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Abstract

Humanoid manipulator with several degree of freedom are versatile applicable to a variety of
tasks by using man-made tools as opposed to task-specific manipulators. This comes with the
cost of more complex control over the state of this manipulator and the tool.

This work addresses the problem of articulated manipulator and object tracking using
visual feedback from the robot’s own perception system. Current research has addressed
different aspects of the problem like pose estimation of independent rigid parts, but only a few
publications have addressed the specific case of manipulator and object tracking in the case
where the state of the manipulator in respect to the observation frame is known.

The main contribution of this work is the investigation of the combined usage of visual
perception and prior information from the reported manipulator state for a gradient based
optimization approach. This is motivated by the fact that gradient based approaches by design
face the issue of local minimums in the objective function.

The evaluation of the gradient based approach using visual perception only, and using
additional prior information, will on one side demonstrate the adverse effect of local minima for
a manipulation task, and on the other side will show the benefits of exploiting prior information
in the very same setting. In this context, the work also addresses the issue of joint position
encoder calibration as these values are the foundation of the exploited prior information.
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Chapter 1

Introduction

1.1 Motivation

Humanoid robots are one of the most versatile robots when it comes to acting in a world with
man-made structures and tools. As such, they are a huge area of research involving multiple
disciplines. Of special research interest is humanoid manipulation using manipulators that
resemble human hands. Manipulators with several degree of freedom (DoF) enable robots to
reuse man-made tools for solving different kind of problems as opposed to being restricted
to task-specific manipulators. Some of the tasks defined for the DARPA Robotics Challenge
2015 (DRC) [1] intended to advance robotic manipulation in this direction by setting a robot in
a rescue scenario that involves the interaction with door handles (Door task), turning valves
(Valve task), connecting a hose to a wye (Hose task) and using a drill to cut a hole in a wall
(Wall task). Since the DRC rules stated that the robot needed to carry all of its manipulators
during each trial, teams were force to use versatile manipulators.

The advantage of having such a generic manipulator comes with the cost of more complex
control. Humanoid manipulation does not only involve the grasping of a tool but also the
continuous control of this tool for the duration of the task. Since grasped tools are only
indirectly connected to the robot’s kinematic chain, additional perceptual information is needed
to estimate and track the actual state of the manipulated object.

1.2 Problem Definition and Research Aim

Humanoid manipulation is a challenging task because of two main reasons: inaccurate forward
kinematics and a changing environment. Inaccurate forward kinematics is mostly caused by
improperly calibrated joint encoders and linkage elasticity. Both issues can only be resolved
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Figure 1.1: Joint calibration issue resulting in offset of
reported pose (solid gray mesh, green marker) from per-
ceived hand pose (coloured point cloud, red marker).

to some extent by e.g. modelling joint position offsets [2] and stiffness coefficients [3]. The
effect of inaccurate forward kinematics is visualised in figure 1.1. Even small deviations in the
reported joint positions propagate through the kinematic chain towards the manipulator and
result in an offset that makes open-loop grasping infeasible. By interacting with objects such as
a valve, the robot needs to compensate the applied force by a whole body motion which likely
changes the pose of the manipulated object in the camera frame.

Both issues are in contrast with open-loop industrial robot applications such as moving parts
in an assembly line, where stiff actuators manipulate objects at defined poses. Using visual
feedback to estimate the configuration of the manipulator and the pose of the manipulated
object could be the key step to enable closed-loop manipulation. In return, visual tracking of
highly articulated manipulators and objects raises interesting research questions itself.

Manipulator tracking The main problem of tracking highly articulated manipulators with
several degrees of freedom is the large variety of their appearance. Using classical object detec-
tion methods on this problem would require an enormous amount of training data containing
different configurations at different lighting conditions. In addition, classification results must
be provided at real-time. On one side, the problem can be simplified in the context where
a robot is observing its own manipulator by using a robot model representation and its joint
encoder values. On the other side, the afore mentioned issue of inaccurate forward kinematics
reduces the utility of these encoder values. The primary aim of this thesis is to investigate the
effect of using visual perception and reported joint encoder values in conjunction, to enable
tracking when either of the two information is not available or inaccurate.
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Object tracking In contrast to the manipulator, we usually have no prior information about
the pose of the object up to the point where the manipulator gets in contact with the object. The
Amazon Picking Challenge 2015 [4] showed that detection and tracking of ordinary consumer
products is still a challenging task. Amongst the 25 products used in the challenge were objects
of varying appearance (e.g. non rigid objects), objects with meshed material (such as bins) and
objects with reflective and translucent material. Classical machine learning approaches that
rely on descriptive keypoint features such as SIFT fail in cases where texture is not available
either because of lighting conditions or material properties. The secondary aim of this thesis is
the investigation of object tracking without texture.

1.3 Outline

The current state of the art will be reviewed in chapter 2 followed by a statement of the
contribution of this thesis. The core properties of the DART algorithm, on which this work
is based on, will be presented and discussed in chapter 3, which also includes the extensions
proposed in this work and the evaluation platform and methods. The extensions to the presented
tracking approach will be evaluated in chapter 4 and compared to the base implementation.
This work will conclude in chapter 5 with a summarized discussion of the results and propose
future work for contributing to the research on articulated manipulator and object tracking.





Chapter 2

Related Work

This chapter is based on a previous literature review and research proposal that have been
prepared for this thesis. The literature review has been extended by recent publications and a
clarification where this work contributes to the current state of the art.

2.1 Sensor Modalities

2.1.1 2D Vision

Early work in this area has been limited to single 2D perception capabilities. Thus, a common
approach was to project known 3D objects into 2D and to compare these with perceived data
from images. Chliveros et al. [5], Teulière et al. [6], Choi et al. [7] and Azad et al. [8] rely
on an exact 3D model of an object for tracking and use a particle filter to maintain multiple
hypotheses of the object’s pose. These hypotheses are projected into a 2D plane (prediction
step) and evaluated at the observation step. At this observation stage, the predicted edges of the
3D model in the 2D plane are compared with the linear edges and shapes extracted from the
actual 2D sensor data. As a positive aspect, these approaches do not require range sensors but
they do require detailed knowledge of the object’s dimensions beforehand and do not exploit
features from colour or texture, excluding Choi et al. which uses SIFT keypoints as initial pose
estimation.

Recent template matching approaches explore special properties of boundary edges. Muños
et al. [9] for example use HOG features (histograms of oriented gradients) to find corresponding
edges between the template and the image. Cao et al. [10] on the other side argue that HOG
features lose pixel-level detail and instead use the cross-correlation between the Laplacian
of Gaussian between templates and image patch. All template matching approaches have in
common that they require a large database with templates of objects in all expected views.



6 Related Work

2.1.2 3D Vision

Single Articulated Objects With the advancement in range sensing and especially the avail-
ability of consumer depth sensors like the Kinect, similar approaches have been extended to 3D
perception. Krull et al. [11] apply a particle filter to estimate the object’s pose in single images
using RGB-D data by maintaining multiple hypotheses of the object pose. The observation
distribution is generated from a discriminative learning method. Using example objects and
an example background image, a random forest automatically learns useful features from the
RGB-D data during a training phase. Once trained, the probability distribution of object class
and coordinate location within the object is obtained for each new image.

The work of Shotton et al. [12] deals with complete body pose estimation and tracking of
body parts. Instead of maintaining pose hypotheses of a single object, complete human skeleton
hypotheses are evaluated. The observation distribution is generated by a discriminative classifier
(random forest) using depth features for classifying 31 body parts. To achieve robustness and
flexibility with their approach, a massive amount of training data is synthetically generated by
rendering a body mesh at different sizes and with different joint configurations using motion
capture. The same combination of random forests and primitive depth features is applied by
Widmaier et al. [13] in a robotic manipulator context. However, they skip the intermediate task
of classifying parts of the robot and instead predict its joint configuration directly.

