
The Application of Reformation to Repair

Faulty Analogical Blends

Author: Chenghao Cai

UUN: s1518076

Supervisor: Prof. Alan Bundy

Second Supervisor: Dr. Ewen Maclean

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Artificial Intelligence

School of Informatics

University of Edinburgh

2016



Abstract

This project aims at using reformation, which is a general-propose algorithm for theory

repair, to repair faulty analogical blends produced by using Heuristic-Driven Theory

Projection. An analogical blend may be faulty due to insufficient alignments between

a source theory and a target theory, inconsistencies, or incompleteness. To solve these

problems, we have implemented three algorithms align, redirect and upgrade which

are based on the unblocking function of reformation: The align algorithm can adjust

the alignments between the source theory and the target theory. The redirect algorithm

can repair inconsistent rewrite rules. The upgrade algorithm can repair incomplete

theories. Also, to extend the use of reformation to more fields, we have revised the

implementation of the unblocking function, so that it can suggest more kinds of repairs.

These approaches have been evaluated on many examples of analogical blending, such

as the blend of natural number and list theories, the blend of trigonometric functions

and the blend of gravity and electrostatic force.

i



Acknowledgements

I would like to express my appreciation to my supervisor, Prof. Alan Bundy, for his

kind help and guidance in the last few months. I often received numerous annotations

from his feedback for my drafts, and I think they always give me inspirations.

I would like to thank my second supervisor, Dr. Ewen Maclean, for his

technological support and guidance about analogical blending, HETS, HDTP and

Ontohub.

Also, thanks to Boris Mitrovic, Jovita Tang and Xue Li for many times of

discussions about reformation.

Finally, thanks to my computer for his hundreds of working hours in summer.

ii



Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Chenghao Cai)

iii



Table of Contents

1 Introduction 1
1.1 The objective of this project . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.3 Research contributions . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 The document structure . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 4
2.1 Reformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2 Analogical blending . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Programming languages and tools . . . . . . . . . . . . . . . . . . . 6

3 Description of the work undertaken 7
3.1 Problems with analogical blends . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Insufficient alignments . . . . . . . . . . . . . . . . . . . . . 7

3.1.2 Inconsistencies . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1.3 Incompleteness . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 The preprocessing use of reformation . . . . . . . . . . . . . . . . . 10

3.2.1 The basic concept . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2.2 A closer look at unblocking in reformation . . . . . . . . . . 11

3.2.3 Adjusting insufficient alignments . . . . . . . . . . . . . . . 14

3.2.4 The use of types . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 The postprocessing use of reformation . . . . . . . . . . . . . . . . . 17

3.3.1 Repairing inconsistent blends . . . . . . . . . . . . . . . . . 17

3.3.2 Repairing incomplete blends . . . . . . . . . . . . . . . . . . 22

3.4 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Worked examples and analysis 26
4.1 Merging two ontologies of food chains . . . . . . . . . . . . . . . . . 26

iv



4.2 Natural numbers and lists . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Trigonometric functions . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Evaluation 35
5.1 Pascal and Python . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Gravity and electrostatic force . . . . . . . . . . . . . . . . . . . . . 38

5.3 Addition and subtraction . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4 Lists and binary trees . . . . . . . . . . . . . . . . . . . . . . . . . . 45

6 Conclusion 49
6.1 Remarks and observations . . . . . . . . . . . . . . . . . . . . . . . 49

6.2 Unsolved problems and future work . . . . . . . . . . . . . . . . . . 50

Bibliography 51

v



Chapter 1

Introduction

1.1 The objective of this project

The objective of this project is to use reformation to repair faulty analogical blends.

Given an analogical blend of two theories, reformation is used to adjust alignments

between the two theories and process inconsistencies and incompleteness of the blend.

1.2 Motivation

Analogical reasoning has been widely used in human thinking. Recently, such a

way of thinking has been formalised as a framework named Heuristic-Driven Theory

Projection (HDTP) which enables machines to reason analogically (Gust et al., 2006;

Schmidt et al., 2014; Schwering et al., 2009). Specifically, given a source theory and

a target theory, HDTP is able to align the two theories and find analogous functions

and axioms (Schwering et al., 2009). Since some analogous functions can be used to

transfer axioms from the source theory to the target theory, it is possible to invent

new axioms for the target theory (Kutz et al., 2014). Hence, an analogical blend

of the two theories can be created. However, there exist some potential problems:

Firstly, alignments between the two theories may be insufficient. This is because the

alignments require that two aligned axioms have the same logical structure. Although

some alignments are intuitively possible, they are not allowed by HDTP as their logical

structures are not rigorously the same. Secondly, it is possible that the resulting

blend is inconsistent. This is because the source and target theories themselves may

be inconsistent, or the blending of them brings about inconsistencies. Thirdly, it is

possible that the resulting blend is incomplete. This is because the source and target

1



Chapter 1. Introduction 2

theories themselves may be incomplete. The existence of these problems means that

we need some methods to deal with faults with analogical blends. In Section 3.1 of

Chapter 3, we will use more examples to explain why these are the cases.

Reformation is a new algorithm for theory repair and conceptual change (Bundy

and Mitrovic, 2016). It is a general-purpose algorithm that it can be used to repair

theories in different domains. Especially, it repairs a theory by changing the language

of axioms, rather than simply adding and deleting axioms (Bundy, 2013). Hence, this

project explores the possibilities of using reformation to change the language of faulty

analogical blends and repair these blends. Specifically, in order to solve the problems

of insufficient alignments, inconsistencies and incompleteness, the use of reformation

includes two aspects: (1) The preprocessing use to adjust alignments between the

source and target theories; (2) The postprocessing use to processing inconsistencies

and incompleteness with the analogical blends.

1.3 Research contributions

This project produced the following research outputs:

• An align algorithm for adjusting alignments of analogical blends has been

proposed and implemented. Details of this algorithm are described by Section

3.2.3 of Chapter 3.

• A redirect algorithm for repair inconsistent rewrite rules has been proposed

and implemented. Details of this algorithm are described by Section 3.3.1.2

of Chapter 3.

• The upgrade algorithm, which is used to repair incomplete theories, has been

implemented. This algorithm has been proposed by previous work (Bundy and

Mitrovic, 2016). Details of this algorithm are described by Section 3.3.2 of

Chapter 3.

• A revision of the unblocking function, which enables reformation to process

more kinds of faulty theories, have been completed based on a previous

implementation of reformation (Bundy and Mitrovic, 2016). Details about this

are described by Section 3.2.2 of Chapter 3.

• The above algorithms and functions have been evaluated on many examples of

analogical blends, such as the blend of natural numbers and lists, the blend



Chapter 1. Introduction 3

of the trigonometric sine and cosine functions, and the blend of gravity and

electrostatic force. These examples are described by Chapter 4 and Chapter 5.

1.4 The document structure

This document is organised as the following chapters: In Chapter 2, we describe the

background of this project, including reformation, analogical blending, programming

languages and tools. In Chapter 3, we describe the actual work undertaken. Firstly,

problems with analogical blends, including insufficient alignments, inconsistencies

and incompleteness, are identified. Then we discuss the preprocessing use of

reformation to adjust alignments. Next, we discuss the postprocessing use of

reformation to repair inconsistent theories and incomplete theories. In the final section

of this chapter, we provide details about the implementations of the algorithms. In

Chapter 4, some worked examples are used to explain practically and analyse how

the algorithms work. In Chapter 5, some other examples are used to evaluate the

algorithms. In Chapter 6, we summarise our work and outline potential future work,

as a conclusion of this project.



Chapter 2

Background

2.1 Reformation

Reformation is a general-propose algorithm for automated theory repair (Bundy, 2013;

Bundy and Mitrovic, 2016). It is able to repair a theory by changing the language

of axioms, rather than simply adding desired axioms and deleting undesired axioms.

Conceptually, reformation is adapted from a non-standard unification algorithm, which

is equivalent to the standard unification algorithm, but more suitable for the adaption

of reformation. For details of the non-standard unification algorithm, readers could

refer to the article above.

Reformation usually works with unification: It can unblock failed unifications if

they are wanted, or block successful unifications if they are unwanted (Bundy and

Mitrovic, 2016). In the article above, unblocking of reformation is realised by:

• Make FFF(((~sssmmm))) === GGG(((~tttnnn
))). If the wanted unification of two compound terms F(~sm)

and G(~tn) fails, reformation will try to make them unifiable by making F = G

and~sm =~tn. This may require changes to both functors and arguments.

• Make xxx /∈ν(((ttt))). If x is a variable of a term t which is different from x, they cannot

be unified because they cannot pass the occurs-check. In this case, reformation

will remove x from t.

On the other hand, blocking of reformation is realised by (Bundy and Mitrovic, 2016):

• Make FFF(((~sssmmm))) 6 6 6=== FFF(((~tttmmm
))). If the unwanted unification of two compound terms

F(~sm) ≡ F(~tm) succeeds, reformation will try to make it fail by splitting the

functor F or making~sm and~tm be two different terms which cannot be unified.

4



Chapter 2. Background 5

• Make xxx ∈∈∈ ν(((ttt))). If the unification x ≡ t is successful, where x is a variable and

t is a term different from x, reformation will try to make x be a variable of t, so

that they cannot pass the occurs-check.

The original unsorted first-order reformation has been implemented by Bundy

and Mitrovic (2016). Also, Mitrovic (2013) has extended the implementation of

reformation from unsorted first-order logics to multi-sorted first-order logics, and

Tsialos (2014) has extended the implementation to description logics. Further,

Mitrovic (2013) has implemented an algorithm named revise. It can repair inconsistent

theories by blocking proofs leading to contradictions. The counterpart of the revise

algorithm, which is named upgrade, has also been proposed by (Bundy and Mitrovic,

2016) recently, and it is used to repair incomplete theories by unblocking wanted

proofs. However, not much work has been done on unblocking. It is possible that

unblocking will have more significant applications.

2.2 Analogical blending

Generalisation

Source Theory Target Theory

Analogical Blend

1 2

1 2

TS

Figure 2.1: HDTP produces an analogical blend.

Analogical blending, or conceptual blending, has been formalised as a

mathematically sound framework HDTP (Schmidt et al., 2014). Given a source

theory and a target theory, HDTP is able to compare their logical structures and

discover possible analogies by using first-order anti-unification (Plotkin, 1970) or

restricted higher-order anti-unification (Krumnack et al., 2007; Schmidt et al., 2011).

Also, the derived signature morphism method has been used by HDTP (Mossakowski



Chapter 2. Background 6

et al., 2015), where λ-calculus is used to map symbols instead of the conventional

signature morphism method described by Codescu and Mossakowski (2008). Figure

2.1 reveals the basic concept of analogical blending (Bou et al., 2015): Given a

source theory and a target theory, HDTP can compute a generalisation and two

morphisms σ1 and σ2. The generalisation contains abstractions of aligned axioms

in both theories, and σ1 and σ2 can map the generalisation to the source and target

theories respectively. Comparing σ1 and σ2, it can further compute a morphism σS 7→T

which realises a cross-domain mapping from the source theory to the target theory.

Then it can compute two morphisms ϕ1 and ϕ2 via the heterogeneous colimit method

(Codescu and Mossakowski, 2008) combined with the Heterogeneous Tool Set (HETS)

(Mossakowski et al., 2007), transferring the source and target theories to an analogical

blend. Recently, analogical blending has been used to realise mathematical discovery

(Guhe et al., 2011) and mathematical invention (Bou et al., 2015).

2.3 Programming languages and tools

Some programming languages and tools are relevant to this project: Firstly, HDTP

(Schmidt et al., 2014) has been used to produce analogical blends. In particular, the

Common Algebraic Specification Language (CASL) (Mossakowski et al., 2003) has

been used to represent first-order theories in HDTP. Secondly, Nitpick (Blanchette,

2010), which is combined with Isabelle (Nipkow et al., 2002), has been used to detect

inconsistent theories. Thirdly, SWI-Prolog (Wielemaker et al., 2010) has been used

to develop essential programs for this project, because the previous implementation of

reformation, which is the basis of this project, has also been developed on this platform

(Bundy and Mitrovic, 2016). Finally, two ontologies on Ontohub (Kutz et al., 2014)

has been used to develop our system. Details about the two ontologies are described

by Section 4.2 in Chapter 4.



Chapter 3

Description of the work undertaken

3.1 Problems with analogical blends

In this section, we identify some potential problems with analogical blends. These

problems include insufficient alignments, inconsistencies and incompleteness. They

may be causes of faults with the analogical blends, and they are what this project

focuses on.

Before starting the discussion, we explain briefly the style of representations:

Constants are represented as numbers, arithmetic symbols or words starting with

uppercase. Variables are represented as words starting with lowercase. For instance,

0, Plus and × are constants, whereas x is a variable. An axiom is represented

as a combination of constants and variables. For instance, ∀x.Plus(0,x) = x is

represented as Plus(0,x) = x. In particular, second-order functions are represented

as lists. For instance, Cos′(x), which is the derivative of Cos(x), can be represented as

List(List(Der,Cos),x). For readability, List is omitted, and it is further represented as

((Der Cos) x).

3.1.1 Insufficient alignments

In some cases, HDTP (Schmidt et al., 2014) produces an unexpected analogical

blend because of insufficient alignments between two axioms. An example of natural

numbers and lists can be such a case: Let Succ : Nat → Nat denote the successor of

natural numbers and Cons : El×List→ List denote the constructor of lists, where Nat,

List and El are types of natural numbers, lists and elements respectively. Usually, 0

is the minimal unit of natural numbers, and a natural number n can be represented

7



Chapter 3. Description of the work undertaken 8

as Succ(Succ(· · ·Succ(0))), where Succ repeats n times. Also, Nil is the minimal

unit of lists which represents an empty list, and a list [H1,H2, · · · ,Hn], which has n

elements, can be represented as Cons(H1,Cons(H2, · · ·Cons(Hn,Nil))), where Cons

repeats n times. Intuitively, 0 and Nil are analogous, because both of them are

the minimal units, and Succ and Cons are analogous, because both of them are

recursively defined. However, HDTP fails to align Succ and Cons, because Succ

only has one argument, whereas Cons has two arguments. This results in the fact

that some lemmas fail to be transferred from one theory to another. For instance,

Plus(Succ(0),Succ(0)) = Succ(Succ(0)) cannot be transferred to from the theory of

natural numbers to the theory of lists.

