
Securitometer: Developing an

Overall Security Metrics for

Android Device

Muhammad Rezqi

Master of Science

School of Informatics

University of Edinburgh

2016



Abstract

This dissertation presents our work on the development of Securitometer, an Android

application that probe for security flaws and vulnerabilities of the device where it is

installed, and provide a security score of the device. We developed three type of se-

curity test for Securitometer namely: malware classification test, app permission test,

and device vulnerability test. We compiled the results of the three tests into two secu-

rity metrics: the app metric and the operating system metric. The design decisions for

this application were based on our research on the needs of penetration testers and IT

security enthusiast. We measured the success of this project by comparing the result

of our initial study that elicited the requirements for Securitometer with the result of

our evaluation for the final version of Securitometer. To conclude the project, we also

conducted a post-system usability and acceptability study. We found that Securitome-

ter is regarded as useful not only to security professionals but also the general Android

users. We also found that these users regarded the experience of using Securitometer

as considerably satisfying in terms of its level of usefulness, information quality, and

interface quality.

i



Acknowledgements

I would like to thank my supervisor, David Aspinall, for trusting me with this project

and providing me with invaluable guidance, feedback, and advice. I would also like

to thank Kami Vaniea and members of the the AppGuarden Group who have provided

me with numerous feedback, literature, and supports.

Waves of gratitude go to my dearest family members and PPI Edinburgh friends

who have affectionately supported me through my study. I would also like to extend my

gratitude to Dinda Sarasannisa for keeping me sane during the exam and dissertation

period. I am thankful to have the opportunity to work together on our dissertations and

exchanging constructive inputs.

I would also like to thank Ulfah Lukman, colleagues at Deloitte Computer Forensic

services, fellow IT security professionals at PwC and Ernst & Young for their abun-

dance of help especially in assisting me to conduct the survey and evaluation of Secu-

ritometer.

Finally, I would like to express my gratitude to the Indonesian Endowment for Ed-

ucation (Lembaga Pengelola Dana Pendidikan / LPDP) who has given me the chance

to study at the University of Edinburgh.

ii



Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Muhammad Rezqi)

iii



To my parents,

Khaermenawati and Syahrial,

who overcame great hardships and sacrifices

to provide me the opportunity to pursue my dreams

iv



Table of Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 The Securitometer Android Application . . . . . . . . . . . . 3

1.3.1.1 Use of CVE and CVSS for Scoring Mechanism . . 5

1.3.2 Porting a Python Classifier to Java for Android . . . . . . . . 5

1.3.3 Usability Aspects of Securitometer Application . . . . . . . . 5

1.4 Document Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background 7
2.1 Software Vulnerability . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Industry Standard: CVE and CVSS . . . . . . . . . . . . . . 8

2.1.1.1 Common Vulnerabilities and Exposures (CVE) . . . 8

2.1.1.2 Common Vulnerability Scoring System (CVSS) . . 8

2.1.2 Android Security and Vulnerability . . . . . . . . . . . . . . 8

2.2 Limitations and Weakness of Android Security Model . . . . . . . . . 9

2.3 Previous Work on Android Security Metrics . . . . . . . . . . . . . . 11

2.3.1 Security Metrics for the Android Ecosystem . . . . . . . . . . 11

2.3.2 Malicious Application Classifier for Android Apps . . . . . . 13

3 Requirement Specification 15
3.1 Requirement Elicitation . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Research on Related Projects . . . . . . . . . . . . . . . . . . 15

3.1.1.1 Virus Total for Android . . . . . . . . . . . . . . . 16

3.1.1.2 X-Ray . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1.1.3 Android VTS . . . . . . . . . . . . . . . . . . . . 18

v



3.1.1.4 Risk-Ranking for Android Permissions . . . . . . . 19

3.1.1.5 Insights from Related Projects . . . . . . . . . . . . 20

3.1.2 Brainstorming . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.3 Prototyping and Survey . . . . . . . . . . . . . . . . . . . . . 22

3.1.4 Focus Group Discussion . . . . . . . . . . . . . . . . . . . . 24

3.2 Recap and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Design and Implementation 29
4.1 Technology Specification . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Minimum Target Platform . . . . . . . . . . . . . . . . . . . 29

4.1.2 Solution Architecture . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Back-end: Three Tests Performed . . . . . . . . . . . . . . . . . . . 31