A similar discriminative approach is used by Sharp et al. [14] to track articulated human
hands. For reinitialisation after tracking loss, the hierarchical distribution of hand poses is
learned by a discriminative approach using synthetically generated training data. Synthetic
depth images are generated by sampling from a prior distribution of global hand translation
and rotations, realistic wrist poses and six predefined finger and thumb states. For finding the
optimal hand configuration, they apply a mixture of particle swarm optimization (PSO) and
genetic algorithms. In particle swarm optimization, particles represent solutions in the search
space whose state is updated by the particle’s own best known solution and by the swarm’s
global best known solution. PSO does not require the gradient of the optimized function.
Particles in PSO represent hypotheses as in particle filters, but their state is updated such that at
least one particle’s state is the global solution, whereas the current global solution of a particle
filter is the expectation of the probability distribution formed by all particles (Monte Carlo
expectation estimation). At tracking loss, these hypotheses are reinitialized by the prediction of
the discriminative method on the new depth input. Each hypothesis of the particle swarm is
evaluated by rendering its state and comparing it with the actual perceived sensor input. To
form the next generation of the particle swarm, particles with bad hypotheses are randomized
and re-initialized.
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Combined Object and Manipulator Tracking Pauwels et al. [15] combined pose detection
for reinitialization with pose tracking using dense motion and the information from depth
data and colour. They rely on sparse SIFT keypoints sampled at equidistant viewpoints to
obtain initial pose estimates and to reinitialize the tracker in case of tracking loss. The poses
are continuously estimated using the shape and dense motion estimates of the object. This
combination of both estimates enables them to cover difficult cases where the objected is
blurred by motion or occluded (figure 2.1). The motion is represented as the optical flow on raw
image data and on images which are augmented by objects rendered at their current estimated
state.

(a) (b) (c)

Figure 2.1: SimTrack: Examples of correct classified object poses. (a) and (b) using dense esti-
mation for small and blurry observations, (c) using sparse keypoints for occluded observations.
(Source: [15], figure 13)

The multi-object tracking in SimTrack was extended for articulated objects [16] by incor-
porating the pose updates into a kinematic chain with constraints. The pose of each rigid part
is estimated independently from each other. The links between parts can be constrained to
define free and static joints. The complete update of the kinematic chain takes into account the
individual pose updates per part and the movement constraints of parts to each other.

SimTrack was further extended for joint object and manipulator tracking [17], where the
manipulator (arm and hand) is considered rigid after the joint values are used to articulate the
model. As the approach relies on inaccurate joint encoder values, only the hand (which is
assumed to be rigidly connected to the object) is tracked. Further, because the robot’s surface
is low textured, sparse features cannot be exploited.

The DART framework presented by Schmidt et al. [18, 19] aims to provide a general
framework for articulated tracking using depth sensors. DART assumes that the articulated
model is given as a set of rigid objects with transformation from the kinematic chain and a
local signed distance function that gives the distance of a point to the hull of the object (and is
negative inside). The optimal joint configuration that minimizes the distance of the model to
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the observed point cloud is recovered by a gradient based optimization approach. Figure 2.2
shows this exemplary for hands and an object in a bimanual manipulation task. Compared to
particle filters, this does not maintain explicit hypotheses but optimizes on the distances.

Figure 2.2: DART: Depth based estimation of robot configuration projected on top of the
perceived RGB image. (Source: [19], figure 2)

2.1.3 Contact Sensors

Schmidt et al. [19] and Koval et al. [20] showed that contact sensing can be used to estimate the
pose of an object or to reject visually proposed poses. Koval et al. [20] manipulated an object
by pushing it over a planar surface and estimated its 2D position on the surface and orientation
solely by contact sensors. They restrict their sensing to 9 strain gauges on the fingers and
the palm of the hand, which only provides boolean information about contact (contact or no
contact). By enhancing a particle filter to prevent particle starvation caused by the discrete
states of the observation, they are able to estimate the position and orientation despite the low
dimensionality of sensing.

As this approach does not scale from 3 DOF (2D position + 1D rotation) to 6DOF poses
in 3D, contact sensing is best applied in conjunction with other sensing to eliminate unlikely
hypotheses as in [19].

2.1.4 Kinematics and Constraints

The work of Schmidt et al. in [18] is extended in [19] to incorporate physical constraints,
namely intersection of the manipulator with the object and contact with the object. If the
manipulated object is rigidly connected to a manipulator, the joint encoder values can be an
important source to improve the object’s pose estimate.
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On the other hand, kinematic chains can be used to constrain estimated configurations to
physically reasonable and likely values and eliminate unlikely hypotheses [12, 14]. Whereas
physical constraints are fixed, e.g. they always hold, kinematic constraints are soft, e.g. unlikely
and unreasonable states might still occur.

2.2 Real-Time Capabilities

All of the particle filtering based approaches trade off the quality of the resulting pose estimation,
as represented by the particles, with real-time constraints. An increasing number of particles
cover a wider range of pose hypotheses but also increase the computation time.

Krull et al. [11] however showed, that using a good proposal distribution can reduce the
required amount of particles to achieve similar results compared to particle filters using generic
distributions with many more particles.

A general and common solution to meet real-time constraints is the parallelisation of
algorithms and offloading of computations to GPUs. Exemplary, the independent state updates
for particles in a particle filter [21] or the independent lookup of shortest distances of points to
multiple models [18] can easily be parallelized.

2.3 Model-based and Model-free

Tracking of rigid or articulated objects usually requires knowledge of the dimensions of the
object or the manipulator beforehand. In contrast, there exist approaches that model manipulated
objects and kinematic chains online during manipulation.

Krainin et al. [22] modelled objects online by tracking the manipulator and the object at the
same time during a grasping task. They address the issue of relying solely on either the object’s
appearance or the manipulator’s joint values. Using only a single source of information can
cause ambiguous and incorrect pose estimates for textureless and symmetric objects with lack
of visual distinctive features. By using multiple sources of information they are able to map
highly symmetric 3D objects with lack of visual features and in presence of noisy joint values.

The issue of faulty or absent of joint encoder values is addressed by Sturm et al. [23]. In
their work, the kinematic chain of an arm is learned from scratch and enables adaptation in
cases of malfunction, e.g. if a joint is blocked or its strength decreases over time. Si et al. [24]
learn the variety of appearance of articulated objects as a hierarchical composition of parts as
AND and OR nodes without providing labels. AND nodes define connection of parts, e.g. torso
and limbs, and OR nodes represent different configurations of the same part. As a result, they
can provide generic configurable templates for articulated objects.
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The availability of accurate CAD models of robots and large online databases of 3D objects
[25, 26] reduces the need to create models of common objects and enables the generation of
huge synthetic training sets for discriminative approaches.

2.4 Features

Discriminative approaches, that learn the appearance of parts [12, 11, 15] or complete poses
[14], rely on manually designed features or keypoints like edges, SIFT [15, 27] or depth features.
In the RGB-D domain, where these features often neglect one of the channels, exploiting all the
information is beneficial. Ren et al. [28] applied kernel descriptor for RGB-D scene labelling
and showed superior performance of RGB-D descriptors compared to RGB or depth only
descriptors.

RGB-D Features and Descriptors Learned features not only provide a way to classify 3D
objects by machine learning algorithms (e.g. SVM), but also provide interest points for pose
estimation by homography.

Gupta et al. [29] combined feature learning on RGB-D data with pixel-wise classification
for segmenting objects in depth data. Object region proposals from contours are classified
by a linear SVM using RGB-D features learned by a Region-based Convolutional Neural Net
(R-CNN). Classified regions are separated in foreground and background pixels using random
forest and low-level features such as the pixel coordinate and depth, distance to ground plane
and gravity vector. The foreground pixels are allocated to superpixel and classified into one of
the many categories.

Blum et al. [30] demonstrated an approach that learns RGB-D features in an unsupervised
manner by convolutional k-means (CKM) around SURF interest points. Similar performance
can be achieved by the hierarchical matching pursuit (HMP) approach [31] in classification
tasks. It was shown that HMP is applicable for pose estimation, achieving appropriable results
for weak-symmetrical objects with unambiguous viewpoints.

Joint Detection In the work of Jain et al. [32], the location of joints in 2D image sequences
are learned from labelled raw image data using a convolutional neural network (CNN) by only
providing simple motion features. These positions can be used to infer a kinematic model of
articulated objects.

Tompson et al. [33] applied a CNN to joint detection using depth data and are able to
estimate the location of occluded parts without the need to provide joint connectivities from a
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kinematic model. They state that the inference of occluded parts is especially enabled by the
hierarchical compound features learned in the CNN.

The spatial relation of compound parts is also exploited by Jiu et al. [34]. By learning a
pixel-wise segmentation of human body parts incorporating spatial relation, the classification
performance is increased with no additional computation costs during testing phase. As with
most deep learning applications, they learn from raw depth data and do not require precomputed
features.