3.1.2 Inconsistencies

Although an analogical blend can be produced successfully, it is still possible that

there exist inconsistencies in the blend. For the example of natural numbers and lists,

let Plus : Nat×Nat→Nat denote the addition operation of natural numbers and App :

List×List → List denote the appending operation of lists. Assume that the following

three axioms of natural numbers are given1:

Plus(0,x) = x (3.1)

Plus(Succ(x),y) = Succ(Plus(x,y)) (3.2)

Plus(x,y) = Plus(y,x) (3.3)

They can be used to simplify some expressions. For instance, Plus(Succ(0),0) can be

simplified to Succ(Plus(0,0)) and then to Succ(0). Also, assume that the following

axioms of lists are given:

App(Nil, l) = l (3.4)

App(Cons(h, l),m) =Cons(h,App(l,m)) (3.5)

HDTP (Schmidt et al., 2014) can align Axiom (3.1) and Axiom (3.4) by aligning 0 with

Nil and Plus with App, which means that 0 is analogous to Nil, and Plus is analogous

App. The alignment between Plus and App will transfer Axiom (3.3) to the domain of

lists, yielding a new axiom:

App(l,m) = App(m, l) (3.6)

1Axiom (3.1) and Axiom (3.2) are two Peano axioms.



Chapter 3. Description of the work undertaken 9

However, there exist some counterexamples which refute this axiom. For instance, let

l =Cons(H1,Nil) and m =Cons(H2,Nil). In this case, App(l,m) can be simplified as

Cons(H1,Cons(H2,Nil)), and App(m, l) can be simplified as Cons(H2,Cons(H1,Nil)),

but they are not equal. This contradiction means that the blend is inconsistent.

In particular, if an analogical blend consists of rewrite rules (Bundy, 1983), it is

possible that some rules are inconsistent. In Section 3.3.1.2, we uses an example about

trigonometric functions to explain it in detail. Briefly, that example is an analogical

blend of the sine and cosine functions. It contains a rule ((Der Cos) x) ⇒ (Sin x)

which means that the derivative of Cos(x) is Sin(x), and this rule is analogous to

((Der Sin) x) ⇒ (Cos x). However, this rule is inconsistent, because the derivative of

Cos(x) should be −Sin(x).

3.1.3 Incompleteness

A theory may be incomplete, and this is also the case for an analogical blend. Assume

that a theory T1 has two axioms:

IsCapO f (Tokyo,Japan) (3.7)

IsCapO f (x,y) =⇒ Flourishing(x) (3.8)

where IsCapO f (x,y) means that x is the capital of y, and Flourishing(x) means that x

is a flourishing city. Assume that another theory T2 also has two axioms:

Capital(London,UK) (3.9)

EconomicallyDeveloped(London) (3.10)

which means that London is the capital of the UK and is economically developed.

Also, a goal is expected to be proved:

Prosperous(London) =⇒ (3.11)

which means that London is a prosperous city. T2 is incomplete, because the goal

cannot be proved. If Capital, London, UK and EconomicallyDeveloped are aligned

with IsCapO f , Tokyo, Japan and Flourishing respectively, then an analogical blend

can be created:

Capital(London,UK) (3.12)

Capital(x,y) =⇒ EconomicallyDeveloped(x) (3.13)



Chapter 3. Description of the work undertaken 10

EconomicallyDeveloped(London) (3.14)

where Capital(x,y) =⇒ EconomicallyDeveloped(x) is analogous to

IsCapO f (x,y) =⇒ Flourishing(x). However, the goal Prosperous(London) =⇒
still cannot be proved. Therefore, the blend is still incomplete.

3.2 The preprocessing use of reformation

In this section, we discuss the preprocessing use of reformation to enable further

alignments when alignments computed via HDTP (Schmidt et al., 2014) are

insufficient. In Section 3.2.1, we introduce the basic concept of using reformation

to enable alignments. In Section 3.2.2, we look closely at unblocking in reformation.

In Section 3.2.3, we introduce a greedy algorithm which is based on reformation and

used to adjust alignments given by HDTP. In Section 3.2.4, we discuss how to make

use of information about types to influence alignments.

3.2.1 The basic concept

The basic concept of using reformation to enable alignments is to unblock the

unification between two terms which need to be aligned. Given two terms T1 and T2

which are failed to be aligned, reformation can suggest possible repairs which change

T1 or T2 and make the unification T1 ≡ T2 succeed.

For instance, if T1 is Succ(x) and T2 is Cons(h, l), where Succ(x) is the successor

of natural numbers, Cons(h, l) is the constructor of lists, x is a natural number, h is an

element and l is a list, reformation will try to unblock the following unification:

Succ(x)≡Cons(h, l) (3.15)

Reformation can suggest many possible ways of repair. A possible way is to add a new

argument argnew to the first position of Succ and merge Succ with Cons. Specifically,



Chapter 3. Description of the work undertaken 11

this can be done via the following steps:

Succ(x)≡Cons(h, l)

⇓

Succ(argnew,x)≡Cons(h, l)

⇓

Cons(argnew,x)≡Cons(h, l)

⇓

argnew ≡ h∧ x≡ h

⇓

T rue

(3.16)

At the beginning, since the Succ(x) only has an argument, but Cons(h, l) has two

arguments, reformation suggests adding the new argument argnew to Succ. If it

is added to the first position of Succ, Succ(x) will be changed to Succ(argnew,x).

Then Succ and Cons are merged, and Succ(argnew,x) is changed to Cons(argnew,x).

Hence, Cons(argnew,x) can be unified with Cons(h, l) by substituting argnew for h and

substituting x for l. Here, the merging of Succ and Cons can be considered as an

alignment between the functors of Succ(x) and Cons(h, l).

3.2.2 A closer look at unblocking in reformation

As discussed by Section 3.2.1, unblocking is the core of enabling alignments. Usually,

unblocking uses two rules, including CC f and VC f , to enable the unification between

two terms when a conventional unification algorithm cannot unify them (Bundy and

Mitrovic, 2016). What reformation does for the unification algorithm are twofold:

Firstly, if an unification F(~sn) ≡ G(~tm) fails, reformation will try to make F(~sn) =

G(~tm). Secondly, if an unification x ≡ t fails due to the fact that x does not pass the

occurs-check, reformation will try to change t and make x pass the occurs-check.

3.2.2.1 Make FFF(((~sssnnn))) === GGG(((~tttmmm
)))

A main work package of this project is for refining or implementing functions which

“make F(~sn) = G(~tm)”. Generally, two terms can be represented as F(~sn) and G(~tm),

where F and G are functors, ~sn and~tm are sequences of arguments which have n and

m arguments respectively, and an argument is either a term or a variable. In different

cases of an unification pair F(~sn)≡G(~tm), different operations can be used, including:



Chapter 3. Description of the work undertaken 12

• Merging. When reformation unblocks F(~sn) ≡ G(~tn), if F 6= G, but they have

the same arities, then F can be merged with G. After merging, F can be replaced

by G, and vice versa. If F is replaced by G, the unification pair will become

G(~sn) ≡ G(~tn). In particular, if n = 0, then F and G are terms without any

arguments. In this case, F and G can still be merged.

• Adding a constant as a new argument. When reformation unblocks F(~sn) ≡
G(~tm), if n < m, then~sn can be changed to~sn+1 by adding a new argument to~sn,

and the unification pair can become F(~sn+1) ≡ G(~tm). The new argument is a

constant. On the other hand, if n > m, then~tm can be changed to~tm+1 by adding

a new argument to~tm, and the unification pair can become F(~sn)≡ G(~tm+1).

• Adding a variable as a new argument. This operation is analogous to the one

above, but the new argument is a variable.

• Removing an argument. When reformation unblocks F(~sn) ≡ G(~tm), if n >

m, then ~sn can be changed to ~sn−1 by removing an argument from ~sn, and the

unification pair can become F(~sn−1)≡ G(~tm). On the other hand, if n < m, then
~tm can be changed to~tm−1 by removing an argument from~tm, and the unification

pair can become F(~sn)≡ G(~tm−1).

• Permuting arguments. When reformation unblocks F(~sn)≡ G(~tn), where n >

1, the sequence ~sn or~tn can be permuted. For ~sn, since there are n arguments

in the sequence, it has n!−1 permutations different from the original sequence.

For~tn, this is also the case.

• Adding a functor. When reformation unblocks F(~sn)≡ G(~tm), if the depth2 of

F(~sn) is smaller than that of G(~tm), then the functor G can be added to F(~sn).

The unification pair then becomes G(F(~sn))≡G(~tm). Also, if the depth of G(~tm)

is smaller than that of F(~sn), then the functor F can be added to G(~tm). The

unification pair then becomes F(~sn)≡ F(G(~tm)).

• Removing a functor. When reformation unblocks F(~sn) ≡ G(~tm), if the depth

of F(~sn) is larger than that of G(~tm), then the functor F can be removed from

F(~sn). The unification pair then becomes si ≡G(~tm), where si is the ith member

of ~sn. Also, if the depth of G(~tm) is larger than that of F(~sn), then the functor

2The depth of a function/predicate is the depth of the tree when the function/predicate is written in
the tree format.



Chapter 3. Description of the work undertaken 13

G can be removed from G(~tm). The unification pair then becomes F(~sn) ≡ ti,

where ti is the ith member of~tm.

• Unifying arguments. When reformation unblocks F(~sn)≡ F(~tn), where n > 0,

it is required that the arguments are unified correspondingly.

In Chapter 4 and Chapter 5, we will use some examples to discuss how these functions

are used in different cases.

3.2.2.2 Make xxx /∈ ν(((ttt)))

The unification x ≡ t fails when x is a variable of t. This is because it cannot pass

the occurs-check. In this case, reformation will try to change t and make it pass the

occurs-check. This can be realised by detecting the position of x in t and removing x.

In order to remove x, the operation “removing an argument” is used.

3.2.2.3 The cost of unblocking

In many cases, we need to evaluate the cost of unblocking. Practically, the cost of

unblocking is counted by the following rules:

• The total cost is equal to the sum of the cost for each atomic operation.

• The cost of substitution is 0.

• The cost of merging is 1.

• The cost of adding a constant as a new argument is 1.

• The cost of adding a variable as a new argument is 1.

• The cost of removing an argument is 1.

• The cost of permuting arguments is (p− 1)! if p arguments are located at

positions different from their original positions. For instance, if F(1,2,3,4) is

changed to F(3,1,2,4), then the cost is (3−1)! because 1, 2 and 3 are not located

at their original positions.

• The cost of adding a functor is 1.

• The cost of removing a functor is equal to the arity of the repaired function.

• The cost of unifying arguments is 0.



Chapter 3. Description of the work undertaken 14

3.2.3 Adjusting insufficient alignments

We use an algorithm named align to adjust insufficient alignments.

In Section 3.2.1, we have discussed how to use reformation to align Succ(x) and

Cons(h, l). Sometimes, aligning only a pair of functions is not enough, because

it is possible that there exist many functions or axioms failed to be aligned, and

there exist many possibilities of alignment. In this case, some alignments are

preferable and should be chosen, whereas some others are not. For instance, aligning

Plus(Succ(x),y) = Succ(Plus(x,y)) with App(Cons(h, l),m) = Cons(h,App(l,m))

is preferable to aligning Plus(x,y) = Plus(y,x) with App(Cons(h, l),m) =

Cons(h,App(l,m)), because the first way requires less change to the axioms than the

second way.

To choose the preferable alignments, a greedy algorithm based on reformation is

used in this project. It is named align. Assume that T1 and T2 are two parent theories,

{A1,A2, · · · ,An} and {B1,B2, · · · ,Bm} are axioms in T1 and T2 respectively, Crep is the

cost of repairs, and Cmax is an upper limit of the cost. The algorithm has the following

steps:

• Step 1: HDTP (Schmidt et al., 2014) is used to compute a generalisation G and

two morphisms σ1 and σ2 which map symbols from G to T1 and T2 respectively,

so that successfully aligned axioms can be recognised. All successfully aligned

axioms are labelled as pairs, and the remaining axioms are unlabelled. Crep is

initialised to 0.

• Step 2: Reformation takes two unlabelled axioms Ai and B j, unblocks Ai ≡
B j and suggests a set of repairs Ri, j. After reformation tries all possible pairs

of Ai ≡ B j, the pair with the minimal cost of repairs is chosen. If there exist

different pairs or sets of repairs which have the minimal cost, then backtracking

is required. Assume that this pair is Ap ≡ Bq, its cost is Cmin, and the set of

repairs is Rmin.

• Step 3: If Crep+Cmin ≤Cmax, then Crep is updated to Crep+Cmin, Rmin is applied

to all members of {A1,A2, · · · ,An} and {B1,B2, · · · ,Bm}, and Ap and Bq are

labelled as a pair. After that, if further alignments are possible, then go to Step

2. Otherwise, if Crep +Cmin > Cmax, or no further alignment is possible, then

all labelled pairs of axioms, all unlabelled axioms and all suggested repairs are

output as results, and the algorithm terminates. The labelled pairs are considered



Chapter 3. Description of the work undertaken 15

as the preferable alignments.

This algorithm, for instance, can work for the theories of natural numbers and lists

described by Section 3.1.2: Assume that Cmax is 2, or another value larger than 2.

Firstly, HDTP can compute a generalisation G and two morphisms σ1 and σ2 for them.

