The graph G = (V,E).

2. The output set O.

3. The measurement basis for each qubit.

• Algorithm:

1. The vertex set V contains p1, ..., pnP,a1, ...,anA

2. The entry (i, j) of P indicates if qubit p j is connected to ai. This may easily

be re-interpreted as an adjacency matrix E.

3. The measurement basis for qubits p1, ..., pnP is the Hadamard basis.

4. Using the notation of expression (2.9), the measurement basis for the qubits

a1, ...,anA is {|0θ〉 , |1θ〉}.

5. The output set is O = {p1, ..., pnP}.

We have the following useful definition which describes the type of graph built in

Algorithm 2.2. This form of graph may be visualised in Figure 2.3.

Definition 2.3.1. A particular type of graph is the bipartite graph which has a partition

of its vertices. We have that V = {P,A} where P = {p1, ..., pnP} and A = {a1, ...,anA}.
The adjacency matrix E describes connections between these sets of vertices but con-

nections within them are not permitted.

An undirected bipartite graph may be described by the matrix P ∈ FnA×nP
2 where

entry (i, j) is 1 if there is a connection between vertices ai and p j.

From here on we will use the term IQP graph states or bipartite graph states in the

same way we spoke about MBQC graph states.
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a1 a2

p1 p2 p3

G

Figure 2.3: An example of the bipartite graph introduced in Definition 2.3.1. Here np = 3

and na = 2 while the partition used is P = [p1, p2, p3] and A = [a1,a2].



Chapter 3

Distributed Blind IQP Graph State

Generation

In Section 2.3 we developed a method for one party to implement an IQP X-program.

That method used an MBQC graph state described by a bipartite graph and one round

of measurement as outlined in Algorithm 2.2.

In this Chapter we discuss a different method, based on that of Section 2.3, but

with two major differences. Firstly, the computation will be performed in a distributed

setting with a client of limited quantum power requesting a computation from a more

powerful server. Secondly, the method will be such that it allows the implementation

of an X-program even when it’s full description is kept secret from the server.

The X-program is kept secret by hiding the graph state used. The intuition exploited

by the technique we develop to perform this hiding is that the client should produce a

quite general graph state and move, without the server’s knowledge, from this to the

one they require for the computation. If the movement is done secretly then the server

only has knowledge of the general starting state from which any number of other graph

state may have been built.

The complication is that the creation of the general graph state and the movement to

the new state should be done on the server’s side. Hence, there are two key problems.

1. Moving from a general graph state to another more specialised one.

2. How to do so secretly when in a distributed setting.

These two problems are addressed by Section 3.1 and Section 3.2 respectively. In

neither of these sections will we specialise to IQP graph states, instead focusing on all

33
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forms of graphs. In section 3.3 we do, with some minor alterations to the techniques

developed in the sections preceding it, restrict to the generation of IQP graph states.

3.1 Bridge and Break Operations

The bridge and break operations [18] are exactly those necessary to solve problem 1

from this chapter’s introduction. We begin by introducing these operations on graphs

and later define actions on the corresponding graph states which replicate their effect.

Definition 3.1.1. The break operator acts on a vertex v ∈V of degree 2 in a graph G.

It takes G to the graph Gbreak with a vertex and edge set equivalent to that of G with the

exception that v has been removed from the vertex set and edges connected to v have

been removed from the edge set.

The bridge operator has the same effect on G with the exception that the graph

created, Gbridge, also includes a new edge between the neighbours of v.

Some intuition about the behaviour of these operations can be gained from studying

Figure 3.1.

Gbreak

G
v

Gbridge

Figure 3.1: The effect of the bridge and break operations defined in Definition 3.1.1.

The bridge or break operation is applied to the vertex v of the graph G and results in

the graph Gbridge or Gbreak respectively.

Once a new graph is formed, through a break or bridge operation on another, one

may continue and apply bridge or break operations to this newly formed graph. Indeed,

this may continue to many levels. In order to refer to the resulting graph we introduce

the br-sub-graph and br-sup-graph.
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Definition 3.1.2. A br-sub-graph, G, of a graph, G̃, is one which can be obtained by

applying break or bridge operation to the graph G̃ and the graphs which result from

these operations. The vertices to which bridge and break operations are applied must

not neighbour each other in the original graph G̃.

Similarly, a br-sup-graph, G̃, of a graph, G, is such that G is a br-sub-graph of G̃.

Figure 3.2 allows the reader to develop some intuition about definition 3.1.2 by

presenting a possible chain of bridge and break operations. Notice then that any given

graph may have many br-sub-graphs and may be a br-sub-graph of many graphs.

Figure 3.2: A possible chain of bridge and break operations. Each graph in the chain is

a br-sub-graph of its predecessors while also being a br-sup-graph of its successors.

The use of the G̃ notation to mean that of which G is a br-sub-graph will be used

throughout. We will also index the vertices of the graph G with v1, ...,vn and those

of G̃ with ṽ1, ..., ṽn,b1, ...,bm. The break and bridge operations are applied to the ver-

tices b1, ...,bm and once the chain of operations is complete the resulting graphs are

equivalent using the obvious mapping, ṽi↔ vi.

We will refer to the vertices bi as bridge or break vertices and the vi vertices as

stationary vertices. From here on, we will consistently use n to mean the number of

stationary vertices and m to mean the number of bridge or break vertices. When it

comes to talking about the graph state
∣∣∣G̃〉 we will use the terminology bridge and

break qubits and stationary qubits.

Algorithm 3.1 describes operations on a graph state which reproduce the effects of

performing a bridge or break operation on the corresponding graph. This algorithm

is the one employed to prove lemma 3.1.1. The statement and proof of that lemma is

similar to that of [18].

Lemma 3.1.1. Take a graph state |G〉 with a graph structure given by G. Suppose that

G is a br-sub-graph of the graph G̃.

There is a graph state
∣∣∣G̃〉, with graph structure given by G̃, which can be trans-

formed into the graphs state |G〉 through a sequence of Pauli-Y measurements and

local rotations about the Z axis through angles from the set
{

0, π

2 ,π,
3π

2

}
.
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Proof. This proof is by construction. We will define a scheme for building the a graph

state
∣∣∣G̃〉 meeting the conditions of the lemma.

We begin by considering the two simpler cases but in both m = 1. The graph G can

be built, in the first case, by applying a break operation to the vertex b1 in the graph G̃,

and, in the second case, by applying a bridge operation to this same vertex. Hence, we

are only consider cases where G can be arrived at by one of either a bridge or break

operation on G̃.

We also assume, without loss of generality, that the vertices ṽ1 and ṽ2 are the neigh-

bours of b1. The reader should also note that we make no assumptions about the state

|G〉 other than the pattern of entanglement.

We now move to consider the two separate cases.

• Break:

In this case the graph G can be arrived at by applying a break operation to the vertex

b1 in the graph G̃.

We claim that the state seen in expression (3.1), where |b1〉 = |d〉 with d ∈ {0,1}
(i.e a computational basis state), is the necessary state fulfilling the conditions of the

lemma.

∣∣∣G̃〉= Zv1,b1Zv2,b1 |G〉 |b1〉 (3.1)

The reader will quickly notice that the graph G̃ describing the structure of the state

in (3.1) does indeed require only a break operation in the vertex b1 to be transformed

into the graph G.

Applying the controlled-Z operations, Zv1,b1 and Zv2,b1 , as seen in expression (3.1),

is equivalent to applying the operator Zd to each of the qubits v1 and v2. We can

conclude the identity in equation (3.2).