4.2.1 Malware Classification Test . . . . . . . . . . . . . . . . . . 31

4.2.1.1 Extracting API Calls . . . . . . . . . . . . . . . . . 31

4.2.1.2 Extracting Permissions . . . . . . . . . . . . . . . 37

4.2.1.3 The Classification . . . . . . . . . . . . . . . . . . 40

4.2.2 Application Permission Test . . . . . . . . . . . . . . . . . . 42

4.2.3 Device Vulnerability Test . . . . . . . . . . . . . . . . . . . . 43

4.2.3.1 Filtering and Executing the Test . . . . . . . . . . . 45

4.3 Back-end: Two Scoring Mechanism . . . . . . . . . . . . . . . . . . 47

4.3.0.1 App Score . . . . . . . . . . . . . . . . . . . . . . 47

4.3.0.2 OS Score . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Front-end: Securitometer Application . . . . . . . . . . . . . . . . . 48

4.4.1 Splash Screen and Introductory Pages . . . . . . . . . . . . . 49

4.4.2 Main Page . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.3 Running the Test . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.4 Displaying the Result . . . . . . . . . . . . . . . . . . . . . . 52

4.4.5 Reporting the Result . . . . . . . . . . . . . . . . . . . . . . 56

5 Evaluation 58
5.1 Feature-based Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 58

5.1.1 Goals and Methodology . . . . . . . . . . . . . . . . . . . . 58

5.1.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . 58

5.2 Usability and Acceptability Study . . . . . . . . . . . . . . . . . . . 61

5.2.1 Goals and Methodology . . . . . . . . . . . . . . . . . . . . 61

5.2.2 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . 64

vi



5.2.2.1 Initial Survey . . . . . . . . . . . . . . . . . . . . 64

5.2.2.2 Final Survey . . . . . . . . . . . . . . . . . . . . . 69

6 Conclusion 76
6.1 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.2 Limitations of this Project . . . . . . . . . . . . . . . . . . . . . . . 77

6.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A Appendix: Screenshot of Securitometer 79

B Appendix: Sample Exported Result from Securitometer 85

C Appendix: Initial Survey for Securitometer Prototype 89

D Appendix: Final Survey for the Final Version of Securitometer 109

Bibliography 125

vii



List of Figures

2.1 The security level of Android devices . . . . . . . . . . . . . . . . . 12

3.1 Traffic light scheme for the scanning results . . . . . . . . . . . . . . 16

3.2 X-Ray displaying vulnerability test result . . . . . . . . . . . . . . . 17

3.3 Android VTS displaying vulnerability test result . . . . . . . . . . . . 18

3.4 Ranking of permission according to their risk . . . . . . . . . . . . . 19

3.5 Occurrence percentage of top 40 Android permissions in malicious and

benign apps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.6 Focus group for Securitometer in progress (blurred for privacy) . . . . 25

4.1 Securitometer components . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 dexdump ran in Android . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Feature name and its corresponding weight . . . . . . . . . . . . . . 40

4.4 ExplainDroid’s malware classifier result . . . . . . . . . . . . . . . . 41

4.5 Securitometer’s malware classifier result . . . . . . . . . . . . . . . . 41

4.6 Interface for each vulnerability test . . . . . . . . . . . . . . . . . . . 45

4.7 Score calculation for apps permission test . . . . . . . . . . . . . . . 47

4.8 (a) Splash screen (b-f) Introductory pages . . . . . . . . . . . . . . . 49

4.9 Empty main page . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10 (a) App test (b) OS test . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.11 Securitometer progress in notification . . . . . . . . . . . . . . . . . 52

4.12 Test result summaries . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.13 Overall test result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.14 Changes made from oldest to the latest version . . . . . . . . . . . . 54

4.15 (a) App test results (b) OS test results . . . . . . . . . . . . . . . . . 55

4.16 (a) App details (b) OS vulnerability details . . . . . . . . . . . . . . . 56