Here, A(B,x) = x, which is the abstraction of Plus(0,x) = x and App(Nil, l) = l, is

the only axiom in G, σ1 is {A 7→ Plus,B 7→ 0}, and σ2 is {A 7→ App,B 7→ Nil}.
This means that Plus(0,x) = x and App(Nil, l) = l have been aligned by aligning 0

with Nil and Plus with App, and they are labelled as a pair. The other axioms are

unlabelled, and the initial value of Crep is set to 0. Then reformation tries to align

the remaining axioms. Here, the minimal cost Cmin is 2, because when aligning

Plus(Succ(x),y) = Succ(Plus(x,y)) with App(Cons(h, l),m) = Cons(h,App(l,m)),

reformation only suggests adding a new argument argnew to Succ and merging Succ

with Cons. After that, since Crep +Cmin ≤Cmax is satisfied, these repairs are adopted,

and the two axioms are labelled as a pair. Finally, since no further alignment can be

found, the algorithm terminates, and the final results of the aligned axioms are:Plus(0,x) = x

App(Nil, l) = l
(3.17)

and Plus(Succ(argnew,x),y) = Succ(argnew,Plus(x,y))

App(Cons(h, l),m) =Cons(h,App(l,m))
(3.18)

3.2.4 The use of types

In some cases, the use of types can help improve the quality of alignment. Consider

the following two axioms:

Plus(Succ(0),0) = Succ(0) (3.19)

App(Cons(h,Nil),Nil) =Cons(h,Nil) (3.20)

Unfortunately, reformation can suggest two ways of repair when aligning them.

Specifically, it can suggest adding argnew as the first argument of Succ, so that

Axiom (3.19) becomes Plus(Succ(argnew,0),0) = Succ(argnew,0). On the other hand,

it can also suggest adding argnew as the second argument of Succ, so that Axiom

(3.19) becomes Plus(Succ(0,argnew),0) = Succ(0,argnew). Intuitively, the first way

is expected by using our knowledge about natural numbers and lists. Reformation,



Chapter 3. Description of the work undertaken 16

of course, does not have this intuition, but it can make use of some information about

types to obtain the result expected. Recall that 0 has the type Nat, Nil has the type List,

and the types of the functions are defined as Succ : Nat→Nat, Plus : Nat×Nat→Nat,

Cons : El×List→ List and App : List×List→ List. They can be rewritten as axioms.

Generally, let T (x) denotes that x has a type T . The above information of types can be

rewritten as axioms for natural numbers:

Nat(0) (3.21)

Nat(Succ(Nat(v1))) (3.22)

Nat(Plus(Nat(v2),Nat(v3))) (3.23)

and those for lists:

List(Nil) (3.24)

List(Cons(El(v4),List(v5))) (3.25)

List(App(List(v6),List(v7))) (3.26)

where v1,v2, · · · ,v7 are variables which are independent of each other. When

reformation aligns Axiom (3.19) and Axiom (3.20), the above axioms about types can

also be taken into account. Specifically, if reformation suggests adding argnew as the

first argument of Succ, Axiom (3.22) will be changed to Nat(Succ(argnew,Nat(v1))),

and it can be aligned with Axiom (3.25) by aligning Nat exactly with List. In this

case, reformation only needs to merge Nat and List. On the other hand, if reformation

suggests adding argnew as the second argument of Succ, Axiom (3.22) will be changed

to Nat(Succ(Nat(v1),argnew)). To align it with Axiom (3.25), Nat will be aligned with

both List and El. In this case, reformation not only needs to merge Nat with List, but

also needs to merge Nat with El. Obviously, this way costs more than the first way, so

the first way is preferable.

Generally, axioms about types can be created by the following methods:

• For a constant C which has a type T , create T (C).

• For a function F : T1×T2×·· ·×Tn→ T , create T (F(T1(v1),T2(v2), · · · ,Tn(vn))),

where v1,v2, · · · ,vn are variables which are independent of each other.

• For a predicate P : T1×T2×·· ·×Tn, create Bool(P(T1(v1),T2(v2), · · · ,Tn(vn))),

where v1,v2, · · · ,vn are variables which are independent of each other. The type

Bool is used because the predicate is treated as a function to the boolean type.



Chapter 3. Description of the work undertaken 17

3.3 The postprocessing use of reformation

In this section, we describe the postprocessing use of reformation. In Section 3.3.1,

we describe the use of reformation for repairing inconsistent theories. In particular,

Section 3.3.1.1 describes briefly the revise algorithm implemented by Mitrovic (2013),

and Section 3.3.1.2 describes the redirect algorithm developed in this project. In

Section 3.3.2, we describe the upgrade algorithm (Bundy and Mitrovic, 2016) for

repairing incomplete theories.

3.3.1 Repairing inconsistent blends

3.3.1.1 Repairing inconsistent blends via the rrreeevvviiissseee algorithm

It is possible that inconsistencies exist in an analogicla blend. Let B denote

a blend. If both B ` P and B ` ¬P are true, then B is considered

inconsistent, as P contradicts ¬P, and vice versa. For the example of

natural numbers and lists described by Section 3.1.2, since we can prove

both App(Cons(H1,Nil),Cons(H2,Nil)) = App(Cons(H2,Nil),Cons(H1,Nil)) and

App(Cons(H1,Nil),Cons(H2,Nil)) 6= App(Cons(H2,Nil),Cons(H1,Nil)), the blend

is inconsistent.

Reformation is able to repair such inconsistent blends via blocking. Since P and

¬P are not allowed to be true at the same time, one of the proofs of P or ¬P should

be blocked. This algorithm has been implemented by Mitrovic (2013), and it is named

revise. The implementation is based on reformation and resolution: Given a theory

T , it infers everything which can be inferred via resolution, detects whether or not

contradictions exist and blocks proofs resulting in the contradictions. Practically, in

some cases, the original theory is not enough, and users need to provide more hints

for the implementation. For the instance in Section 3.1.2, such hint can be found

by using Nitpick (Blanchette, 2010) combined with Isabelle (Nipkow et al., 2002):

It refutes App(l,m) = App(m, l) because it finds that when l = Cons(H1,Nil) and

m = Cons(H2,Nil), both App(l,m) = App(m, l) and App(l,m) 6= App(m, l) can be

proved. Given this counterexample, the implementation of revise can suggest some

possible repairs. For instance, it can suggest changing App(l,m) = App(m, l) to

App(l,m) ' App(m, l) by renaming “=” to “'”, so that no further counterexample

can be found. Here, “'” has NOT been defined earlier, so it is a new symbol.

Sometimes, the new symbol could have a realistic meaning. For instance, it can be



Chapter 3. Description of the work undertaken 18

considered as a permutation operation for lists such that permutations of [1,2,3,4]

are [1,2,3,4], [1,2,4,3], · · · , [4,3,2,1], and App([1], [2,3,4])' App([2,3,4], [1]) holds

because a permutation of [1,2,3,4] can be [2,3,4,1].

3.3.1.2 Repairing rewrite rules via the rrreeedddiiirrreeecccttt algorithm

Rewrite rules (Bundy, 1983) are used to simplify expressions. Usually, a rewrite

rule is applied to an expression via rewriting instead of implication. This is because

rewriting uses matching, whereas implication uses two-way unification. Specifically,

when matching a rewrite rule l⇒ r with a term t, rewriting allows t itself or a subterm

of t to be unified with l. On the other hand, when applying a rule p =⇒ q to a condition

u, implication requires that p can be fully unified with u, but not any subterms of u.

For a set of rewrite rules, local confluence is highly desirable, which means that an

expression is expected to be rewritten to one and only one normal form (Bundy, 1983).

In most cases, if a set of rewrite rules is not locally confluent, it will be considered

incomplete and be repaired via the Knuth-Bendix completion algorithm (Knuth and

Bendix, 1983). The premise of using the Knuth-Bendix completion algorithm is that

the rewrite rules are consistent. If consistencies are not guaranteed, it will be possible

that inconsistencies result in non-confluence. Consider the following set of rules about

trigonometric functions (represented by the list format):

((Der Cos) x) ⇒ (Sin x) (3.27)

((Der Cos) (Divi π 2)) ⇒ (Neg 1) (3.28)

(Sin (Div π 2)) ⇒ 1 (3.29)

Here, Rule (3.27) means that the derivative of Cos(x), which is denoted by Cos′(x),

is Sin(x). This rule has been created by making an analogy with another rule

((Der Sin) x) ⇒ (Cos x) which means that the derivative of Sin(x) is Cos(x).

However, this rule is faulty, because Cos′(x) should be −Sin(x). Rule (3.28) means

that Cos′(π/2) = −1. Rule (3.28) means that Sin(π/2) = 1. This set of rules is not

locally confluent, because ((Der Cos) (Divi π 2)) can be rewritten to (Sin (Divi π 2))

and then to 1, but it can also be directly rewritten to (Neg 1). If the Knuth-Bendix

completion algorithm is used to process this issue, then the following new rule will be

added to this set of rules:

(Neg 1)⇒ 1 (3.30)



Chapter 3. Description of the work undertaken 19

This rule means that −1 = 1, which is false under the usual interpretation. It is created

on the premise that all given rules are consistent. Instead of using the completion

algorithm, on the other hand, if we doubt the consistency of Rule (3.27) and change it

to

((Der Cos) x) ⇒ (Neg (Sin x)) (3.31)

which means that Cos′(x)=−Sin(x), then this set of rules can also be locally confluent.

This example reveals that inconsistent rules may also be the cause of non-confluence,

and we need an algorithm to repair them.

In this project, an algorithm named redirect is designed to repair inconsistent

rewrite rules3. The basic concept of this algorithm is to block an unwanted path of

rewriting by unblocking a wanted path. Unblocking, conceptually, should be used

to unblock wanted proofs, while blocking should be used to block unwanted proofs.

However, unblocking has side effects which block some other proofs. The side effects

mean: If proving a goal G1 requires an axiom A, but unblocking the proof of a goal G2

requires changing A to A′, it will be possible that the proof of G1 is blocked, because

proving G1 requires A, but A has been changed to A′. In Section 3.3.1.3, we will

discuss the side effects of unblocking in detail. Here, we make use of the side effects

of unblocking to design the redirect algorithm: We apply unblocking to the unification

between an unwanted expression and a wanted expression. If an expression s can be

written to two different normal forms t and t ′, then the unwanted expression may exist

on the path from s to t ′, whereas the wanted expression may exist on all paths to t. For

the example of trigonometric functions, s is ((Der Cos) (Divi π 2)), t can be (Neg 1),

t ′ can be 1, the path from s to t ′ is ((Der Cos) (Divi π 2))⇒ (Sin (Divi π 2))⇒ 1,

a path to t is (Neg ((Der Cos) (Divi π 2)))⇒ (Neg (Sin (Divi π 2)))⇒ (Neg 1),

the unwanted expression can be (Sin (Divi π 2)), and the wanted expression can be

(Neg (Sin (Divi π 2))). In this case, reformation will try to unblock the unification

between the unwanted expression and the wanted one. If unblocking is successful,

the path to t ′ will be redirected to t. As discussed before, unblocking has the side

effects which block some other proofs. Here, the proof of t ′ will be blocked, so that

the redirected path only rewrites to t, but it does not rewrite to t ′. For the example

above, (Sin (Divi π 2)) ≡ (Neg (Sin (Divi π 2))) will be unblocked. This means

that (Sin (Divi π 2)) is changed to (Neg (Sin (Divi π 2))), and the path will become

((Der Cos) (Divi π 2))⇒ (Neg (Sin (Divi π 2)))⇒ (Neg 1).

3This algorithm is similar to a method whereby Jovita Tang uses traces to direct unblocking. Her
method uses resolution, while this algorithm uses rewriting.



Chapter 3. Description of the work undertaken 20

Specifically, the redirect algorithm has the following steps (assuming termination):

• Step 1: Check whether or not a set of rewrite rules R is locally confluent.
This can be done by the conventional method which finds all critical pairs of R

and checks whether or not they can be conflated. If R is not locally confluent,

then go to Step 2. Otherwise, R is output as a result, and the algorithm terminates.

• Step 2: Find a possibly faulty path and a possibly correct path. This can

be done by identifying a critical pair < s1,s2 > which starts from a term s and

ends in two different normal forms < t1, t2 >. Let P1 denote the path from s to

t1 and P2 denote the path from s to t2. Since either P1 or P2 is possibly faulty,

backtracking search is needed here: Firstly, assume that P1 is the faulty path and

P2 is the correct path, and go to Step 3. Secondly, assume that P2 is the faulty

path and P1 is the correct path, and go to Step 3.

• Step 3: Find an unwanted expression. Assume that the faulty path found

by Step 2 is s⇒ u1 ⇒ ··· ⇒ un. Let the unwanted expression u be ui, where

i = 1,2, · · · ,n, and then go to Step 4. Here, backtracking search is used, because

there are n different choices of u.

• Step 4: Find a wanted expression. Assume that the correct path found by

Step 2 is s ⇒ v1 ⇒ ··· ⇒ vl . The wanted expression can be not only any

expressions on the path, but also any other expressions that can be rewritten

to vl . To find such expressions, backward rewriting is applied to vl . Assume that

these expressions are w1,w2, · · · ,wm. Let the wanted expression w be w j, where

j = 1,2, · · · ,m, and then go to Step 5. Here, backtracking search is used again,

because there are m different choices of w.

• Step 5: Redirect the faulty path. This can be done by unblocking the

unification between the unwanted expression u and the wanted expression w.

Assume that u is obtained by applying a rule l⇒ r. Firstly, reformation is used

to unblock u≡ w, and it suggests a set of repairs ψ. Then ψ is applied to r, and

l ⇒ r is changed to l ⇒ r′. After that, l ⇒ r is removed from R, and l ⇒ r′ is

added to R. Finally, we remove all paths from the search space, build new paths

by using the repaired R and go to Step 1 to check if it is locally confluent. If

it passes the check, then this means that all faulty paths have been redirected to

correct paths.



Chapter 3. Description of the work undertaken 21

Now we use the redirect algorithm to repair the faulty rule about trigonometric

functions: Firstly, the path to (Neg 1) is chosen as the correct path, and the path

to 1 is chosen as the faulty path. Then candidates of wanted expressions can be

worked out by backward rewriting. They are (Neg 1) itself, (Neg (Sin (Div π 2)))

and (Neg (Der Cos) (Div π 2)). Also, candidates of unwanted expressions are

(Sin (Div π 2)) and 1. Next, reformation tries to unblock the unification between an

unwanted expression (Sin (Div π 2)) and a wanted expression (Neg (Sin (Div π 2))).