∣∣∣G̃〉= Zd
v1

Zd
v2
|G〉 |b1〉 (3.2)

Measuring the qubit b1 in the Pauli-Y basis causes a collapse to either of the Pauli-Y

basis states with equal likelihood. It does not, however, have any other effect on the

state as the qubit b1 is disentangled.

Discarding qubit b1 then leaves us with Zd
v1

Zd
v2
|G〉 which differs from |G〉 only by

local rotations about the Z axis.
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• Bridge:

In this case the graph G can be arrived at by applying a bridge operation to the vertex

b1 in the graph G̃.

We claim that the state seen in expression (3.3), where |b1〉 = |d〉 with d ∈ {+,−}
(i.e a Hadamard basis state), is the necessary state fulfilling the conditions of the

lemma.

∣∣∣G̃〉= Zv1,b1Zv2,b1Zv1,v2 |G〉 |b1〉 (3.3)

The reader will again notice that the graph G̃ requires only a bridge operation in the

vertex b1 to be transformed into the graph G.

Applying the controlled-Z operations, Zv1,b1 and Zv2,b1 in expression (3.3), to the

state Zv1,v2 |G〉 |d〉 is equivalent to applying the operator of expression (3.4) to the

state Zv1,v2 |G〉.

1√
2
|0〉⊗ Iv1⊗ Iv2 +d

1√
2
|1〉⊗Zv1⊗Zv2 (3.4)

Following this with measurement of qubit b1 in the Pauli-Y basis, and a discarding

of the resulting qubit, is equivalent to applying the operator of expression (3.5) to

Zv1,v2 |G〉. In expression (3.5) we have used the notation that y1 = 0 when the the

positive Y basis state is measured and y1 = 1 when the the negative Y basis state

is measured. The expression results from post multiplication of expression 3.4 by
1√
2
〈0|+(−1)1−y1 i 1√

2
〈1|, the conjugate of the Pauli-Y basis states, followed by the

appropriate normalisation.

1√
2
Iv1⊗ Iv2 +(−1)1−y1di

1√
2

Zv1⊗Zv2 (3.5)

The reader will notice that y1 takes either of the values 0 or 1 with equal probability.

For completeness and future reference we note that the state
∣∣∣G̃〉 has become, after

measurement, the stare of equation 3.6.(
1√
2
Iv1⊗ Iv2 +(−1)1−y1di

1√
2

Zv1⊗Zv2

)
Zv1,v2 |G〉 (3.6)

We now break the flow of this calculation somewhat and notice that the controlled-Z

operator can be written as is shown in equation (3.7). This may be verified by matrix
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multiplication or otherwise.

Z1,2 =
1
2
(I1⊗ I2 +Z1⊗ I2 + I1⊗Z2 +Z1⊗Z2) . (3.7)

Using this fact allows us to see that both of the expressions in (3.8) and (3.9) are

equal to the controlled-Z operation of expression (3.7). Again this can be verified

by matrix multiplication.

Z1,2 = (S1⊗S2)

(
1√
2
I1⊗ I2 + i

1√
2

Z1⊗Z2

)
(3.8)

Z1,2 =
(

S−1
1 ⊗S−1

2

)( 1√
2
I1⊗ I2− i

1√
2

Z1⊗Z2

)
(3.9)

In particular, equation (3.10) holds.

Zv1,v2 =
(

S(−1)1−y1(−d)
v1 ⊗S(−1)1−y1(−d)

v2

)( 1√
2
Iv1⊗ Iv2− (−1)1−y1di

1√
2

Zv1⊗Zv2

)
(3.10)

Substituting this into (3.6), and with some rearranging, we realise the resulting state

is actually that of equation (3.11).

(
S(−1)y1d

1 ⊗S(−1)y1 d
2

)
|G〉 (3.11)

Once again this differs from the state |G〉 only by local rotations around the Z axis.

We now turn to the extension to more general G and G̃. In this case the number of

break and bridge operations needed to move from G̃ to G is more than one.

The reader will notice that this problem could be solved by building the state
∣∣∣G̃〉

a step at a time by repeating the steps above. This would, indeed build a graph state

described by the graph G̃.

The proof that the state resulting from measurements of the qubits b1, ...,bm would

result in the graph |G〉 follows for the following reason. The reader will notice that,

since those qubits that might require corrections are never measured, all measurements

and corrections commute. The entanglement operators too commute with the correc-

tions and the measurement operations when they do not act upon the same qubits. As

such all operations commute and all the necessary entanglement operation can be done

at once, all the necessary measurement operations can be done at once and all the

necessary corrections can be done at one.
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We finish this section by introducing Algorithm 3.1 which uses the methods dis-

cussed in the proof of lemma 3.1.1 to build the graph state
∣∣∣G̃〉.

Algorithm 3.1. Br-sup-graph state creation.

Let the graph G, with vertices v1, ...,vn, describe the entanglement pattern in the graph

state |G〉. Suppose further that G is a br-sub-graph of the graph G̃, whose vertices are

indexed by ṽ1, ..., ṽn,b1, ...,bm.

Lemma 3.1.1 tells us that there exists a choice of qubits |b1〉 , ..., |bm〉 such that

Pauli-Y basis measurements of these qubits, once entangled in the state
∣∣∣G̃〉, recreates

the effect of the bridge and break operations. In doing so this creates the state |G〉 up

to some local rotations about the Z axis through angles from the set
{

0, π

2 ,π,
3π

2

}
.

In this protocol we introduce the vectors w ∈ {0,1}m and z ∈ {0,1}m. The vector

wi indicates if a break or bridge operations should be applied to the vertex bi in the

process of building G from G̃. If a break operations is to be performed on the vertex

bi then wi = 0 while if it is a break then wi = 1. This means if wi = 0 then |bi〉 is

drawn from the set {|0〉 , |1〉} while if wi = 1 then it is drawn from the set {|+〉 , |−〉}.
The vector z isolates exactly the state of |bi〉. If zi = 0 then |bi〉 is drawn from the set

{|0〉 , |+〉} while if zi = 1 then it is drawn from the set {|1〉 , |−〉}.
In this protocol we describe the process of building the state

∣∣∣G̃〉 which meets the

conditions of lemma 3.1.1.

Input:

1. Vectors w ∈ {0,1}m and z ∈ {0,1}m.

2. A description of the graph G̃

3. The state |G〉 and a description of G.

Output:

1. The state
∣∣∣G̃〉 of lemma 3.1.1.

Algorithm:

1. For each vertex bi generate the state |bi〉 depending on the values of wi and zi in

accordance to the following table.
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zi = 0 zi = 1

wi = 1 |+〉 |−〉
wi = 0 |0〉 |1〉

2. Entangle vertices b1, ...,bm and the state |G〉 according to G̃ and obtain the state∣∣∣G̃〉.

As discussed in the proof of Lemma 3.1.1, and using the notation of Algorithm 3.1,

the state generated after measuring vertices b1, ...,bm in the state
∣∣∣G̃〉 in the Pauli-Y

basis results in the state of expression (3.12). We have used that yi is the measurement

outcome for the qubit at vertex bi while vi1 and vi2 are the neighbours of bi in G̃.

m

∏
i=1

(
Zzi

vi1
⊗Zzi

vi2

)1−wi
(

S(−1)yi+zi
vi1

⊗S(−1)yi+zi
vi2

)wi
|G〉 (3.12)

3.2 Blind Delegated Graph State Creation

In this section we address problem 2 mentioned in the this chapter’s introduction. We

develop a protocol used by a computationally weak client to request the generation

of a graph state by a powerful server. The protocol does not, however, reveal a full

description of the graph to the server. Throughout the reader should keep in mind the

intuition introduced at the start of the chapter, which is that the state requested should

be secretly moved to from a more general graph state.