2.5 Conclusion from State-of-the-Art

The majority of the presented work in the field of articulated tracking applies a discriminative
approach to depth sensor data. Because of the high variance in shape and viewpoint of the
tracked objects, a very large amount of training data is required to learn a sufficient distribution
of articulations. If the articulated objects are known beforehand and a large variety of sensor
data is available or can be generated, this is a promising approach.

However, relying solely on either the learned representation of objects or the kinematics of
the manipulator fails in cases of low structured objects (highly symmetric, lack of texture and
visual features), non-reliable sensor data (occlusions, reflection of sunlight, shadows in depth
data, non-IR-reflective surfaces) and noisy or improper calibrated joint encoders.

Tracking and pose estimation of multiple objects is only considered in a small fraction of
the presented work. Most of the presented work focuses either on the tracking of rigid objects
or the tracking of manipulators; or assumes no interaction of tracked objects.

This thesis contributes towards the optimal integration of prior information from joint
position sensing in a setting where a robot is visually observing its own manipulator. We base
our work on the optimization approach presented by Schmidt et al. [18], that in its original
implementation uses solely depth observations to find an optimal robot configuration.





Chapter 3

Methods

The first half of the following chapter introduces the humanoid robotic platform and its depth
perception systems with their individual modalities. The core properties of the applied tracking
approach – the Gauss-Newton optimization algorithm and the signed distance function as its
objective – will be explained in more detail.

The incorporation of prior information and its effect on the optimization is presented in
the second half of this chapter together with the procedure to obtain ground truth data for the
evaluation.

3.1 Robotic Platform

The focus of this work is the application of tracking on humanoid robotic platforms where the
manipulator is observed in a depth camera frame which is part of the robot’s kinematic chain.

3.1.1 Hardware

The applied robot platform is the humanoid robot Valkyrie (figure 3.1) which is developed by
the NASA. It is 1.8 m high and weighs about 125 kg. In total, it is actuated by 58 joints: legs
(2×6), arms (2×7), hands (2×13), neck (3) and torso (3). Hence, the kinematic chain from
the observation frame in the head to the hand frame consists of 10 actuated joints.

The robot will use depth data as its main source of information for estimating the configu-
ration of the manipulator and the object pose. The MultiSense SL stereo camera and LIDAR
depth sensor (figure 3.2a), which is mounted inside the head of the robot, provides two sources
of depth images: (1) stereo matching at 15 Hz, (2) rotating LIDAR which generates a full
scan at 1/6 Hz. An optional structure from light sensor (figure 3.2b), which can be mounted
on top of the head, uses the known location of projected infrared (IR) dots to estimate the
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Figure 3.1: Humanoid robot Valkyrie (Image
credits: NASA)

(a) MultiSense SL

(b) Asus Xtion PRO Live

Figure 3.2: Depth perception systems (Image
credits: (a) Carnegie Robotics, (b) Asus)

depth at these locations. The stereo cameras have their IR filter removed to enhance stereo
matching by providing distinct keypoints from the IR pattern. The LIDAR data is not used for
tracking because of its low update rate. The key properties of both depth sensors are compared
in table 3.1. These properties are used for the back-projection to obtain the original 3D points.

3.1.2 Robot Model Representation

Part of this thesis is the adaptation of DART’s reference implementation to robot model
representations stored in the URDF (Unified Robot Description Format) format. URDF defines
at a minimum a tree structure that resembles the kinematic tree of a robot with its joints and
links. It can additionally provide, among other things, information about joint limits and the
geometric properties of the links. These geometric properties can be defined as primitive shapes
like spheres, boxes or cylinders, or alternatively refer to more complex triangle meshes.

The URDF plugin for DART is designed such that all parts of the kinematic chain that are
connected to a given root frame are tracked. This enables us to neglect robot parts that are
not involved in manipulation. Figure 3.3 shows such a model that is loaded from the torso

frame upwards in the kinematic tree. Hence, it includes both arms, hands and the head with
the sensors. Having all these parts connected through a kinematic chain allows us to track
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MultiSense SL
Stereo Camera

Asus Xtion PRO Live

depth range 0.4 m - 10 m 0.8 m - 3.5 m
FOV 80° × 80° 58° × 45°

resolution 1024×1024 640×480
FPS 15 Hz 30 Hz
fx, fy 556.183 pxl 528.014 pxl
cx, cy 512 pxl (320 pxl, 267 pxl)

b 0.07 m 0.075 m

Table 3.1: Comparison of depth sensors. FOV: field of view, FPS:
frames per second, f : focal length, c: image centre, b: baseline

Figure 3.3: Robot model loaded in DART

both hands in a bimanual grasping task with respect to the camera frame without invalidating
kinematic constraints, such as overrunning joint limits or disconnecting links.

3.2 Signed Distance Function

The description of the signed distance function in this section is a reformulation based on the
work by Schmidt et al. presented in [18].

The signed distance function (SDF) gives the shortest distance of a point in the observed
point cloud to the robot model. It is signed in the sense that the distance is positive if the point
lies outside the model, it is negative if the point is inside the model, and it is zero if the point
lies exactly on the surface of the model. DART uses two kind of SDFs: the model SDF and the
observation SDF.

Using the model SDF, the optimization assigns observed data to the robot model to find
estimates that explain the observation. If a single (global) SDF is used for the articulated robot
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(a) Model SDF
image centre

observation

estimated pose

true pose

(b) Observation SDF

Figure 3.4: Local model SDF and observation SDF (Inspired by [18] figures 3 and 6). (a) Two
parts (gray blocks) connected by a kinematic chain are observed in the camera frame. The
observed data point (red) is assigned to the closest part 2 after querying its distance in each
part’s local SDF. (b) The estimated pose of a part (light gray box) is blocking the line of sight
between the image centre and the observed points. The alternative solution (dark gray box) is
more likely selected as it is not violating the free space constraint.

model, this SDF needs to be computed for each individual joint configuration. For this reason,
the global SDF is broken down into local SDFs for each rigid robot part. To assign points
from the observation to the robot, each data point is queried in each of the robot’s local SDFs
in parallel (figure 3.4a). A data point is then assigned to the mesh with the smallest absolute
distance or it is rejected, if it is too far away from any rigid part.

In addition to considering observed data and the robot model, which is defined as positive
information in DART, the optimization is also using negative information. If a point is observed
in 3D, there cannot be anything in between this point and the camera centre (figure 3.4b). The
observation SDF uses the distance transform on the observation and the estimated configuration
of the model from the model SDF to constrain models to not be in free space.

3.3 Gauss-Newton Algorithm

The Gauss-Newton algorithm is a method for finding the optimal set of parameters p that
minimize the sum of squares of non-linear vector-valued objective functions e(·)

p̂ = argmin
p

N

∑
i=1

[
ei(p)2] . (3.1)

The Gauss-Newton algorithm is derived from the Newton algorithm for finding roots and
extremal points which itself is based on Taylor series expansion. The Newton method for
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finding extremal points of the scalar objective function f (·) is an iterative procedure

xt+1 = xt −
f (1)(xt)

f (2)(xt)
(3.2)

starting at an initial state x0 and using the first- and second-order derivatives ( f (1), f (2)) of the
objective function to converge to a local minimum.

For finding the minimum of a vector-valued function e(·) with respect to a parameter
vector p, the first- and second-order partial derivatives are used. In particular, the first- and
second-order derivatives in equation (3.2) are replaced by the gradient ∇e(p) and the Hessian
∇2e(p) of the objective function e. The partial derivatives of the vector-valued function e(·)
with respect to the parameter vector p are aggregated in the Jacobian matrix J ∈ Ri× j with
elements

Ji, j =
∂ei(p)

∂ p j
. (3.3)

Hence,

∇e(p) = J⊤e(p) (3.4)

H(e) = ∇
2e(p) = J⊤J+∑

i=1
ei(p)∇2ei(p). (3.5)

For small e close to an optimum, the Hessian H(e) can be approximated by

H(e)≈ J⊤J (3.6)

neglecting the second-order derivatives. This approximation is used in the Gauss-Newton
algorithm and the parameter update step then becomes

pt+1 = pt −∆p (3.7)

= pt −H(e)−1 ·∇e(p) (3.8)

= pt −
(

J⊤J
)−1

· J⊤e(p). (3.9)

The parameter update ∆p is proportionally driven by the gradient of the objective function
and scaled by the approximation of the Hessian. Because partial derivatives only consider the
local change of the objective function, these gradient based approaches can only converge to
local minimums.
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3.4 Prior Information

Additional information can be incorporated during the tracking process either indirectly by
shaping the input data on which the optimization is operating on, or directly by biasing the
objective function. In the latter case, additional objective functions are integrated in the Gauss-
Newton algorithm by blending their gradient and Hessian approximation with other objective
functions.