Reformation will suggest adding a Neg to the unwanted expression. Applying this

repair to Rule (3.27), the rule is changed to ((Der Cos) x) ⇒ (Neg (Sin x)).

Finally, the algorithm checks if the repaired rules are locally confluent. Since

((Der Cos) (Divi π 2)) can always be rewritten to (Neg 1), they have satisfied the

requirement of local confluence. The resulting rules are:

((Der Cos) x) ⇒ (Neg (Sin x)) (3.32)

((Der Cos) (Divi π 2)) ⇒ (Neg 1) (3.33)

(Sin (Div π 2)) ⇒ 1 (3.34)

Rule (3.32) has become a correct rule, because it indicates Cos′(x) =−Sin(x).

3.3.1.3 The side effects of unblocking

Unblocking, conceptually, should be used to process incompleteness, while blocking

should be used to process inconsistencies. In other words, unblocking can make a

theory complete by unblocking wanted proofs, and blocking can make the theory

consistent by blocking unwanted proofs. However, the redirect algorithm uses

unblocking, rather than blocking, to repair inconsistent rewrite rules. This is because

unblocking has a side effect which blocks unwanted proofs. Specifically, assume

that when unblocking unblocks a wanted proof, it changes an existing axiom. If an

unwanted proof can be derived by using this axiom, it will be possible that it can

no longer be derived after this axiom is changed. For the instance of trigonometric

functions, the wanted proof is ((Der Cos) (Div π 2)) ⇒ (Neg 1), while the unwanted

proof is ((Der Cos) (Div π 2)) ⇒ 1. The unwanted proof can be derived by using

the rule ((Der Cos) x) ⇒ (Sin x). When unblocking the wanted proof, this rule is

changed to ((Der Cos) x) ⇒ Neg( (Sin x)), so that the unwanted proof is blocked.

This means that unblocking can have side effects which block other proofs.



Chapter 3. Description of the work undertaken 22

The side effects are twofold: Firstly, an unwanted proof may be blocked. This is a

positive effect and has been used by the redirect algorithm. Secondly, a wanted proof

may be blocked. This is a negative effect. We will discuss it by Section 5.3 in Chapter

5.

3.3.2 Repairing incomplete blends

In this project, the upgrade algorithm is implemented and used to repair incomplete

analogical blends. The upgrade algorithm has been proposed by Bundy and Mitrovic

(2016)4. It is the counterpart of the revise algorithm, because upgrade is based on

unblocking and used to enable a wanted proof, while revise is based on blocking and

used to disable an unwanted proof.

The upgrade algorithm is combined with linear resolution with selection function

(SL-resolution) (Kowalski and Kuehner, 1971): Generally, SL-resolution starts from a

negated goal clause and derives the goal clause until it becomes an empty clause. If it

cannot be derived to an empty clause, then the resolution fails. For instance, assume

that the goal clause is ¬G1 ∨ ·· ·¬Gi ∨ ·· · ∨ ¬Gn with a selected literal ¬Gi, which

means that the goal is G1 ∧ ·· ·Gi ∧ ·· · ∧Gn, and an axiom represented by a definite

clause is ¬P1∨·· ·∨¬Pm∨Q, which means P1∧·· ·∧Pm =⇒ Q. SL-resolution derives

the goal clause by unifying Gi and Q with the most general unifier θ and replacing

¬Gi[θ] with ¬P1[θ]∨ ·· · ∨¬Pm[θ], so that goal clause becomes ¬G1[θ]∨ ·· ·¬P1[θ]∨
·· · ∨¬Pm[θ]∨ ·· · ∨¬Gn[θ]. If the unification Gi ≡ Q fails, the derivation will fail. In

this case, reformation unblocks this unification and suggests a set of repairs ψ. ψ can

be applied to Q and change the axiom to ¬P1∨·· ·∨¬Pm∨Q′, where Q′ can be unified

with Gi, so that the derivation can succeed.

Consider the incomplete theory described by Section 3.1.3. They can be

represented by the following definite clauses:

Capital(London,UK) (3.35)

¬Capital(x,y)∨EconomicallyDeveloped(x) (3.36)

EconomicallyDeveloped(London) (3.37)

and the negated goal clause is:

¬Prosperous(London) (3.38)

4Also, the need of the upgrade algorithm arose when Jovita Tang required an algorithm which uses
reformation to repair faulty proofs of arithmetic.



Chapter 3. Description of the work undertaken 23

The upgrade algorithm can make it complete. Firstly, starting from the

goal clause ¬Prosperous(London), SL-resolution will try to derive it to an

empty clause. However, this attempt fails, because Prosperous(London)

cannot be unified with Capital(London,UK), EconomicallyDeveloped(x) or

EconomicallyDeveloped(London). Then reformation will try to unblock an

unification. Assume that Prosperous(London) ≡ EconomicallyDeveloped(x)

is unblocked. Reformation can suggests merging EconomicallyDeveloped

and Prosperous, so that the unification pair becomes Prosperous(London) ≡
Prosperous(x) and can succeed by substituting x with London. Next, the repair

is applied to Clause (3.36), changing it to ¬Capital(x,y) ∨ Prosperous(x). Now

the goal clause can be derived to ¬Capital(London,y) via the changed axiom.

Finally, ¬Capital(London,y) can be derived to an empty clause by unifying

Capital(London,y) with Capital(London,UK). Since the result is an empty clause,

Prosperous(London) has been proved. This means that the theory has been partially

completed. In the resulting theory, Capital(x,y) =⇒ EconomicallyDeveloped(x) has

been changed to Capital(x,y) =⇒ Prosperous(x), which means that if x is the capital

of a country, then x is prosperous.

Also, there exists another way of repair: If reformation tries to unblock

Prosperous(London) ≡ EconomicallyDeveloped(London), it will also suggest

merging EconomicallyDeveloped and Prosperous. However, this repair will

not be applied to Clause 3.36, but to Clause 3.37. The result is that

EconomicallyDeveloped(London) is changed to Prosperous(London), and the goal

can be directly proved via this axiom.

3.4 Implementations

The implementations of the methods described before are based on the unsorted

reformation adapted from the original unsorted reformation program (Bundy and

Mitrovic, 2016) and adapted by Mitrovic (2013)5. These implementations are

compiled with SWI−Prolog (Wielemaker et al., 2010). The following are descriptions

about them:

A revision of the unblocking function. This revision enables reformation to

suggest and apply more kinds of repairs when using the unblocking function. In

the previous version of reformation implementation, unblocking is able to suggest

5Thanks to Boris Mitrovic for his help on discussing the algorithm and managing the code.



Chapter 3. Description of the work undertaken 24

and apply the following repairs to functions: (a) Merge two functors; (b) Add new

constants to the last positions of arguments; (c) Delete arguments in the last positions;

(d) Make x /∈ ν(t). However, to deal with more complex situations, more kinds of

repairs are needed. Section 3.2.2 has outlined all kinds of repairs implemented in this

project conceptually. Practically, they are implemented as repairs with a “le f t|right”

option indicating that a repair is applied to the left/right of an unification pair. They

are listed as follows (in the Prolog style):

• merge(F,G, le f t|right) — Merging a functor F with another functor G.

• addargc(F,Ar,N,C, le f t|right) — Adding a new constant C as a new argument

to the Nth position of a function F/Ar, where F is its functor and Ar is its arity.

N must satisfies 0≤ N ≤ Ar.

• addargv(F,Ar,N,V, le f t|right) — Adding a new variable V as a new argument

to the Nth position of a function F/Ar, where F is its functor and Ar is its arity.

N must satisfies 0≤ N ≤ Ar.

• delarg(F,Ar,N, le f t|right) — Deleting the Nth argument from a function F/Ar,

where F is its functor and Ar is its arity. N must satisfies 0≤ N ≤ Ar−1.

• add f unc(F,Ar,P, le f t|right) — Adding a functor P to a function F/Ar, where

F is its functor and Ar is its arity. After adding the functor, the function becomes

P(F/Ar).

• del f unc(F,Ar, I, le f t|right) — Deleting the functor of a function F/Ar, where

F is its functor and Ar is its arity. After adding the functor, the function becomes

XI , where XI is the Ith argument of the original F/Ar.

• permute(F,P, le f t|right) — Permuting the arguments of a function F via a

permutation P, where F is the functor, P is a list and the length of P must be

equal to the arity of the function. If the arity is Ar, then there are Ar!−1 different

possibilities of P. For instance, if the arity is 3, then P can be [1,3,2], [2,1,3],

[2,3,1], [3,1,2] or [3,2,1], but cannot be [1,2,3].

These repairs has been combined with the diagnose function and the repair function

of reformation (Bundy and Mitrovic, 2016; Mitrovic, 2013). They cover all repairs in

the previous version of unblocking. In particular, the “make x /∈ν(t)” repair is realised

via delarg and a special procedure which detects the position of x in t.



Chapter 3. Description of the work undertaken 25

Filters. Filters are used to prohibit certain repairs. Usually, a filter is a list of repairs

defined by users. For instance, it can be [add f unc( , , , ), permute( , , le f t)], which

means that “add f unc” is not allowed and “permute” is not allowed to be applied to

the left. The filters can be used in many cases. For instance, the align algorithm can

use a filter to prohibit all right repairs, so that when unblocking Ai ≡ B j, all suggested

repairs are for Ai, but B j remains unchanged. In fact, in most cases, we only need

either le f t or right repairs. In a few cases we need both, which will be discussed by

Section 5.3 in Chapter 5.

An implementation of the aaallliiigggnnn algorithm. The details of this algorithm have

been described by Section 3.2.3. This implementation is based on the revision of

unblocking. It is a Prolog function6 align(+S,+T,+N,−B,−R), where S is the source

theory, T is the target theory, N is the maximum number of repairs allowed, B is the

resulting analogical blend, and R is the set of suggested repairs.

An implementation of the rrreeedddiiirrreeecccttt algorithm. The details of the redirect

algorithm have been described by Section 3.3.1.2. This implementation is also based

on the revision of unblocking. It is a function redirect(+RuleIn,+DF,+DB,+N,−Ru

leOut,−R), where RuleIn is the original set of rewrite rules, DF and DB are the

search depths of forward rewriting and backward rewriting respectively (They are

restricted because this algorithm cannot deal with non-terminating rewrite rules), N

is the maximum number of repairs allowed, RuleOut is the repaired set of rewrite

rules, and R is the set of suggested repairs.

An implementation of the uuupppgggrrraaadddeee algorithm. The details of the upgrade

algorithm have been described by Section 3.3.2. This implementation is also based on

the revision of unblocking. It is a function upgrade(+G,+T In,+N,+D,−TOut,−R),

where G is the goal clause, T In is the original theory, N is the maximum number of

repairs allowed, D is the maximum depth of the resolution tree allowed, TOut is the

repaired theory, and R is the set of suggested repairs.

6The terms with “+” are considered as inputs, whereas the terms with “−” are considered as outputs.



Chapter 4

Worked examples and analysis

In this chapter, some worked examples, which have been used to develop the

algorithms, are used to analyse and explain how reformation repairs faulty analogical

blends.

4.1 Merging two ontologies of food chains

Assume that there are two ontologies O1 and O2 which use different predicates to

represent food chains: O1 uses Eat(x,y) to represent that x eats y, whereas O2 uses

IsEatenBy(p,q,u) to represent that p is eaten by q, and the knowledge is created by

an user u. Intuitively, if the user u is not taken into account, then Eat(x,y) has the

same meaning as IsEatenBy(y,x,u), and vice versa. Now the ontologies are expected

to be merged. This problem can be considered as a problem of producing an analogical

blend: We need to produce an analogical blend for O1 and O2, in which Eat(x,y) is

analogous to IsEatenBy(p,q,u), x is analogous to q, and y is analogous to p.

To make the problem clear, consider the following ontologies:

O1

<<< TTT yyypppeee DDDeeeccclllaaarrraaatttiiiooonnn >>>

Eagle : Li f e

Mouse : Li f e

Dove : Li f e

Snake : Li f e

Cat : Li f e

Eat : Li f e×Li f e

<<< AAAxxxiiiooommm >>>

Eat(Eagle,Mouse)

Eat(Eagle,Snake)

Eat(Snake,Mouse)

Eat(Cat,Mouse)

Eat(Cat,Dove)

(4.1)

26



Chapter 4. Worked examples and analysis 27

O2

<<< TTT yyypppeee DDDeeeccclllaaarrraaatttiiiooonnn >>>

Mouse : Animal | Cat : Animal

Dove : Animal | Owl : Animal

Alice : User | Bob : User

IsEatenBy : Animal×Animal×User

<<< AAAxxxiiiooommm >>>

IsEatenBy(Mouse,Cat,Alice)

IsEatenBy(Dove,Cat,Bob)

IsEatenBy(Mouse,Owl,Bob)

(4.2)

For O1, Li f e is a type of all lives, and Eat is a predicate with two arguments which

have the type of Li f e. For O2, Animal is a type of all animals, User is a type of all

users, and IsEatenBy is a predicate with two arguments which have the type of Animal

and an argument which have the type of User. Both ontologies have three individuals

which are the same, and they are Cat, Mouse and Dove. Regardless of the user

information, Eat(Cat,Mouse) and Eat(Cat,Dove) indicate the same knowledge as

IsEatenBy(Mouse,Cat,Alice) and IsEatenBy(Dove,Cat,Bob), and they are expected

to be aligned when merging O1 and O2. The other axioms in O1, however, cannot find

their counterparts in O2, so they are not expected to be aligned with the others.

Unfortunately, HDTP (Schmidt et al., 2014) cannot produce a generalisation

for the two ontologies, because it fails to align Eat(x,y) and IsEatenBy(p,q,u).

