

A framework for en masse network security
evaluation and network flow analysis for the Internet

of Things era.

Nikolaos Tsirigotakis

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2016

i

Abstract
The transition from an Internet of inter-connected computers operated by people, to an

era of inter-connected autonomous devices is inevitable. This new era of Internet of

things (IoT) is characterised by rapid expansion while the main aspect of IoT is the use

of several standards, protocols and technologies making the security evaluation on a

per device scenario time consuming. The number of devices introduced is expected to

reach billions in the future and the current literature is well informed about the insecure

design of many devices.

There is no platform or framework that enables the mass evaluation of devices, thus

making the mass evaluation of the numerous devices impractical. The goal is not just

the identification of what can be considered secure, and how can this be tested on a

large scale, but also the implementation of the framework.

This paper introduces a new framework that enables the automation of security checks

and vulnerability scanning while providing network flow behaviour analysis capability

in real-time, in a scalable and expandable manner based on open source technologies,

enabling new ways of interaction with network data and security assessment.

ii

Acknowledgements
I would like to thank first of all my parents for their investment in my education. My

supervisor Kami Vaniea for the original idea and her invaluable help during the life-

cycle of this project. Last but not least, all the people that helped me with this project

with their suggestions, input and patience.

iii

Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Nikolaos Tsirigotakis)

iv

Table of Contents

1 Introduction .. 1

1.1 Motivation ... 2

1.2 Aims .. 2

1.3 Overview ... 3

2 Background .. 4

2.1 IoT devices security ... 4

2.2 The need for a platform ... 5

2.3 Threat model .. 6

2.4 Attacks ... 7

2.4.1 LAND ... 7

2.4.2 IP fragmentation ... 8

2.4.3 TLS/SSL implementation verification ... 8

2.4.4 CRIME & BREACH .. 8

2.4.5 DROWN ... 9

2.4.6 SSLstrip .. 9

3 Design requirements... 11

3.1 Proposed system .. 11

3.1.1 Packet collection .. 11

3.1.2 Configuration free security analysis... 12

3.1.3 API ... 12

3.2 Focus Group & survey... 13

3.2.1 Setup and Materials .. 13

3.2.2 Focus Group objectives .. 14

v

3.2.3 The Participants .. 14

3.2.4 Results .. 15

4 Methodology & Design .. 22

4.1 Defining Security and Privacy... 22

4.1.1 Confidentiality.. 23

4.1.2 Integrity .. 23

4.1.3 Availability ... 23

4.1.1 Attack Vector ... 24

4.1.2 Attack Complexity ... 24

4.1.3 Privileges Required .. 24

4.1.4 User Interaction .. 24

4.1.5 Scope .. 24

4.2 Attacks and Vulnerability scanning... 24

4.3 Privacy and security score system ... 25

4.4 Privacy and security API ... 25

5 Experimental Implementation .. 27

5.1 Equipment.. 27

5.1.1 Packet capture router .. 27

5.1.2 API and front-end ... 28

5.2 Software ... 29

5.2.1 OpenVAS ... 29

5.2.2 Libpcap ... 29

5.2.3 Nmap .. 29

5.2.4 Scapy .. 30

5.2.5 OpenSSL .. 30

vi

5.2.6 GeoIP.. 30

5.2.7 SSLstrip2 and dns2proxy ... 31

5.3 Router implementation .. 31

5.3.1 Operating system and needed tools .. 32

5.3.2 Development environment ... 32

5.3.3 Development of Python scripts .. 33

5.3.4 Implement network level attacks ... 34

5.3.5 Deployment .. 34

5.4 Implementation of the API and device .. 35

5.5 Implementation of the front end .. 39

5.6 Outputs .. 40

6 Expert evaluation ... 43

6.1 Expert 1 ... 43

6.2 Expert 2 ... 45

6.3 Expert 3 ... 46

6.4 Expert 4 ... 47

6.5 Overview ... 48

7 Devices evaluation ... 49

7.1 Smarter WIFI Kettle .. 49

7.2 La Metric Time .. 50

7.3 Smart plug ... 50

7.4 Philips hue bridge .. 51

7.5 Dragon Touch Y88X ... 52

7.6 SSL stripping ... 53

8 Conclusion and Future Work ... 55

vii

8.1 Future work ... 56

8.1.1 Full OpenVAS support ... 56

8.1.2 Full nmap support .. 56

8.1.3 Full libcap wrapping api... 56

8.1.4 Integration with existing security frameworks. 57

8.1.5 Privacy score implementation .. 57

8.1.6 Web interface ... 57

8.1.7 Hard drive problems ... 57

9 Bibliography ... 59

10 Appendix .. 69

10.1 Appendix A Focus Group .. 69

10.2 Appendix B List of API commands ... 75

10.3 Appendix C Experts Demo .. 81

10.4 Appendix D Focus Group results... 89

viii

Figures

Figure 1. Graph of the proposed system. ... 13

Figure 2. First page of the mock-up design.. 16

Figure 3. Second page of the mock-up design. .. 17

Figure 4. Third page of the mock-up design. ... 19

Figure 5. Platform overview. ... 28

Figure 6. A class diagram with each module being a repository of entities mapped to

the database. ... 37

Figure 7. System diagram and overview of the platform. .. 38

Figure 8. The web interface mapping traffic during a test visit to baidu.com. 39

Figure 9 Ebay unsecured after SSL stripping .. 53

Figure 10 Google unsecured after SSL stripping ... 54

Tables

Table 1. Focus Group participants sorted by familiarity.. 15

Table 2. Map influence table. ... 18

Table 3. Security metrics importance, part 1. .. 20

Table 4. Security metrics importance, part 2. ... 21

Introduction 1

 Chapter 1
1 Introduction

The first time the words “Internet of Things” (IoT) were mentioned was in 1999 during

a presentation from Kevin Ashton, as he used the term to describe the use of Radio-

Frequency Identification (RFID) technology in Procter and Gamble products. [1], [2]

Since then, the rapid advancement of technology resulted in a trend of building

networked appliances, which surpassed the original usage of the term. At the time of

writing, this range includes from radio tags to internet-enabled sensor platforms and

embedded computers [3], and the list of devices with network connectivity capabilities

keeps on expanding. A growing number of start-ups and well established companies

are now pushing their products towards the IoT age. Cisco estimates that 50 billion

IoT devices will be connected online by 2020 [4].

The current state of security in the IoT field and these billions of devices is uncertain

mostly due to the large number of devices and fragmented market that follows no

guidelines. Lacking adequate power many devices do not implement security measures

such as encryption and their custom implementations sometimes do not consider

textbook attacks such as buffer overflows. Following the rules of evolution, security

matures as the operating system and software matures as well. While the security by

design is becoming common place in mainstream operating systems and applications,

the custom implementations of IoT devices are neither mature and in most cases not

designed with security in mind as well.

Some of the current research focuses mostly on the design challenges. A large number

of devices mostly rely on low power cheap microcontrollers. Initial results on per case

experiments conducted to validate the hypothesis upon which this project is based on

a small subset of the devices that need to be tested has revealed a disregard for basic

security concepts such as the use of Transport Layer Security (TLS) and

authentication. While this fact has been mentioned in the past[5], and despite that

researchers have proposed alternative security concepts adapted to the nature of the

IoT[4]–[6], their proposals never reached the manufactures design tables.

Introduction 2

1.1 Motivation

While most of the literature is researching new security and authentication

mechanisms and frameworks for the new era[7] [8] [9][10][11][4], others highlight

that IoT security problems have known solutions which are not implemented undoing

the security gains of the last 25 years[12]. Problems that were solved decades ago are

still present, in an internet scan of SSH and HTTPS enabled devices that expose their

services over the internet found that 150 server keys were shared by over three million

devices while eighty (80) keys were used by almost one million devices[13]. During a

mass security evaluation contacted by HP in 2015, the results were painting the picture

of the current state of security and privacy in the IoT domain. According to the HP

study 90 percent of the devices tested were collecting at least one piece of personal

identifiable information, over 80 percent of the devices did not implement some

authentication mechanism, while 70 percent were using unencrypted network

services[14].

The security of the devices that flood the market is doubtful and the sheer volume of

them makes their security evaluation almost impossible on a per device manner. While

companies like HP and Tenable offer security suites that are capable of mass security

evaluation and network analysis, and their results as noted previously show the extend

of the problem, no such framework exists for the broader crowd of security and

network professionals.

1.2 Aims

The main aim of this paper is helping the analysis and visualisation of network flows

and packets as well as the enablement of easy and mass security evaluation is the main

goal of this project. To achieve this goal, the following questions need to be answered:

1. What are the problems with the current approach?

2. How to implement generic mass security assessment?

3. How to enable easy access to network packet flow data in real time?

4. How secure are the devices currently in the market?

It is crucial to make it easier for both experts and not alike to analyse the behaviour

and security of IoT devices. In total four are the aims that need to be achieved:

Introduction 3

1. Create a detection procedure and a set of rules that detects possible attacks and

privacy leaks.

2. Create a live data capturing procedure that enables behaviour analysis and

security evaluation in real time.

3. Create an easy to use API which exploits the previously mentioned

mechanisms, is the logical next step in order to provide a toolset that will make

an impact in the future of the field. More specifically it aims to both provide

an API that allows live packet manipulation and session simulation in order to

analyse and map the behaviour of the devices, as well as the execution of

simplified mass security auditing.

4. A review of IoT device security on a small subset of devices using the

framework.

1.3 Overview

This research project has eight chapters in total, in chapter two the background

highlighting the need for the framework is explored. The third chapter includes the

design requirements that were set for the framework and the focus group that was used

to validate the functionality and design that is proposed. Chapter four defines the

concept of security and privacy, and includes an overview of the logic used to

implement the framework. Chapter five has an overview of the software needed, the

architecture and implementation of the framework. Chapters six and seven are the

evaluation part of the project, where both the framework is evaluated by experts and

devices get evaluated by the framework. The conclusion and the potential future

expansion and improvement are discussed in the last chapter .

Background 4

 Chapter 2
2 Background

The IoT is a relatively new sector that bloomed during the last years. The research

around devices was mostly dominated from the introduction of new security and

authentication models. The following chapter will present an overview of the current

state of the IoT devices security, explore the lack of a standardised framework, define

the threat model and lastly introduce generic attacks and ways to verify the security of

a device.

2.1 IoT devices security

The range of possible attacks is only limited by the power the devices hold and the

kind of available exploits. Unlike traditional computer systems where the attacker

could exploit the machine but not the environment, IoT devices have a range of usages

and usually are embedded projects, which allow the manipulation of their

environment.[15] That makes devices that were not exploitable by design to be

exploited. An example of such an attack that breaches the digital isolation and enters

the physical world would be an attack to a “smart” Wi-Fi controlled power socket, if

an attacker manages to manipulate the socket they can control the machine attached to

it, this fact creates new serious security and safety endangering network attacks that

can now reach to the physical world.

The attacks of the past have a large range from infiltrating a smart TV and record the

owners from its camera[16] to kettles that can inform the hacker about the WIFI

password[17], [18]. During 2015, 1.4 million vehicles were recalled because hackers

could control them remotely, and even turn off the engine and control the steering

wheel[19]. The number of attacks is vast and on a number of domains.

The shodan search engine[20] is a prime example of the vast insecurity and wrong

default configuration present in devices. It was developed and introduced in 2009 and

Background 5

is described as a computer search engine, however in reality shodan is very different

than a typical search engine, and it is closer to a mass security evaluation framework.

It works by scanning for active hosts, and when one is discovered it does a port-scan

and service identification, the information extracted is then indexed for searching[21].

The search engine exposes services that the owners of the devices thought as secure or

not available and thousands of devices with no or default passwords can be found.

Using the webcam search feature someone can find unsecured cameras from various

locations including back rooms of banks and baby cribs[22].

The attacks are tailored in per device scenario in most of the cases, but repetition of

past mistakes during the design and quality assurance of the devices have as a result

insecure devices to reach the market. Devices such the ones that can be found on

shodan, endanger the security and privacy of their users.

2.2 The need for a framework

The framework researched, is a multi-layered system that incorporates various

technologies. Relative work as the framework aimed in this paper is limited but a

research exists that cover parts of its functionality in a non-usable form for this project,

but highlights the interest around these areas and the problems faced by researchers.

Network data flow collection and visualisation monitors are being used for years to

represent information through graphical means. There is a number of implementations

in the literature, using various techniques to acquire and display the data, while the

need for security as a service has been discussed before[23].

Mass security evaluations and network behaviour analysis have been conducted in the

past, but the researchers had to rely on either proprietary data dumping systems[24] or

tools like wireshark and tcpdump, which deprive their implementations of the live

aspect of evaluation. [25],[26]. Others implemented security frameworks using the

tools publically available to collect the data needed, but didn’t provide a way to access

the information other than the included application[27]. Other examples don not scale

or don not allow per packet analysis[28],[29]. Some solutions present in the literature

explore various possibilities to enable the network flow visualisation and information

Background 6

through open standards, but require the use of special hardware such as a special

network card[30].