The full parameter vector p in DART contains the 6D pose of the root frame and the N joint
positions:

p =
[
x y z φ θ ψ | q1 · · · qN

]
(3.10)

with x, y, z for the translation, φ , θ , ψ for the orientation in radiant Euler angles, and q1 . . .qN

the individual joint position values.

The position of each joint in the kinematic chain can be sensed directly through its joint
position encoder. We will refer to these internally sensed joint positions as reported joint
positions. The joint positions that are optimised on the external depth observation will be
referred to as estimated joint positions.

3.4.1 Known Frame Pose

As mentioned before, we know that the observation frame is part of the kinematic chain and
rigidly connected to the head frame. Hence, observing this head frame is impossible.

To prevent movement of the head frame in between optimization iterations, the pose update
in the parameter update vector ∆p needs to be null. After the gradients and the Hessians of all
other objective functions have been blended, the resulting gradient and Hessian is recomputed
such that the pose update is removed from the parameter update vector. From equation (3.9)
the current parameter update is computed and its pose update is removed:

∆p =
(

J⊤J
)−1

· J⊤e(p) =
[
0 | q1 · · · qN

]
. (3.11)

This modified parameter update vector is then used to compute a gradient that does not enforce
a change in pose:

J⊤e = J⊤J ·
[
0 | q1 · · · qN

]
. (3.12)

The final merged Hessian and the new gradient are the Gauss-Newton parameters that are
then used to compute the final parameter update.
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3.4.2 Reported Joint Positions

The reported joint positions are used in addition to the observation to constrain the optimization
to possible solutions that are close to the internally sensed state. This is achieved by blending a
joint position based objective function into the SDF based objective function resulting in an
objective function whose minimum is globally determined by the reported state and locally
determined by depth observations. We will also refer to this process as biasing the objective
towards the reported pose.

Two different kind of objective functions have been selected for this purpose which compute
a weighted deviation of the estimated joint configuration q from reported joint configuration
r. The deviation is defined as the L2 norm (∥·∥2) of the difference vector d = r− q. For
all objective functions, ri and qi denote the individual joint positions in their corresponding
configuration vector.

1. Weighted L2 norm of the estimated joint position deviation:

e1 = w · ∥r−q∥2 = ∥w · r−q∥2 (3.13)

= w ·

√
N

∑
i=1

(ri −qi)2 (3.14)

with scalar weight w > 0.

2. Sum of squares of individually weighted joints:

e2 = |r−q|⊤Q|r−q| (3.15)

=
N

∑
i=1

[
(ri −qi) ·

N

∑
j=1

(r j −q j) ·ωi, j

]
(3.16)

with the weight matrix Q ∈ RN×N and its elements ωi, j. As an error metric, the weight
matrix Q must be positive-semidefinite. That is, ∀x ∈ Rn : x⊤Qx ≥ 0.

Whereas the first objective function (equation (3.14)) uses a common scalar weight for
all joint deviations, the second objective function (equation (3.16)) can penalize specific joint
deviations and specific linear combinations of deviations. This enables us to enforce a reported
state onto the estimated state for specific parts of the robot while keeping other parts free to be
optimized by other objective functions.

The gradient and Hessian approximation for the blending process are obtained through
the objective function’s Jacobian as shown equations (3.4) and (3.6). The respective partial
derivatives for the Jacobian are:
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1. Weighted L2 norm of the estimated joint position deviation:

J ji =
∂e1

∂qi
=−w

ri −qi

∥r−q∥
(3.17)

2. Sum of squares of individually weighted joints:

J ji =
∂e2

∂qi
=−

[
N

∑
j=1

d jqi, j

]
+

[
N

∑
j=1̸=i

d jq j,i

]
(3.18)

3.4.3 Observation Filtering

An alternative solution to incorporate the joint position prior into the optimization process is to
filter the depth observations of the observed manipulator. Given the camera parameters and a
robot model that is articulated by the current joint positions, the robot’s parts are projected into
the camera image. For this camera image, a binary mask is storing locations that are occupied
by one of the robot’s parts. This binary mask is further expanded on its borders by a dilation
operation with a rectangular kernel of variable size.

An example of such a manipulator mask and the filtered observation is shown in figure 3.5.
By expanding the mask, the filtered observation includes more related sensor data from the
manipulator itself but also more unrelated sensor data from its surrounding.

3.5 Ground Truth Data Collection

To evaluate the tracking performance and verify the effect of the joint position prior, reference
measurements of the robot state are required. The Vicon motion caption system is selected to
externally track the pose of IR reflective markers rigidly attached to the robot.

3.5.1 Setup

To measure the transformation from the pelvis frame to the left hand palm frame, reflective
markers are rigidly mounted with standoffs at the specific robot frames. The photograph in
figure 3.6 shows the highlighted location of the markers on the pelvis frame (green) and the
leftPalm frame (red).
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Figure 3.5: Projection of manipulator into camera image and filtering with variable kernel
size (b = {0,10,30}pxl). Top row: Original mask (left) in white from projected manipulator,
expanded border (middle, right) in gray, Bottom row: Filtered image at reported manipulator
configuration.
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Figure 3.6: Location of Vicon marker
on pelvis (green) and left hand (red)

3.5.2 Hand Pose

Each group of markers has its own coordinate system with its origin in the centre. The drawing
in figure 3.7 visualizes the transformations between the Vicon world frame, the Vicon marker
frames and the robot frames. The transformations Tw→vp and Tw→vh are the reported poses of
the Vicon marker in the world frame. To obtain the transformation Tp→h, which gives the hand
pose in the pelvis frame, we need to find the rigid transformation between the Vicon marker
and robot frame (Tm→p and Tm→h).

The rigid transformation between marker and robot frames can be obtained by a least-
squares optimization on corresponding points in both frames [35]. Given corresponding points
mi in marker frame and xi in the robot frame, the optimal projection of marker points from the
marker frame into corresponding points in the robot frame becomes

Tx→m = argmin
R,t

1
N

N

∑
i=1

∥xi − (R ·mi + t)∥2 (3.19)

where Tx→m denotes the homogeneous transformation matrix containing the rotation matrix
R and the translation vector t. The points xi in the robot frame are here interchangeable for
points pi in the pelvis frame and hi in the leftPalm frame. In particular, as result of this
optimization we obtain Tp→m and Th→m.
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World Frame

Hand
Marker

Pelvis Marker

leftPalm Frame

pelvis Frame

Tw→vp

Tw→vh

Tm→p

Tm→h

Tp→h

Figure 3.7: Transformations between Vicon mark-
ers (pelvis - green, hand - red) and robot frames

The pose of the pelvis and leftPalm frame in the Vicon world frame can be expressed
by the transformations

Tw→p = Tw→vp ·Tm→p = Tw→vp ·T−1
p→m (3.20)

Tw→h = Tw→vh ·Tm→h = Tw→vh ·T−1
h→m. (3.21)

The transformations between these robot frames then finally becomes

Tw→h = Tw→p ·Tp→h (3.22)

Tw→vh ·T−1
h→m = Tw→vp ·T−1

p→m ·Tp→h

Tp→h =
(
Tw→vp ·T−1

p→m
)−1 ·Tw→vh ·T−1

h→m. (3.23)

Given the transformations of the Vicon markers (Tw→vp and Tw→vh) at each time instance,
and the rigid transformation between robot frames and their attached markers (Tp→m and
Th→m) we can recover the ground truth pose of the hand in the pelvis frame (Tp→h) using
equation (3.23).

3.5.3 Joint Position Offset Calibration

The availability of a ground truth transformation within the robot kinematic chain enables us to
compare the reported hand pose from forward kinematics with the measured hand pose and
further, calibrate the joints in the kinematic chain such that this deviation is minimized.