To align them, their arities should be the same, and their arguments should

also be reasonably aligned. For instance, when aligning Eat(Cat,Mouse) and

IsEatenBy(Mouse,Cat,Alice), Eat is expected to have an extra argument which can be

aligned with Alice, and Cat and Mouse are expected to be aligned exactly with Cat and

Mouse respectively. In this case, we use the align algorithm to adjust the alignments.

It will unblocks the following unification:

Eat(Cat,Mouse)≡ IsEatenBy(Mouse,Cat,Alice) (4.3)

There exist two directions of unblocking: (a) Unblocking from left to right; (b)

Unblocking from right to left. The first direction means that repairs will only be applied

to O1, whereas the second direction means that repairs will only be applied to O2. The

different directions of unblocking can be realised by using different filters.

If the axioms are expected to be transferred from O1 to O2, then unblocking

should be from left to right: Firstly, a new argument is added to the last

position of Eat(Cat,Mouse), changing it to Eat(Cat,Mouse,argnew). Then

the arguments of Eat(Cat,Mouse,argnew) are permuted, and this changes it



Chapter 4. Worked examples and analysis 28

to Eat(Mouse,Cat,argnew). Finally, Eat and IsEatenBy are merged, and

Eat(Mouse,Cat,argnew) is changed to IsEatenBy(Mouse,Cat,argnew), so that it can

be unified with IsEatenBy(Mouse,Cat,Alice). The above repairs can be applied to

all axioms in O1, and this will transfer them from O1 to O2. Thus, the blend O17→2

becomes:
O17→2

<<< TTT yyypppeee DDDeeeccclllaaarrraaatttiiiooonnn >>>

Eagle : Animal | Mouse : Animal

Dove : Animal | Snake : Animal

Cat : Animal | Owl : Animal

Alice : User | Bob : User

IsEatenBy : Animal×Animal×User

<<< AAAxxxiiiooommm >>>

IsEatenBy(Mouse,Eagle,argnew)

IsEatenBy(Snake,Eagle,argnew)

IsEatenBy(Mouse,Snake,argnew)

IsEatenBy(Mouse,Cat,Alice)

IsEatenBy(Dove,Cat,Bob)

IsEatenBy(Mouse,Owl,Bob)
(4.4)

It is noticeable that the axioms transferred from O1 may contain a variable argnew, and

the variable remains unknown. This result is expected because O1 does not indicate

any information about users. In particular, since IsEatenBy(Mouse,Cat,argnew) can

be unified with IsEatenBy(Mouse,Cat,Alice) which is already in O2, the blend does

not include IsEatenBy(Mouse,Cat,argnew). For the same reason, the blend does not

include IsEatenBy(Dove,Cat,argnew). Here, argnew does not need to be instantiated

in the same way. In other words, different instances can be instantiated to Alice, Bob,

or someone else.

Reformation, alternatively, can also suggest adding a new constant Cnew as the new

argument, instead of adding a new variable. In this case, to unblock the unification,

reformation needs to further merge Cnew with Alice. This results in the fact that all

axioms transferred from O1 have the form of IsEatenBy(p,q,Alice), which means

their users are all forced to be Alice. Then it will further merge Alice and Bob,

as IsEatenBy(Dove,Cat,Alice) and IsEatenBy(Dove,Cat,Bob) are expected to be

unified. This is an unexpected result. Fortunately, this result can be refuted, if we

always require the cost to be minimal. In other words, when merging Cnew with Alice

and merging Alice with Bob, the cost is 2. On the other hand, when substituting argnew

for Alice or Bob, the cost is 0. Therefore, adding argnew is better than adding Cnew.

On the other hand, if the axioms are expected to be transferred from

O2 to O1, then unblocking should be from right to left: Firstly, the third

argument of IsEatenBy(Mouse,Cat,Alice) is removed, and it is changed to



Chapter 4. Worked examples and analysis 29

IsEatenBy(Mouse,Cat). Then the arguments of IsEatenBy(Mouse,Cat) are permuted,

and this changes it to IsEatenBy(Cat,Mouse). Finally, IsEatenBy and Eat are merged,

and IsEatenBy(Cat,Mouse) is changed to Eat(Cat,Mouse). The above repairs can be

applied to all axioms in O2, and this will transfer them from O2 to O1. Thus, the blend

O27→1 becomes:

O27→1

<<< TTT yyypppeee DDDeeeccclllaaarrraaatttiiiooonnn >>>

Eagle : Li f e | Mouse : Li f e

Dove : Li f e | Snake : Li f e

Cat : Li f e | Owl : Li f e

Eat : Li f e×Li f e

<<< AAAxxxiiiooommm >>>

Eat(Eagle,Mouse)

Eat(Eagle,Snake)

Eat(Snake,Mouse)

Eat(Cat,Mouse)

Eat(Cat,Dove)

Eat(Owl,Mouse)

(4.5)

It is noticeable that the axioms from O2 have lost their user information. This is

because reformation has suggest deleting the third argument of IsEatenBy(p,q,u), in

order to transfer them from O2 to O1.



Chapter 4. Worked examples and analysis 30

4.2 Natural numbers and lists

This example is about natural numbers and lists1. Assume that two parent theories Tnat

and Tlist are:

Tnat

<<< TTT yyypppeee DDDeeeccclllaaarrraaatttiiiooonnn >>>

0 : Nat

Succ : Nat→ Nat

Sum : Nat×Nat→ Nat

Qsum : Nat×Nat→ Nat

Plus : Nat×Nat→ Nat

<<< AAAxxxiiiooommm >>>

Sum(0) = 0

Sum(Succ(x)) = Plus(Succ(x),Sum(x))

Qsum(Succ(x),y) = Qsum(x,Plus(Succ(x),y))

Qsum(0,x) = x

Plus(0,x) = x

Plus(Succ(x),y) = Succ(Plus(x,y))

Sum(x) = Qsum(x,0)

Plus(Sum(x),y) = Qsum(x,y)
(4.6)

Tlist

<<< TTT yyypppeee DDDeeeccclllaaarrraaatttiiiooonnn >>>

Nil : List

Cons : El×List→ List

App : List×List→ List

Rev : List→ List

Qrev : List×List→ List

<<< AAAxxxiiiooommm >>>

App(Nil, l) = l

App(Cons(h, l),m) =Cons(h,App(l,m))

Rev(Nil) = Nil

Rev(Cons(h, l)) = App(Rev(l),Cons(h,Nil))

Qrev(Nil, l) = l

Qrev(Cons(h, l),m) = Qrev(l,Cons(h,m))

Rev(l) = Qrev(l,Nil)
(4.7)

1These examples can be downloaded from Ontohub (Kutz et al., 2014). Their URLs are https://
ontohub.org/lemma-examples/smaill_nat.dol and https://ontohub.org/lemma-examples/
smaill_list.dol.



Chapter 4. Worked examples and analysis 31

HDTP (Schmidt et al., 2014) can compute a possible generalisation Gnat,list and two

morphisms σnat and σlist for them. For instance, they can be:

Gnat,list

<<< TTT yyypppeee DDDeeeccclllaaarrraaatttiiiooonnn >>>

A : NatList

B : NatList×NatList→ NatList

C : NatList×NatList→ NatList

D : NatList→ NatList

<<< AAAxxxiiiooommm >>>

D(A) = A

C(A,x) = x

B(A,x) = x

D(x) =C(x,A)

(4.8)

σnat = {A 7→ 0,B 7→ Plus,C 7→ Qsum,D 7→ Sum} (4.9)

σlist = {A 7→ Nil,B 7→ App,C 7→ Qrev,D 7→ Rev} (4.10)

Here, the generalisation indicates some alignments of types, functions and axioms

between two theories. Specifically, NatList indicates that the type Nat has been aligned

with the type List, A, B, C and D are abstractions of constants in the two parent theories,

and the axioms are abstractions of axioms in the two parent theories. The morphisms

indicate alignments of constants between the generalisation and the parent theories.

By using the generalisation and the morphisms, the axioms in Tnat can be transferred

to those in Tlist by applying the following morphisms:

σnat,list = {0 7→ Nil,Plus 7→ App,Qsum 7→ Qrev,Sum 7→ Rev} (4.11)

However, the axioms, which use the Succ function, cannot been completely transferred.

This is because Succ is not aligned with any function of Tlist . Here, using the align

algorithm, reformation can try to enable the alignment between them. The following

is the alignment which has “the minimal cost of repairs”: Firstly, Plus(Succ(x),y) =

Succ(Plus(x,y)) is transferred to App(Succ(x),y) = Succ(App(x,y)) by applying the

morphism σnat,list . Then reformation is used to unblock the following unification:

Equal(App(Succ(x),y),Succ(App(x,y)))

≡

Equal(App(Cons(h, l),m),Cons(h,App(l,m)))

(4.12)

where “Equal(a,b)” denotes “a = b”. Reformation will suggest adding a new

argument to Succ(x) and merging Succ with Cons, so that it is changed to

Cons(argnew,x), and the unification can succeed. Applying these repairs to the



Chapter 4. Worked examples and analysis 32

remaining axioms and transferring them to Tlist , we can obtain an analogical blend:

Bnat 7→list

<<< TTT yyypppeee DDDeeeccclllaaarrraaatttiiiooonnn >>>

Nil : List | App : List×List→ List | Rev : List→ List

Qrev : List×List→ List | Cons : El×List→ List
<<< OOOrrriiigggiiinnnaaalll AAAxxxiiiooommm >>>

App(Nil, l) = l | Rev(Nil) = Nil

Qrev(Nil, l) = l | Rev(l) = Qrev(l,Nil)

App(Cons(h, l),m) =Cons(h,App(l,m))

Rev(Cons(h, l)) = App(Rev(l),Cons(h,Nil))

Qrev(Cons(h, l),m) = Qrev(l,Cons(h,m))

<<< NNNeeewww AAAxxxiiiooommm >>>

Rev(Cons(argnew,x)) = App(Cons(argnew,x),Rev(x))

Qrev(Cons(argnew,x),y) = Qrev(x,App(Cons(argnew,x),y))

App(Rev(x),y) = Qrev(x,y)

(4.13)

The next step is to process inconsistencies in this blend. For this example,

Nitpick (Blanchette, 2010), which is combined with Isabelle (Nipkow et al., 2002),

is used to find counterexamples of axioms. It can find that if argnew = H1 and

x=Cons(H1,Nil), then Rev(Cons(argnew,x)) =App(Cons(argnew,x),Rev(x)) is false.

Based on this counterexample, the revise algorithm can suggest different ways of

repair. For instance, it can suggest renaming App to App2, so that the axiom is changed

to Rev(Cons(argnew,x)) = App2(Cons(argnew,x),Rev(x)). Also, Nitpick can find

that if argnew = H1, x = Cons(H1,Nil) and y = Nil, then Qrev(Cons(argnew,x),y) =

Qrev(x,App(Cons(argnew,x),y)) is false. Again, the revise algorithm can suggest

different ways of repair, such as adding a new argument Cnew to Qrev, so that the axiom

is changed to Qrev(Cons(argnew,x),y,Cnew) = Qrev(x,App(Cons(argnew,x),y),Cnew).

For App(Rev(x),y) = Qrev(x,y), however, since no counterexample can be found,

it will not be changed. In fact, it is true and can be proved via mathematical induction.

4.3 Trigonometric functions

HDTP (Schmidt et al., 2014) can produce an analogical blend for two sets of rewrite

rules. Assume that S1 and S2 are sets of rewrite rules. If S1 and S2 are analogous,

HDTP will compute a generalisation G of rules and two morphisms σ1 and σ2 which



Chapter 4. Worked examples and analysis 33

indicate possible alignments of symbols. Based on the morphisms, some rules can be

transferred from S1 to S2, so that a blend of rules can be produced. However, this blend

may be faulty, because local confluence is not guaranteed.

The following is an example where HDTP produces a faulty analogical blend of

rewrite rules. In this example, we use lists to represent second-order functions, as

HDTP and reformation only support first-order logic now. For instance, Sin′(x), which

is the derivative of Sin(x), can be represented as ((Der Sin) x). Assume that S1 is a set

of rewrite rules about trigonometric functions

(Plus (Squ (Sin x)) (Squ (Cos x))) ⇒ 1 (4.14)

((Der Sin) x) ⇒ (Cos x) (4.15)

and S2 is another set of rewrite rules

(Plus (Squ (Cos x)) (Squ (Sin x))) ⇒ 1 (4.16)

((Der Cos) (Div π 2)) ⇒ (Neg 1) (4.17)

(Sin (Div π 2)) ⇒ 1 (4.18)

(Cos (Div π 2)) ⇒ 0 (4.19)

(Plus (Squ 0) (Squ 1)) ⇒ 1 (4.20)

where π is a constant, x is a variable, Plus means addition, Div means division,

Sin means the sine function, Cos means the cosine function, Squ means taking a

square, Neg means taking a negative value, and Der means taking the derivative

of a function. Translated to conventional representations in mathematics, they are

Sin2(x) +Cos2(x) = 1, Sin′(x) = Cos(x), Cos2(x) + Sin2(x) = 1, Cos′(π/2) = −1,

Sin(π/2) = 1, Cos(π/2) = 0 and 02 + 12 = 1 respectively. These rules can be used

to simplify terms about trigonometric functions. Given S1 and S2, HDTP will output a

generalisation by aligning Rule (4.14) and Rule (4.16):

G = {(A (B (C x)) (B (D x))) ⇒ 1} (4.21)

and two morphisms

σ1 = {A→ Plus,B→ Squ,C→ Sin,D→Cos,E→ 1} (4.22)

and

σ2 = {A→ Plus,B→ Squ,C→Cos,D→ Sin,E→ 1} (4.23)



Chapter 4. Worked examples and analysis 34

It is noticeable that C→ Sin in σ1 corresponds to C→Cos in σ2, and D→Cos in σ1

corresponds to D→ Sin in σ2. Therefore, the rules in S1 can be transferred into S2 by

applying the following morphism:

σ
′ = {Sin→Cos,Cos→ Sin} (4.24)

This yields an analogical blend B which contains the following rules:

(Plus (Squ (Cos x)) (Squ (Sin x))) ⇒ 1 (4.25)

∗ ((Der Cos) x) ⇒ (Sin x) (4.26)

∗ ((Der Cos) (Div π 2)) ⇒ (Neg 1) (4.27)

∗ (Sin (Div π 2)) ⇒ 1 (4.28)

(Cos (Div π 2)) ⇒ 0 (4.29)

(Plus (Squ 0) (Squ 1)) ⇒ 1 (4.30)

In this blend, ((Der Cos) x) ⇒ (Sin x) is a new rule transferred from

((Der Sin) x) ⇒ (Cos x) in S1, while the other rules are all from S2. This blend

is not locally confluent, and the rules violating local confluence have been marked by

“∗”. Specifically, ((Der Cos) (Div π 2)) can be rewritten in two ways

((Der Cos) (Div π 2))
(4.27)⇒ (Neg 1) (4.31)

and

((Der Cos) (Div π 2))
(4.26)⇒ (Sin (Div π 2))

(4.28)⇒ 1 (4.32)

where the numbers on “⇒” indicate the rules which are used. It is noticeable that the

use of the new rule (4.26) yields 1 which is not equivalent to (Neg 1). This means

that the blend is not locally confluent. Also, it is noticeable that the parent theories are

locally confluent. This means that local confluence is not guaranteed for an analogical

blend of rewrite rules, even though two parent theories are locally confluent.