While the idea of mass security evaluation is not new, the lack of a scalable and

expandable mass security evaluation framework had as a result the need for researchers

to define new frameworks and techniques in order to obtain quantitative results

The lack of network behaviour and security analysis is apparent, many tools already

exist, such as Wireshark and tcpdump, but these tools target network professionals and

are not capable of sharing the data in a way that the information can be consumed by

another service. Proprietary solutions which dominate the area[31] are not agile, since

they need special hardware and are not expandable.

The IoT is based on existing technologies and the manufacturers need to use several

standards to comply with the myriad of different usage scenarios. It is very difficult to

go through all these standards and technologies in order to find which to target. While

a number of standards have been introduced, some researchers are concerned by the

lack of standards and frameworks that cover all the aspects of security in the IoT

naming it as an actual issue in conduction of research[32]. In this project it is chosen

to focus on initiatives related to "generic" standards of the IoT. An open expandable

framework could potentially fuel more research in the field and allow easier evaluation

of devices.

2.3 Threat model

The targeted devices are networked mass consumer electronics that find their way in

most consumer homes. Due to the individuality of the devices a generic framework is

needed, the only thing all the targeted devices share is the networking capability, hence

the framework targets to verify whatever a device is secure against common

networking attack scenarios in a local area network, in order to simulate an average

end-user network attack scenario Consumer electronics such as smart clocks, light

bulbs and other network controlled devices are targeted.

Background 7

A typical home Local Area Network (LAN) attack scenario where the attacker can

tamper the characteristics of a link between two devices[33] is considered. The

attacker controls a single device in the network and is able to ping the devices around

her. It is assumed that the attacker has penetrated the network and is capable of man-

in-middle attacks (MITM)[34]. The attacker is able to route traffic through her device,

practically stripping the devices from the router’s firewall and NAT protection. An

attack of this nature is possible when the attacker either controls the access point itself

or is capable of attacks, such as ARP poisoning which allow her to impersonate the

target device[35]. The primary target of the attacker is considered the Transport Layer

Security (TLS) employed by most devices to defend against man-in-the-middle

attacks[36] as well as the HSTS mechanism employed by compatible browsers and

web services to deter the attacks against the TLS encryption.[37]

2.4 Attacks

The main target of the attacks presented, is to verify the implementation of the network

stack and available services of the devices by using attacks that target a wide range of

systems. These attacks were chosen because they exploit implementation mistakes

present at diverse sets of devices and platforms based on common programming errors

or misconfiguration. This allows a more generic approach that with the complement

of a vulnerability scanner allows to validate against most MITM attack scenarios.

2.4.1 LAND

The Local Area Network Denial (LAND) attack is executed by sending special

spoofed TCP SYN packets that have both the sender and receiver fields set as the

target’s IP. This causes the device to potentially initiate a session with itself, thus

overloading and crashing it. While it is a Denial of Service (DoS) attack it is distinct

from traditional DoS attacks because the attacker does not need to possess the

capability to exhaust the targets open connections or bandwidth but rather relies on the

incomplete implementation of the network stack. [38], [39]

Background 8

2.4.2 IP fragmentation

The datagram fragmentation mechanism is used to divide datagrams larger than the

network’s Maximum Transfer Unit (MTU). These smaller datagrams fit the frame size

of the network and upon arrival to the destination they get reassembled. [40]

Six distinct attacks exploit this mechanism. The main idea of the attack is to create

special custom datagram fragments with over-sized payloads that when the targets tries

to reassemble, they overlap. This can lead to buffer overflows, DoS or crashing the

device completely if there is no security or exception catching mechanism in place.

Targeted protocols vary, but the publicly available source code is capable of attacking

the TCP, UDP, SMB and ICMP protocols. Exploits based on IP fragmentation were

last reported in a major operating system in 2009 in Microsoft Windows Vista

[41](CVE-2009-3103), while a range of old Linux Kernel, BSD and Mac OS X

versions are known to be vulnerable.

2.4.3 TLS/SSL implementation verification

The number of bits and type of hash used in the key have a crucial role in the security

of the device, the usage of unsecure hashes such as RC4 undermine the overall security

of the design. Advances in brute forcing weak ciphers make implementations such as

RC4 and DES insecure and hence their use should be avoided. Any version of TLS

predating TLSv1.0 should be considered insecure as well[42], [43]. The use of known

insecure parameters in the design will have an impact on the privacy rating of the

device. Good practice will be checked instead of bad one in order to avoid unknown

bad configurations.

2.4.4 CRIME & BREACH

CRIME (Compression Ratio Info-leak Made Easy) and BREACH (Browser

Reconnaissance and Exfiltration via Adaptive Compression of Hypertext) are used to

target devices that offer a web interface either locally or remotely, while most

mainstream browsers are immune to the attack, custom implementations (e.g. custom

web-view style smart-phone apps, or a Smart-TV browser) can be exploitable. Both

Background 9

attacks exploit the compression mechanisms in TLS and HTTP with the difference

being which protocol they target. In their current state both attacks are capable of

bypassing the encryption and steal session cookie data. While executing the actual

attacks is complicated, it is easier to check for a vulnerable server[44], [45], [46], [47].

2.4.5 DROWN

The DROWN attack is a cross-protocol attack on servers supporting the obsolete,

insecure, SSLv2. It targets TLS protocols that would be otherwise secure if SSLv2

support was not present. It achieves this by allowing the attacker to break a passively

collected RSA key exchange for any TLS server which shares the keys between TLS

and SSLv2. Since the attack does not require any bug to be present and relies on SSLv2

flaws, any server using this version is vulnerable. The researchers estimated that there

were 11.5 million HTTPS servers vulnerable to the attack. There are numerous ways

to execute the attack with the most common being through an OpenSSL

vulnerability[48] (CVE-2015-3197), which allowed the supposedly removed SSLv2

to be selected by clients although it was not offered by the server. In a MITM attack

scenario, the attacker can impersonate the server and send a ServerHello message that

selects a cipher suite with RSA as the key-exchange method, then decrypts the

premaster secret with DROWN. The main difficulty reported by the researchers was

completing the decryption and producing a valid ServerFinished message before the

client’s connection times out. [49]

2.4.6 SSLstrip

In 2009 a hacker released a tool called SSLstrip and showcased it in Black Hat DC the

same year[50]. The idea was simple, when a user types an incomplete URL in the form

www.example.com browser requests an http connection at port 80 by default

(http://www. example.com) the script intercepts the traffic and rewrites all future links

to http so that the user never gets an https session. To combat this attack, the HTTP

Strict Transport Security (HSTS) was created[37]. HSTS introduced a header which is

sent over HTTPS which informs the compatible clients to only connect to this domain

using HTTPS for a period of time which can be up to a year. This effectively killed

Background 10

the attack since, if a user managed to connect once to a HSTS enabled site, then all her

future requests will be using the encrypted connection. Since then various forks of the

tool exist that try to overcome the HSTS protection. The attack is considered despite

its age because advances have been made to combat HSTS and these will be presented

later in the paper.

Design requirements 11

 Chapter 3
3 Design requirements

3.1 Proposed system

The proposed system consists of a custom built router which includes all the needed

software and is driven by an API that enables other services and products, that

consume it, to be created. The target base is so diverse that a generic and multi-layered

approach is chosen. The core needs of the project are three:

• Collecting packets.

• Configuration-free security analysis.

• An API that would allow the automation and data retrieval of the data gathered

from previous two.

An overview of the proposed requirements follows for each of the three categories. It

should be noted that the security analysis has no system requirements since it is

considered both part of the API and the router.

3.1.1 Packet collection

Packet collection is the core of the functionality. A router with the built-in capability

to dump network traffic would allow easy integration with existing systems hence it is

the targeted design.

System Requirements

• WIFI access.

• External hard drive to save data.

• Open source operating system.

Functional Requirements

• Packet collection to a PCAP file.

• Packet collection to a database.

• Almost real-time capability.

Design requirements 12

3.1.2 Configuration free security analysis

The automation of the security evaluation is the second part of the framework and with

the packet collection they form the core of the system.

Functional Requirements

• Automated TLS/SSL analysis.

• Automated vulnerability testing.

• Automated port scanning.

• Automated service detection.

3.1.3 API

The API is used to automate the previous components and to allow access to the data

saved. The target functionality is to provide enough information, drive a web-based

graphical user interface and has the following requirements:

System Requirements

• Portable and cross platform.

• Self-contained.

Functional Requirements

• The overview of current and past connected devices.

• The overview of current and past network connections.

• The simulation of the past network sessions.

• The vulnerability and encryption scanning of devices.

• The production of a simplified security score.

• Any device connected to the router has access to the API.

Design requirements 13

Figure 1. Graph of the proposed system.

3.2 Focus Group & survey

External input was deemed necessary during the initial phase of the design process, in

order to take into consideration more than one perspectives before the finalization of

the design. In order to define the specifications needed, a front-end mock-up was

designed which would define the minimal functionality of the framework.

3.2.1 Setup and Materials

A new design was conceptualised, requirements were set and a survey based on the

Likert-type scale response anchors by Vagias Wade [51] was created. There were 17

Design requirements 14

questions which included 5 demographic, 7 yes or no questions and 3 likert-type

response questions while 3 questions were comment fields, the full document is

available in appendix A.

All participants were given a handout with three mock-up screens with the aimed

functionality presented. They were asked to read and answer each page without

looking the next one, after each page was filled a discussion started, all the discussion

was recorded and then transcribed and anonymised.

The participants were introduced to a simplified version of the concept, where a special

router exists, that captures all the network traffic and allows them to see security

related information about any device connected to it. The router is also capable to do

basic penetration testing, vulnerability scanning and display the output to a web

interface hosted on the router. Then they were asked to express their opinion about the

information displayed on each of the mock-up screens. The results of the comments,

discussion and survey were used to evaluate and enhance the design.

3.2.2 Focus Group objectives

The main objective was to determine suitability of the security scoring mechanism as

well as to get informed feedback from experts in order to verify the minimum

functionality expected from the framework, in order to provide the functionality

needed to create a graphical interface that conveys information relevant to each user

group.

3.2.3 The Participants

This survey was used in a focus group of Information Technology students which can

be described as a group of experts. The expert group consisted of nine students with

ages ranging from 21 to 28, and one lecturer, five males and five females. Every person

on average was using at least two different operating systems on average, which aids

the diverse insight needed by people used to different interfaces when designing

interfaces. The following table presents how familiar participants believe they are with

the technologies used by this system sorted by their familiarity.

Design requirements 15

Level of familiarity
Participants Networking PCS Vulnerabilities TLS
P10 Moderately Extremely Moderately Somewhat
P1 Moderately Moderately Moderately Somewhat
P8 Somewhat Moderately Somewhat Extremely
P3 Moderately Moderately Somewhat Somewhat
P5 Moderately Somewhat Somewhat Somewhat
P6 Somewhat Somewhat Somewhat Somewhat
P4 Somewhat Somewhat Somewhat Slightly
P7 Somewhat Not at all Somewhat Somewhat
P2 Slightly Not at all Not at all Not at all
P9 Not at all Not at all Not at all Not at all

Table 1. Focus Group participants sorted by familiarity.

3.2.4 Results

The following part will present the input provided by the expert group based on the

mock-up design they evaluated. Detailed results of the questions can be found in

appendix D.

Design requirements 16

Figure 2. First page of the mock-up design.

The participants were asked two questions, if the information presented is adequate for

the use of this device and what changes they would make to the design.

Feedback:

While eight out of ten participants (8/10) agreed that the information was adequate

both during discussion and on their written comments some concerns for the design

were highlighted. Most agreed that two buttons linking to the traffic and scoring results

pages is needed to be where the security button stands and that the compare

functionality should be hidden if just one device is connected to the network.

Design requirements 17

Figure 3. Second page of the mock-up design.

The participants were asked to identify what affects their opinion on the device

security from the information displayed on this page and during the discussion what is

important for them and missing and their overall opinion on the design of the page.

Feedback:

With the exemption of protocol usage percentage, the participants mostly agreed that

the information presented on this page are relevant and affected their opinion. During

the discussion the most prominent feature requested was the inclusion of bandwidth

usage statistics per device.

Design requirements 18

Map: Influence

Participants Live Map Connections Protocols Line Chart
P1 Agree Strongly Agree Agree Agree
P2 Strongly Agree Agree Neither Neither
P3 Agree Agree Strongly Agree Strongly Agree
P4 Agree Agree Neither Agree
P5 N/A N/A N/A N/A
P6 N/A N/A N/A N/A
P7 Agree Agree Agree Agree
P8 Agree Agree Disagree Neither
P9 Strongly Agree Agree Strongly disagree Agree
P10 Strongly Agree Strongly Agree Strongly disagree Disagree

Table 2. Map influence table.

Design requirements 19

Figure 4. Third page of the mock-up design.

The group was asked about the importance of the criteria presented as metrics for the

security of the device, if they would consider a device that passed these tests secure

and if they believe that the framework would potentially harm their device.

Feedback:

Seven participants replied that they would consider the device secure if it passed all

the steps, one wouldn’t while two people didn’t answer, voicing concerns during the

discussion that the feedback should be on a higher level to be easily understandable,

and that many people will not understand the output in the way it is presented. Some

Design requirements 20

of the participants were not aware of some of the attacks and requested a sort

description to be provided or a link to a description of the attack. Criticality and ease

of exploitation were raised as security metrics that the group would like to be

implemented. Three experts believed that the framework can cause potential harm to

their devices.