4.17 Export result options . . . . . . . . . . . . . . . . . . . . . . . . . . 57

viii



5.1 Methodology for usability and acceptability study . . . . . . . . . . . 62

5.2 Demographics for initial survey . . . . . . . . . . . . . . . . . . . . 64

5.3 Classification of respondents for initial survey . . . . . . . . . . . . . 65

5.4 Securitometer’s potential users . . . . . . . . . . . . . . . . . . . . . 67

5.5 Survey result on the app security metrics . . . . . . . . . . . . . . . . 68

5.6 Survey result on the OS security metrics . . . . . . . . . . . . . . . . 68

5.7 Respondent’s level of understanding . . . . . . . . . . . . . . . . . . 69

5.8 Demographics for final survey . . . . . . . . . . . . . . . . . . . . . 70

5.9 Final survey result on the app security metrics . . . . . . . . . . . . . 70

5.10 Final survey result on the OS security metrics . . . . . . . . . . . . . 71

5.11 Respondent’s level of understanding in final survey . . . . . . . . . . 71

ix



List of Tables

4.1 Fuzion24 vulnerability test suite . . . . . . . . . . . . . . . . . . . . 44

5.1 PSSUQ’s list of questions . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2 PSSUQ’s questions 1-8 . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.3 PSSUQ’s questions 9-15 . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 PSSUQ’s questions 16-18 . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 PSSUQ’s question 19 . . . . . . . . . . . . . . . . . . . . . . . . . . 74

x



List of source codes

1 API calls extraction in the original ExplainDroid’s malware classifier . 32

2 Extract APK files of all installed apps . . . . . . . . . . . . . . . . . 34

3 Excluding system apps and Securitometer itself . . . . . . . . . . . . 34

4 Executing dexdump in Securitometer . . . . . . . . . . . . . . . . . . 37

5 Permission extraction in the original ExplainDroid’s malware classifier 38

6 Extracting permissions in Securitometer . . . . . . . . . . . . . . . . 39

7 Ranking of permission in JSON . . . . . . . . . . . . . . . . . . . . 43

8 Vulnerability organizer . . . . . . . . . . . . . . . . . . . . . . . . . 47

9 Sample report by Securitometer . . . . . . . . . . . . . . . . . . . . 88

xi



Chapter 1

Introduction

1.1 Motivation

As smartphone technology integrates more with every aspect of people’s lives, it also

starts to find its way to the corporate environment. Some companies have already

started to provide their employee with these devices in order to make them more ac-

cessible and productive. Other companies decided to implement a Bring-Your-Own-

Device (BYOD) policy where employees are free to use their smartphone to connect

to company’s network and access work resources [12][25].

Both providing company-issued smartphone and the BYOD policy present a new

threat to the organisation as it can be used as a channel to leak sensitive data [42]. This

is because smartphones are the next big target for hackers and malicious attackers[9][15].

In 2013 alone, about 38% smartphone users have experienced cyber attacks [4]. Con-

sidering the fact that Android phones dominated the smartphone market with a share

of 82.8% [16], and the fact that about 87.7% of Android phones used around the world

are exposed to at least one critical vulnerabilities [32] [9], we can infer that more than

half of smartphone owners are vulnerable to cyber attacks [9]. This is why compa-

nies should be more aware of the kind of devices that are used to access their private

resources.

Usually, cyber threats at the corporate level are mitigated by conducting a pene-

tration test on the company’s computing system [11]. Penetration testing is a method

to evaluate the security level of computer systems by simulating an attack towards it.

Traditionally, penetration testing is conducted to identify flaws and vulnerabilities in

the corporate website, software, network, and database. However as people are moving

away from the use of desktop computers, we should start to develop new security tools

1



Chapter 1. Introduction 2

and security procedures that are more suited and is specially made for mobile devices.

Our goal is to develop a tool, called Securitometer, which probe for security flaws

and vulnerabilities of the device where it is installed in order to evaluate their security

level. Note that our goal is very similar with that of penetration testing. While smart-

phones come in many platforms, this project chose to first focus on Android since

its users remain as the main target of cyber-criminals according to the latest Internet

Security Threat Report by Norton [22].

1.2 Objectives

The objective of this project is to develop Securitometer, an Android application that

will probe for security flaws and vulnerabilities of the device where it is installed, and

provide a security score of the device. The security score will represent the level of

risk that the owner of the device is exposed to.

We realised that the perceived security level of a mobile device is affected by many

factors, e.g. how the device is used, what type of data is stored, and the collection of

apps installed on the device. There are a number of individual tools that are available

to use to analyse the security level of Android applications. Some tools focus on

examining the app permissions, some use program analysis method, and others check

for malicious features [7][29]. Our application will focus on analysing the type of

resource accessed by the installed apps within the device, whether or not the installed

apps behave maliciously, and on the vulnerabilities that the device are exposed to.