We start by formalising three notions mentioned in the paragraph above. Firstly

what does it mean to ‘secretly’ generate a graph state. The measure of what is kept se-

cret from the server during a distributed algorithm is referred to by the terms blindness

and leakage [18] defined now.

Definition 3.2.1. A protocol with input X is blind while leaking at most L(X) if the

distribution of messages obtained by the server is dependent only on L(X).

We need, also, to be precise with regards to what is meant by a computationally

‘weak’ client and ‘powerful’ server. The clients power will be classical with the excep-

tion that they can prepare and send single qubits to the server. They can also receive

and send classical information.

The server can receive single qubits and has the power to entanglement, measure-

ment and generate states as they please. They can also send and receive classical

information.
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Finally, although we remain somewhat vague in this regard, we can discuss further

what is meant by a ‘general’ graph state. For most of this section we make no specific

choice of this general graph but note that a br-sup-graph, G̃, will be regarded as more

general than its br-sub-graph G. This is simply because it could have many br-sub-

graphs besides G. A ‘very general’ graph is then one which has many br-sub-graphs.

Although we leave a detailed discussion of the following point to precise imple-

mentations of the scheme we develop, we would like to ensure that the graph we begin

with, G̃, is indeed ‘very general’. Intuitively, it is this assurance that convinces us that

a server, with only the knowledge that the graph state built is described by one of the

many br-sub-graph of a graph G̃, is sufficiently blind. This is simply because it would

be harder to guess which graph state was, in fact, built. Figure 3.3 will enlighten the

reader on this point.

Figure 3.3: An example of the many possible graphs which could result if the only

available knowledge was that a bridge or break operation has occurred and not which

of the two in fact has.

The reader may wish to skip ahead to Figure 3.8 to see the dotted complete bipartite

graph, defined in Definition 3.3.1 and which provides an example of a very general

graph.
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Throughout the remainder of this section we will appeal, as suggested by the titles

of the subsections herein, to abstract cryptography which was introduced in section

1.4. Here the client plays the role of the honest player while the server behaves as the

adversary. We proceed by introducing the ideal functionality of the resource we would

like to develop.

3.2.1 The Ideal Resource

The protocol we develop is concerned with two graphs. Namely G, which describes

the graph state we wish to construct, and G̃, of which G is a br-sub-graph. The protocol

may reveal at most G̃ to the server. More formally, the ideal blind distributed graph

state construction resource, Rgen, should be blind while leaking at most G̃.

As such the ideal resource, Rgen, we develop should take the graphs G and G̃ as

inputs from the client and output G̃ to the server. For no additional information about

the form of the graph G to be revealed it must also be assumed that G is equally likely

to be any of the br-sub-graphs of G̃.

The server may wish to perform some deviation from the protocol we request. One

can represent this by considering some set of operations F1 given as input by the server.

We will discuss the form of the deviation in greater detail in Section 3.2.2.1 once we

have introduced the real resource.

At the end of the protocol the server should retain possession of the final state, ρK .

This state should consist of a quantum state and a classical binary string, y1, which we

may represent as the quantum state
∣∣y1〉. The state may hence be written as in (3.13)

ρK = ρ̂K⊗
∣∣y1〉 (3.13)

The client should understand ρK to be the state of expression (3.14) after some

deviation F1 is applied and a measurement, of the last m qubits, in the Pauli-Y basis is

made. We have that w,z ∈ {0,1}m and r ∈ {0,1}n, all three of which are known to the

client. Here EG̃ is the entanglement pattern on the qubits ṽ1, ..., ṽn,b1, ...,bm as defined

by the edges of the graph G̃.

EG̃

n⊗
i=1

Sri |+〉
m⊗

j=1

(
1−w j

)[(
1− z j

)
|0〉+ z j |1〉

]
+w j

[(
1− z j

)
|+〉+ z j |−〉

]
(3.14)

This state should be, in the case the server behaves honestly, that of expression
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(3.15), where C is a correction and
∣∣y1〉 is the state of the last m qubits after measure-

ment.

ρK,h =C |G〉⊗
∣∣y1〉 (3.15)

As the correction, C, should be known to the client we require outputs from the

protocol be, to the client, the appropriate correction, C, and, to the server, the final

state, ρK .

None of any of the vectors w,z,r should be known to the server and should each be

picked uniformly at random. Hence the ρK will be, to the server, that resulting from a

measurement, in the Pauli-Y basis, of the last m qubits of equation (3.16) after some

deviation, as described by F1, has been performed. ρ∗ is the maximally mixed state.

EG̃

n+m⊗
i=1

ρ
∗ (3.16)

The above discussion on the different parties inputs, are summarised in Figure 3.4.

Blind Delegated

Graph State

Creation

G, G̃

C

F1

G̃

ρK

Figure 3.4: Ideal resource, Rgen, for a blind delegated graph state creation protocol. G

is the graph describing the entanglement pattern in the graph state to be created and is

a br-sub-graph of G̃. C is a unitary corrections to be performed on the output state ρK

in order to give the state |G〉 in the case that the deviation, F1, is the identity (i.e. the

case where the server behaves honestly).

We will finish this section by noting lemma 3.2.1 which was stated less formally

in the first paragraph of this section. It follows as, from the server’s point of view, the

aforementioned Pauli-Y basis measurements are made on the maximally mixed state of

expression (3.16) plus any state the server wishes to input or entangle to it themselves.

As such the state given as output does not reveal any new information.

Lemma 3.2.1. The ideal resource, Rgen, defined in this section is blind while leaking

at most the graph G̃.
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3.2.2 The Real Resource

In the proof of Lemmas 3.2.2 and 3.2.3 we will show that Algorithm 3.2 defines a real

resource, Sgen, which is indistinguishable from the ideal blind delegated graph state

creation resource, Rgen, developed in Section 3.2.1. A pictorial representation of the

algorithm can be found in Figure 3.6 and serves as a useful method of comparing to

Figure 3.4.

Roughly speaking, the client evolves from a graph state
∣∣∣G̃〉 to a graph state |G〉

while the state is in the possession of the server by tricking the them into performing

the bridge and break operations of Section 3.1 without revealing which of these two

operations they are performing.

To achieve this two things must certainly be true.

1. The states received by the server when a break operation is taking place and

when a bridge operation is taking place must be indistinguishable.

2. The operations that the server is asked to perform in both the case that a break

operation is to occur and when a bridge operation is to occur must be the same.

Algorithm 3.2 achieves condition 1 by asking the client to send, in the case they

want to perform a break operation on a graph state, with equal probability the states

|0〉 and |1〉 in the place of the break qubit. Similarly the client sends, in the case where

they wish to perform a bridge operation on a graph state, with equal probability the

states |+〉 and |−〉 in the place of the bridge qubit. In this way, all break or bridge

qubits look, to the server, like the maximally mixed state. We will denote the states

which correspond to the break and bridge qubits by ρb
1, ...,ρ

b
m.

The states ρv
1, ...,ρ

m
v correspond to the vertices v1, ...,vn and are sent, with equal

probability, in one of any of the four states from the set {|+〉 ,S |+〉 ,Z |+〉 ,SZ |+〉}.
It will, in the following section, be explained as to why this choice is necessary. The

reader will realise that the state of each qubit, from the point of view of the server,

is then the maximally mixed state. This information is expressed in equation (3.17)

where In is the identity operator on n qubits and which can be verified by simple matrix

expansion.

n⊗
j=1

3

∑
i=0

1
4

Si |+〉〈+|S−i = In (3.17)

As such, all qubits sent to the server look to be in the maximally mixed state,

regardless of the operation being performed.
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Combined, and followed by the necessary pattern of entanglement, these two sets

of qubits build the the maximally mixed state of expression (3.16) presenting some

promise for this algorithm.