The above analogical blend is faulty because Rule (4.26) indicates that Cos′(x) =

Sin(x), but actually Cos′(x) should be −Sin(x). If Rule (4.26) is changed

to ((Der Cos) x) ⇒ (Neg (Sin x)) which indicates that Cos(x) = −Sin(x),

((Der Cos) (Div π 2)) will always be rewritten to (Neg 1), and the blend will be

locally confluent. This change can be done via the redirect algorithm, as discussed in

Section 3.3.1.2.



Chapter 5

Evaluation

In this chapter, some new examples are used to evaluate the algorithms developed by

this project.

5.1 Pascal and Python

Consider the following scene: A programmer was asked to translate a program from

Pascal to Python for some reasons. However, the program was so large that he/she was

considering using a program to help himself/herself to some extent. He/She found that

HDTP (Schmidt et al., 2014) might help.

Pascal Code
Line

1 :

2 :

3 :

4 :

5 :

6 :

7 :

8 :

9 :

10 :

Program

read(a);

read(b);

writeln(a+b);

s := 0;

f or i := a to b do s := s+ i;

writeln(s);

writeln(a∗b);

t := 1;

f or i := a to b do t := t ∗ i;

writeln(s);

Predicate Form

Read(A)

Read(B)

Writeln(+(A,B))

:= (S,0)

ForToDo(I,To(A,B),Do(:= (S,+(S, I))))

Writeln(S)

Writeln(∗(A,B))

:= (T,1)

ForToDo(I,To(a,b),Do(:= (T,+(T, I))))

Writeln(T )
(5.1)

35



Chapter 5. Evaluation 36

Program (5.1) is a Pascal program, which can read two integers a and b and output the

values of a+b, a+(a+1)+ · · ·+(b−1)+b, a×b and a× (a+1)×·· ·× (b−1)×b.
Python Code

Line

1 :

2 :

3 :

4 :

5 :

6 :

Program

a = input()

b = input()

print(a+b)

s = 0

f or i in xrange(a,b+1) :

s = s+ i

print(s)

Predicate Form

= (A, Input)

= (B, Input)

Print(+(A,B))

= (S,0)

ForIn(I,Xrange(A,+(B,1)),

Execute(= (S,+(S, I))))

Print(S)

(5.2)

Program (5.2) is a Python program, which can read two numbers a and b and output

the values of a+b and a+(a+1)+ · · ·+(b−1)+b:

HDTP is able to produce an analogical blend for them by aligning

Writeln(+(A,B)) (Pascal Line 3) with Print(+(A,B)) (Python Line 3) and aligning

:= (S,0) (Pascal Line 4) with = (S,0) (Python Line 4). This means that any writeln

sentences in Pascal can be transferred to print sentences in Python, and any :=

sentences can be transferred to = sentences. It is also expected that Read(A) (Pascal

Line 1) can be aligned with = (A, Input) (Python Line 1). In this case, we use the align

algorithm to enable the alignment. Unfortunately, it will align := (T,1) (Pascal Line

8) with = (A, Input), because this yields the minimal cost of repair. If we prohibit this

alignment via a filter, then it can align Read(A) and = (A, Input) by unblocking:

Read(A)≡= (A, Input) (5.3)

To unblock it, reformation suggests adding a new constant C1 to Read, merging Read

with =, and merging C1 with Input. This process is Read(A)⇒ Read(A,C1)⇒=

(A,C1)⇒= (A, Input). The repairs can also be applied to Read(B) (Pascal Line 2)

and transfer it to = (B, Input) (Python Line 2). This means that read(a) (Pascal Line

1) and read(b) (Pascal Line 2) now can be transferred to a = input() (Python Line

1) and b = input() (Python Line 2). Now we can use these alignments and repairs

to produce new sentences for Python. For instance, writeln(a∗b) (Pascal Line 7) can

be transferred to print(a∗b), t := 1 (Pascal Line 7) can be transferred to t = 1, and

writeln(s) (Pascal Line 6 and Line 10) can be transferred to print(s) (Python Line 6)

and another new line which is also print(s). If we have a Pascal sentence read(u), then

we can transfer it to a Python sentence u = input().



Chapter 5. Evaluation 37

A glance at the programs reveals that the f or−to−do (Pascal Line 5) sentence can

also be aligned with the f or− in sentence (Python Line 5). To align them, reformation

needs to unblock the following unification:

ForToDo(I,To(A,B),Do(:= (S,+(S, I))))

≡

ForIn(I,Xrange(A,+(B,1)),Execute(= (S,+(S, I))))

(5.4)

Reformation can suggest the following alignments via merging:

{ForToDo 7→ ForIn,To 7→ Xrange,Do 7→ Execute, :=7→=} (5.5)

Also, to make the unification B ≡ +(B,1) succeed, reformation can suggest adding a

new functor + to B, adding a new argument C2 to + and merging C2 with 1. This

process is B ⇒ +(B) ⇒ +(B,C2) ⇒ +(B,1). These repairs can also be applied

to ForToDo(I,To(A,B),Do(:= (T,+(T, I)))) (Pascal Line 10) and can transfer it

to ForIn(I,Xrange(A,+(B,1)),Execute(= (T,+(T, I)))). At this moment, we have

obtained the following Python program where all sentences can be aligned with the

original Pascal sentences, and it can be considered as a blend of the two original

programs:

BlendPascal 7→Python

Line

1 :

2 :

3 :

4 :

5 :

6 :

7 :

8 :

9 :

10 :

Program

a = input()

b = input()

print(a+b)

s = 0

f or i in xrange(a,b+1) :

s = s+ i

print(s)

print(a∗b)

t = 1

f or i in xrange(a,b+1) :

t = t + i

print(t)

Predicate Form

= (A, Input)

= (B, Input)

Print(+(A,B))

= (S,0)

ForIn(I,Xrange(A,+(B,1)),

Execute(= (S,+(S, I))))

Print(S)

Print(∗(A,B))

= (T,1)

ForIn(I,Xrange(A,+(B,1)),

Execute(= (T,+(T, I))))

Print(T )

(5.6)

This Python program can read two numbers a and b and output the values of a+ b,

a+(a+1)+ · · ·+(b−1)+b, a×b and a×(a+1)×·· ·×(b−1)×b. These functions



Chapter 5. Evaluation 38

are nearly the same as those of the original Pascal program, which mean that the

translation from the Pascal program to the Python program has been successful. Also,

the alignments and repairs obtained can be used to translate more Python sentences,

which might help the programmer finish his/her task. However, to obtain this result, the

alignment between := (T,1) and = (A, Input) needs to be prohibited by using the filter,

as discussed before. This means that interactions between the align algorithm and

users may be helpful. Also, this reveals that the greedy strategy may not be sufficient or

suitable, and we may need some heuristic methods to improve the quality of alignment.

5.2 Gravity and electrostatic force

Newton’s law of universal gravitation reveals that two particles attract each other via

gravity. Assume that m1 and m2 are the two particles, ppp111 and ppp222 are 3-dimensional

vectors which denote the coordinates of the two particles, and G = 6.67× 10−11

is the gravitational constant. Newton’s law of universal gravitation reveals that m2

attracts m1 via gravity, and the gravity is a 3-dimensional vector FFFGGG(m1,m2, ppp111, ppp222) =

Gm1m2(ppp222− ppp111)/‖ppp222− ppp111‖3. This can be formalised as a theory TG which contains

an implication rule:

Particle1(m1,x1,y1,z1)∧Particle2(m2,x2,y2,z2) =⇒

Gravity(FG(m1,m2,Vec(x1,y1,z1),Vec(x2,y2,z2)))
(5.7)

and two rewrite rules:

FG(m1,m2,Vec(x1,y1,z1),Vec(x2,y2,z2))

⇒ G×m1×m2×
Vec(x2,y2,z2)−Vec(x1,y1,z1)

‖Vec(x2,y2,z2)−Vec(x1,y1,z1)‖3

(5.8)

G⇒ 6.67×10−11 (5.9)

Here, “ =⇒ ” is the symbol for implication, whereas “⇒” is the symbol for rewriting.

The implication rule (5.7) means that if there exist two particles Particle1 and Particle2

such that the mass of Particle1 is m1, the coordinates of Particle1 are (x1,y1,z1), the

mass of Particle2 is m2, and the coordinates of Particle2 are (x2,y2,z2), then the gravity

applied to Particle1 is FG(m1,m2,Vec(x1,y1,z1),Vec(x2,y2,z2)). The rewrite rule (5.8)

is the formalisation of Newton’s law. The rewrite rule (5.9) means that the gravitational

constant G is 6.67×10−11.



Chapter 5. Evaluation 39

Similarly, Coulomb’s law reveals that two electric charges attract or repel each

other via electrostatic forces. Assume that q1 and q2 are the two electric charges,

rrr111 and rrr222 are 3-dimensional vectors which denote the coordinates of the two electric

charges, and Ke = 8.99× 109 is the electrostatic constant. Coulomb’s law reveals

that if both q1 and q2 are positive (or negative), q2 repels q1 via an electrostatic force

which is a 3-dimensional vector FFFEEE(q1,q2,rrr111,rrr222) = Keq1q2(rrr111− rrr222)/‖rrr111− rrr222‖3. It is

noticeable that the structure of FFFGGG(m1,m2, ppp111, ppp222) = Gm1m2(ppp222− ppp111)/‖ppp222− ppp111‖3 is

similar to that of FFFEEE(q1,q2,rrr111,rrr222) = Keq1q2(rrr111− rrr222)/‖rrr111− rrr222‖3, except the fact that

the positions of ppp111, ppp222, rrr111 and rrr222 are different. The similarity means that it is possible

for HDTP (Schmidt et al., 2014) to invent Coulomb’s law by transferring Newton’s

law from TG. Assume that we have another theory TE which contains an implication

rule:
Charge1(q1,x1,y1,z1)∧Charge2(q2,x2,y2,z2) =⇒

EleForce(FE(q1,q2,Vec(x1,y1,z1),Vec(x2,y2,z2)))
(5.10)

and three rewrite rules:

FE(4×10−8,4×10−8,Vec(0.1,0,0),Vec(0,0,0))

⇒Vec(1.44×10−2,0,0)
(5.11)

(8.99×109)× (4×10−8)× (4×10−8)×
Vec(0,0,0)−Vec(0.1,0,0)

‖Vec(0,0,0)−Vec(0.1,0,0)‖3

⇒−((8.99×109)× (4×10−8)× (4×10−8)×
Vec(0.1,0,0)−Vec(0,0,0)

‖Vec(0.1,0,0)−Vec(0,0,0)‖3)

(5.12)

(8.99×109)× (4×10−8)× (4×10−8)×
Vec(0.1,0,0)−Vec(0,0,0)

‖Vec(0.1,0,0)−Vec(0,0,0)‖3

⇒Vec(1.44×10−2,0,0)

(5.13)

Here, “ =⇒ ” is the symbol for implication, whereas “⇒” is the symbol for

rewriting. The implication rule (5.10) means that if there exist two matters

Charge1 and Charge2 such that the quantity of electric charge of Charge1 is q1,

the coordinates of Charge1 are (x1,y1,z1), the mass of Charge2 is q2, and the

coordinates of Charge2 are (x2,y2,z2), then the electrostatic force applied to Charge1 is

FE(q1,q2,Vec(x1,y1,z1),Vec(x2,y2,z2)). The rewrite rule (5.11) indicates that if q1 =

q2 = 4×10−8, (x1,y1,z1) = (0.1,0,0) and (x2,y2,z2) = (0,0,0), then the electrostatic

force applied to Charge1 will is Vec(1.44×10−2,0,0). This can be considered as data

from the real world. The other rewrite rules are used to simplify vector expressions.