We believe that the most potential users of Securitometer come from the commu-

nity of penetration testers and IT security auditors. However, Securitometer can also be

useful to the general Android user that are enthusiastic about their device security. We

created Securitometer with both communities as our target. At the end of this project,

we conducted a survey where one of the questions is aimed to find out who seems to

benefit the most from this application.

With regards to penetration testing, a company should aim to have a high average

of security level for all of the mobile devices used within their network. Our aim is for

this application to become a tool that can help penetration tester and security reviewer

in assessing the security level of smartphones, especially Android, that are used in

corporate environment.

The following examples demonstrate the sample situation where this application

might be useful at:



Chapter 1. Introduction 3

• A company owner might be concerned about the use of corporate phones for

confidential and work-related purpose. He could hire a penetration tester to in-

stall this application to a number of company-issued devices, extract the result,

analyse it, write a report and make recommendations.

• A company owner might want to do a quick overview of how secure their em-

ployee’s personal device are because it is commonly used for work-related com-

munications without violating their workers’ privacy. He could ask his employ-

ees to install this application, export the result, and send it to the company’s

security analyst.

A usability study will be conducted to Securitometer’s potential users (penetration

testers, IT security auditors, and security enthusiast) to find out the overall user sat-

isfaction when using Securitometer, how useful do they think this application is, the

quality of information provided in the application, and the quality of the interface. We

will not be designing a new procedure on how to do penetration testing with mobile

phones as the target. Securitometer’s sole purpose is to be one of the security testing

tools that could provide its user with the security score and overview of the device

where it is installed.

1.3 Achievements

Through our work on this project, we have developed the Securitometer application,

which is available for download at http://bit.ly/2bmeRUQ. We did not submit

Securitometer to Google Play store as the nature of the application might raise security

warnings from the Google Play store publishing policy [3].

1.3.1 The Securitometer Android Application

The final version of Securitometer performs 3 type of test:

1. Malware classification test

2. App permission test

3. Device vulnerability test

The above three test are then compiled into 2 scoring mechanisms, 1 score for the

operating system (OS) and 1 for the collection of apps. The malware classifier and the

http://bit.ly/2bmeRUQ


Chapter 1. Introduction 4

app permission test contribute to the score of installed apps. The device vulnerability

test contributes to the score of the target device’s operating system.

The followings are the 2 scoring mechanisms that are measured by the final version

of Securitometer:

1. App Scoring

The process of determining the app score consists of two parts, as follow:

(a) Malware Classification Test

The first part runs a malware classifier. This classifier extracts the requested

permission and API calls from each app and decides whether they are ma-

licious or benign. If they are malicious, the app will get the lowest score

and labelled as malware.

(b) App Permission Test

The second part runs if the verdict from the first part is benign. Apps are not

just labelled as benign, but also given a risk level (high risk, medium risk,

or low risk). This risk level is determined by comparing the permissions

that they requested against a list of top 40 riskiest permissions that are

commonly found in malicious apps. This list gave a risk score for each

permission and is based on an experiment that has analysed huge numbers

of malicious and benign apps [37]. Each app starts with a perfect 10.0

score, which is then reduced for each time any of its requested permission

are listed in the top 40 riskiest permissions.

2. OS Scoring / Device Vulnerability Test

The process of determining the OS score starts by running a device vulnerability

scanner. It will scan the device to detect the presence of any publicly known

vulnerabilities. This scan does not exploit the vulnerabilities and is based on

an existing vulnerability testing suite [3]. The device score starts with a perfect

10.0 score, which is then reduced for each time any vulnerabilities is found in

the device. We made use of the fact that each vulnerability has a CVSS2 score

that represents its severity.



Chapter 1. Introduction 5

1.3.1.1 Use of CVE and CVSS for Scoring Mechanism

Securitometer makes use of the industry standard CVE (Common Vulnerabilities and

Exposures) 1 and CVSS (Common Vulnerability Scoring System) in order to assign a

security score to the target device’s operating system. The motivation behind this was

to exploit the familiarity aspect from penetration testers and IT security auditors. Most

penetration testers and IT security auditors are already very familiar with the use of

CVE and CVSS [6].

1.3.2 Porting a Python Classifier to Java for Android

Securitometer incorporated a malicious android applications classifier, called Explain-

Droid, within its test suite [7]. In doing this, we ported the original classifier, which

was originally coded in Python, to Java Android.