Condition 2 is met by asking the server to perform a Pauli-Y measurement in both

cases. The reader will recall from section 3.1 that the choice of bridge and break

qubit is enough then to determine the operation that will be performed. However, not

knowing if states from the set {|0〉 , |1〉} or states from the set {|+〉 , |−〉} were sent

means the server cannot know anything about the effect the Pauli-Y measurement they

are asked to perform will have. They will only know that either a break or bridge

operation has occurred.

So, we are essentially performing, in a distributed way, Algorithm 3.1 with inputs;

G, w as is appropriate for the the graph G1, z chosen uniformly at random, G̃ and the

state of expression (3.18). Notice also that, because of the relation between G and w,

choosing G at random from the br-sub-graphs of G̃ means w will be drawn uniformly

at random from its domain.

EG

n⊗
i=1

Sri |+〉 (3.18)

Before continuing to Algorithm 3.2, where the details of this method lies, we will

look to understand how to refer to the deviation F1 which was introduced earlier. We

take the rough understanding of Algorithm 3.2 gained above and conduct the following

discussion.

3.2.2.1 The Deviation

Recall the deviation F1 introduced as part of the ideal resource of section 3.2.1. We

model the server’s deviation as depicted in Figure 3.5.

We can represent any deviation as an operator F1 preceding the a unitary operator,

EG̃, controlled by the client. The operator F1 may undo EG̃ and apply any operation of

its own, including entanglement with its own states.

One can assume that the measurements are made to the correct qubits as they may

be commuted by the operator F1. Since any measurement may be modelled by a uni-

tary operation, absorbed into F1, followed by local measurements we can also assume

any measurement the server wishes is made.

1Recall that w has a 0 entry when a break operation is performed on the corresponding qubit and a 1
entry for a bridge. The necessary operations for moving from G̃ to G then defines w for us.



46 Chapter 3. Distributed Blind IQP Graph State Generation

The reader will also notice that, as hoped, we can represent a honest server, and so

the filtered resource, by setting F1 to be the identity operator.

ρb
1

ρb
2

ρb
m

ρv
1

ρv
n

|0〉⊗ j

...

...

EG̃

...

...

...
F1

...

...

...

ρK

Figure 3.5: The deviation F1 by a server during the implementation of the real blind del-

egated graph state creation resource of Algorithm 3.2. The operation F1 replicates all

possible deviations by the server. The operator EG̃ implements entanglement between

the qubits ṽ1, ..., ṽn,b1, ...,bm as described by the graph G̃. Qubits b1, ...,bm, ṽ1, ..., ṽn

are received from the client while the state |0〉⊗ j is built by the server according to the

requirements of F1.

We can now introduce Algorithm 3.2 after which we conduct a discussion about

the filtered resource.

Algorithm 3.2. Blind delegated graph state creation.

A client would like to delegate the construction of a graph state |G〉, up to some known

correction C, to a server. The graph G is a br-sub-graph of G̃. The algorithm is blind

while leaking at most G̃.

The result is the state ρK which will, in the case that the server is honest, be the

state C |G〉⊗
∣∣y1〉 where C is some unitary correction and

∣∣y1〉 is an m qubit Pauli-Y

basis state.
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We use the notation of w and z as in Algorithm 3.1 while ri ∈ {0,1,2,3} defies the

initial states of the qubit vi as being the state Sri |+〉.

Input:

• Client:

1. A description of the graphs G and G̃

• Server:

1. The deviation F1.

Output:

• Client:

1. Corrections, C.

• Server:

1. The graph G̃.

2. The final state ρK .

Algorithm:

• Client:

1. Generate random string r ∈ {0,1,2,3}n.

2. Generate random string z ∈ {0,1}m.

3. Produce the string w ∈ {0,1}m according to whether a break or a bridge

operation is performed to the vertex bi. As in Algorithm 3.1 this means

setting wi = 0 or wi = 1 respectively.

4. For each vertex vi initialise the state Sri |+〉.

5. For each vertex bi initialise the state as described by the table below.

zi = 0 zi = 1

wi = 1 |+〉 |−〉
wi = 0 |0〉 |1〉

6. Send all prepared qubits to the server.

• Server:
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7. Receive qubits and G̃

8. Output the graph G̃

9. The server now has the necessary inputs to implement the deviated en-

tanglement and measurement operation of section 3.2.2.1. They do so to

obtain measurement outcomes y1.

10. Return y1 to the client.

11. Output state ρK = ρ̂K⊗
∣∣y1〉 generated.

• Client:

12. Receive y1.

13. Calculate and output correction.

If the server is honest, then the final state, ρK,h, will be as in expression

(3.19).(
m

∏
i=1

(
Zzi

vi1
⊗Zzi

vi2

)1−wi
(

S(−1)y1
i +zi

vi1
⊗S(−1)y1

i +zi
vi2

)wi
)(

n

∏
j=1

Sr j
vi

)
|G〉⊗

∣∣y1〉
(3.19)

In expression (3.19) we have used the notation that vi1 and vi2 are the neigh-

bours of bi in the graph G̃ as used in Algorithm 3.1. We also have that y1
i

is the measurement outcome for qubit bi.

The correction C is then the operator preceding the state |G〉.

3.2.2.2 The Filtered Real Resource

Recall that the filtered resource, Sgen# is defined by forcing the servers deviation, F1, to

be the identity and preventing the server from accessing anything other than its inputs

and outputs. We now prove lemma 3.2.2 which alludes to part 1 of Definition 1.4.7

which we have referred to as the correctness condition.

Lemma 3.2.2. The filtered resource, Sgen#, defined in this section is indistinguishable

from the filtered real resource, Rgen#, defined in section 3.2.1 when the server behaves

honestly.

Proof. The state knowledge of a distinguisher at the end of the protocol is the total

of all of the information obtained throughout. In both cases this can be described by
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π
dgc
C π

dgc
S

G, G̃

C

F1

G̃

ρK

G̃

ρv
1, ...,ρ

v
n

ρb
1, ...,ρ

b
m

y1

Figure 3.6: Real blind delegated graph state creation resource, Sgen. π
dgc
C is the client

protocol for delegated graph state creation and π
dgc
S is the server protocol for this re-

source. y1 ∈ {0,1}m is the measurement outcomes. ρv
1, ...,ρ

v
n are initial states of the

qubits v1, ...,vn and ρb
1, ...,ρ

b
m are bridge and break qubits b1, ...,bm.

the set of variables as seen in 3.20. Here the variables G, C and ρK are as previously

discussed while G̃in is the description of the graph G̃ given as input by the client and

G̃out is that given as output to the server.

G, G̃in, G̃out,C,ρK (3.20)

Let us begin by recalling how these objects behave in the ideal resource defined in

Section 3.2.1. The graphs G̃in and G̃out should match. The state ρK should be as in

expression (3.15) and the the correction C should be as it appears in that expression.

ρK should be a measurement of the state of expression (3.14).

In the case of the real protocol G̃in and G̃out certainly match simply by observing

the protocol.

The construction of the qubits sent to the server and the deviation ensure us that ρK

is a measurement on the state of expression (3.14).

Comparing expression (3.19) to (3.15) leaves us satisfied about the remaining con-

dition.