To minimize the joint position deviation and to obtain correction offsets, the same opti-
mization approach as described in [2] is applied. That is, given a correction function that
maps a reported joint position value to its corrected value, fcorr : qrep,i 7→ qcorr,i, and a mapping
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from this joint space configuration to the task space pose of the manipulator using forward
kinematics, φ : q 7→ p, with the pose p ∈ SE(3), the optimal correction parameters can be found
by minimising

e =
1
N

N

∑
i=1

∥φ ( fcorr(qrep,i))−pi∥2 (3.24)

for N samples, respectively poses. The average error is selected over the summed error to have
comparable costs between varying lengths of sample sequences.

Two correction functions fcorr have been selected. The constant correction

fcorr(qrep) = qrep +qo f f set (3.25)

assumes a constant offset that is independent from the reported joint position value itself. Here,
only one parameter per calibrated joint has to be optimized. A linear correction function

fcorr(qrep) = m1 ·qrep +qo f f set (3.26)

assumes an additional relation to the reported joint position value itself. In this case twice as
many parameters need to be optimised.

To prevent overfitting of the optimized correction parameters on the data set, the optimiza-
tion result must be applied to a dedicated test set that has not been used for optimization. This
is especially the case for more complex correction functions.
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Evaluation

The articulated tracking approach and the incorporation of prior information is evaluated on
two different data sets. The data set for the first experiment contains depth observations from
a manipulator that is moving close to a table and an object. This experiment will be used to
compare different approaches to incorporate prior information in the tracking process.

The data set for the second experiment contains stereo camera observations of the manip-
ulator at different viewing angles without nearby objects. This data set additionally contains
ground truth hand poses that were measured by the Vicon system. The main purpose of this
experiment is the comparison of the estimated hand pose with the measured ground truth.

4.1 Experiment 1: Incorporating Prior Information

This section will evaluate the application of prior information in a setting where a robot
hand moves close to an object and a table. Two sources of depth information are considered:
enhanced stereo matching using IR dot projection (denoted as stereo) and structured light
(denoted as xtion as in Asus Xtion).

4.1.1 Hypotheses

In the base implementation of the assessed tracking approach, its gradient is determined by
the signed distance function. Hence, the optimization is driven by the observation once the
iteration is initialized with the reported state. Using additional information that effects the
gradient can improve the state estimation by driving it away from distracting observations.

Hypothesis 1 (Distracting sensor readings)
Distracting sensor readings will impair the tracking performance of the manipulator.
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Hypothesis 2 (Use of prior information)
Using prior information will reduce the negative effects of distracting sensor readings. Increas-
ing weights will further decrease the dependency on the sensor readings.

4.1.2 Setup

A robot was placed in front of a table with a bottle on it. The left hand was moved from close
to the table plane towards the object. Once the object is pushed, the hand moved up and back
to its initial position. The setup, as it is perceived by the robots stereo vision in the initial state,
is shown in figure 4.1.

(a) Point cloud and reported robot state (b) View from left camera

Figure 4.1: Experiment 1: Setup with robot in front of table. Initial state where manipulator is
observed close to table plane.

The motion sequence is divided into 5 states which change by 4 movements. The movement
phases are defined in table 4.1. Two of the phases define movements of the manipulator away
from objects after being in contact with them. These phases are highlighted in the table and in
the plots.

The perceived point cloud of the first three states and the final state are shown in figure 4.2.
Especially the movement phases 2 and 4, respectively movements starting in states shown in
figures 4.2a and 4.2c are of interest.

During the movement, depth data is collected simultaneously from the MultiSense stereo
sensor and the Asus Xtion structured light sensor. Hence, the stereo block matching benefits
from the distinctive IR dots.
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time (s) movement description
1 0. . .3 arm resting on table
2 3. . .10 upward from table
3 10. . .20 towards object
4 20. . .30 away from object
5 30. . .35 downward towards table

Table 4.1: Phases of arm movement in experiment 1. Highlighted rows emphasise movements
away from objects like the table or bottle.

(a) start (t=0) (b) moved upwards (t=10) (c) object contact (t=22) (d) end (t=35)

Figure 4.2: Sequence of states between movements in experiment 1 (time in seconds)

4.1.3 Results

For this experiment, we are interested in the deviation of the estimated state from the reported
state. This will allow us to (1) see how the estimation on the observed point cloud is deviating
from its initial reported pose, and (2) investigate the effect of the prior objective compared to
the base signed distance objective. We will refer to this deviation as error.

The error in joint and task space is computed as L2 norm (Euclidean distance) of its compo-
nents and plotted over time. In joint space these components are the left fingers (13 DoF: 3 ×
leftIndexFingerPitch, 3 × leftMiddleFingerPitch, 3 × leftPinkyPitch, 3 × leftThumbPitch and 1
× leftThumbRoll) and the left arm (7 DoF: leftShoulderPitch/Roll/Yaw, leftElbowPitch, left-
ForearmYaw, leftWristRoll/Pitch). In task space, the 3D position (x,y,z) and the 3D orientation
(roll, pitch, yaw) of the left hand (frame: leftPalm) are computed via forward kinematics on the
reported and estimated robot configuration.

Joint Prior Objective with Common Weight

The following plots compare the joint and task space errors for the two depth sources for
common weights in the range 0 to 5. The common weighting scheme Weighted L2 norm of
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Figure 4.3: Close points from the table plane
are associated to the fingers (solid gray mesh).
Using solely the signed distance as objective,
the gradient based optimization finds a local
minimum in regions with dense sensor readings
close the initial reported state (red wired mesh).

joint position deviation (objective function equation (3.14)) is applied. A weight of 0 indicates
that no prior is used at all.

Stereo Figure 4.4 compares the joint space error for left fingers and arm. For both parts,
after the optimization reaches the steady state, the maximum error is reached when no prior
information from the reported configuration is used. In this case, the configuration is solely
optimized using the distance to the observed point cloud. If the manipulator is close to a
large concentration of points, the optimization will relate these readings to the manipulator
(figure 4.3). The general trend is that the error decreases with increasing weight. This is not
true for the arm movement in the second half of phase 4 (t = [20,30]), where weights of 0.2
and 0.5 result in larger errors compared to no prior.

The largest decrease in error can be seen for the finger joints when using already a small
weight of 0.2. A similar effect is not present for the arm joints. This is presumably because
the robot can only observe the lower part of its arm and hence the arm configuration is mostly
determined by its initial state close to the reported state.

As the hand position and orientation only depends on the arm configuration but not the
finger configuration, we expect some relation between the joint error of the arm and the pose
error on the hand frame. We can see this relation, when comparing the joint space error for
the arm in figure 4.4b and the hand pose error in figure 4.5. In particular the error increases in
phases where the hand moves upwards and when it moves away from the object (phases 2 and
4). The position error can be reduced significantly when using a prior with low weight (0.2),
whereas the orientation error reduces only when using prior weights larger or equal than 0.8.
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(a) finger joints
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(b) arm joints

Figure 4.4: Joint space error for finger and arm joints (Exp. 1, stereo data). The finger joint
deviation (a) can already be reduced by a weak bias towards the reported pose (0.2, 0.5), while
the arm joints (b) require a higher weight (≥ 0.8).
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(a) position error
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(b) orientation error

Figure 4.5: Task space error for left hand pose (Exp. 1, stereo data). (a) The hand position error
can already be reduced by minimal weighting of the prior objective. (b) Small weights actually
increase the error and higher weights of at least 0.8 are required to enforce the reported pose.

Asus Xtion Using the structured light sensor Asus Xtion, the behaviour of decreasing error
with increasing weight is comparable to that seen for the stereo matching sensor. Similar to
the stereo sensor (figure 4.4a), the error on the finger joints reduces significantly when using a
small weight of 0.2 (figure 4.6a). In contrast to the small errors on the arm joints when using
stereo in the phase of moving towards the object (figure 4.4b), the error in this phase when
using the Xtion sensor is fairly large for no and low weighted prior (figure 4.6b).

As before, the hand pose error is only effected by the arm joint errors and thus the hand
position error shown in figure 4.7a is large in the same moving phase close to the object. For
using the structured light sensor, a common weight of at least 2 is required to drive the solution
towards the reported hand position.
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Figure 4.6: Joint space error for finger and arm joints (Exp. 1, xtion data). Comparable to
stereo data set, the finger joint deviation (a) is already reduced by small weights.
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(b) orientation error

Figure 4.7: Task space error for left hand pose (Exp. 1, xtion data). The pose error on this data
set has a different characteristic than on the stereo data set. Large weights above 2 are required
to enforce the reported pose.