Security score system metrics: Level of Importance

Participants Encryption Safe TLS
Land
Attack

IP
fragmentation CRIME BREACH

P1
Strongly
Agree

Strongly
Agree Neither Agree

Strongly
Agree

Strongly
Agree

P2
Strongly
Agree Don't know

Don't
know Don't know Don't know Don't know

P3
Strongly
Agree

Strongly
Agree Agree Don't know Agree Agree

P4 Agree
Strongly
Agree

Don't
know Don't know Don't know Don't know

P5
Strongly
Agree

Strongly
Agree

Don't
know Don't know Don't know Don't know

P6 Agree Agree
Don't
know Agree Don't know Don't know

P7 Agree Agree Agree Agree Neither Neither

P8
Strongly
Agree Agree

Don't
know Don't know Don't know Don't know

P9 Don't know Don't know
Don't
know Don't know Don't know Don't know

P10
Strongly
Agree

Strongly
Agree

Don't
know Agree Don't know Don't know

Table 3. Security metrics importance, part 1.

Design requirements 21

Security score system metrics: Level of Importance

Participants DROWN
SSL
stripping Any cert

Not
RC4/MD5 >128bits Scanner

P1
Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

P2 Don't know Don't know Don't know Don't know Don't know
Strongly
Agree

P3 Agree Agree Agree Don't know
Strongly
Agree Agree

P4 Don't know Agree Agree Don't know Don't know
Strongly
Agree

P5 Don't know Don't know
Strongly
Agree Agree Agree

Strongly
Agree

P6 Don't know N/A Neither Neither Agree Agree
P7 Neither Agree Agree Agree Agree Agree

P8 Don't know Neither
Strongly
Agree Agree

Strongly
Agree

Strongly
Agree

P9 Don't know Don't know Don't know Don't know Don't know Don't know

P10 Don't know
Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Strongly
Agree

Table 4. Security metrics importance, part 2.

Methodology & Design 22

Chapter 4
4 Methodology & Design

A new design is introduced that enables easier and widespread security and privacy

evaluation by both computer scientists and not alike. The input from the design

requirements stage was used and the same functionality goals were set. A new

methodology was needed to determine the basic factors that define a device as secure

and private and a way to convey the information to the user.

A privacy score is considered in order to give the end user a clear answer on whether

her data can be accessed in any way by the potential attackers, based on the use of

encryption by the device and whether it is implemented correctly thus avoiding all the

encryption targeting attacks.

A security score is introduced as well in order to provide a higher level representation

of security as it was requested by the majority of the experts which attended the focus

group.

The following chapter sums the theoretical background upon which the experimental

implementation is based.

4.1 Defining Security and Privacy

Defining privacy and security is vague because people usually have different definition

based on the context. In this case since the proposed system operates in the network

level, hence privacy is directly linked to the confidentiality as defined by CVSS.[52]

Integrity and availability of the data are also two categories which will impact the

score, integrity impacts both security and privacy while availability can impact only

the security score. Some of the categories will have set CVSS score depending on the

type of attack/design validity, while the rest is given a score dynamically depending

on the results. CVSS can be used to explain what is considered secure:

Methodology & Design 23

4.1.1 Confidentiality

The confidential data should be encrypted. Thus the information is not accessible to

the potential attacker. Defining which information should be confidential and which

should not, is impossible, and can be achieved only in a per case scenario and not in

the en masse scenario this paper explores. All information will be considered

confidential, so any device that does not encrypt its traffic or an attacker is capable of

removing the encryption, will be treated with a high confidentiality impact score.

4.1.2 Integrity

Integrity assures that the data received are exactly as sent by an authorized entity. A

MITM attack, where the traffic is decrypted or unencrypted, can lead in most cases in

loss of integrity however it does not necessarily mean that all cases will lead to such

an event. If authentication is implemented properly the attacker should not be able to

tamper the data, this is another a case where a compromise must be done in the design.

It is possible to replay captured streams and compare the responses to that of the

original legitimate requests. If a device replies means that there is authentication

system or the implemented system is broken, hence the integrity will be considered

compromised. Such a check though is out of the scope of the framework at this stage

and should be done manually.

4.1.3 Availability

The availability of a device that is connected in a home LAN usually does not concern

owners since it is rarely targeted by an attack. This is the case because the devices

expose only specific services to the internet, while the router firewall and NAT protect

them from external attacks. In a local attack scenario an attacker may be able to cause

a denial of service attack from within the network. Attacks that exhaust the resources

of the target device by brute-force are not considered.

Methodology & Design 24

4.1.1 Attack Vector

The attack vector for all the attacks will be set to Network, since this project is only

able to exploit network level attacks en masse.

4.1.2 Attack Complexity

Attack complexity is analogous to the attack and will be set based on the score that the

vulnerabilities that are used have in reported CVEs.

4.1.3 Privileges Required

All the attacks need no special privileges since they all are network level attacks, that

target generic implementation mistakes and do not target some specific software or

product.

4.1.4 User Interaction

As with the previous category, only network level attacks are considered and user

interaction is not required for any of them.

4.1.5 Scope

The change of scope is difficult to define just by the results of scanning and hence is

not considered. In the vast majority of cases, the scope will remain unchanged since

most of the devices are consumer electronics, but in the case of remote sensors and

other distributed implementations the change of scope would be useful. Future work

could involve this security check as well.

4.2 Attacks and Vulnerability scanning

During the first stage the device needs to execute a preliminary scan both by a port and

a vulnerability scanner. The second stage consists of checking the typical

characteristics of the encryption mechanism, if any is in place. The security of the

mechanism is checked for well-known TLS downgrade attacks from the literature.

Methodology & Design 25

4.3 Privacy and security score system

While the implemented attacks are deterministic of the exploitability of the target and

the CVSS score and the attack results can be understood by experts, a precise and

simple set of rules is needed to define the score on a higher level. As noted previously,

the base metric group of Common Vulnerability Scoring System (CVSS) version 3.0

is used as a base methodology to calculate the score, since a traditional vulnerability

scanner will be employed as well this will help in the easier aggregation of the final

results.

Grouping the scores and producing a score based on categories that end users can

understand is crucial. The security score should be numerical and include the number

of vulnerabilities and a text representation of the criticality of the attack. That would

allow the score to be transformed into a 5-star rating which is universally understood

and would also allow for a traffic light style implementation were the security of the

device can be represented with amber, yellow, green colours, thus bypassing any

boundaries imposed by the lack of security expertise by the users.

Hence a grouping will occur to represent a five-star final score on two categories

network security and privacy.

4.4 Privacy and security API

A router implementing the basic functionality is the first part that is needed, and the

minimum functionality should include the capability to save data flows and do basic

security checks and attacks standalone. Since the main target of the project is mostly

the networking, information design and security community, instead of building

directly the front end based on the services available on the router, an API will be

introduced that automates the functionality present in a way that the implementation

can prove useful in the future in further research or security and data flow visualization

projects.

All the technologies to be used, need to be free open source software (FOSS) hence

the abstraction and creation of the layered design will prove useful to future expanding

and modification of the system. The finalised API should provide the aims set at the

design requirements phase, namely it should be able to provide:

Methodology & Design 26

• The overview of current and past connected devices.

• The overview of current and past network connections.

• The simulation of the past network sessions.

• The vulnerability and encryption scanning of devices.

• The production of a simplified security score.

A Service Oriented Architecture (SOA) approach was deemed to be the best fitting

approach for this project. SOA is an architectural approach in which systems are built

as decentralised autonomous services. The integration is part of the design before any

functional consideration is made while the produced framework is composed of

services running on different devices and platforms[53]. While this architecture sounds

overcomplicated it allows for the autonomy and modularity needed by the target

system. Through the use of abstraction layers, a future researcher or user of the system

will be able to only use the part of the functionality she needs based on the needs.

Someone can use the scripts and commands integrated in to the router without the need

of the API, or may use the API without the need for an OpenVAS instance if they do

not need the vulnerability scanning capabilities. This architecture approach also allows

for the implementation of interchangeable modules, such as different web interfaces

consuming the same API concurrently[53]. The final architecture and details of the

design were researched during the implementation phase hence more information can

be found in the next chapter.

Experimental Implementation 27

Chapter 5
5 Experimental Implementation

The first step towards any practical implementation is to find the software which would

be necessary, based on the conceptual design. A thorough research was conducted in

order to identify the open source software and libraries needed to achieve the goal. The

research lead to various tools that could potentially be ported to the framework,

although only a small subset was possible to be implemented given the projects time

limit. Some of the state of the art tools that are powering the implementation are

analysed in order to produce an overview of the current state, what they provide to the

project and the future possibilities for expansion.

5.1 Equipment

5.1.1 Packet capture router

A Linksys WRT1900ACS was used to implement the base of the system. It was chosen

because it supports the open source OpenWRT Linux-based operating system out of

the box[54]. A custom OpenWRT image was created that incorporates Python and all

the dependencies needed to implement the scripts in the next steps. Traditional packet

capture software was included as well as a MySQL database to store all the session

data and results. A fork of OpenWRT was created since the changes were beyond

customisation and included modifying and adding make files and software patches.

Experimental Implementation 28

Figure 5. Platform overview.

5.1.2 API and front-end

Originally the design was aiming the framework to be available for the Raspberry PI

minicomputer, a custom Linux operating system was created with the minimal number

of packages needed in order to maximise performance. The memory usage of the API

and the need for outsourcing of OpenVAS reporting because of the lack of power, led

to the decision to host all the software including a Kali Linux virtual machine with a

preconfigured OpenVAS and SSH connection on laptop attached to one of the routers

Ethernet interfaces. Any modern computer can be used to host the API since there are

only two dependencies, Java and virtualbox.

Experimental Implementation 29

5.2 Software

This section highlights the software that enables the creation of the framework,

although non-exhaustive, the list includes the core software used for the

implementation of both the API and the router.

5.2.1 OpenVAS

OpenVAS is a fork of the last free version of the Nessus vulnerability scanner and it

is considered one of the industry standards[55], [56]. It has proved during benchmarks

that it can perform in par with closed source solutions[57]. It also offers an open-source

communications protocol, making ideal candidate for the project. Implementing the

automation proved troublesome. While OpenVAS offers a state of the art protocol

which supports an XML like interface, all the available open source libraries capable

of automating communication with the system for both Java and Python were outdated

and incompatible with the version 6.0 of the protocol.[58] The XML report format was

used to create a custom object factory and responses thus practically creating a new

Java library that covers part of its functionality.

5.2.2 Libpcap

Libpcap is a platform-independent library for low-level network monitoring and

packet capture[59], it powers industry standard tools like Wireshark[60] and

tcpdump[61]. It is in the core of API, since all other packet manipulating scripts were

using various wrappers. Libpcap is available in OpenWRT and the integration was

flawless. By using libpcap and its wrappers it is possible to create code that is small

agile, system-independent hence portable.

5.2.3 Nmap

Nmap is a well-known open-source network scanner that exists since 1997[62] and is

common to the security community as it offers both a Python library [63]as well as

XML output[64] which makes the automation of its functions trivial. It can be used for

Experimental Implementation 30

port scanning and service detection as well as for host detection[65] in case the DHCP

server of the router is not running.

5.2.4 Scapy

The library is a libpcap python wrapper which allows for the creation, sniffing,

dumping and manipulating network packets. It supports protocols in the form of layers

which allows easy packet manipulation as well as the introduction of new

protocols[66]. A community driven project named Scapy-SSL/TLS brought the TLS

layer to the Scapy library[67], thus enabling packet manipulation of that protocol as

well. The library sits at the core of the implementation being responsible through

scripts for data dumping to the database and through the TLS protocol layers for

analysis of the TLS characteristics as well. The possibilities of the library are endless;

any network level attack can be executed or simulated, making it a very powerful

library to manipulate traffic at a low level.

5.2.5 OpenSSL

The OpenSSL library is part of the core functionality in the project as well. It is used

to get the TLS public key and certificate as well as to analyse certificate fields such as

the common authority name and the length and type of the key. The library is used

also by the SSLstrip attack explained later. Other than the usages that already has,

OpenSSl allows further expansion of the TLS/SSL analysis capabilities and is

considered an integral part of the project.

5.2.6 GeoIP

The built-in geoip functionality is provided by the Max Mind Java library[68] using a

local database file, that maximizes efficiency and portability. Automating completely

the service would considerably impact the router under heavy loads, thus an API call

was implemented that allows for the retrieval of geolocation information from a given

IP address.

Experimental Implementation 31

5.2.7 SSLstrip2 and dns2proxy

A developer named Leonardo Nve presented at black hat Asia 2014 an attack against

HSTS which enables to SSLstrip to function again, a new modified version was needed

and the introduction of a new software called dns2proxy was introduced[69].

A combination of SSLstrip2[70] and a dns2proxy[71] can bypass HSTS using a simple

technique. When the user enters a website the attacker highjacks the HTTP session and

redirects it to a non-existing subdomain of the target site. There’s no record for this

domain cached so a new DNS query is conducted by the user’s machine. The attacker

highjacks the DNS query and returns the IP address of the original site, this way even

if HSTS and compatible browsers are used there is no rule set for the non-existing

subdomain, hence the protection is not enforced.