As such the resources Rgen# and Sgen# are indistinguishable.

3.2.3 The Simulator

We now move to prove, in the case that the server behaves maliciously, the equivalence

of the real resource, Sgen, and ideal resource, Rgen, defined in Section 3.2.2 and Section
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3.2.1 respectively. We draw the reader attention back to Section 1.4 and, in particular,

Definition 1.4.7 point 2 to achieve this.

We define a simulator which acts as an interface to the ideal system and produces

a indistinguishable interface to that of the real system. The action of the simulator at

each stage of the real protocol of Algorithm 3.2 is displayed in Algorithm 3.3 and can

be visualised in Figure 3.7.

Algorithm 3.3. Blind delegated graph state creation simulator.

The simulator, σgen, used to prove the equivalence of the real resource, Sgen, of Section

3.2.2 and the ideal resource, Rgen, of Section 3.2.1. The simulator acts as an interface

to the ideal system and interfaces with the server in a way that is indistinguishable

from that of the real system. At each step of the real protocol seen in Algorithm 3.2

we specify the action of the simulator. In all steps not listed below the simulator has

no effect on the server.

7. • Produce states ρ̂b
1, ..., ρ̂

b
m in the maximally mixed state and send to the

server.

• Produce states ρ̂v
1, ..., ρ̂

v
n in the maximally mixed state and send to the server.

• Copy graph G̃ to register.

8. no effect on register

9. • Take in and forward F1.

• Receive state ρK from ideal system and send to sever.

We can now move to the main result of this section which proves the real resource,

Sgen, of Section 3.2.2 corresponds to a protocol which is blind while leaking at most

the graph G̃.

Lemma 3.2.3. The real resource, Sgen, defined in section 3.2.2 is indistinguishable

from the ideal resource, Rgen, of section 3.2.1 when the ideal system is interfaced with

through the simulator, σgen, of Algorithm 3.3.

Proof. We consider, at each step of Algorithm 3.2, why the state of the real and ideal

system are identical. To do so we consider the state that a distinguisher has in their

control and note, that in both cases, they are indistinguishable.
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Blind Delegated

Graph State

Creation

G, G̃

C

F1

G̃

ρK

σgen

F1

G̃

ρ̂v
1, ..., ρ̂

v
n

ρ̂b
1, ..., ρ̂

b
m

ρK

Figure 3.7: Ideal delegated graph creation resource, Rgen, with the simulator σgen.

ρ̂b
1, ..., ρ̂

b
m are bridge and break qubits in the maximally mixed state. ρ̂v

1, ..., ρ̂
v
n are

stationary qubits in the maximally mixed state. Other notation can be understood by

studying Figure 3.4

During steps 1 to 6 the only knowledge the distinguisher has is of the server and

clients inputs. Hence the state on their possession is that of expression (3.21).

G, G̃,F1 (3.21)

At step 7 the server, when interacting with the unfiltered real resource, receives

the states ρv
1, ...,ρ

v
n,ρ

b
1, ...,ρ

b
m. As discussed, the the states at the vertices v1, ...,vn are

chosen uniformly at random from the set {|+〉 ,S |+〉 ,Z |+〉 ,SZ |+〉}. The states cor-

responding to vertices b1, ...,bm are drawn uniformly at random from either the set

{|0〉 , |1〉} or the set {|+〉 , |−〉}. In either case these states are indistinguishable from

the maximally mixed states sent by the simulator. As such the state, in both the real

and ideal case, is as in expression (3.22).

G, G̃,F1,ρv
1⊗ ...⊗ρ

v
n⊗ρ

b
1⊗ρ

b
m (3.22)

While step 8 has no effect on the distinguisher’s state step 9 produces the final

state. In the ideal case the output is the deviated measurement of the last m qubits of

expression (3.14) as discussed in Sections 3.2.1 and 3.2.2.1. Algorithm 3.2 will reveal

this to be the case for the real resource too. Hence, in both the case of the real resource,

and the ideal resource interfaced with through a simulator, the total knowledge of the

distinguisher is as appears in expression (3.23).

G, G̃,F1,ρK (3.23)
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The state of knowledge of the distinguisher does not change until step 13 when the

correction is outputted by the client. In the real and ideal cases the outputs are the same

and so the final state of knowledge of the distinguisher in both cases is as in expression

(3.24).

G, G̃,F1,ρK,C (3.24)

Hence, the state of knowledge of the extinguisher in the real and ideal cases is

indistinguishable.

With these tools in hand we move to understanding the blind construction of an

IQP graph state. From here on, and thanks to Lemma 3.2.3, we can refer to the real

and the ideal resource interchangeably.

3.3 IQP Graph State Generation

We draw this chapter to a close by discussing the generation of the IQP graph states

defined in Algorithm 2.2. The graph state generation protocol developed in Section

3.2 required two inputs from the server. One of these is the graph, G, describing the

entanglement pattern of the graph state we would like to build and another is a graph G̃

of which G is a br-sub-graph. We already discovered in Section 2.3 that the necessary

graph, G, for an IQP computation is the bipartite graph of Definition 2.3.1. We begin

this section by defining the graph G̃ needed for the construction of an IQP graph state.

This G̃ will be in the form of a dotted complete bipartite graph defined now.

Definition 3.3.1. A dotted complete bipartite graph is a graph G̃ =
(
Ṽ , Ẽ

)
whose ver-

tex set Ṽ and edge set Ẽ have the following properties. The vertex set Ṽ has a par-

tition
{

P̃, Ã, B̃
}

such that if
∣∣P̃∣∣ = nP and

∣∣Ã∣∣ = nA then
∣∣B̃∣∣ = nPnA. Labelling el-

ements of the sets in this partition by setting P̃ = [p1, ..., pnP], Ã = [a1, ...,anA] and

B̃ =
{

b(i, j) : i ∈ [1, ...,nP] , j ∈ [1, ...,nA]
}

gives us the necessary expressive power to

define the edge set of G̃. In particular we have the edge set as defined in (3.25).

Ẽ =
{(

pi,b(i, j)
)

: i ∈ [1, ...,nP] , j ∈ [1, ...,nA]
}

∪{(
b(i, j),a j

)
: i ∈ [1, ...,nP] , j ∈ [1, ...,nA]

}
(3.25)

The reader may refer to the graph G̃ in Figure 3.8 for some intuition on the structure

of a dotted complete bipartite graph.
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We make the following definition to introduce notation which compares a bipartite

graph and its dotted complete bipartite counterpart.

Definition 3.3.2. Define the operator ∼ (·) to be that taking a bipartite graph G with

a given partition {P,A} to a dotted complete bipartite graph G̃ in the following way.

Using the notation in definition 3.3.1 we have, for the image of this operator, P̃ = P,

Ã = A and B̃ =
[
b(1,1), ...,b(1,nA), ...,b(nP,1), ...,b(nP,nA)

]
where |P|= nP and |A|= nA.

The edge set Ẽ of G̃ is that required to meet the conditions of definition 3.3.1 for G̃

to be a dotted complete bipartite graph.

Although we have used this G̃ notation before to mean some graph of which G is

a br-sub-graph this new notation allows us to be more specific about the exact form

of G̃. From here on we will use this G̃ notation as described in Definition 3.3.2. We

visualise the function defined in Definition 3.3.2 using Figure 3.8. It is clear from this

diagram that bipartite graphs are br-sub-graphs of dotted complete bipartite graphs.

a1 a2

p1 p2 p3

G
a1 a2

p1 p2 p3

b(1,1)

b(1,2)

b(2,1) b(2,2)

b(3,1)

b(3,2)

G̃

Figure 3.8: An example of the ∼ (·) function introduced in Definition 3.3.2. Here nP =

3 and nA = 2 while the partition used is P = [p1, p2, p3] and A = [a1,a2]. G̃ is an

example of the dotted complete bipartite graph introduced in definition 3.3.1 with B̃ =[
b(1,1),b(1,2),b(2,1),b(2,2),b(3,1),b(3,2)

]
.