Joint Prior Objective with Individual Weights

Individual weighting is applied to stereo depth data only. This weighting scheme enables us
to weight each combination of joint deviations separately as defined by equation (3.16). For
simplicity, only single joint deviations are weighted. That is, the weight matrix Q will be a
diagonal matrix where only the diagonal elements qi,i will be defined.

In this scenario, the two palm joints (leftWristRoll and leftWristPitch) that connect
the hand with the arm are weighted with increasing weights, while the remaining joints are kept
constant at either low weights (0.2 for finger joints, 0.2 for remaining joints) or kept constant
at normal weights (0.2 for finger joints, 1.0 for remaining joints).

Because we specifically weight both palm joints, the joint space error of the finger and the
arm joints are effected in different ways (figure 4.8). While the arm joint error reduces with
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increasing palm weight, the finger joint error actually increases. The reason for this is that both
palm joints, as part of the arm kinematic chain, determine the pose of the hand palm. While the
hand pose is biased towards the reported pose by the prior, the fingers do not benefit from this
prior information to the same extent.
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Figure 4.8: Joint space error for individual weighting (Exp. 1). Weights on palm joints are
increased (1, 5, 25) while remaining joints are kept constant at low weights (a,b) or at normal
weights (c,d). Finger joint errors (a,c) increase with increasing palm weights, while arm joint
errors (b,d) are reduced.

The task space error (figure 4.9) is similarly related to the weight of the palm joints as the
arm joint error. By particularly enforcing the reported position on two joints, the hand pose
error is reduced while avoiding overshooting effects as seen when applying common weights
to all joints.

Self-Observation Filtering using Joint Prior

An alternative to using prior information in the optimization is to use prior information to
provide the optimization with relevant data. In this sense, the reported state of the robot is used
to filter its observation to only contain points close to the predicted location of the manipulator.
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Figure 4.9: Task space error for individual weighting (Exp. 1). Weights on palm joints are
increased (1, 5, 25) while remaining joints are kept constant at low weights (a,b) or normal
weights (c,d). The hand pose error is reduced in each case for increasing palm weights.
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The filtering of observed data is achieved by projecting the manipulator into the field-of-
view of the robot’s perception system. Each point in the disparity image that is occupied by one
of the robot’s projected parts is kept while all remaining values are removed. This filtered region
can be further expanded on the borders of the self perceived parts. Figure 4.10 demonstrates
the filtered perception on stereo data for three different values for the border expansion.

(a) normal mask (b) expanded by 10 pxl (c) expanded by 100 pxl

Figure 4.10: Point cloud filtering by self-observation with different expended regions.

In comparison to the joint position prior applied to the objective function, the joint and task
space errors for self-observation filtering are given in figures 4.11 and 4.12. The error is again
given as the deviation from the reported pose, however the joint position prior is not used in the
optimization and hence, the solution is not directly driven towards the reported configuration.

As it can be easily seen for the joint space error in figures 4.11a and 4.11b, there is an
individual optimal value for the region expanding that minimizes the error for the finger
joints (20) and the arm joints (150). While the finger joint deviation in the optimal expanded
case is larger than the joint deviation using small weights (figure 4.4a), the optimal arm
region expansion achieves similar results compared to the joint prior with weights around 1
(figure 4.4b).

For large expansions of the self-observation mask (200), the hand position error in fig-
ure 4.12a behaves similar to the case where no prior is used on the unfiltered observation
(figure 4.5a). Further, in phases of contact with surrounding objects a smaller region expansion
is preferable over larger borders. The reason for this is that large self-observation masks will
include nearby objects, which again will distract the optimization without prior. A larger
region expansion is preferable in phases where the manipulator is moving in free space (time
between highlighted phases). The hand orientation error behaves similar to the arm joint error,
in particular an optimal region expansion (150) emerges and larger region expansions are
favourable in general.
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Figure 4.11: Joint space error for filtered perception (Exp. 1). Individual border expansions
emerge for minimizing finger joint deviation (20) and for minimizing arm joint deviation (150).
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Figure 4.12: Task space error for filtered perception (Exp. 1). Smaller border expansions are
preferable over large borders in phases where the manipulator is close to objects (highlighted).

4.1.4 Interpretation

With the signed distance as the only objective function, the optimization is driven away from
the reported state, with which it is initialized, whenever nearby but unrelated depth data is
assigned to the robot model. Hence we conclude that hypothesis 1 is true. By augmenting the
objective function with an objective related to the reported state as the reference, this effect can
be reduced.

Across all weighting schemes and depth sources, we can see that weighting in respect to
the deviation from the reported pose: (1) reduces the deviation of finger joint positions over the
whole sequence of the trials by already choosing a small prior weight, (2) contributes most in
movement phases that follow states where the manipulator is in contact with the scene (table,
object). The application of individual weighting of joint deviations showed that by selecting
specific joints, the task space error can be reduced while keeping the flexibility of preferring
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other objectives for the remaining parts of the robot model. For both assessed weighting
schemes, it turned out that weights need to be chosen carefully to prevent overshooting on the
reported state and hence the oscillation of the estimate state. Neglecting the issue of oscillating
around the optimum, hypothesis 2 is also considered to be verified.

The self-observation filtering of the perception showed that using prior information to shape
the input to the optimization also counteracts the issue of distracting observation. By using
prior information to filter relevant data, the reported robot state only indirectly improves the
optimization result. The decoupling of the optimization from the reported joint values prevents
cases of overfitting on the reported state by limiting the bias from prior information.

The assessed prior information is by design only applicable to the robot model. The tracked
object remains to be driven by the signed distance function and hence relies on relevant depth
data assigned to the object model.

4.2 Experiment 2: Ground Truth Comparison

An experiment was conducted that contains depth data measurements from the manipulator
alone, without distracting depth readings nearby. As in the previous experiment, forward
kinematics on the reported and estimated joint configuration was used to obtain the pose of the
manipulator in task space. Additionally, the Vicon system introduced earlier provides ground
truth data of the hand palm pose.

4.2.1 Hypotheses

The experiment has been designed to (1) apply the tracking of the manipulator in a scene
without distractions, and (2) to compare the reported and estimated robot configuration with
the ground truth poses reported by the Vicon tracking system.

Without distracting sensor readings, we expect that the use of the joint position prior will not
have a strong impact on the deviation from the reported robot configuration. If the manipulator
is fully observed in the depth data, tracking the manipulator should result in a hand pose close
to the true hand pose which itself should coincide with the reported hand pose.

Hypothesis 3 (No effect of joint position prior)
There is no significant effect of applying a joint position prior on observations containing solely
the manipulator.

Hypothesis 4 (Matching hand pose)
Reported and estimated left hand poses agree with the measured hand pose.
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4.2.2 Setup

The robot is placed in a nominal position and its manipulator moves from this state into the field
of view of the camera (figure 4.13). To observe the manipulator and its fingers from different
perspectives, the hand and the fingers are actuated by a certain degree. The data set is therefore
divided into two parts: arm movement (experiment 2a), where mainly the shoulder and the
forearm joints are actuated, and finger movement (experiment 2b) where all fingers are actuated
at the same time. During the complete experiment, Vicon markers are attached to the pelvis
and backside of the palm to track the orientation of both robot frames (figure 3.6).

Figure 4.13: Experiment 2: Setup in which
a robot is observing its own manipulator.

Experiment 2a: The arm movement sequence contains three movement phases (table 4.2) of
which 3 final states are depicted in figure 4.14.

time (s) movement description
1 0. . .50 no movement, hand in lower camera view
2 50. . .54 arm movement up
3 85. . .90 hand palm turning up (forearm joint)
4 125. . .130 hand palm turning down (forearm joint)

Table 4.2: Phases of arm movement (Exp. 2a)
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Phase 2 (t=55s) Phase 3 (t=91s) Phase 4 (t=132s)
(facing towards robot) (facing up) (facing down)
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Figure 4.14: Experiment 2a (arm movement): Sequence of states in which the manipulator is
observed from different viewing angles. Upper row: camera image, Middle row: point cloud
observation, Lower row: reported state.
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Experiment 2b: The finger movement sequence contains 7 movement phases in total (ta-
ble 4.3) of which 6 states are depicted in figure 4.15.

time (s) movement description
1 0. . .30 no movement, palm facing towards camera
2 30. . .33 fingers closing 25%
3 56. . .59 fingers closing 50%
4 72. . .75 fingers opening
5 100. . .104 hand palm turning up (forearm joint)
6 127. . .130 fingers closing 25%
7 147. . .150 fingers closing 50%
8 156. . .159 fingers opening

Table 4.3: Phases of finger movement (Exp. 2b)

Both data sets show that due to self-occlusion, the manipulator cannot be fully observed
within a single observation. In states where the palm is facing down, the Vicon marker can be
observed in the point cloud data.