As with all kinds of this attack using the secure link directly nullifies the attack. The

problem is using links that don’t start with “https://” this is more apparent when using

bing.com since many links in the results are in the form of www.example.com instead

of https://www.example.com that allows the script to work transparently when the user

clicks a result.

5.3 Router implementation

The OpenWRT Chaos Calmer version 15.05.1 Linux-based operating system was

forked and used as the base firmware of the router. The targets were four:

• Create an operating system which includes all the tools needed from the

previous section which were not previously ported to the operating system,

thus needed to be cross-compiled to the architecture since OpenWRT lacks

native compilation.

• Create the needed environment for the development of the scripts that automate

the functionality.

• Create the scripts that automate the router functions

• Create a deploy procedure which would allow the easy setup of multiple

systems.

Experimental Implementation 32

5.3.1 Operating system and needed tools

The development team of OpenWRT has streamlined the development process

allowing easy modifications to the software. The base software is the minimal possible

that would not deprive the router of its normal routing functions.

To allow for more space both for software and the dumped data, an external hard drive

is used to which the router file system is expanded thus proving ample space.

Libpcap was already available as well as the nmap suite, and full Python support.

MySQL was slightly modified to allow more recent database engines to be used and a

specific version of OpenSSL needed by SSL strip was ported to the device. The vast

majority of the Python libraries needed to be ported to allow their C components to be

compiled and thus run natively on the device.

5.3.2 Development environment

The external hard drive as noted previously holds an expanded file system, but also a

data partition. All the data saved to the database as well as all the scripts reside on this

partition. The data partition is available through a network share to the connected

devices and allows for easy data transfers and script development. The database is

accessible over the network and locally. The Python libraries present on the router and

needed for its function are numerous, an exhaustive list with the libraries available and

their versions as reported by Python pip:

• dnspython==1.14.0

• futures==3.0.5

• IPy==0.83

• MySQL-python==1.2.5

• ndg-httpsclient==0.4.2

• pcapy==0.10.9

• pyasn1==0.1.9

• pycrypto==2.6.1

• pyOpenSSL==0.13.1

Experimental Implementation 33

• requests==2.6.0

• scapy==2.3.2

• service-identity==16.0.0

• tinyec==0.3.1

• Twisted==13.1.0

• zope.interface==4.1.3

This set of libraries allow the implementation of virtually any network packet

operation and power all of the routers functions and attacks.

5.3.3 Development of Python scripts

In total five python scripts were created and an open source one was modified, these

scripts can be used as standalone command line tools as well. An overview of their

functionality follows.

The datadump script is based on scapy and is responsible for the packet sniffing and

dumping to the database as well as to pcap files, although it uses tcpdump for its pcap

functionality due to the speed improvement.

The livehosts scripts parses the output of the ARP and DHCP tables to update the

database about the currently connected devices.

The nmapInterface script is alternative implementation of the previous functionality

which although slower it allows the router to have the same level of information when

its DHCP server is not running.

The nmapdb script is based upon the synonymous open source script[72] which allows

the parsing of nmap XML reports and export the results to SQLite, the script was

modified to save to the local MySQL database instead.

The security_scanner script uses both OpenSSL and Scapy to acquire information

about the SSL server hosted at a target device port and save them to the database. It is

based partly upon example code from the Scapy SSL_TLS project [73]. The

information it generates include the public key, its length, supported ciphers and the

Experimental Implementation 34

certificate itself as well as if the server is vulnerable to BREACH, DROWN, FREAK

or LOGJAM attacks.

The script_controller is a simple script that is used to shut down the rest of the scripts,

and uses unix sockets to pass a kill message to the scripts, which when received by the

scripts, they shutdown safely.

5.3.4 Implement network level attacks

The Network level attacks were implemented in Python using Scapy. Public exploit

code was examined and attacks were implemented based on these implementations. In

cases like CRIME, in which the attack is rather complex to implement scripts were

created that test the system in the way a traditional vulnerability scanner does by

checking if the vulnerable components exist, while LAND attack and IP fragmentation

were implemented on a proof of concept level they were not included in the final

design, as no usable information could be obtained from the attacks. SSL stripping was

the only active attack implemented into an API call, the reason being that its ability to

strip the traffic of encryption on the fly can be proved useful in a framework where

network data is the target. Nevertheless, the router proved its capability as a

development environment and attack deployment mechanism.

5.3.5 Deployment

The deployment of the custom image and settings is done in three stages. During the

first stage the user has to flash a custom firmware to the router, like they would for any

other firmware. The second step is connecting the pre- partitioned hard drive to the

router and pressing the “WPS” button that the device has on its back. The button is

assigned a soft reset function which expands the main file system of the device to the

external hard drive and reboots the device. Last step is to connect to the router through

SSH and give the command initsql, which is a custom command that setups the

database. The deployment needs less than five minutes. The router setup has been

documented and.

Experimental Implementation 35

5.4 Implementation of the API and device

The API was created on top of free open source software to guarantee its multiplatform

and expansion capabilities. During the research from which the final architecture

decisions were made, different types of APIs and setups were considered. Through

evaluation of the project’s targets which is to offer the most platform independent and

easy to use solution in order to guarantee larger adaptation and expandability, it was

decided only two main areas to be researched.

The two options were a web service or web socket based API. At the initial phases a

web socket based API was considered due to the fact that this approach is usually faster

and less resource hungry[74], [75], hence would be a logical choice for the retrieval of

large amounts of data. Web sockets though are harder to adapt to and require more

specialised knowledge in order to interact with, hence the slower but easier to use web-

service design was chosen. The final design uses a web-service in representational

state transfer (REST) architectural style. In order for an application to be considered

RESTful the following architectural contains should be followed[76], [77]:

• Client-Server

Separation of concerns is the principle behind the client-server constraints. The

separation of user interface and data concerns improves the scalability and portability

and cross platform compatibility while allowing each component to evolve

independently, since it decouples the consumers from the producers of data.

• Stateless

Communication must be stateless in nature, requests from clients to servers must

contain all of the information necessary to execute the request, and should not use any

data available on the server to keep the state of interaction, state if needed should be

kept client-side, only. This constraint has as a result the following advantages, it

induces visibility, reliability, and scalability, while the main disadvantage is the

decrease in performance by the increase of repetitive data in a per-interaction overhead

fashion.

• Cache

Experimental Implementation 36

Cache constraints mean that a response to a request must be implicitly or explicitly

noted as cacheable or non-cacheable. Since the results vary in our implementation and

most of them are real time or inside specific time constrains, all requests are considered

non-cacheable to guarantee that no outdated data are delivered to the clients, this

approach has the disadvantage of poorer performance.

• Uniform interface

By the term uniform interface, it is meant the use of similar interactions in a

standardised format rather on per case scenario. This creates an abstraction layer that

decouples the implementation from the service, increasing visibility since the users

does not use different interfaces for different functions. The main drawback is the

increase of overhead.

• Layered System

A layered system is composed by hierarchical layers which constrains the components

to only be able to interact with their immediate layer hiding the rest of the layers. The

layered design allows easier expansion and promotes module independence. Every

layer is only aware of the previous and next layer and each layer exposes a set of

functions that can be consumed by clients. The layered style is also useful when large

projects are concerned since it allows the distribution of layers and the use of

intermediate load balancers hence improving performance and manageability.

The Spring boot framework was used as it allows the creation of web-service RESTful

APIs, while it provides self-contained projects with no external dependencies other

than Java. Modular by design, the database and existing code can be expanded

considerably, while features can be added and removed, without harming other

features. The backend consists of an SSH library that is used to send commands to

custom python scripts residing on the router, the scripts output directly to the database

hosted on the router and the API reads the results directly from the database, upon

request.

Experimental Implementation 37

Figure 6. A class diagram with each module being a repository of entities mapped to the database.

Experimental Implementation 38

Figure 7. System diagram and overview of the platform.

Experimental Implementation 39

5.5 Implementation of the front end

While a front-end was considered in the beginning of this project, by the end it was

dropped in favour of more API functionality which would allow more feature rich

front-ends to be built. An example implementation was created by a university intern,

purely in python which showcases the possibilities of the router itself, since it does not

use the API that was developed to automate the framework.

Figure 8. The web interface mapping traffic during a test visit to baidu.com.

The front-end showcased is capable of displaying live sessions, connected devices,

currently active connections and plot the connections on a world map, as well as

replaying previously saved sessions. This highlights the convenience of the layered

design, as the router can be used autonomously or in conjunction with the API.

Experimental Implementation 40

5.6 Outputs

The main goal of this research was to introduce a standard methodology and

toolset for IoT device network behavioural analysis. Since it is a framework the outputs are

more than just the core API functionality. The main outputs are:

• A definition of privacy and security for large scale evaluation.

• A man-in-the-middle rogue AP built upon Linksys WRT1900ACS router with the

added capabilities of capturing all network traffic while attacking target machines.

• The custom OpenWRT operating system which includes Python libraries and that

were not originally available to the device and which allow the implementation of

various network attacks.

• An API to control the device, automate the attacks and evaluate the captured data.

The framework introduces 68 new API calls in multiple functionality domains. All the

calls are executed using HTTP GET, making the integration of the API trivial.

The attached storage of the router can store the traffic in both the integrated database

and in the popular PCAP format, with the results being available over the network. It

is possible to set an alias per device and use this instead of IDs or other identification

which simplifies the interaction. The database makes the recording and replaying of

sessions and basic analysis such as behaviour analysis, encryption and basic security

analysis possible in a scalable and automated fashion. On average the framework can

dump to and fetch from the database an average of 2.658 packets, per second when

only the IP layer header is dumped according to the benchmarks conducted.

A small subset of some of the implemented API calls and their outputs are shown as

an overview of the two main categories of the functionality and interaction with the

API in the following part, an overview of all the commands available can be reviewed

in appendix B.

Packets

Packet capturing is half the functionality of the framework, to get a packet commands

in the following form are used:

/api/packets/getall/firstpacket

Experimental Implementation 41

This call will return the first packet ever recorded in any session by the router. Most

of the packet related commands will return multiple objects like the following filtered

by time ranges and/or devices.

Result:
[{"id":"1a10d070-5e8a-11e6-8995-
c05627cc512e","ipfrom":"192.168.1.137","ipto":"31.13.64.11","macfrom
":"24:00:ba:2e:e4:23","macto":"c0:56:27:cc:51:2e","fromport":48454,"
toport":443,"length":83,"protocol":6,"time":"2016-08-10
00:36:31.720854","bytes":"wFYnzFEuJAC6LuQjCABFAABT1Ac=","encrypted":
1,"unix_time":1470785792,"session_id":"041545d9-5e8a-11e6-9362-
c05627cc512e"}]

The id is a unique id for this packet, the IP, MAC and ports from and to, the protocol

number an IANA defined protocol number[78] the timestamp in text and Unix format

as well as the binary payload of the packet encoded in base64 is provided. The session

id allows to group the packets to sessions which allows easy simulation later.

Security

There are various security capabilities available, for this demo the sequence of

commands needed to generate a TLS and vulnerability scanner report is considered,

since these are the perquisites in order to generate the final simplified score. The result

of the vulnerability and TLS scanner is omitted because of their large size.

The user can easily execute ports scans, custom TLS scans as well as full OpenVAS

reports, by following this procedure. The alias used in the examples is the custom name

that the user can give to its device. The first step is to execute the scans; this can be

achieved with the following calls:

/api/security/scan/vulnerability/byalias/{alias}

This call initiates an OpenVAS vulnerability scan, with no further interaction needed

and saves the report results to the database when the scan is finished. Then to execute

a TLS scan the following command is used:

/api/security/scan/tls/alias/{alias}/{port}

This call initiates the TLS scan, as with the vulnerability scan, a multithreaded script

will execute the scan and save the results to the database when it finishes. The port

parameter is the port that hosts the TLS server and the script will target. In this example

Experimental Implementation 42

the device is named lametric and the TLS server is hosted at port 443, the final

commands would be:

/api/security/scan/vulnerability/byalias/lametric

/api/security/scan/tls/alias/lametric/443

The scans take several minutes depending the device and when completed the results

are saved into the database as noted previously. The next step aggregates the results

from the TLS scans and the OpenVAS report. The attacks checked by the TLS scanner

are set a CVSS score based on existing CVEs that exploit this kind of attack. More

specifically CRIME attack has a score of 2.6 [79], while the DROWN attack has a

score of 4.3 [80].

 The score of the highest CVSS reported for the selected device is set at its final score

along with the number of scanned objects that had a CVSS score, thus giving an easy

to understand overview and a score that can be transformed to five-star rating:

/api/security/score/byalias/lametric

Result:
[{"id":"be7aea67-4fbc-4441-bbee-
e54a734b486e","mac":"58:63:56:2d:b5:28","score":5.5,"criticality":"M
edium","numberofvuln":4,"encrypted":null,"unix_time":1470804480}]

 The criticality is calculated with the same values CVSS calculates its severity

rating[81] and gives an easy overview to users with no network or security experience,

thus enabling the implementation of easy to use front ends as well as the deep security

analysis of devices.

Expert evaluation 43

Chapter 6
6 Expert evaluation

A number of experts were contacted in order to evaluate the design of the framework.