The reader will now notice that, in fact, the dotted complete bipartite graph of

Definition 3.3.1 actually depends only on nP and nA. As such we may define a dotted

complete bipartite graph independently of the full description of the br-sub-graph it is

created from.

Definition 3.3.3. We use the notation ˜(nP,nA) to refer to a dotted complete graph with

P̃ = [p1, ..., pnP ] and Ã = [a1, ...,anA] and with B̃ and Ẽ defined to meet Definition 3.3.1

of being a dotted complete bipartite graph.

Realising that a br-sup-graph of any bipartite graph can be found in the form of

a dotted complete bipartite graph means we now have the necessary client inputs to
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blindly create the graph state needed for an IQP computation. When comparing to

section 3.2 one may like to note that, using previous notation, nA+nP = n and nAnP =

m.

Finally, we make some slight alterations to the blind delegated graph state creation

resource. In the case of the IQP computation we talk, rather than about the graph G,

about the X-program matrix P. Algorithm 2.2 teaches us about the bijective relation-

ship between the two and so we now talk of inputting P into the graph generation

resource. We then leave it as part of the clients protocol to make the transition to

talking about G and proceeding to carry out the graph generation as before.

Before the client would need to input the graph G̃. In the case of the IQP compu-

tation though, the br-sup-graph considered is concerned only with the values nA and

nP; information which is contained in the description of P. Hence, once again, we

leave it to the client to extract this information and construct the necessary graph G̃ to

continue.

Finally, leaking the graph G̃ to the server is now equivalent to leaking only nA and

nP as these are the only value on which it depends. We summarise all of these points

in the resource seen in Figure 3.9.

Blind Delegated

IQP Graph

State Creation

P

C

F1

nP, nA

ρK

Figure 3.9: Ideal resource, Rgeniqp, for a blind delegated graph IQP state creation pro-

tocol. The notation is as in Figure 3.4 with the following exceptions. P is the X -program

to be implemented. nP and nA are the number of primary and ancilla qubits respectively

that are needed for the computation.



Chapter 4

A Hypothesis Test

The reader will recall that, in section 2.2, we introduced the IQP hypothesis test of [1].

We understood their method by dividing the problem of performing a hypothesis test

into the three conditions, 1.1, 1.2 and 1.3, listed in that section. We identified that, in

that case, these three problems translated into condition 2.1, 2.2 and 2.3 were solved by

points 3.1, 3.2 and 3.3. We mentioned that the main contribution of our work would be

finding a a new solution to condition 1.3 and the discussion of this chapter will focus

on that solution.

It is our claim that our solution provides information theoretically secure hiding of

the hidden structure as opposed to the computational complexity assumptions used by

[1] and recalled in Conjecture 2.2.2. It is the tools developed in Section 3.3 which we

use to achieve this. In that section we developed a method of building an IQP graph

state without revealing its description to the server. In order to perform a hypothesis

test with this resource we must dicuss two things.

1. How to perform a full IQP computation using the blind delegated IQP graph

state creation resource

2. Which IQP computation to perform in order to conduct the hypothesis test.

In section 4.1 we address point 1 by extending the the ideas of Section 3.3 to

implement a full IQP computation. In Section 4.2 we address point 2 and show that

hiding the graph state is enough to successfully fulfil condition 1.3 using a similar

X-program to that used by [1].

We will continue to employ the bias technique outlined in Algorithm 2.1 and this

again leaves with three conditions for the development of a successful IQP hypothesis

test.

55
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4.1 The X-Program send to a server must represent an IQP-hard computation.

4.2 It must be possible for a client, having knowledge of s and the X-program, to

calculate the the quantity (2.2).

4.3 The IQP graph state being hidden using the tools of Algorithm 2.1 must conceal

the value of s from the server and force them to implement the intended IQP-hard

computation.

4.1 The Full Delegated IQP Computation

In this section we will explore how to perform an IQP computation using the blind

graph state creation resource developed in Section 3.3. This problem is solved with

Algorithm 4.1 but we conduct some discussion before introducing it.

Recall that after implementing the blind delegated IQP graph state creation re-

source of Section 3.3 the server, in the case they behave honestly, is in possession of

the state ρK,h = C |P〉⊗ |y〉. The client is in possession of the corrections, C, to the

graph state.

To complete the computation measurements should be performed on the state C |P〉
but as the corrections, as seen in (3.19), is not known to the server it must be sent to

them so that they might correct the measurement basis they use. This is similar to the

adaptive measurements of Section 1.3. Sending these new measurement angles should

not reveal any new information about the graph state in the possession of the server.

We prove that this is the case in the following lemma.

Lemma 4.1.1. Revealing the correction of expression (3.19) gives, to the server, no

information about the state in its possession.

Proof. Consider the correction to be made to the measurement angles of each of the

vertices v1, ...,vn. For a particular vertex vi this can be derived from (3.19) and is as

seen in (4.1). In that expression n̂ = nA in the case that vi is a primary qubit and n̂ = nP

in the case that vi is an ancilla qubit. w(i, j) and z(i, j) correspond to the vertex b(i, j) and

y1
(i, j) is the measurement outcome from measuring that qubit. ri corresponds to vi.(

n̂

∏
j=1

Z(1−w(i, j))z(i, j)Sw(i, j)(−1)
y1
(i, j)+z(i, j)

)
Sri (4.1)
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This might also be written as in expression (4.2).(
n̂

∏
j=1

S2(1−w(i, j))z(i, j)+w(i, j)(−1)
y1
(i, j)+z(i, j)

)
Sri (4.2)

Hence, the number we need to send to the server is that of (4.3) and which informs

them of the power to which the S correction should be raised.

ci =

(
n̂

∑
j=1

2
(
1−w(i, j)

)
z(i, j)+w(i, j) (−1)y1

(i, j)+z(i, j)

)
+ ri (mod 4) (4.3)

Recalling that the ri quantity is drawn uniformly at random and so acts as a one-time-

pad.

As described by the real resource of section 3.2.2 the server is aware of the value of

y1 but not of w and z. Indeed, it is these quantities which describe the graph and which

remain hidden as a result of the one-time-pad described above. No information, then,

is revealed about the bracketed component of expression (4.3) and so no information

about the structure of the graph is revealed.

This proof reveals why we chose to initialise stationary qubits the way we did. It

was this initialisation that added the one-time-pad.

With Lemma 4.1.1 in hand we can safely assume that we can communicate the

measurement corrections to be performed to the server, and so prepare to complete an

IQP computation, without the server learning anything about the state in their posses-

sion. Note that this only applies up to the point of the measurement and the measure-

ment result itself may reveal some information about the graph state.

In reality, the server may, once again, choose to deviate from performing the mea-

surements we request and we model this with the input F2. On this occasion the de-

viation simply occurs before the measurement and may perform any behaviour within

the power of the server.

We end this section with Algorithm 4.1 which can be visualised in Figure 4.1 and

which uses the techniques discussed in this section.

Algorithm 4.1. Delegated IQP computation

Here we describe an algorithm to delegate an IQP computation to a powerful server.

This algorithm uses the blind delegated graph state creation resource of Section 3.2.