Chapter 5. Evaluation 40

HDTP (Schmidt et al., 2014) is able to produce an analogical blend for TG and TE

via the following alignments:

Particle1→Charge1,Particle2→Charge2,

Gravity→ EleForce,FG→ FE ,m1→ q1,m2→ q2

(5.14)

This yields a blend BG 7→E which contains two new rules:

FE(q1,q2,Vec(x1,y1,z1),Vec(x2,y2,z2))

⇒ G×q1×q2×
Vec(x2,y2,z2)−Vec(x1,y1,z1)

‖Vec(x2,y2,z2)−Vec(x1,y1,z1)‖3

(5.15)

G⇒ 6.67×10−11 (5.16)

However, BG 7→E violates local confluence, because FE(4×10−8,4×10−8,Vec(0.1,0,

0),Vec(0,0,0)) can be rewritten to Vec(1.44 × 10−2,0,0) via Rule (5.11),

but it can also be rewritten to (6.67 × 10−11) × (4 × 10−8) × (4 × 10−8) ×
Vec(0,0,0)−Vec(0.1,0,0)

‖Vec(0,0,0)−Vec(0.1,0,0)‖3 via Rule (5.15) and Rule (5.16) sequentially. In

this case, the redirect algorithm can try to repair the rules. When the path to

Vec(1.44× 10−2,0,0) is chosen as the correct path, a wanted expression can be

(8.99×109)×(4×10−8)×(4×10−8)×
Vec(0.1,0,0)−Vec(0,0,0)

‖Vec(0.1,0,0)−Vec(0,0,0)‖3. On the other

hand, an unwanted expression can be (6.67× 10−11)× (4× 10−8)× (4× 10−8)×
Vec(0,0,0)−Vec(0.1,0,0)

‖Vec(0,0,0)−Vec(0.1,0,0)‖3. Therefore, reformation will unblock the following

unification:

(6.67×10−11)× (4×10−8)× (4×10−8)×
Vec(0,0,0)−Vec(0.1,0,0)

‖Vec(0,0,0)−Vec(0.1,0,0)‖3

≡

(8.99×109)× (4×10−8)× (4×10−8)×
Vec(0.1,0,0)−Vec(0,0,0)

‖Vec(0.1,0,0)−Vec(0,0,0)‖3

(5.17)

Reformation will suggest merging 6.67 and 8.99, removing “−” from −11 and

merging 11 and 9. They can change (6.67×10−11) to (8.99×109). Also, reformation

will suggest permuting the two arguments of Vec(0,0,0)−Vec(0.1,0,0), so that it

becomes Vec(0.1,0,0)−Vec(0,0,0) and can be aligned with the wanted expression.

These repairs will be applied to Rule (5.16), which is the last rule applied to the

unwanted expression, changing it to:

G⇒ 8.99×109 (5.18)



Chapter 5. Evaluation 41

However, after this change, BG 7→E is still not locally confluent, because FE(4×
10−8,4× 10−8,Vec(0.1,0,0),Vec(0,0,0)) can be rewritten to Vec(1.44× 10−2,0,0)

via Rule (5.11), but it can also be rewritten to −Vec(1.44× 10−2,0,0) via Rule

(5.15), (5.18) (5.12) and (5.13) sequentially. In this case, the upgrade algorithm

can repair them further: If the path to Vec(1.44 × 10−2,0,0) is chosen as the

correct path again, then a wanted expression can be G× (4× 10−8)× (4× 10−8)×
Vec(0.1,0,0)−Vec(0,0,0)

‖Vec(0.1,0,0)−Vec(0,0,0)‖3. On the other hand, an unwanted expression can be

G× (4× 10−8)× (4× 10−8)×
Vec(0,0,0)−Vec(0.1,0,0)

‖Vec(0,0,0)−Vec(0.1,0,0)‖3. Hence, reformation

will unblock the following unification:

G× (4×10−8)× (4×10−8)×
Vec(0,0,0)−Vec(0.1,0,0)

‖Vec(0,0,0)−Vec(0.1,0,0)‖3

≡

G× (4×10−8)× (4×10−8)×
Vec(0.1,0,0)−Vec(0,0,0)

‖Vec(0.1,0,0)−Vec(0,0,0)‖3

(5.19)

Reformation will suggest permuting the two arguments of Vec(0,0,0)−Vec(0.1,0,0),

so that it becomes Vec(0.1,0,0)−Vec(0,0,0) and can be aligned with the wanted

expression. This repair will be applied to Rule (5.15), which is the last rule applied to

the unwanted expression, changing it to:

FE(q1,q2,Vec(x1,y1,z1),Vec(x2,y2,z2))

⇒ G×q1×q2×
Vec(x1,y1,z1)−Vec(x2,y2,z2)

‖Vec(x1,y1,z1)−Vec(x2,y2,z2)‖3

(5.20)

Now, Vec(x2,y2,z2)−Vec(x1,y1,z1) has been changed to Vec(x1,y1,z1)−Vec(x2,y2



Chapter 5. Evaluation 42

,z2). After this repair, TE has been locally confluent. The final version of BG 7→E is:
BG 7→E

<<< IIImmmpppllliiicccaaatttiiiooonnn RRRuuullleee >>>

Charge1(q1,x1,y1,z1)∧Charge2(q2,x2,y2,z2) =⇒

EleForce(FE(q1,q2,Vec(x1,y1,z1),Vec(x2,y2,z2)))

<<< OOOrrriiigggiiinnnaaalll RRReeewwwrrriiittteee RRRuuullleee >>>

FE(4×10−8,4×10−8,Vec(0.1,0,0),Vec(0,0,0))

⇒Vec(1.44×10−2,0,0)

(8.99×109)× (4×10−8)× (4×10−8)×
Vec(0,0,0)−Vec(0.1,0,0)

‖Vec(0,0,0)−Vec(0.1,0,0)‖3

⇒−((8.99×109)× (4×10−8)× (4×10−8)×
Vec(0.1,0,0)−Vec(0,0,0)

‖Vec(0.1,0,0)−Vec(0,0,0)‖3)

(8.99×109)× (4×10−8)× (4×10−8)×
Vec(0.1,0,0)−Vec(0,0,0)

‖Vec(0.1,0,0)−Vec(0,0,0)‖3

⇒Vec(1.44×10−2,0,0)
<<< NNNeeewww RRReeewwwrrriiittteee RRRuuullleee >>>

FE(q1,q2,Vec(x1,y1,z1),Vec(x2,y2,z2))

⇒ G×q1×q2×
Vec(x1,y1,z1)−Vec(x2,y2,z2)

‖Vec(x1,y1,z1)−Vec(x2,y2,z2)‖3

G⇒ 8.99×109

(5.21)

It is noticeable that the new rules are equivalent to Coulomb’s law which indicates

that FFFEEE(q1,q2,rrr111,rrr222) = Keq1q2(rrr111− rrr222)/‖rrr111− rrr222‖3, ppp111 and Ke = 8.99× 109. The

only flaw is that G may confuse people, because G is equivalent to the electrostatic

constant, but not the gravitational constant. This result means that Coulomb’s law has

been invented via transferring Newton’s law from the domain of gravity to the domain

of electrostatic force and applying the redirect algorithm. In reality, electrostatic

force is similar to gravity. A difference between them is that their direction is

opposite: gravities always attracts two particles, whereas electrostatic forces always

repels two positive charges (or two negative charges). This is the reason why for

the right-hand side of FFFGGG(m1,m2, ppp111, ppp222) = Gm1m2(ppp222− ppp111)/‖ppp222− ppp111‖3 and that

of FFFEEE(q1,q2,rrr111,rrr222) = Keq1q2(rrr111− rrr222)/‖rrr111− rrr222‖3, ppp111 needs to be aligned with rrr222,

and ppp222 needs to be aligned with rrr111.

In this example, three different kinds of repairs are used: (a) Merging; (b) Deleting

a functor; (c) Permuting arguments. The first two are used to change 6.67× 10−11



Chapter 5. Evaluation 43

to 8.99× 109, which means changing the gravitational constant to the electrostatic

constant. The third is used to swap the two vectors, which means reversing the

direction of the electrostatic force. These are the cases that the repairs could have

realistic meanings. It is also noticeable that the redirect algorithm needs to repair the

rules twice, because at most one rule can be repaired each time. After each time of

repair, the rewriting tree needs to be rebuilt, in order to check local confluence and

identify potentially faulty paths. This is the reason why redirect is recursive.

All repair operations mentioned above can be done automatically via the redirect

algorithm, without any help from users.

5.3 Addition and subtraction

Assume that we have known that + is analogous to − and the successor Succ is

analogous to the predecessor Pred. Given the following theory about addition which

contains two Peano axioms:

TAdd

x+0 = x

x+Succ(y) = Succ(x+ y)

(5.22)

By mapping + to − and mapping the successor Succ to the predecessor Pred, the

following theory about subtraction can be obtained:

TAdd 7→Sub

x−0 = x

x−Pred(y) = Pred(x− y)

(5.23)

Also, we look forward to proving 0−Pred(0) = Succ(0) and 0− Succ(0) = Pred(0)

by using the two axioms.

Obviously, x−Pred(y) = Pred(x− y), which means that x− (y−1) = (x− y)−1,

is faulty. The correct axiom should be x−Pred(y) = Succ(x− y), which means that

x− (y−1) = (x−y)+1, or x−Succ(y) = Pred(x−y), which means that x− (y+1) =

(x− y)− 1. Fortunately, the upgrade algorithm is able to repair it. Firstly, TAdd 7→Sub

can be rewritten to the following two implication rules, which are represented by the

list format described by Section 3.1:

(Minus x 0) =⇒ x (5.24)

Minus x (Pred y) =⇒ (Pred (Minus x y)) (5.25)



Chapter 5. Evaluation 44

To extend the use of Rule (5.24), we add an extra rule:

(p (Minus x 0)) =⇒ (p x) (5.26)

where p is a functor, but it is a variable. This is a second-order rule which enables

the functor p to be instantiated. In other words, it enables implications such as

(Succ (Minus x 0)) =⇒ (Succ x) and (Pred (Minus x 0)) =⇒ (Pred x). Also,

0−Pred(0) = Succ(0) and 0−Succ(0) = Pred(0), which are expected to be proved,

can be rewritten to the following theorems:

(Minus 0 (Pred 0)) −→ (Succ 0) (5.27)

(Minus 0 (Succ 0)) −→ (Pred 0) (5.28)

Then the upgrade algorithm is used to enable their proofs. For Theorem (5.27), the

first proof step succeeds:

(Succ 0) =⇒
(Succ (Minus 0 0)) =⇒

(p (Minus x 0)) =⇒ (p x) (5.29)

However, the second step fails:

(Succ (Minus 0 0)) =⇒
Blocked

Minus x (Pred y) =⇒ (Pred (Minus x y) (5.30)

This is because the unification between (Succ (Minus 0 0)) and (Pred (Minus x y)

fails. Reformation can suggest changing Pred to Succ. Applying this repair to the

right-hand side of Minus x (Pred y) =⇒ (Pred (Minus x y) will change it to

Minus x (Pred y) =⇒ (Succ (Minus x y). Now the proof has been unblocked:

(Succ (Minus 0 0)) =⇒
Minus 0 (Pred 0) =⇒

Minus x (Pred y) =⇒ (Succ (Minus x y)

=⇒
Assumption

(5.31)

The assumption is =⇒ Minus 0 (Pred 0). This means that Theorem (5.27) has been

proved.

However, the upgrade algorithm fails to unblock the proof of Theorem (5.28)

further. Specifically, although the first proof step succeeds:

(Pred 0) =⇒
(Pred (Minus 0 0)) =⇒

(p (Minus x 0)) =⇒ (p x) (5.32)

the second step fails:

(Pred (Minus 0 0)) =⇒
Blocked

Minus x (Pred y) =⇒ (Succ (Minus x y) (5.33)



Chapter 5. Evaluation 45

To unblock the second step, reformation suggests changing Minus x (Pred y) =⇒
(Succ (Minus x y)) to Minus x (Pred y) =⇒ (Pred (Minus x y)). However, this

change blocks the proof of Theorem (5.27)! If we ignore this accident and continue

unblocking the proof, the goal will become Minus 0 (Pred 0) =⇒ . The third step is to

unblock the unification between the assumption =⇒ Minus 0 (Succ 0) and the goal:

Minus 0 (Succ 0)≡Minus 0 (Pred 0) (5.34)

Reformation can suggest changing Succ to Pred. However, it does not change any

axioms, but changes the assumption. On the other hand, reformation can also suggest

changing Pred to Succ. However, it still does not change any axioms, but changes the

goal.

The above example reveals two issues: The first is that unblocking can also block

a wanted proof. This can be a negative side effect of unblocking. For this issue, a

possible solution, which is our future work, is to keep the original axiom unchanged to

prevent the wanted proof from being blocked, add a new copy of this axiom and apply

unblocking to this copy1. The second is that for an implication rule P =⇒ Q, the

upgrade algorithm can only repair Q, but cannot repair P. To solve this issue, some

adaptation for the current upgrade implementation is needed.

5.4 Lists and binary trees

Consider a binary tree structure which is defined by Empty and Node(v, l,r) 2:

Empty means an empty tree, and Node(v, l,r) means a node, where v is a value,

l is a left subtree and r is a right subtree. For instance, a binary tree can be

Node(A,Empty,Empty), which only has a node with a value A and without any

subtrees, or Node(A,Node(B,Empty,Empty),Empty), which has a node with a value

A, a left subtree Node(B,Empty,Empty), but without a right subtree. Formally, this

binary tree structure can be defined via two functions: Empty : BTree and Node :

Val×BTree×BTree→ BTree, where BTree is a type of binary trees and Val is a type

of values. This structure can be analogous to the list structure which is defined via

Nil : List and Cons : El×List and has been discussed by previous sections.

1This idea arose after a discussion with Xue Li about the possibility of adding and deleting axioms
via reformation.

2This example is adapted from an example of binary trees described by Bundy (2015)



Chapter 5. Evaluation 46

Assume that a source theory of lists is:

TList

<<< TTT yyypppeee DDDeeeccclllaaarrraaatttiiiooonnn >>>

Nil : List

Cons : El×List→ List

Length : List→ Nat

0 : Nat

Succ : Nat→ Nat

Plus : Nat×Nat→ Nat
<<< AAAxxxiiiooommm >>>

Length(Nil) = 0

Plus(x,0) = x

Length(Cons(h, l)) = Succ(Length(l))

Plus(x,Succ(y)) = Succ(Plus(x,y))

(5.35)

where Length(l) is a function for computing the length of a list l. Also, a target theory

of binary trees is:

TBTree

<<< TTT yyypppeee DDDeeeccclllaaarrraaatttiiiooonnn >>>

Empty : BTree

Node : Val×BTree×BTree→ BTree

Size : BTree→ Nat

0 : Nat

Succ : Nat→ Nat

Plus : Nat×Nat→ Nat
<<< AAAxxxiiiooommm >>>

Size(Node(v,Empty,Node(v,Empty,Empty))) = Succ(Succ(0))

Plus(x,0) = x Plus(x,Succ(y)) = Succ(Plus(x,y))

(5.36)

where Size(t) is a function for computing the size of a binary tree t. HDTP (Schmidt

et al., 2014) is able to produce a blending of theories by aligning the axioms about

natural numbers (They can be aligned because they are totally the same). However, the

alignments are insufficient when lists and binary trees are also expected to be aligned.