Expert 1 was working on the project since the first stages, hence never used the API

or was provided with the documentation that the rest of the experts were. His opinion

is merely about the functionality of the router itself and not for the framework as a

whole. The rest of the experts were informed about the design and were provided with

a demo showcasing three potential usage scenarios and projects, and their solutions,

the full document can be reviewed in appendix C. The main reason for the lack of a

live demo was due to university rules, which require special permissions to attach the

framework on the university network.

The experts were also provided with the full API documentation which is not included

in this document due its large size since the documentation of the API is over 70 pages

long. An overview of the available commands can be reviewed in appendix B.

Meetings were setup with experts 1,2 and 4 while all the experts were required to send

their opinion in an email as well. The experts were invited to ask questions and

comment on the design and functionality of the framework. More specific questions

were asked about the potential use of the framework the familiarity of interaction and

if it is appropriate for its aims. Each expert’s opinion is summarised and presented

separately.

6.1 Expert 1

An informatics student intern was tasked to generate a web interface using the router

as his workbench. The final implementation does not use the API but rather the scripts,

tools and the database available. The web interface is a pure Python implementation

that displays live or recorded network sessions on a map (figure 9). His project's aim

was to investigate data transferred over Internet of Things objects, such as smart TVs

or smart kettles. In total the first expert worked over a month with the device.

Expert evaluation 44

He used the router in his project which was visualising network traffic across a network

of IoT objects. His project aim was to use a geolocation API to find the location of any

public IP address given and display this on a map. Both the data dumping capabilities

of the device were used. The user could either capture a file and run his application to

go through the packet capture, visualising transfers on the map sequentially, or could

run it while live packet capture was taking place, displaying any traffic in real-time.

The router was used in the live aspect of the web-interface through its MySQL feature.

He used SQL queries in Python code to access the most recent packets captured and

also to retrieve a group of packets that occurred during some specified timeframe. The

router was also used to capture PCAP files and store them separately depending on the

type of traffic expected.

Targeting a specific device was described as effortless since a separate PCAP file

could be produced for each, filtering out any irrelevant traffic, allowing for more

accurate inspections. He described the setup as “quick and easy” after following the

given instructions. The packet capturing was described as working flawlessly and he

did not have any serious issues with the router. The command line interface of the

Python scripts was described as “comprehensive and to the point “and very similar to

tools that he had already used in UNIX type of systems. MySQL proved very quick

and efficient for carrying out any queries. It was effortless to login to the database

through Python code and carry out queries. The first expert had no previous experience

with synchronous reading and writing of data, but found the implement procedure

straight-forward.

A negative aspect highlighted was the lack of filters for the data-dumping script, which

resulted the developer dumping his own SSH traffic when the targeted device was the

one from which he was accessing the router’s command line interface. There was no

command to filter out the SSH traffic and the expert had to modify the python code on

the router. He described the procedure as easy, since the code was very readable and

well structured.

Hardware-wise the router sometimes did not boot correctly which reset it to default

configuration settings, with which he could not access it, but a power-cycle always

fixed the problem.

Expert evaluation 45

6.2 Expert 2

The second expert is a design informatics PhD student in Design Informatics who has

worked with the master’s students on multiple occasions.

He could see this framework being used for individual projects of master’s students

and ones being housed together which may not have any specific ties, but the data

retrieved could be used for comparison. Any IoT setup the master’s students will build

has potential use for the framework, which includes the Design Informatics, Design

with Data, and Histories Technology & Future core curriculum.

 In terms of creating visuals it is believed to be a simple method to achieve similar and

better results that what the master students used last year and even novices who never

used JSON before could probably familiarise themselves with the API in a short period

of time.

In terms of analysis his opinion is that the framework will prove useful for his work in

IoT and other possible interactive designs. This can be a tool for applying trace

ethnography, network ethnography, and digital semiotics. All three would be able to

be geared towards network behaviour and security visualisation. The framework also

provides a way to teach said methods in the classroom with design interventions

currently in place or being built. As a teaching tool it can be useful since the dumped

data open the possibility for making quick adjustments to design or service

interventions.

Two main down sides were noted. The first was the need to setup everything on the

custom separate router, although it was an expected requirement. The second was that

while the demo tutorials and documentation are easy to follow they assume a

reasonable knowledge base, which some students will be devoid. A more basic

introduction is suggested like a workshop with basic terminology, calls and their

functions as a way to increase the percentages of potential users in a master class.

Expert evaluation 46

6.3 Expert 3

The third expert is a lecturer at the University of Edinburgh.

He described the framework as interesting and he could see a couple applications for

monitoring network activity. Neither actually critically revolves around the security

aspect, although knowing what is going on and what devices are really attaching to is

important and relevant. The first application is for monitoring change in activity and

separating human invoked activity from automatic activity, identifying usage patterns

can be interesting with social, behavioural, environmental, adaptive

significance. Obviously deviant behaviour may indicate a security problem. The

second would involve contrasting LAN activity, with external communication.

With the growth in Internet of Things and smart environments, it might be useful to

know how much communication devices really need or have with the outside world

rather than just the immediate local environment. An example usage would be to

enable users to know what their phone is doing even when they are not directly using

it. The potential mapping visualisation is considered an interesting project as

well. Security-wise, the framework offers a fast and easy way of checking that you

are communicating with where you think you should be, an example usage would the

verification of the location which the server we would expect to be, in the sense that

the Bank of America server is unlikely to be hosted in Russia.

Creating awareness of what connections are being made and frequency or usage rates

would be useful for developers. It might even help encourage greater efficiency in

bandwidth use. For security, being aware of incoming and outgoing data packets is

considered obviously important, along with geolocalisation and the time of

establishing communication. It might enable easier detection of potential problems

(e.g. which of your 20 devices is the most vulnerable or likely to compromise your

entire network).

The expert noted that the implemented alias mechanism does not replace the unique

MAC address, but exists only for human readability purposes, but he can see the

benefits of its implementation. Similarly, in terms of HCI, attaching devices in some

Expert evaluation 47

way analogous to attaching Bluetooth devices would make the process easier and what

people are more likely to be used to.

6.4 Expert 4

Is an independent artist, musician and machine-builder working across the fields of

live performance and small scale robotics, with an interest in how the philosophy of

the open source movement improves access to advanced digital fabrication techniques,

and the effects of open versus closed approaches to information sharing.

He describes himself as a relative newcomer to programming and network analysis,

his project’s aim is to find ways to display information relating to network security in

a clear and tangible manner, making a physical object display that is changing state in

response to real-time network data.

He used the framework to control a traffic light system of LEDs via an Arduino Yun

board, using green-amber-red to show low-medium-heavy network traffic over a

rolling 5-second time window, thus implementing the first example in the demos

document provided.

 The framework made it possible to capture and visualise data quickly and easily even

for a novice programmer. He described the API documentation to be exceptionally

clear and well organised, as well as suggestive of many ways that the provided

functions could be used to drive display objects of more or less complexity. He was

able to build a small python application that worked well with the API with minimal

problems. While it is a simplistic implementation of the system given the wide range

of commands available at the API, as a proof of concept it considered still informative,

since it displays network activity at even the slightest use of the monitored device. His

implementation was informative as it made him aware that the phone transmitted

network data simply on being picked up and having the screen unlocked, activities that

the users might not think of as being visible on a network.

When asked about the potential usages and the importance of the framework he

replied: “The firmware and API have a great potential in uncovering the normally

hidden network activity of a device in everyday use and displaying it simply enough

for a non-technical user to understand, raising awareness of the pervasiveness of the

Expert evaluation 48

network. There will be many ways for other artists to gain a greater understanding of

network activity in IoT devices, enabled by this system. Given further project time, I

would be particularly interested in building a display object that responded to the suite

of security tests available.”

The main problem described is the same as expert 1. There were setup issues with the

router’s firmware requiring the installation process to be run many times. The likely

source of the problem was insufficient power available at the router’s USB port for the

external hard drive. Since the firmware requires the use of external storage to operate,

failure at this point made the installation unreliable and it required reflashing the

firmware several times. The problem was fixed temporarily when the external hdd was

replaced by a 64GB flash disk and the system behaviour improved immediately.

Subsequently, the external hdd was connected via a powered USB hub and this also

appeared to improve the system stability.

6.5 Overview

The experts provided mostly positive feedback for the design and believe that the

framework has a number of usages, providing easy and streamlined access to the data,

potential usages described were in terms with the original aim usages of this project,

visualisation of the traffic dominated the input of the experts highlighting the reason

data packet dumping is the core of the framework. The problems noted by the experts

that actually used the framework or part of it was about the stability of the system, the

problem has been identified as being the lack of power both by expert 1 and 4 and the

researcher as well.

Devices evaluation 49

 Chapter 7
7 Devices evaluation

A number of IoT devices were chosen at random and were analysed using the

framework to highlight what is possible in the current state, as well as the lack of

security for some of the devices. All the tested devices were found to either be

exploitable, use weak encryption or no encryption at all. The evaluation consisted of

three steps: port scanning, vulnerability reporting and manual analysis of the dumped

packets both in PCAP and JSON to verify the correctness of the implementation. The

results were checked against manual execution of the tools used and comparing the

end results to verify the correctness of the system.

7.1 Smarter WIFI Kettle

This device has been targeted in the past by many hackers mostly due its insecure

design and the widely news covered attack against it which allowed attackers to obtain

the WIFI password that the kettle was connected to[17], [18]. The device has two ports

listening 23 and 2000, both of them accept unecrypted messages, all data packets can

be observed including the “HELLOKETTLE” and “HELLOAPP” messages

exchanged with the smart phone application at their connection initialisation phase.

No authentication mechanism is implemented for the commands destined to the telnet

service available at port 23 while authentication is required at port 2000, the literature

suggests that the default password for the interface available at port 2000, at least when

the device is configured using the official application on an android device is “000000”

[18],[82].

The device communication is so insecure that third parties have created libraries,

allowing the device to be controlled without the manufacturer’s application

[83],[84],[85]. While a newer version has been introduced by the manufacturer and the

Devices evaluation 50

security of the old device is almost non-existent the device that was tested is still sold

from major online retailers[86].

7.2 La Metric Time

La Metric Time is a “smart clock” with a pixel style display, it features Bluetooth

connectivity as well and can be used as a wireless speaker. The device is controlled

via a smart-phone application and each device is assigned to an online account. It

should be noted that version 1.0.21 of the device firmware was tested which is not the

latest version.

After reviewing the device results, it was noted that weak ciphers and service

identification is possible, an average of 5.5 CVSS score was reported by the

vulnerability scanner due to vulnerabilities present in the device. According to the

vulnerability scan the device has one vulnerability CVE-2016-3116 which is newer

than its latest firmware release version, and uses weak keys for both TLS and SSH

thus confirming the results of the custom TLS scan that was conducted as well.

The device proved to be insecure implementation upon further research, while it

utilises encryption in its network communication the following problems were found.

The device uses default ports for its services and has services unneeded for its

operation working at all times. A vulnerable version dropbear SSH server runs at port

22 and a TLS server listens at port 443, both services are compatible with weak ciphers

such as RC4 while the vulnerable SSLv3 version is enabled by default.

While this device was the only one tested that tried to obfuscate its traffic, the results

suggest that unmasking the traffic and gaining access to the device itself should be

possible. It should also be added that the device does not auto-update or require the

user to update in order to continue using the smartphone application, thus invalidating

the update requirement that has as a result an even more insecure device.

7.3 Smart plug

A smart plug under the brand name of ORVIBO, model number S20 was tested. The

plug offered the basic functionality expected from such a device. It could be remotely

turned on and off and could setup timers. The plug was the least secure of the tested

Devices evaluation 51

devices since it did not use any kind of security or authentication mechanism, other

than the initial pairing process. All its communication in conducted by sending UDP

packets to port 10000. All the data packets were in plain text and the packets could be

captured and replayed, during security audits to the device it was possible to resend a

spoofed previously captured packet and control the device. The complete lack of

authentication makes the device unsafe to use since anyone with access to network can

send it commands. Another unexpected behaviour of the device is that it sends the

command received to servers located in London, while it is assumed that this behaviour

is in order the manufacturer to monitor the device usage, the fact that the device

receives commands in plain text, without any kind of authentication and forwards these

commands to a remote server can be seen as a privacy breach. The findings for this

device can be verified by previous reverse engineering of the device[87], [88]and its

protocol[89], [90].

7.4 Philips hue bridge

Philips has introduced a way to communicate with their smart led lights through a

bridge thus creating a layer of abstraction. The bridge is in reality a small computer

hosting a server. A RESTful API is exposed from the bridge which the various

applications controlling the lights use. The communication from the bridge to lights is

through the zigbee protocol.

While the vulnerability scans show no apparent problems in the implementation, the

complete lack of TLS is apparent, no call to the API is encrypted thus all commands

can be captured using the framework and analysed. Authentication is implemented and

the abstraction layer created by the bridge serves its purpose. The design only misses’

encryption to provide adequate security, assuming the zigbee communication between

the bridge and the lamps is not compromised.

It should be noted that due to rules and constrains the device was not used using the

official Philips application since the official application needed to update the device.

Two alternatives applications found on Google Playstore were used instead[91], [92],

Devices evaluation 52

both used the same API calls when observed in network level to achieve their

functionality which was based only on the API available.