We continue to use the notation w, z and r as it was used in Algorithm 3.2. It is assumed

that the X-program measurement angle, θ, is publicly known.
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Input:

• Client

1. The X-program (θ,P).

• Server

1. Their deviation F = {F1,F2}.

Output:

• Client:

1. The measurement outcomes, y2.

• Server:

1. The dimensions of the graph state nA and nP.

2. The state ρ2
K .

Algorithm:

• Client:

1. Call the Blind Delegated Graph State Creation resource with input P.

• Server

2. Receive nA and nP.

3. Input deviation F1 into Blind Delegated Graph State Creation resource.

4. Receive ρK .

• Client:

5. Receive corrections C.

6. Send, to the sever, the corrections, c1, ...,cnA+nP , to the measurement an-

gles. They are sent in the form of the power to which an S operator should

be raised and are as in expression (4.3).

• Server:
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7. Input deviation F2 and implement deviated measurement to receive out-

come ρ2 = ρ̂2⊗
∣∣y2〉.

8. Return measurement results, y2 to the client.

9. Output ρ2

• Client:

10. Receive and output y2.

Blind Delegated

IQP Graph

State Creation

P

C

nA,nP

F1

ρK

P

y2

nA,nP

F1,F2

ρ2
K

c1, ...,cnA+nP

y2

θ

Figure 4.1: Resource for a delegated IQP computation. The notation can be understood

by recalling Figure 3.4 and Algorithm 4.1

So we now understand how to implement an IQP computation without revealing

anything about the IQP graph state used before it is measured. We move, with these

tools in hand, to show how this can be used to hide the secret structure mentioned in

condition 1.3. In doing so we discuss and formalise our hypothesis test.

4.2 Our Protocol

We conclude this chapter by introducing and discussing our hypothesis test. The algo-

rithm itself is described in Algorithm 4.3 while it can be visualised in Figure 4.2. You

will notice, in the figure and the algorithm, that a hypothesis X-program generation re-

source is used. In the case of the hypothesis test used by [1] a similar resource is used
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and was recalled by us in Algorithm 2.1. We require a slightly different and somewhat

simpler resource which we define in Algorithm 4.2.

Algorithm 4.2. IPQ Hypothesis Test X-program Generation.

Here we outline the construction of an X-program which will be used in the hypothesis

test that we develop.

Input:

1. q (a prime) chosen so that q+1 is a multiple of 8.

Output:

1. X-program, (θ,P) ∈ [0,2π]×Fq× q+1
2

2 .

2. A vector, s ∈ {0,1}
q+1

2 .

Algorithm:

1. Generate the generator matrix, G ∈ Fq× q+1
2

2 , for a quadratic residue code, over

F2, of length q.

2. To this matrix, the client appends an additional column consisting entirely of

ones. Call this new matrix P̂ ∈ F
q×
(

q+1
2 +1

)
2 .

3. Reorder the rows of P̂ randomly.

4. Add multiples of columns of this new matrix to one another randomly to obtain

P.

5. Output the X-program
(

π

8 ,P
)
.

6. Suppose this reordering of rows and adding of columns can be achieved by ap-

plying the matrix A ∈ F
(

q+1
2 +1

)
×
(

q+1
2 +1

)
2 . Return the vector of expression 4.4.

s = (0, ...,0,1)A−T ∈ {0,1}
q+1

2 (4.4)



4.2. Our Protocol 61

The reader will notice that the vector s has been designed to be non-orthogonal

to all rows of this matrix. Hence the matroid it defines by building the matrix Ps, as

discussed in Section 2.2 (i.e. by taking all rows non-orthogonal to s), is the same as the

matroid constructed in the hypothesis test of Algorithm 2.1. In particular, this means

that the bias value is the same as in that case.

The resource developed in Algorithm 4.2 is used by the client to generate the X-

program that will be used during the hypothesis test. We introduce this in Algorithm

4.3 now and note that it might be visualised by looking at Figure 4.2.

Algorithm 4.3. An algorithm to perform an IQP hypothesis test.

We describe our IQP Hypothesis test. The output of this test is the value 0 or 1 depend-

ing on of the value returned to the client is non-orthogonal or orthogonal respectively

to the s value held by the client. The expected value of the output is then the bias.

Input:

• Client:

1. q (a prime) chosen so that q+1 is a multiple of 8.

• Server:

1. Deviation F = {F1,F2}.

Output:

• Client:

1. orthogonal 0,1

• Server:

1. nA, nP.

2. ρ2.

Algorithm:

• Client:

1. Call Hypothesis Test X-program Generation resource with input q.
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2. Retain s and forward P to the delegated IQP computation resource.

• Server:

1. Receive nA and nP.

2. Input deviation F = {F1,F2} into the Delegated IQP Computation resource.

3. Receive ρ2

• Client:

1. Receive y2 from the delegated IQP computation resource.

2. Check orthogonality to s and output test result. If the y2 is orthogonal to s
output 1 and output 0 otherwise.

Hypothesis Test

X-program

Generation
s

q
P

Delegated

IQP

Computation
0,1

q

y2

nA,nP

F

ρ2

θ

Figure 4.2: Our hypothesis test as described in Algorithm 4.3. The resource uses the

Hypothesis Test X -program Generation resource of Algorithm 4.2 and the Delegated

IQP Computation resource of Algorithm 4.1. The notation used in this figure is explained

in those algorithms.

By using the resource of Algorithm 4.3 multiple, but a constant number of, times

and checking the probability of orthogonality we will have completed our hypothesis

test.

The reader will notice the similarities of our method to that of [1] so it is left to

understand how this method solves conditions 1.1, 1.2 and 1.3 and in what way our

solution improves on that of [1]. We outlined the conditions that our hypothesis test

must fulfil in points 4.1, 4.2 and 4.3, and we address them each now.
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4.1 The X-Program send to a server must represent an IQP-hard computation.

The analysis here is similar to that used before for the hypothesis test of [1]. We

discussed, in Section 2.2, how an asymptotically optimal classical simulation of an IQP

machine would fail to reproduce the same bias statistics as an IQP machine. Notice

that this can only be made harder by the fact that, in our case, the server does not even

know the full description of the X-program.

We still have the same problem as in [1] that the particular problem we are asking

the server to implement may not be IQP-hard, just outside of classical. However, it

may be the case that by completely hiding the X-program, there could be an extension

of this work to implementing an IQP-hard problem.

This point is the only one remaining which relies on any conjectures, namely Con-

jecture 2.2.1, and so strengthening this should certainly be the subject of future work.

4.2 It must be possible for a client, having knowledge of s and the X-program, to

calculate the the quantity (2.2).

That the bias value of the X-program that we developed in this case is the same as

that developed in the case of hypothesis test discussed in Section 2.2 was mentioned

after the description of Algorithm 4.2. Hence, we know once again, that this condition

is met.

4.3 The IQP graph state being hidden using the tools of Algorithm 2.1 must conceal

the value of s from the server.

It is to the strengthening of this condition which our work contributes the most. Up

to the point of the second round of measurement the only things learnt by the server

are the quantities nA,nP. These quantities are the same for all values of s as the graph

depend only on the size of s and on nothing else.

The construction of s, as seen in Algorithm 4.2, is such that each value of s is

generated with equal probability. As such, and without any structure to the distribution

from which the s quantities are drawn, the server cannot make any predictions as to the

value of s.

It could be the case that the measurement result will reveal to the server some

information about the graph state or the value of s as, unlike in the first round of mea-

surements, not all measurement outcomes are equally likely. This would seem not to

be a problem though as the only way to extract useful information from a measurement
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would be to have the power to perform IQP computations, hence passing the test any

way. We claim then to have met this condition.