4.2.3 Results

The shown errors are the L2 norm of the joint and task space errors as defined in section 4.1.3.
The common weighting scheme Weighted L2 norm of joint position deviation (objective function
equation (3.14)) is applied for the joint position prior when comparing different weights. Time
and durations are given in seconds.

Joint Space Error

The joint space error for both sequences is shown separately for finger and arm joints in
figures 4.16 and 4.17. It can be noticed that increasing prior weights reduces the joint position
deviation in the case of less distracting observations. However, the effect is not as significant as
it is for observations with distractions due to close solutions after proper initialisation.

In states where the palm is facing towards the camera and large continuous hand parts can be
observed, the tracked configuration of the arm is already so close to the reported configuration,
that an additional joint position prior has no effect. This is the case after phase 2 for the arm
movement data set (55 ≤ t ≤ 84) and phase 5 for the finger movement data set (t ≥ 105).
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Phase 1 (t=19s) Phase 2 (t=33s) Phase 3 (t=61s)
(opened) (closed ∼ 25%) (closed ∼ 50%)
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Phase 5 (t=105s) Phase 6 (t=133s) Phase 7 (t=152s)
(opened) (closed ∼ 25%) (closed ∼ 50%)
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Figure 4.15: Experiment 2b (finger movement): Sequence of states in which the fingers are
close to certain degree (order from left to right: open, closed ∼ 25%, closed ∼ 50%). Upper
sequence: Hand palm facing down, Lower sequence: Hand palm facing towards robot. In
each sequence: Upper row: camera image, Middle row: point cloud observation, Lower row:
reported state.
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Figure 4.16: Experiment 2a: joint space error
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Figure 4.17: Experiment 2b: joint space error

Task Space Error

To evaluate the task space error, we compare the reported and the estimated hand pose with the
hand pose measured by the Vicon tracking system. The shown errors are the L2 norm of the
3D pose and 3D rotation difference from Vicon pose to the reported and estimated pose.

The error plots in figures 4.18 and 4.19 compare the effect of prior weighting on the
estimated configurations against the reported configuration (which is not effected by the prior).
Comparison plots for the task space error on the reported and on the estimated pose without
prior are shown separately for a clearer distinction.

The following general statements can be made: (1) neither the reported nor the estimated
hand poses agree with the Vicon hand pose, (2) the reported hand pose is closer to the Vicon
hand pose than the estimated hand pose for most of the duration.

From both data sets it can be noticed that the estimated pose is closer to the Vicon pose in
the same states where the joint deviation from the reported configuration is small. In particular
the orientation error drops significantly in these states where large portions of the palm are
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Figure 4.18: Experiment 2a: Hand pose error of the reported and estimated robot state compared
to the Vicon hand marker pose.

observable (arm movement: 55 ≤ t ≤ 84, finger movement: t ≥ 105). In contrast, the error
increases when the manipulator is observed from the side, e.g. when fingers are occluding each
other (arm movement: t ≥ 132, finger movement: t ≤ 104).

4.2.4 Interpretation

Tracking with manipulator-only observed data showed that there is still an effect of using prior
information. However, this effect is not as significant as in distracting scenes and it is minimal
in states where large portions of the manipulator can be observed from a single observation.
The performance of the tracking and hence the effect of prior information is view dependent.
Prior information is still useful for inconclusive observations, e.g. self-occlusion. Despite this,
hypothesis 3 is considered as true.

The observation of the Vicon marker in the depth data of the manipulator, e.g. when the
hand palm is facing down, is not examined in this evaluation. These markers are required
to obtain the ground truth data but they certainly provide readings that could distract the
optimization.
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Figure 4.19: Experiment 2b: Hand pose error of the reported and estimated robot state compared
to the Vicon hand marker pose.

An interesting result from this evaluation is that neither the reported nor the estimated hand
pose agree with the Vicon hand pose. The measured discrepancy of reported position and
Vicon marker position is at least 1.5 cm. Using a strong prior in such scenario thus can only
provide an optimal solution to some extent, e.g. as long as the reported configuration is closer
to the true configuration than the estimate. Hypothesis 4 is considered as not verified and needs
further investigation.

4.3 Joint Calibration

The data set collected in the previous experiment in section 4.2 will be used to investigate the
issue of mismatching hand poses of the reported and estimated state from the Vicon hand pose
that is considered as ground truth.
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4.3.1 Hypothesis

Under the assumption that the tracking obtains the true robot configuration, that is the estimated
hand pose agrees with the Vicon hand pose, the joint position discrepancy (1) from reported
configuration to configuration at Vicon pose, and (2) from reported configuration to estimated
configuration, should be similar.

Hypothesis 5 (Matching joint offset)
The individual joint position deviations from reported configuration to Vicon configuration and
to estimated configuration are similar.

4.3.2 Results

The individual arm joint position offsets for the arm movement and finger movement data
sets (figure 4.20) show that the discrepancy of estimated to reported joints position is not
constant over time. Considering that the hand is directly connected to the forearm by two joints
(leftWristRoll/Pitch), it is interesting to notice that leftWristPitch does not have a
discrepancy to the reported joint position value, whereas leftWristRoll changes significantly
over time.

Table 4.4 summarizes the offsets for the estimated (dart, averaged over time) and reported
(vicon, optimized on pose) joint position offsets. As the manipulator tracking considers
the kinematic chain from image centre to palm and the Vicon marker pose gives the final
transformation for the kinematic chain from pelvis to palm, the arm joints are the common
joints whose offsets are considered for comparison. The correlation between the averaged dart
offsets and vicon offsets are given as 0.3366 for the arm data set and 0.1054 for the finger data
set.
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Figure 4.20: Individual offsets of reported joint configuration to DART’s estimated joint
configuration
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joint positions offsets
arm data set (Exp. 2a) finger data set (Exp. 2b) complete

joint name dart vicon dart vicon vicon
torsoYaw 0.00059 −0.00118 0.01319969
torsoPitch 0.01166 0.00554 0.01062786
torsoRoll 0.00510 0.00195 −0.00483674
leftShoulderPitch −0.05627 0.01258 −0.01713 0.02658 0.00461001
leftShoulderRoll −0.12866 0.00288 −0.11559 −0.01822 −0.0095907
leftShoulderYaw −0.00503 0.01045 −0.09895 −0.01157 0.03021091
leftElbowPitch 0.14880 0.00818 0.08986 0.02588 0.00446155
leftForearmYaw −0.16338 0.00166 −0.08339 0.01627 0.00580287
leftWristRoll −0.18549 0.01169 −0.35942 0.01820 0.02037348
leftWristPitch 0.00620 0.01953 0.00195 −0.00389 0.02790135

Table 4.4: Joint position offset for kinematic chain pelvis to leftPalm for reported joint position
values. Estimated offsets in column dart, reported offsets in column vicon for each data set.
The last column contains the offsets that have been optimized on the entire data set.

To assess the quality of fitting the correction function fcorr(·) onto the arm movement and
finger movement data set, two functions are fitted each on either of the data sets and tested on
the other data set. The correction functions that map the reported joint position to the optimal
joint position are the constant mapping (equation (3.25)) with one parameter per joint and the
linear mapping (equation (3.26)) with two parameters per joint.

The training and test errors are the costs of the objective function given the optimal
parameters on the training and test set respectively. The comparison of these training and test
errors on both data sets (table 4.5) indicates overfitting on the finger movement data set (test
error is larger than training error) for both functions. This is likely caused by the small range of
arm movement during the finger movement data set. Because training and test error are reduced
equally when using the more complex linear correction function on the arm movement data
set, we can conclude that a more complex relation represents the calibration issue more precise
without overfitting. A constant joint position offset presumably does not model all underlying,
and probably non-linear, issues.

joint position offset
data set constant linear

training set test set training error test error training error test error
arm finger 0.0487 0.0260 0.0447 0.0217

finger arm 0.00853 0.06859 0.00458 0.06636

Table 4.5: Training and test error for calibration using a constant and linear offset.
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Figure 4.21: Reported hand pose error after applying joint position offsets that have been
optimized on the complete Vicon data set. Top row: arm movement data set, Bottom row: finger
movement data set.