7.5 Dragon Touch Y88X

The Dragon Touch tablet is an Android based machine targeting young kids. The

device is advertised as providing a “Kid-safe cyber environment”[93]. Upon testing

the device, it proved to behave mostly like any other Android device, that means that

the tablet has no ports listening and no reported network level vulnerabilities. On the

other hand, the device like all Android devices with Google play services installed,

sent periodic messages to Google, showing that the privacy of the device was not

customised and the child’s privacy was never considered. Furthermore, network

packets were sent to third party servers that were not in any known Google range,

hence it is assumed that the device further breaches the privacy of the user on top of

the default Android behaviour, by sending customised data to its makers, all the

communications observed were encrypted.

Devices evaluation 53

7.6 SSL stripping

SSL stripping as noted earlier is an old attack that was the reason for the introduction

of the HSTS, the newer updated version has two unique features which were explained

earlier to combat HSTS and hence being able to strip SSL again.

Figure 9 Ebay unsecured after SSL stripping

During testing the router imposed a LAN wide SSL stripping attack and a Windows

10 machine with a fresh install of the latest Firefox was used to test its effectiveness.

The attack was successful against: google.com, live.com, tsb.co.uk, halifax.co.uk,

hsbc.co.uk and ebay.com while it failed to redirect facebook.com, paypal.com and

twitter.com. Manually opening the high-jacked generated domains of the three

invulnerable sites had as a result the compromise of the encryption but since someone

would have to send the malformed URL to the user and it was not a transparent

redirection is not considered successful.

Devices evaluation 54

Figure 10 Google unsecured after SSL stripping

In figure 10 one can note the domain “cuentas.google.com” which is a non-existing

subdomain that is mapped by the spoofed DNS to the real subdomain

“accounts.google.com”. The framework was capable of dumping clear text packets

with the credentials from both Google and Live services using the implemented attack

technique while using publically available code.

According to the results, SSL stripping is a real danger, since the attack works if

implemented correctly in a MITM scenario, the number of websites that are vulnerable

is unknown, but the implementation proves that stealing data from HSTS enabled

websites is possible. It should be noted that using the “HTTPS Everywhere” plugin by

Electronic Frontier Foundation (EFF)[94] or setting the DNS server to a public one

proved to be actively deterring the attack and hence should be considered as the easiest

way to stop it.

Conclusion and Future Work 55

 Chapter 8
8 Conclusion and Future Work

In this paper it was discussed how the lack of a framework that allows easy access

across devices to live network flow data and mass security assessment delays the

research in the IoT field allowing insecure devices to flood the market. The need for

the project thus was established. Theoretical and practical approaches were created in

order to provide a generic network level security evaluation.

The feedback of the focus group during the design stages was deterministic for the rest

of the design and implementation process while the expert opinion verified the

usability and potential of the framework.

Both mass security assessment and live network packet data was discussed researched

and implemented on top of open source technologies, inviting future improvement. As

part of the original design the functionality present aims to the potential visualisation

of the provided data and the automation of data capturing. The functionality

implemented exceeded the original expectations and the feedback received shows

potential usage of the framework in many fields including the visualisation and

education.

The original questions asked were answered and all the set aims were achieved with

the exception of the web-interface.

The evaluated devices proved the insecurity prevalent in IoT while showcasing the

capabilities available to security professionals by the framework. For the cases of non

security or network experts, access to data is possible in a simplified manner while

providing a high level representation of security in the form of a simple score.

This paper verifies that the free open source framework introduced can simplify the

interaction experts and not alike have with networked devices. A plethora of calls were

introduced that can be significantly expanded further providing the necessary toolset

to implement simple and complex projects thus allowing for more network

Conclusion and Future Work 56

transparency, simplifying the procedure needed by researchers to acquire network

data.

8.1 Future work

8.1.1 Full OpenVAS support

The XML interface of the OMP protocol can be easily used in order to create an

OpenVAS library that implements the whole set of the software’s functionality. The

current implementation although it works for the needs of this project, it supports only

a small subset of the functionality available, namely only targets and tasks can be

created and reports can be parsed. The response classes needed can be generated

automatically leaving only the logic to be implemented.

8.1.2 Full nmap support

Nmap offers a python library that allows full interaction and its results can be saved in

XML format thus making a full autonomous nmap a possibility, as with the OpenVAS

integration, it is possible to create a full interface with nmap.

8.1.3 Full libcap wrapping api

Scapy proved to be an excellent library upon which the project was based and enabled

almost all of the packet dumping functionality and TLS scanning. Scapy itself though

being a Python wrapper library for libpcap introduces a lot of overhead when

compared to native libpcap implementations like tcpdump. During my performance

tests while both tcpdump and Scapy were dumping a Youtube high definition

streaming session to a PCAP file, Scapy used an average of 60% of the CPU while

tcpdump was consuming less than 10% for the same exact function. Creating a Java

library that implements some of the core libpcap functionality using the low level

native implementation of libpcap available on the router, would considerably speed up

the execution and multiply the amount of data the device can dump.

Conclusion and Future Work 57

8.1.4 Integration with existing security frameworks.

The Wi-Fi pineapple introduced the concept of a mass marketed rogue AP, their

implementation is based on OpenWRT and is used by numerous security researchers

worldwide. Using a custom firmware like this as a base with the added capabilities

introduced from this framework would allow further expansion. Pineapple Wifi

stopped publishing their source since 2014 and removed all their public

repositories[95] turning into a corporation, hence their implementation is not any

longer easy to acquire or adapt, there are alternative projects such as fruitywifi trying

to replicate the functionality on other platforms and may be a viable option for porting

to the OpenWRT platform[96],[97].

8.1.5 Privacy score implementation

Although the privacy score system was planned, was never practically implemented,

the base for its implementation exists since the framework is aware both if the packets

are encrypted and the type of encryption they use, the privacy score in conjunction

with the simplified vulnerability score would reach the original goal set by this project.

8.1.6 Web interface

While planned the web interface was present during the design stage, it was dropped

in later stages and never materialised. An example web interface was introduced which

while sufficient to highlight the possibilities present in the router it does not implement

any API functionality. The functionality present allows for the implementation of

various interfaces that be displaying information or control the framework itself

allowing for more ways of both visualisation and interaction.

8.1.7 Hard drive problems

Finally, there were four systems produced and tested during the practical

implementation, while some worked without issues, other implementations faced

serious problems with the hard drive disconnecting. It was noted by people who used

the system that the hard drive sometimes timeouts and since the state is held in it, the

Conclusion and Future Work 58

router appears to have reseted to default settings, while this can be fixed with a power-

cycle of the router, it is apparent that the device cannot provide enough power to drive

the HDD, to solve this there are a number of options including the use of flash drives,

the use of a powered hub or even to move the database to a different machine,

preferably the machine that hosts the API. Knowing these problems, and solutions, the

power management of the device can be revised to abolish the defect.

 59

9 Bibliography

[1] Hachem Sara, Teixeira Thiago, and Issarny Valérie, “Ontologies for the

Internet of Things.,” ACM, Lisbon, Portugal, 2011.

[2] A. Wood, “The internet of things is revolutionising our lives, but standards

are a must,” May 2015.

[3] Edoardo Pignotti and Peter Edwards, “Trusted Tiny Things: Making the

Internet of Things More Transparent to Users.,” ACM, Zurich, Switzerland.

[4] Arun Kanuparthi, Ramesh Karri, and Sateesh Addepali, “Hardware and

Embedded Security in the Context of Internet of Things.,” CyCAR, Berlin, 2013.

[5] Teng Xu, James B. Wendt, and Miodrag Potkonjak, “Security of IoT Sytems:

Design Challnges and Opportunities,” University of California, Los Angeles, 2014.

[6] Z.-K. Zhang, Michael Cheng Yi Cho, and Shiuhpyng Shieh, “Emerging

Security Threats and Countermeasures in IoT,” ACM.

[7] I. Alqassem, “Privacy and Security Requirements Framework for the Internet

of Things (IoT),” in Companion Proceedings of the 36th International Conference

on Software Engineering, New York, NY, USA, 2014, pp. 739–741.

[8] S. Poslad, M. Hamdi, and H. Abie, “Adaptive Security and Privacy

Management for the Internet of Things (ASPI 2013),” in Proceedings of the 2013

ACM Conference on Pervasive and Ubiquitous Computing Adjunct Publication, New

York, NY, USA, 2013, pp. 373–378.

[9] S. Horrow and A. Sardana, “Identity Management Framework for Cloud

Based Internet of Things,” in Proceedings of the First International Conference on

Security of Internet of Things, New York, NY, USA, 2012, pp. 200–203.

[10] S. S. M. Chow, “Functional Credentials for Internet of Things,” in

Proceedings of the 2Nd ACM International Workshop on IoT Privacy, Trust, and

Security, New York, NY, USA, 2016, pp. 1–1.

 60

[11] J. young Kim, “Secure and Efficient Management Architecture for the

Internet of Things,” in Proceedings of the 13th ACM Conference on Embedded

Networked Sensor Systems, New York, NY, USA, 2015, pp. 499–500.

[12] G. Condra, “A Plea for Incremental Work in IoT Security,” in Proceedings of

the 5th International Workshop on Trustworthy Embedded Devices, New York, NY,

USA, 2015, pp. 39–39.

[13] S. E. C. Consult, “SEC Consult: House of Keys: Industry-Wide HTTPS

Certificate and SSH Key Reuse Endangers Millions of Devices Worldwide.” .

[14] HP, “Internet of things research study.”

[15] C. Paar, “Constructive and Destructive Aspects of Embedded Security in the

Internet of Things,” in Proceedings of the 2013 ACM SIGSAC Conference on

Computer & Communications Security, New York, NY, USA, 2013, pp. 1495–1496.

[16] R. W. for Metro.co.uk, “Smart TV hackers are filming people having sex on

their sofas,” Metro, 23-May-2016. .

[17] Patching, Research, Security, Vulnerabilities, Malware, P. cruelty: B. flay L.

ransomware for the third time, says wares dead after 2018 Reverser laments crypto

game protection, and L. coder released from clink after mega-millions bank raids,

“Connected kettles boil over, spill Wi-Fi passwords over London.” [Online].

Available:

http://www.theregister.co.uk/2015/10/19/bods_brew_ikettle_20_hack_plot_vulnerabl

e_london_pots/. [Accessed: 13-Aug-2016].

[18] “Why the iKettle Hack Should Worry You (Even If You Don’t Own One),”

MakeUseOf. [Online]. Available: http://www.makeuseof.com/tag/ikettle-hack-worry-

even-dont-one/. [Accessed: 13-Aug-2016].

[19] A. Greenberg, “The Jeep Hackers Are Back to Prove Car Hacking Can Get

Much Worse,” WIRED, 01-Aug-2016. [Online]. Available:

https://www.wired.com/2016/08/jeep-hackers-return-high-speed-steering-

acceleration-hacks/. [Accessed: 13-Aug-2016].

 61

[20] “Shodan.” [Online]. Available: https://www.shodan.io/. [Accessed: 13-Aug-

2016].

[21] Michael Schearer, “DEFCON-18-Schearer-SHODAN.pdf,” Defcon 18.

[Online]. Available: https://www.defcon.org/images/defcon-18/dc-18-

presentations/Schearer/DEFCON-18-Schearer-SHODAN.pdf. [Accessed: 17-Aug-

2016].

[22] A. Staff, “‘Internet of Things’ security is hilariously broken and getting

worse,” Ars Technica, 23-Jan-2016. [Online]. Available:

http://arstechnica.com/security/2016/01/how-to-search-the-internet-of-things-for-

photos-of-sleeping-babies/. [Accessed: 17-Aug-2016].

[23] Z. Liu, R. H. Campbell, and M. D. Mickunas, “Security as services in active

networks,” in Seventh International Symposium on Computers and Communications,

2002. Proceedings. ISCC 2002, 2002, pp. 883–890.

[24] S. Pennefather and B. Irwin, “An exploration of geolocation and traffic

visualisation using network flows,” in 2014 Information Security for South Africa,

2014, pp. 1–6.

[25] R. Fontugne, T. Hirotsu, and K. Fukuda, “A visualization tool for exploring

multi-scale network traffic anomalies,” in International Symposium on Performance

Evaluation of Computer Telecommunication Systems, 2009. SPECTS 2009, 2009,

vol. 41, pp. 274–281.

[26] N. Promrit and A. Mingkhwan, “Traffic Flow Classification and

Visualization for Network Forensic Analysis,” in 2015 IEEE 29th International

Conference on Advanced Information Networking and Applications, 2015, pp. 358–

364.

[27] S. K. Pandey, V. K. Yadav, S. Kumar, S. Verma, and P. Dansena,

“Implementation of a new framework for automated network security checking and

alert system,” in 2014 Eleventh International Conference on Wireless and Optical

Communications Networks (WOCN), 2014, pp. 1–7.

[28] L. Harrison and A. Lu, “The future of security visualization: Lessons from

network visualization,” IEEE Netw., vol. 26, no. 6, pp. 6–11, Nov. 2012.

 62

[29] J. Ortiz-Ubarri, H. Ortiz-Zuazaga, A. Maldonado, E. Santos, and J. Grullón,

“Toa: A Web Based Network Flow Data Monitoring System at Scale,” in 2015 IEEE

International Congress on Big Data, 2015, pp. 438–443.