A final complication which we mention now relates to the blind delegates IQP

graph state creation resource of Section 3.3. It was mentioned there that the graph, G,

given as input to the resource should be, with equal probability, any one of the br-sub-

graphs of the dotted complete bipartite graph G̃. In the case of the QR code used in

Algorithm 4.2 it is not clear that the randomisation that takes place in that algorithm is

enough to ensure this is true and it should be the subject of future work to clarify this.

The X-programs are, however, drawn with equal likelihood from the set of possible

hypothesis test X-programs (i.e. those that could be built by Algorithm 4.2). It seems

likely then that the same hiding analysis could be used in the case where the client

gives away that they are performing a hypothesis test. With a more restricted design

of G̃ and the same graph generation resource of section 3.2 similar security could be

achieved, again providing new lines of enquiry.

One could also correct this by implementing setting hypothesis test X-programs

amongst other X-programs so that the graph states requested are picked uniformly at

random from the br-sub-graphs of G̃. This will, of course, increase the number of run

required.

4.3 A Comparison With [1]

Although we have discussed the advantage of our work as being the contribution to

condition 4.3 we note also two disadvantages. By using the blind distributed graph

state generation resource we have fundamentally tied ourselves to the MBQC archi-

tecture of quantum computing. Although not a conceptual problem, it may be the case

that, perhaps for engineering reasons, this is not the architecture adopted in the long

term. This is not a problem in the hypothesis test of Section 2.2 as they do not specify

an architecture to be used.

A second possible draw back is the two step process that is used to complete our

hypothesis test. The reader will notice that we require two rounds of measurement

to implement our test; one for the bridge and break operations and one for the im-

plementation of the hypothesis test X-program. In the case of the hypothesis test of

Section 2.2 this is not the case and it may be implemented in a single round of mea-

surements. It seems that the hypothesis test of Section 2.2 better exploits the property

that the operations performed in an IQP computation should commute. In that way
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we are demanding more from the server as previously they were not required to store

the quantum states for as long a period, for example. The number of rounds of mea-

surements that we request is, however still constant and so it seems to be a modest

additional requirement.
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Future Work and Conclusion

Other approaches to performing hypothesis tests have also been successfully devel-

oped. The recent work of [39, 40, 41] are relevant and we are now in a position to

discuss, understand and compare this work to ours. We do so in Section 5.1 as it pro-

vides us with the necessary background to understand proposals for future work made

in Section 5.2. We bring this work to a close with a concluding discussion in Section

5.3.

5.1 Related Work

The work of [39] focusses, not on hypothesis tests, but verification of correctness as

was the case in in [18]. It may be argued that the main conceptual difference between

these two pieces of work is that, while [18] relies on blindness to perform verification,

[39] does not.

It is the blindness used in [18], and in this work, which forces the requirement

for interaction between the server and client during these verification protocols. The

method of achieving blindness also ties these works to using the MBQC architecture.

By avoiding the use of blindness this interactiveness and the restriction to MBQC is

avoided in [39].

[40] extends the work of [39] from requiring many servers to one and [41] uses a

similar method to perform a hypothesis tests on an IQP machine. Their methods are

broadly speaking, based on the same technique which we can now summarise.

The local Hamiltonian problem is a decision problem relying on the promise that

the energy of a ground state of some given Hamiltonian is above some value or below

some smaller value. The problem is to decide which is the case. It is also known [42]

67
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that, for each quantum circuit, one can construct a Hamiltonian whose ground state

energy is below some threshold if a specified qubit from the output of the circuit is

|1〉 with high probability. It is in this way that any quantum circuit may be written as

a local Hamiltonian problem. In [39] the authors develop a quantum circuit used to

perform verification of a computation which is encoded as such a local Hamiltonian

problem.

The server is asked to solve the problem as well as to produce a witness for this

local Hamiltonian problem. The client can then verify the witness state by performing

a set or random measurements upon it. Importantly the verification part can occur at

any time after the computation has been performed which may also be seen as another

advantage which could not be achieved by the interactive technique of our work.

While we have noted the key difference between this method and our work is the

lack of explicit usage of blindness it is interesting too to note the similarities. The

techniques used in our work have four steps in common with the work of [39, 40, 41]

which we call ’insert randomness’, ’server computation’, ’send quantum information’,

’send classical information’. The difference between the two methods is the order in

which these tools are used. For us the order and use of these tools are as follows.

1. Insert randomness: Some randomness is added to the qubits generated.

2. Send quantum information: The qubits are sent and describe the graph.

3. Server computation: The server implements the required measurements.

4. Send classical information: The measurement results and corrections are com-

municated.

In the case of [39, 40, 41] the order is as follows.

1. Send classical information: The description of the states to be generated is sent.

2. Server computation: The necessary states are created and computations per-

formed.

3. Send quantum information: The outputs of the circuit and the witness states are

returned.

4. Insert randomness: Random measurements are made.
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It is interesting that by invoking the randomness towards the end of the computation

[39] are able to reduce the number of steps that the procedure takes to complete. In

our case this was two while in their case it is just one. Not including randomness until

the end means the server does not need help completing the computation as it is being

performed and so there is no interaction during the test.

It does seem, however, that by adding the randomness at the end one does introduce

a level of ‘blindness’ to where the computation will be tested. As such the server must

obey the computation everywhere. It is not blindness to any aspect of the computation

itself which is the kind of blindness we have seen before.

The main draw back of their work is that they require a number of repeats, expo-

nential in the size of the inputs unlike in our case where it is constant.

5.2 Future Work

Continuing on from the discussion of Section 5.1, it would be interesting to understand

if it would be possible to reorder the series of events as listed above in order to combine

our method and the local Hamiltonian method and achieve the ’best of both worlds’

scenario. It could be an interesting avenue of exploration to try to understand if some

tools of the local Hamiltonian technique could be added to our bias technique in order

to reduce the number of measurements to one round while keeping the other benefits

we have achieved.

We also discussed, towards the end of section 4.2, that there is future work to be

done in addressing conditions 4.1, 4.2 and 4.3. In particular condition 4.1 remains the

only condition relying on conjectures and should be the focus of future developments.

The Development of X-programs sampled truly at random, as was discussed after point

4.3 in Section 4.2 should also be investigated further.

It also seems likely that, by altering the X-program used in the hypothesis test, one

could reduce the number of qubits needed to perform this hypothesis test. Currently

we need nAnP bridge and break qubits but reducing this to a logarithmic function of

the program size would be an exciting advance.

As well as improving the hypothesis tests on IQP machines it would be of interest

to extent these ideas to other forms of quantum computers. In particular the boson

sampling machine [10] whose problem set is contained in those solvable by an IQP

machine.
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5.3 Conclusion

We now summarise the concluding remarks make in the previous sections. In this work

we have strengthened on conjectures made in [1] with regard to their IQP hypothesis

test. We have developed tool, which is fundamentally linked to measurement based

quantum computing, for the blind creation of graph states while only revealing the

structure of some graph more general than the graph describing the IQP computation.

We also discussed how to present a server with the necessary information to perform a

complete IQP computation without giving up any more information than this general

graph.

We hope to extend this work to develop a hypothesis test which removes all re-

maining conjectures regarding the successfulness of such a hypothesis test. It seem

the most stubborn problem is to ensure that the server is asked to perform a IQP-hard

computation. We also hope that we might be better able to utilise the instantaneous

nature of the IQP architecture by designing a hypothesis test only requiring one round

of operations and no interaction between the server and the client during the process.
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