After applying the constant offsets optimized on the entire data set (last column in table 4.4)
to the reported pose, the new reported hand pose error is reduced by usually more than 1 cm
(compare figures 4.18 and 4.19 with figure 4.21). The effect of applying the offsets are
additionally visually verified by comparing the robot state with the the perceived state from
LIDAR data of the arm movement data set (figure 4.22) and an additional grasping data set
(figure 4.23). Note that despite the shown pose in the grasping data set (figure 4.23, left) has
not been included in the optimization, the application of the offsets results in a hand pose that
is closer to the perceived point cloud (figure 4.23, right).
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reported configuration corrected configuration

Figure 4.22: Overlaying the robot state before (left) and after (right) applying joint position
offsets on LIDAR data from the arm movement data set. The corrected pose shows a closer
match to the observed state. The colour brightness of the data points indicate their distance to
the LIDAR sensor.
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reported configuration corrected configuration

Figure 4.23: Overlaying the robot state before (left) and after (right) applying joint position
offsets on stereo depth data from a grasping experiment. Although these poses have not been
considered for optimization, the corrected state after applying offsets shows a closer match to
the observed state.

4.3.3 Interpretation

The comparison of joint offsets estimated by the tracker and optimized on the reported Vicon
marker showed no correlation. Furthermore, time elapse of the estimated offsets revealed
no systematic discrepancy from the reported joint position values. Hypothesis 5 is therefore
considered as not verified. However, the offset optimization on the ground truth poses has
shown that the reported hand pose error can be reduced by a constant individual joint offset.





Chapter 5

Conclusion

5.1 Discussion

This thesis motivated research on articulated tracking for humanoid manipulation by introducing
issues that make open-loop manipulation currently infeasible. One of the solutions towards
closed-loop manipulation using visual feedback has been presented and investigated.

The presented gradient based approach is generally applicable to articulated models and
has been applied to manipulator and object tracking. The advantage of this approach is its
simplicity: it only requires a model and raw depth data, and allows the straightforward extension
of the objective function. It has been shown, however, that using the signed distance function
alone results in local minima caused by depth readings from nearby objects.

Motivated by the application of manipulator tracking when the manipulator is connected
by a kinematic chain to the camera frame, the main contribution of this work has been the
justification and evaluation of incorporating prior information into the tracking process. Two
principally different ways have been presented: (1) biasing the objective function towards the
reported joint positions, and (2) filtering the perception to only include relevant information for
the optimization process.

The experiments have shown that exploiting prior information is beneficial for acquiring
more accurate estimates of the manipulator pose. However, comparisons with the ground truth
data also revealed that there is actually an offset between the reported and the measured hand
pose. In these circumstances, the application of a prior and the choice of weights must be
critically examined. A solution to this dilemma has been presented by optimizing joint position
offsets using the measured ground truth hand poses.
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5.2 Future Work

5.2.1 Manipulator Tracking

Using the prior information is a step towards more reliable manipulator tracking. But we can
only take full advantage of this, if the sensed joint state is as accurate as possible. We further
showed that selecting appropriate weights is not a straightforward task. For the robust and
useful exploitation of joint position prior in the optimization, the following research questions
have been identified.

Calibration The preliminary analysis of joint position offsets should be further investigated
to provide valuable information of the true robot state. This should be done in a similar fashion
as presented. In particular, different complexity of correction functions need to be evaluated by
cross validation on a larger data set containing a wide range of arm configurations.

Additionally, the Vicon marker on the hand provide distinctive key points in the perceived
depth data to align the camera frame with the then calibrated hand frame. This should further
reduce discrepancies between manipulator and observation frame.

Weights Different weighting schemes and weights have been evaluated. Given the ground
truth pose, choosing a weighting scheme and appropriate weights can be automatised by
learning the optimal combination of objective functions.

Optimization So far, only the Gauss-Newton method has been used for solving the non-linear
least-squares problem. Like all gradient based methods, this optimization method faces the
before mentioned problem of local minima. Alternative global optimization approaches like
particle swarm optimization or simulated annealing should be investigated. Global optimiza-
tion methods consider multiple solutions to the optimization problem spread over the whole
parameter space. Hence, they do not suffer from locally bounded information.

5.2.2 Object Tracking

Object tracking cannot benefit from prior information provided by the robot and thus suffers
most by distracting or missing raw sensor readings. We propose to use depth specific features
that have been successfully applied to this task instead of using probably noisy or incomplete
raw data. Similarly, the learned combination of primitive depth features can also provide a
solution to this problem. In general, the object tracking problem should be considered as a
one-shot classification problem using discriminative methods instead of iterative convergence
using gradient based methods.
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Appendix A

Joint Prior Derivation

This chapter contains the derivation of the joint position prior used for the Jacobian in the
Hessian approximation and the gradient for the Gauss-Newton algorithm.

A.1 Weighted L2 Norm of Deviation

A.1.1 Objective Function

e = w · ∥r−q∥2 (A.1)

= w ·

√
N

∑
i=1

(ri −qi)2 (A.2)

A.1.2 Partial Derivatives

For simplicity we substitute

d = r−q (A.3)

e = w ·
√

ss (A.4)

ss =
N

∑
i=1

d2
i . (A.5)
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Derivation by chain rule:
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A.2 Individually Weighted Deviations

A.2.1 Objective Function

e = |r−q|⊤Q|r−q| (A.8)

=
N

∑
i=1

[
(ri −qi) ·

N

∑
j=1

(r j −q j) ·ωi, j

]
(A.9)

A.2.2 Partial Derivatives

For simplicity we substitute

d = r−q. (A.10)
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We write the nested sums out

e =d1 · (d1q11 +d2q12 + · · ·+dnq1n + · · ·+dNq1N)

+d2 · (d2q21 +d2q22 + · · ·+dnq2n + · · ·+dNq2N)

+ · · ·
+dn · (d1qn1 +d2qn2 + · · ·+dnqnn + · · ·+dNqnN)

+ · · ·
+dN · (d1qN1 +d2qN2 + · · ·+dnqNn + · · ·+dNqNN) (A.11)

and apply the sum and chain rule for derivation:
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∂qi
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∂di
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∂di
(A.12)
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∑
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d jqi, j

]
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[
N

∑
j=1̸=i

d jq j,i

]
(A.14)

The range notation j = 1 ̸= i denotes that index j iterates [1,N] but skips index i. If Q is
symmetric, the final partial derivative can be written and implemented as a dot product of the
vector d and column- respectively row vectors of Q.





Appendix B

Vicon Frame To Robot Frame
Transformations

This chapter aggregates the position of the Vicon markers in each marker frame and robot frame.
Coordinates are listed in their corresponding order and given in meters. The transformation
from robot frame to marker frame is estimated using least-squares on the objective function
defined in equation (3.19).

B.1 Pelvis

B.1.1 Marker Position

Vicon marker in marker frame:

M = 0.001 ·


42.43020 0.38291 −75.74550
36.80328 0.23377 −16.98103

−24.30613 −119.75513 47.44633
−54.92734 119.13845 45.28020

 (B.1)

Vicon marker in pelvis frame:

P =


0.1674 0 −0.2015
0.1674 0 −0.14053
0.1087 −0.1194 −0.0717
0.0837 0.1194 −0.0717

 (B.2)



60 Vicon Frame To Robot Frame Transformations

B.1.2 Transformation

Tp→m =


0.99610 0.02143 0.08560 0.13180

−0.02129 0.99977 −0.00259 0.0
−0.08564 0.00075 0.99633 −0.12136

0 0 0 1

 (B.3)

B.2 Hand

B.2.1 Marker Position

Vicon marker in marker frame:

m = 0.001 ·


8.18111 −46.51067 −9.48950
2.60155 −14.01778 14.08099

−5.18721 32.79453 −37.71204
−5.59546 27.73392 33.12054

 (B.4)

Vicon marker in leftPalm frame:

P =


−0.0592 0.103172 0.02345
−0.0605 0.0629 0.02345
−0.06 0.054 −0.046
−0.0605 0.0173 0.0143

 (B.5)

B.2.2 Transformation

Th→m =


−0.98248 −0.18444 −0.02682 −0.06005

0.16571 −0.79859 −0.57861 0.05934
0.08529 −0.57291 0.81516 0.0038
0 0 0 1

 (B.6)
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