[30] Y. E. Kwasi and R. Rojas-Cessa, “High-resolution hardware-based packet

capture with higher-layer pass-through on NetFPGA card,” in 2014 23rd Wireless

and Optical Communication Conference (WOCC), 2014, pp. 1–6.

[31] H. Shiravi, A. Shiravi, and A. A. Ghorbani, “A Survey of Visualization

Systems for Network Security,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 8, pp.

1313–1329, Aug. 2012.

[32] S. Elbouanani, M. A. E. Kiram, and O. Achbarou, “Introduction to the

Internet of Things security: Standardization and research challenges,” in 2015 11th

International Conference on Information Assurance and Security (IAS), 2015, pp.

32–37.

[33] J. T. Chiang, J. J. Haas, Y. C. Hu, P. R. Kumar, and J. Choi, “Fundamental

Limits on Secure Clock Synchronization and Man-In-The-Middle Detection in Fixed

Wireless Networks,” in IEEE INFOCOM 2009, 2009, pp. 1962–1970.

[34] R. K. Guha, Z. Furqan, and S. Muhammad, “Discovering Man-in-the-Middle

Attacks in Authentication Protocols,” in MILCOM 2007 - IEEE Military

Communications Conference, 2007, pp. 1–7.

[35] H. A. Mangut, A. Al-Nemrat, C. Benzaïd, and A. R. H. Tawil, “ARP Cache

Poisoning Mitigation and Forensics Investigation,” in 2015 IEEE

Trustcom/BigDataSE/ISPA, 2015, vol. 1, pp. 1392–1397.

[36] Y. Joshi, D. Das, and S. Saha, “Mitigating man in the middle attack over

secure sockets layer,” in 2009 IEEE International Conference on Internet

Multimedia Services Architecture and Applications (IMSAA), 2009, pp. 1–5.

[37] C. Jackson, A. Barth, and J. Hodges, “HTTP Strict Transport Security

(HSTS).” [Online]. Available: https://tools.ietf.org/html/rfc6797. [Accessed: 09-

Aug-2016].

 63

[38] “The LAND attack (IP DOS).” [Online]. Available:

http://insecure.org/sploits/land.ip.DOS.html. [Accessed: 11-Aug-2016].

[39] Juniper Networks, “Understanding Land Attacks.” [Online]. Available:

https://www.juniper.net/documentation/en_US/junos12.1x47/topics/concept/denial-

of-service-network-land-attack-understanding.html. [Accessed: 11-Aug-2016].

[40] Information Sciences Institute, “RFC: 791,” Marina del Rey, California,

1981.

[41] “CVE-2009-3103.” [Online]. Available: https://www.cve.mitre.org/cgi-

bin/cvename.cgi?name=cve-2009-3103. [Accessed: 11-Aug-2016].

[42] M. S. M. 105 and 052 Points 2 2 2 Recent Achievements Blog Party Starter

Blog Conversation Starter New Blog Rater View Profile, “Security Advisory

2868725: Recommendation to disable RC4,” Security Research & Defense. [Online].

Available: https://blogs.technet.microsoft.com/srd/2013/11/12/security-advisory-

2868725-recommendation-to-disable-rc4/. [Accessed: 11-Aug-2016].

[43] OWASP, “Transport Layer Protection Cheat Sheet.” [Online]. Available:

https://www.owasp.org/index.php/Transport_Layer_Protection_Cheat_Sheet.

[Accessed: 11-Aug-2016].

[44] Thai Duong and Juliano Rizzo, “BREACH ATTACK.” [Online]. Available:

http://breachattack.com/. [Accessed: 11-Aug-2016].

[45] “nealharris/BREACH,” GitHub. [Online]. Available:

https://github.com/nealharris/BREACH. [Accessed: 11-Aug-2016].

[46] “CVE-2012-4929.” [Online]. Available: https://cve.mitre.org/cgi-

bin/cvename.cgi?name=cve-2012-4929. [Accessed: 11-Aug-2016].

[47] “CRIME Presentation,” Google Docs. [Online]. Available:

https://docs.google.com/presentation/d/11eBmGiHbYcHR9gL5nDyZChu_-

lCa2GizeuOfaLU2HOU/edit?usp=embed_facebook. [Accessed: 11-Aug-2016].

[48] “CVE-2015-3197.” [Online]. Available: https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2015-3197. [Accessed: 11-Aug-2016].

 64

[49] N. Aviram, S. Schinzel, J. Somorovsky, N. Heninger, M. Dankel, J. Steube,

L. Valenta, D. Adrian, J. A. Halderman, V. Dukhovni, and others, “DROWN:

Breaking TLS using SSLv2.”

[50] Moxie Marlinspike, “Moxie Marlinspike >> Software >> sslstrip.” [Online].

Available: https://moxie.org/software/sslstrip/. [Accessed: 14-Aug-2016].

[51] Vagias, Wade M, “Likert-type scale response anchors,” Clemson

International Institute for Tourism & Research Development, Department of Parks,

Recreation and Tourism Management, Clemson University, 2006.

[52] “CVSS v2 Complete Documentation.” [Online]. Available:

https://www.first.org/cvss/v2/guide. [Accessed: 09-Aug-2016].

[53] Microsoft, “Chapter 1: Service Oriented Architecture (SOA).” [Online].

Available: https://msdn.microsoft.com/en-us/library/bb833022.aspx. [Accessed: 09-

Aug-2016].

[54] “Linksys WRT1X00AC/S Series [OpenWrt Wiki].” [Online]. Available:

https://wiki.openwrt.org/toh/linksys/wrt1x00ac_series. [Accessed: 11-Aug-2016].

[55] “OpenVAS - NVT Development.” [Online]. Available:

http://www.openvas.org/nvt-dev.html. [Accessed: 18-Aug-2016].

[56] “Vulnerability scanners – SecTools Top Network Security Tools.” [Online].

Available: http://sectools.org/tag/vuln-scanners/. [Accessed: 18-Aug-2016].

[57] “Nessus, OpenVAS and Nexpose VS Metasploitable,” HackerTarget.com,

22-Aug-2012. [Online]. Available: https://hackertarget.com/nessus-openvas-

nexpose-vs-metasploitable/. [Accessed: 18-Aug-2016].

[58] OpenVAS, “OMP: OpenVAS Management Protocol.” [Online]. Available:

http://www.openvas.org/omp-6-0.html. [Accessed: 07-Aug-2016].

[59] “the-tcpdump-group/libpcap,” GitHub. [Online]. Available:

https://github.com/the-tcpdump-group/libpcap. [Accessed: 15-Aug-2016].

[60] “libpcap - The Wireshark Wiki.” [Online]. Available:

https://wiki.wireshark.org/libpcap. [Accessed: 15-Aug-2016].

 65

[61] tcpdump, “Tcpdump/Libpcap public repository.” [Online]. Available:

http://www.tcpdump.org/. [Accessed: 15-Aug-2016].

[62] “The History and Future of Nmap.” [Online]. Available:

https://nmap.org/book/history-future.html#history. [Accessed: 15-Aug-2016].

[63] “python-nmap : nmap from python.” [Online]. Available:

http://xael.org/pages/python-nmap-en.html. [Accessed: 15-Aug-2016].

[64] “XML Output (-oX).” [Online]. Available: https://nmap.org/book/output-

formats-xml-output.html. [Accessed: 15-Aug-2016].

[65] “Chapter 15. Nmap Reference Guide.” [Online]. Available:

https://nmap.org/book/man.html. [Accessed: 15-Aug-2016].

[66] Scapy, “Scapy.” [Online]. Available: http://www.secdev.org/projects/scapy/.

[Accessed: 07-Aug-2016].

[67] “tintinweb/scapy-ssl_tls,” GitHub. [Online]. Available:

https://github.com/tintinweb/scapy-ssl_tls. [Accessed: 15-Aug-2016].

[68] “maxmind/geoip-api-java,” GitHub. [Online]. Available:

https://github.com/maxmind/geoip-api-java. [Accessed: 15-Aug-2016].

[69] Leonardo Nve, “Asia-14-Nve-Offensive-Exploiting-DNS-Servers-

Changes.pdf,” 2014. [Online]. Available: https://www.blackhat.com/docs/asia-

14/materials/Nve/Asia-14-Nve-Offensive-Exploiting-DNS-Servers-Changes.pdf.

[Accessed: 17-Aug-2016].

[70] “byt3bl33d3r/MITMf,” GitHub. [Online]. Available:

https://github.com/byt3bl33d3r/MITMf/tree/master/core/sslstrip. [Accessed: 17-Aug-

2016].

[71] “LeonardoNve/dns2proxy,” GitHub. [Online]. Available:

https://github.com/LeonardoNve/dns2proxy. [Accessed: 17-Aug-2016].

[72] “argp/nmapdb,” GitHub. [Online]. Available:

https://github.com/argp/nmapdb. [Accessed: 15-Aug-2016].

 66

[73] “tintinweb/scapy-ssl_tls/examples,” GitHub. [Online]. Available:

https://github.com/tintinweb/scapy-ssl_tls/tree/master/examples. [Accessed: 15-Aug-

2016].

[74] S. P. Ahuja and R. Quintao, “Performance evaluation of Java RMI: a

distributed object architecture for Internet based applications,” in 8th International

Symposium on Modeling, Analysis and Simulation of Computer and

Telecommunication Systems, 2000. Proceedings, 2000, pp. 565–569.

[75] D. Jagannadham, V. Ramachandran, and H. N. H. Kumar, “Java2 distributed

application development (Socket, RMI, Servlet, CORBA) approaches, XML-RPC

and web services functional analysis and performance comparison,” in International

Symposium on Communications and Information Technologies, 2007. ISCIT ’07,

2007, pp. 1337–1342.

[76] Fielding, Roy Thomas, “Fielding Dissertation: CHAPTER 5:

Representational State Transfer (REST),” 2000. [Online]. Available:

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm. [Accessed:

11-Aug-2016].

[77] R. T. Fielding and R. N. Taylor, “Principled Design of the Modern Web

Architecture,” in Proceedings of the 22Nd International Conference on Software

Engineering, New York, NY, USA, 2000, pp. 407–416.

[78] IANA, “Protocol Numbers.” [Online]. Available:

https://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml.

[Accessed: 14-Aug-2016].

[79] “CVE-2012-4930.” [Online]. Available:

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-4930. [Accessed: 09-

Aug-2016].

[80] “CVE-2016-0800.” [Online]. Available:

https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-0800. [Accessed: 09-

Aug-2016].

 67

[81] “CVSS v3.0 Specification Document,” Qualitative Severity Rating Scale.

[Online]. Available: https://www.first.org/cvss/specification-document#i5.

[Accessed: 10-Aug-2016].

[82] “Internet of Things – do you really need a kettle that can boil your security

dry?,” Naked Security, 20-Oct-2015. .

[83] “iamamoose/moosekettle,” GitHub. [Online]. Available:

https://github.com/iamamoose/moosekettle. [Accessed: 18-Aug-2016].

[84] “loftdigital/PhiKettle,” GitHub. [Online]. Available:

https://github.com/loftdigital/PhiKettle. [Accessed: 18-Aug-2016].

[85] “lloydwatkin/ikettle.js,” GitHub. [Online]. Available:

https://github.com/lloydwatkin/ikettle.js. [Accessed: 18-Aug-2016].

[86] “iKettle Wi-Fi Electric Kettle 1.0, 1.8L, 2400W - Stainless Steel.” [Online].

Available: https://www.amazon.co.uk/iKettle-Wi-Fi-Electric-Kettle-

2400W/dp/B00BHXAWX4/ref=sr_1_2?ie=UTF8&qid=1471522373&sr=8-2.

[87] Andrius Štikonas, “Reverse engineering Orvibo S20 socket « Andrius

Štikonas,” 2015. [Online]. Available:

https://stikonas.eu/wordpress/2015/02/24/reverse-engineering-orvibo-s20-socket/.

[Accessed: 11-Aug-2016].

[88] “Glen Pitt-Pladdy :: Blog - Orvibo S20 (Wifi Power Socket) Utility.”

[Online]. Available: https://www.pitt-pladdy.com/blog/_20160121-

103754_0000_Orvibo_S20_Wifi_Power_Socket_Utility/. [Accessed: 15-Aug-2016].

[89] “Grayda/ninja-allone,” GitHub. [Online]. Available:

https://github.com/Grayda/ninja-allone. [Accessed: 15-Aug-2016].

[90] “Orvibo Wifi Socket - Pastebin.com,” Pastebin. [Online]. Available:

http://pastebin.com/0w8N7AJD. [Accessed: 15-Aug-2016].

[91] Rene Wahl, “all 4 hue.” [Online]. Available:

https://play.google.com/store/apps/details?id=de.renewahl.all4hue. [Accessed: 18-

Aug-2016].

 68

[92] Urbandroid Team, “hueManic.” [Online]. Available:

https://play.google.com/store/apps/details?id=com.urbandroid.hue. [Accessed: 18-

Aug-2016].

[93] “Dragon Touch y88x plus Pre installed with Bonus Disney Games App and

Audio Book kids Tablet.” [Online]. Available:

http://www.tabletexpress.com/dragon-touch-y88x-plus-kids-tablet.html. [Accessed:

15-Aug-2016].