The reasons why they cannot be aligned are twofold: Firstly, the axioms do not indicate

possible alignments between them. Secondly, Cons and Node have different arities. To

solve the first problem, the information about types is used via the method described

by Section 3.2.4. To solve the second problem, the align algorithm is used. After the

two steps, the following alignments hold:

{Nil 7→ Empty,Cons 7→ Node,Length 7→ Size,List 7→ BTree,El 7→Val} (5.37)

In particular, reformation has suggested adding a new argument r to Cons, so that Cons



Chapter 5. Evaluation 47

and Node have the same arity. Hence, the blend of TList and TBTree becomes:

TList 7→BTree

<<< TTT yyypppeee DDDeeeccclllaaarrraaatttiiiooonnn >>>

Empty : BTree

Node : Val×BTree×BTree→ BTree

Size : BTree→ Nat

0 : Nat

Succ : Nat→ Nat

Plus : Nat×Nat→ Nat
<<< OOOrrriiigggiiinnnaaalll AAAxxxiiiooommm >>>

Size(Node(v,Empty,Node(v,Empty,Empty))) = Succ(Succ(0))

Plus(x,0) = x Plus(x,Succ(y)) = Succ(Plus(x,y))
<<< NNNeeewww AAAxxxiiiooommm >>>

Size(Empty) = 0 Size(Node(v, l,r)) = Succ(Size(l))

(5.38)

There are two new axioms. The first axiom Size(Empty) = 0 is transferred

from Length(Nil) = 0. The second axiom Size(Node(v, l,r)) = Succ(Size(l)) is

transferred from Length(Cons(h, l)) = Succ(Length(l)), but it is false under our usual

interpretation, because it does not take the size of the right subtree r into account. In

other words, its right-hand side is expected to be Succ(Plus(Size(l),Size(r)).

Although these axioms can be considered as rewrite rules, it is difficult

for the redirect algorithm to repair them. Specifically, the rules violate local

confluence, because Size(Node(v,Empty,Node(v,Empty,Empty))) can be rewritten

to Succ(Succ(0)) or Succ(0), but the two expressions are not equivalent. If

Succ(Succ(0)) is chosen as the correct one, then backward rewriting will be applied

to it. However, there exists a rule Plus(x,0) ⇒ x which enables any terms and

subterms s to be rewritten to Plus(s,0). This means that the backward rewriting

cannot terminate, and the redirect algorithm also cannot terminate. Being not able

to process non-termination is a drawback of this algorithm. Practically, setting

a maximum depth for backward rewriting could prevent non-termination to some

extent. Recall the implementation of this algorithm in Section 3.4: It is a function

redirect(+RuleIn,+DF,+DB,+N,−RuleOut,−R), where DB denotes the maximum

depth for backward rewriting. For this example, if DB is set to 2, then the redirect

algorithm is able to repair these rules: Applying backward rewriting to Succ(Succ(0)),

we can obtain a wanted expression Succ(Plus(Succ(0),Size(Empty))). Also, there is

an unwanted expression Succ(Size(Empty)) on the path to Succ(0). Thus, reformation

will unblock the following unification:

Succ(Size(Empty))≡ Succ(Plus(Succ(0),Size(Empty))) (5.39)



Chapter 5. Evaluation 48

It suggests adding a functor Plus to Size on the left and adding a new argument u to

Plus on the left, so that the unification pair becomes:

Succ(Plus(u,Size(Empty)))≡ Succ(Plus(Succ(0),Size(Empty))) (5.40)

The unification can succeed. Applying these repairs to the right-hand side of

Size(Node(v, l,r))⇒ Succ(Size(l)), it becomes:

Size(Node(v, l,r))⇒ Succ(Plus(u,Size(l))) (5.41)

An issue of this rule is that u is independent of any other variables. This is because,

when reformation adds a new variable, the variable is independent of the existing

variables. This way of repair is suggested by reformation because this variable can

be substituted for any terms, so that further repair is not needed.

The above results reveal that there are two problems which need to be solved:

The first problem is that it is difficult for the redirect algorithm to deal with

non-termination. In other words, it can only work in the case that both forward

rewriting and backward rewriting are terminating. The second problem is that the

operation of adding new variables is not sufficiently intelligent. Specifically, a new

variable is always independent of the existing variables, and it can be substituted

for any terms, so that it always enables unification. This means that the new

variable is just a variable without any realistic meaning. To make it have a

realistic meaning, we may need an evolution mechanism which can change it to

some other functions and variables. For instance, if u can be changed to Size(r),

then Size(Node(v, l,r))⇒ Succ(Plus(u,Size(l))) can evolve to Size(Node(v, l,r))⇒
Succ(Plus(Size(r),Size(l))), which is the expected result. The evolution mechanism 3,

however, may be complex, because it needs to recognise that u has been substituted

for Succ(0), and it needs to infer that Succ(0) is equivalent to Size(r) when r =

Node(v,Empty,Empty). The evolution mechanism can be a topic to be explored in

the future.

3The idea of the evolution mechanism arose from a discussion with Boris Mitrovic. He used
“interactions between repairs” to fix a bug in his reformation implementation. This means that it is
possible to improve the repairs by analysing the relationships between these repairs.



Chapter 6

Conclusion

6.1 Remarks and observations

Reformation is able to deal with different issues with analogical blends, such

as insufficient alignments, inconsistencies and incompleteness. Firstly, the align

algorithm can process the insufficient alignments. It achieves this via unblocking of

reformation and the greedy strategy. Secondly, the revise algorithm can process the

inconsistencies by applying blocking to unwanted proofs. In particular, the redirect

algorithm can repair inconsistent rewrite rules. Thirdly, the upgrade algorithm can

process the incompleteness by applying unblocking to wanted proofs. It is often the

case that reformation can suggest repairs to solve these issues, and some repairs even

have realistic meanings.

In this project, the align, redirect and upgrade algorithms have been implemented.

Since these implementations are based on the unblocking function of reformation, in

order to deal with more complicated problems, the unblocking function has also been

revised and refined. These implementations have been used to repair some analogical

blends: The align algorithm has been used to adjust the alignments of the blend of

two food chain ontologies, the blend of natural numbers and lists, the blend of lists

and binary trees and the blend of Pascal and Python programs. The redirect algorithm

has been used to repair inconsistent rewrite rules in the blend of lists and binary trees,

the blend of the trigonometric sine and cosine functions and the blend of gravity and

electrostatic force. The upgrade algorithm has been used to process some incomplete

analogical blends, such as the blend of two capital ontologies and the blend of addition

and subtraction. In addition, the previous implementation of the revise algorithm

(Bundy and Mitrovic, 2016) has been used to process the inconsistent blend of natural

49



Chapter 6. Conclusion 50

numbers and lists.

6.2 Unsolved problems and future work

There are some unsolved problems:

• The side effects of unblocking. The side effects of unblocking are twofold:

Firstly, an unwanted proof may be blocked when reformation is used to unblock a

wanted proof, as discussed by Section 3.3.1.3. This is a positive effect. Secondly,

a wanted proof may be blocked, as discussed by Section 5.3. This is a negative

effect. Currently, the redirect and upgrade implementations are not able to

predict and deal with the negative effect.

• The need of adding new axioms. The example in Section 5.3 reveals that

we not only need to repair existing axioms, but also need to add new axioms.

Unfortunately, the current implementation of reformation is not able to add new

axioms.

• Independent variables. All new variables added by reformation are

independent of existing variables, as discussed by Section 5.4. This may reduce

the quality of repair. Therefore, more intelligent algorithms are needed to solve

this problem.

In the future, we will try to solve these problems. Firstly, a protection mechanism is

need to prevent a wanted proof from being blocked by reformation. Secondly, we need

to consider how to use reformation to add new axioms (or delete existing axioms), as

discussed by Section 5.31. Thirdly, an evolution mechanism is needed to process the

independent variables, as discussed by Section 5.42. Also, in the future, we will try to

extend the use of reformation to more fields. For instance, it is possible to combine it

with a lemma discovery method based on statistical proof-pattern recognition (Heras

et al., 2013), or analogy driven lemma discovery (Johansson and Maclean, 2013) for

completing proofs via discovering new lemmas.

1Again, thanks to Xue Li for the discussion about adding and deleting axioms via reformation.
2Again, thanks to Boris Mitrovic for the discussion about “interactions between repairs”.



Bibliography

Blanchette, J. C. (2010). Nitpick: A counterexample generator for Isabelle/HOL based

on the relational model finder kodkod. In Short papers for 17th International

Conference on Logic for Programming, Artificial intelligence, and Reasoning,

LPAR-17-short, Yogyakarta, Indonesia, October 10-15, 2010, pages 20–25.

Bou, F., Schorlemmer, M., Corneli, J., Gómez-Ramı́rez, D., Maclean, E., Smaill,

A., and Pease, A. (2015). The role of blending in mathematical invention. In

Proceedings of the Sixth International Conference on Computational Creativity,

Park City, Utah, USA, June 29 - July 2, 2015., pages 55–62.

Bundy, A. (1983). The Computer Modelling of Mathematical Reasoning. Academic

Press London.

Bundy, A. (2013). The interaction of representation and reasoning. Proceedings of

the Royal Society of London A: Mathematical, Physical and Engineering Sciences,

469(2157).

Bundy, A. (2015). Possible applications of repairing faulty analogical blends using

reformation. Technical report, the University of Edinburgh.

Bundy, A. and Mitrovic, B. (2016). Reformation: A domain-independent algorithm

for theory repair. Technical report, the University of Edinburgh.

Codescu, M. and Mossakowski, T. (2008). Heterogeneous colimits. In First

International Conference on Software Testing Verification and Validation, ICST

2008, Lillehammer, Norway, April 9-11, 2008, Workshops Proceedings, pages 131–

140.

Guhe, M., Pease, A., Smaill, A., Martı́nez, M., Schmidt, M., Gust, H., Kühnberger,

K., and Krumnack, U. (2011). A computational account of conceptual blending in

basic mathematics. Cognitive Systems Research, 12(3-4):249–265.

51



Bibliography 52

Gust, H., Kühnberger, K., and Schmid, U. (2006). Metaphors and heuristic-driven

theory projection (HDTP). Theoretical Computer Science, 354(1):98–117.

Heras, J., Komendantskaya, E., Johansson, M., and Maclean, E. (2013). Proof-

pattern recognition and lemma discovery in ACL2. In Logic for Programming,

Artificial Intelligence, and Reasoning - 19th International Conference, LPAR-19,

Stellenbosch, South Africa, December 14-19, 2013. Proceedings, pages 389–406.

Johansson, M. and Maclean, E. (2013). Analogy driven lemma discovery. Technical

report, the University of Edinburgh.

Knuth, D. E. and Bendix, P. B. (1983). Simple word problems in universal algebras.

In Automation of Reasoning, pages 342–376. Springer.

Kowalski, R. A. and Kuehner, D. (1971). Linear resolution with selection function.

Artificial Intelligence, 2(3/4):227–260.

Krumnack, U., Schwering, A., Gust, H., and Kühnberger, K. (2007). Restricted

higher-order anti-unification for analogy making. In AI 2007: Advances in Artificial

Intelligence, 20th Australian Joint Conference on Artificial Intelligence, Gold Coast,

Australia, December 2-6, 2007, Proceedings, pages 273–282.

Kutz, O., Neuhaus, F., Mossakowski, T., and Codescu, M. (2014). Blending in the hub.

In Proceedings of the Fifth International Conference on Computational Creativity,

Ljubljana, Slovenia, June 10-13, 2014., pages 297–305.

Mitrovic, B. (2013). Repairing inconsistent ontologies using adapted reformation

algorithm for sorted logics. UG4 Project in University of Edinburgh.

Mossakowski, T., Haxthausen, A. E., Sannella, D., and Tarlecki, A. (2003). CASL - the

common algebraic specification language: Semantics and proof theory. Computers

and Artificial Intelligence, 22(3-4):285–321.

Mossakowski, T., Krumnack, U., and Maibaum, T. (2015). What is a derived signature

morphism? In Recent Trends in Algebraic Development Techniques, pages 90–109.

Springer.

Mossakowski, T., Maeder, C., and Lüttich, K. (2007). The heterogeneous tool set,

hets. In Tools and Algorithms for the Construction and Analysis of Systems,

13th International Conference, TACAS 2007, Held as Part of the Joint European



Bibliography 53

Conferences on Theory and Practice of Software, ETAPS 2007 Braga, Portugal,

March 24 - April 1, 2007, Proceedings, pages 519–522.

Nipkow, T., Paulson, L. C., and Wenzel, M. (2002). Isabelle/HOL - A Proof Assistant

for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science.

Springer.

Plotkin, G. D. (1970). A note on inductive generalization. Machine intelligence,

5(1):153–163.

Schmidt, M., Gust, H., Kühnberger, K., and Krumnack, U. (2011). Refinements of

restricted higher-order anti-unification for heuristic-driven theory projection. In KI

2011: Advances in Artificial Intelligence, 34th Annual German Conference on AI,

Berlin, Germany, October 4-7,2011. Proceedings, pages 289–300.

Schmidt, M., Krumnack, U., Gust, H., and Kühnberger, K. (2014). Heuristic-driven

theory projection: An overview. In Computational Approaches to Analogical

Reasoning: Current Trends, pages 163–194.

Schwering, A., Krumnack, U., Kühnberger, K., and Gust, H. (2009). Syntactic

principles of heuristic-driven theory projection. Cognitive Systems Research,

10(3):251–269.

Tsialos, A. (2014). Repairing inconsistent description logic ontologies using

reformation. UG4 Project in University of Edinburgh.

Wielemaker, J., Schrijvers, T., Triska, M., and Lager, T. (2010). SWI-Prolog. CoRR,

abs/1011.5332.