[94] “HTTPS Everywhere,” Electronic Frontier Foundation. [Online]. Available:

https://www.eff.org/https-everywhere%20. [Accessed: 14-Aug-2016].

[95] “Hak5,” GitHub. [Online]. Available: https://github.com/hak5. [Accessed:

19-Aug-2016].

[96] “xtr4nge/FruityWifi,” GitHub. [Online]. Available:

https://github.com/xtr4nge/FruityWifi. [Accessed: 19-Aug-2016].

[97] “FruityWifi.” [Online]. Available:

http://www.fruitywifi.com/index_eng.html. [Accessed: 19-Aug-2016].

 69

10 Appendix

10.1 Appendix A Focus Group

 70

 71

 72

 73

 74

 75

10.2 Appendix B List of API commands

PACKETS: Dump data packets to PCAP files by IP

packets/dump/pcap/ip/{IP}/{interface}

PACKETS: Dump data packets to PCAP by IP

packets/dump/pcap/alias/{alias}/{interface}

PACKETS: Dump data packets to SQL by IP

packets/dump/sql/ip/{IP}/{interface}

PACKETS: Dump data packets to SQL by subnet

packets/dump/sql/subnet/{IP}/subnet/{subnet}/{interface}

PACKETS: Dump data packets to SQL by ALIAS

packets/dump/sql/alias/{alias}/{interface}

PACKETS: Dump Headers Only to SQL by IP

packets/dump/sql/ip/ho/{IP}/{interface}

PACKETS: Dump Headers Only to SQL by subnet produces

packets/dump/sql/subnet/ho/{IP}/subnet/{subnet}/{interface}

PACKETS: Dump Headers Only to SQL by ALIAS

packets/dump/sql/alias/ho/{alias}/{interface}

PACKETS: Stop any data dumping session active

packets/dump/stop

PACKETS: Get if the Dumping session is active

packets/dump/status

PACKETS: Get all the packets

packets/getall/everything

 76

PACKETS: Get the first packet

packets/getall/firstpacket

PACKETS: Get the last packet

packets/getall/lastpacket

PACKETS: Get all the packets since

packets/getall/since/{time_start}

PACKETS: Get packets between two times

packets/getall/from/{time_start}/to/{time_end}

PACKETS: Get all the packets from

packets/getbysessionid/{session_uuid}/all

PACKETS: Get the first packet from selected session

packets/getbysessionid/{session_uuid}/firstpacket

PACKETS: Get the last packet from selected session

packets/getbysessionid/{session_uuid}/lastpacket

PACKETS: Get the first packet from selected session

packets/getbysessionid/{session_uuid}/from/{time_start}/to/{time_end}

PACKETS: Get all the packets from a selected session since

packets/getbysessionid/{session_uuid}/since/{time_start}

PACKETS: Get the packets over a time period for a specific alias

packets/getbyalias/{alias}/from/{time_start}/to/{time_end}

PACKETS: Get the packets for an ALIAS since a time

packets/getbyalias/{alias}/since/{time}

PACKETS: Get packet by its UUID

packets/getbyid/{uuid}/packet

PCAP: Get a list with all the PCAP files captured on the router

 77

pcap/getall

PCAP: Get a PCAP record by its UUID

pcap/getbyid/{uuid}/all

PCAP: Get the location of the PCAP file for the selected UUID

pcap/getbyid/{uuid}/location

PCAP: Get the session id for the selected UUID

pcap/getbyid/{uuid}/sessionid

PCAP: Get the IP of the PCAP file for the selected UUID

pcap/getbyid/{uuid}/ip

PCAP: Get pcap record by its session id

pcap/getbysessionid/{session_uuid}/all

PCAP: Get PCAP location by its session id

pcap/getbysessionid/{session_uuid}/location

PCAP: Get PCAP location by its session id

pcap/getbysessionid/{session_uuid}/id

PCAP: Get PCAP target IP by its session id

pcap/getbysessionid/{session_uuid}/ip

LIVEHOSTS: Start "live host" detection

devices/livehosts/start

LIVEHOSTS: Get "live hosts"

devices/getlivehosts

LIVEHOSTS: Stop "live host" detection

devices/livehosts/stop

DEVICES: Get all stored devices

devices/getall

 78

DEVICES: Sets a custom ALIAS for a specified MAC

devices/getbymac/{mac}/set/alias/{alias}

DEVICES: GET the ALIAS for a specified MAC

devices/getbymac/{mac}/alias

DEVICES: Sets a NEW ALIAS for a specified ALIAS

devices/getbyalias/{alias}/set/alias/{newalias}

DEVICES: GET the MAC for a specified ALIAS

devices/getbyalias/{alias}/mac

DEVICES: GET the ID for a specified ALIAS

devices/getbyalias/{alias}/id

DEVICES: Sets a NEW ALIAS for a specified UUID

devices/getbyid/{uuid}/set/alias/{newalias}

DEVICES: GET the ALIAS for a specified UUID

devices/getbyid/{uuid}/alias

DEVICES: Get a device by its UUID

devices/getbyid/{uuid}

SESSIONS: Get all sessions

session/getall

SESSIONS: Get the interface for a specified UUID

session/getbyid/{uuid}/interface

SESSIONS: Get the mode for a specified UUID

session/getbyid/{uuid}/mode

SESSIONS: Get the target for a specified UUID

session/getbyid/{uuid}/target

SESSIONS: Get the timestamp for a specified UUID

 79

session/getbyid/{uuid}/time

SECURITY: Start an OpenVas scan for IP

security/scan/vulnerability/byip/{IP}/{name}

SECURITY: Start an OpenVas scan for ALIAS

security/scan/vulnerability/byalias/{alias}

SECURITY: Get all OpenVas reports

security/getreports/all

SECURITY: Start a NMAP port scan for IP

security/scan/ports/IP/{IP}

SECURITY: Start a NMAP port scan for ALIAS

security/scan/ports/device/{alias}

SECURITY: Get all open ports

security/ports/getall

SECURITY: Get all TLS results

security/results/tls/getall

SECURITY: Get the TLS results for an IP/DOMAIN

security/results/tls/{IP/domain}

SECURITY: Scan the TLS of an IP/PORT

security/scan/tls/ip/{IP}/{port}

SECURITY: Scan the TLS of an ALIAS/PORT

security/scan/tls/alias/{alias}/{port

SECURITY: Stop any TLS scans running

security/scan/tls/stop

SECURITY: Get the status of TLS scanner

security/scan/tls/status

 80

SECURITY: Get the status of sslstrip

security/attack/sslstrip/status

SECURITY: Start sslstrip

security/attack/sslstrip/start

SECURITY: Stop sslstrip

security/attack/sslstrip/stop

SECURITY: get score from alias

security/score/byalias/{alias}

SECURITY: get score from ALIAS

security/score/byalias/{alias}

SECURITY: get score from MAC

security/score/bymac/{mac}

GEOIP: get location from IP

/geoip/ip/{IP}

PROTOCOL: get protocol description by IANA number

protocol/bynumber/{number}

 81

10.3 Appendix C Experts Demo

 82

 83

 84

 85

 86

 87

 88

 89

10.4 Appendix D Focus Group results

 Participants P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
Age 28 26 23 21 24 23 27 27 27 0 25.1

Gender
Male 1 0 1 1 1 0 0 1 0 0 5
Female 0 1 0 0 0 1 1 0 1 1 5

Type of OS

Windows 1 1 1 1 1 1 0 0 1 1 8
Linux 1 0 1 0 0 0 0 1 0 1 4
Mac OS X 0 0 0 0 1 0 1 1 0 0 3
BSD 0 0 1 0 0 0 0 0 0 0 1

Browser

Chrome 1 1 1 1 1 1 1 1 1 0 9
Firefox 1 0 1 0 1 0 0 1 0 1 5
Safari 0 0 0 0 1 1 1 1 0 0 4
Opera 0 0 0 0 0 0 0 0 0 0 0
IE 0 0 0 0 0 0 0 0 0 0 0

Level of
Familiarity

Networking 80 40 80 60 80 60 60 60 20 80 62
PCS 80 20 80 60 60 60 20 80 20 100 58
Vulnerabilities 80 20 60 60 60 60 60 60 20 80 56
TLS 60 20 60 40 60 60 60 100 20 60 54

Adequate
Information

Yes 1 1 1 1 0 1 1 0 1 1 8
No 0 0 0 0 0 0 0 1 0 0 1

Map:
Influence

Live Map 80 100 80 80 0 0 80 80 100 100 87.5
Conections 100 80 40 80 0 0 80 80 80 100 80
Protocols 80 60 100 60 0 0 80 40 20 20 57.5
Line Chart 80 60 100 80 0 0 80 60 80 40 72.5

Helpful
Score

Yes 1 0 1 1 0 0 1 0 1 0 5
No 0 1 0 0 0 0 0 1 0 1 3

Helpful
Comments

Yes 1 1 1 1 0 0 1 0 1 0 6
No 0 0 0 0 0 0 0 0 0 1 1

Negative
Score

Yes 0 1 0 1 0 0 0 1 1 0 4
No 1 0 1 0 0 0 1 0 0 0 3

 90

Level of
Importance

Encryption 100 100 100 80 100 80 80 100 0 100 93.3
Safe TLS 100 0 100 100 100 80 80 80 0 100 92.5
Land Attack 60 0 80 0 0 0 80 0 0 0 73.3
IP
fragmentation 80 0 0 0 0 80 80 0 0 80 80
CRIME 100 0 80 0 0 0 60 0 0 0 80
BREACH 100 0 80 0 0 0 60 0 0 0 80
DROWN 100 0 80 0 0 0 60 0 0 0 80
SSL stripping 100 0 80 80 0 0 80 60 0 100 83.3
Any cert 100 0 80 80 100 60 80 100 0 100 87.5
Not RC4/MD5 100 0 0 0 80 60 80 80 0 100 83.3
>128bits 100 0 100 0 80 80 80 100 0 100 91.4
Scanner 100 100 80 100 100 80 80 100 0 100 93.3

Secure
Yes 1 1 1 1 0 0 1 0 1 1 7
No 0 0 0 0 0 1 0 0 0 0 1

Attack
Description

Yes 1 1 1 1 1 1 1 1 1 1 10
No 0 0 0 0 0 0 0 0 0 0 0

Potential
Harm

Yes 0 0 1 0 1 0 1 1 0 1 5
No 1 0 0 1 0 0 0 0 1 0 3

	1 Introduction
	1.1 Motivation
	1.2 Aims
	1.3 Overview

	2 Background
	2.1 IoT devices security
	2.2 The need for a framework
	2.3 Threat model
	2.4 Attacks
	2.4.1 LAND
	2.4.2 IP fragmentation
	2.4.3 TLS/SSL implementation verification
	2.4.4 CRIME & BREACH
	2.4.5 DROWN
	2.4.6 SSLstrip

	3 Design requirements
	3.1 Proposed system
	3.1.1 Packet collection
	3.1.2 Configuration free security analysis
	3.1.3 API

	3.2 Focus Group & survey
	3.2.1 Setup and Materials
	3.2.2 Focus Group objectives
	3.2.3 The Participants
	3.2.4 Results

	4 Methodology & Design
	4.1 Defining Security and Privacy
	4.1.1 Confidentiality
	4.1.2 Integrity
	4.1.3 Availability
	4.1.1 Attack Vector
	4.1.2 Attack Complexity
	4.1.3 Privileges Required
	4.1.4 User Interaction
	4.1.5 Scope

	4.2 Attacks and Vulnerability scanning
	4.3 Privacy and security score system
	4.4 Privacy and security API

	5 Experimental Implementation
	5.1 Equipment
	5.1.1 Packet capture router
	5.1.2 API and front-end

	5.2 Software
	5.2.1 OpenVAS
	5.2.2 Libpcap
	5.2.3 Nmap
	5.2.4 Scapy
	5.2.5 OpenSSL
	5.2.6 GeoIP
	5.2.7 SSLstrip2 and dns2proxy

	5.3 Router implementation
	5.3.1 Operating system and needed tools
	5.3.2 Development environment
	5.3.3 Development of Python scripts
	5.3.4 Implement network level attacks
	5.3.5 Deployment

	5.4 Implementation of the API and device
	5.5 Implementation of the front end
	5.6 Outputs

	6 Expert evaluation
	6.1 Expert 1
	6.2 Expert 2
	6.3 Expert 3
	6.4 Expert 4
	6.5 Overview

	7 Devices evaluation
	7.1 Smarter WIFI Kettle
	7.2 La Metric Time
	7.3 Smart plug
	7.4 Philips hue bridge
	7.5 Dragon Touch Y88X
	7.6 SSL stripping

	8 Conclusion and Future Work
	8.1 Future work
	8.1.1 Full OpenVAS support
	8.1.2 Full nmap support
	8.1.3 Full libcap wrapping api
	8.1.4 Integration with existing security frameworks.
	8.1.5 Privacy score implementation
	8.1.6 Web interface
	8.1.7 Hard drive problems

	9 Bibliography
	10 Appendix
	10.1 Appendix A Focus Group
	10.2 Appendix B List of API commands
	10.3 Appendix C Experts Demo
	10.4 Appendix D Focus Group results