The initial motivation of incorporating this classifier was to introduce more context

to the app scoring mechanism. Before we ported and incorporated the classifier to Se-

curitometer, the app score was only determined by identifying the type of permissions

that are requested by installed apps and assign risk level accordingly. By incorporating

this classifier, Securitometer could make a verdict about an app, whether it is malicious

or benign. If it is malicious, Securitometer will assign the lowest score to the app. If

it is benign, then Securitometer will proceed in assigning risk level based on the apps’

requested permissions.

The classifier requires the execution of two android binary tools from the Android

SDK for features extraction: dexdump 2 , and aapt3 which stands for Android Asset

Packaging Tool 4. We manage to simulate what these binaries do in our application

and completed the porting process of this classifier.

1.3.3 Usability Aspects of Securitometer Application

We ran multiple requirement elicitation activities and a number of usability test after

each development iteration to ensure that Securitometer is not just functional but also

pleasant to use. We take into considerations every input from each requirement elicita-

tion activities which include: focus group discussion, brainstorming, prototyping, and

1https://cve.mitre.org/about/
2http://elinux.org/Master-android
3http://elinux.org/Android aapt
4https://developer.android.com/studio/command-line/index.html



Chapter 1. Introduction 6

research of related projects.

One of the cases where we take usability into account is when we get the result

of incorporating malicious application classifier to Securitometer. Running a malware

classifier that requires feature extraction from each application take away a lot of re-

sources in running time. The test run significantly slower compared to when we only

assign a risk level to apps’ requested permission without running the classifier. Due to

this, we decided to add a notification feature that will let the user leave Securitometer

to run in the background while still be able to check the test progress in the notification

bar. We also added the ability to skip the app permission test for apps that the user are

confident about whether it is a threat or not to the security of the device.

1.4 Document Outline

The rest of the chapters will be organised as follow:

• Chapter 2, Background, will introduce relevant theoretical background to set the

project in its proper context. We will discuss software vulnerabilities, android

security ecosystem, and previous attempts in developing security metrics for

Android

• Chapter 3, Requirement Specifications, will lay out the requirement elicitation

activities that we conducted in order to achieve the highest appreciation for the

app that we were about to develop. At the end, we also provided a numbered

summary of the requirements elicited to make evaluating whether or not we have

fulfilled them easier.

• Chapter 4, Design and Implementation, will present the various components

which have been developed as part of the Securitometer application. We ex-

plained each component’s scope, function, and design justification in details.

• Chapter 5, Evaluation, will present this project’s success measurement, evalua-

tion goals, methodologies, and the evaluation results.

• Chapter 6, Conclusion, will summarise the whole project, evaluate it critically,

and lay out recommendations for future works.



Chapter 2

Background

2.1 Software Vulnerability

Software is a set of computer instructions built by programmers to achieve a predefined

goal. Often referred as computer program or system, it is a common component of

digital devices and has successfully become a huge part of the modern computing

world.

Programmers sometimes make mistakes during the development of software. Often

times, these mistakes are discovered and exploited at later times by malicious users

to alter the normal behaviour of the software. These mistakes, flaws, and software

weaknesses are often referred to as software vulnerability [17].

A vulnerable software offers an attack surface for users. Users who are exposed

to these surface can become an attacker who utilises these vulnerabilities as an entry

point. As a result of an attack, the system could be compromised, damaged, or leaking

confidential and privileged information. This is why software security is becoming

increasingly popular.

Software can be categorised into two types: operating system and application pro-

gram (app or application for short). Operating system performs the task that keeps

the device running, while application program helps users to achieve a particular task.

Both operating system and application program are vulnerable to various exploits [18].

7



Chapter 2. Background 8

2.1.1 Industry Standard: CVE and CVSS

2.1.1.1 Common Vulnerabilities and Exposures (CVE)

Before the standardisation, most information security practitioners had their own database

for software vulnerabilities. People gave their own name and their own severity level

to each vulnerability that they found and manage. At that time, different companies

may refer to the same problem but with a completely different name and description.

This was very ineffective.

In 1999, a dictionary of common names, called CVE (Common Vulnerabilities

and Exposures) was launched as a solution to these interoperable problems. CVE acts

as a dictionary and provides a standardised name and identifier to all known software

vulnerabilities. It is now the industry standard for naming vulnerabilities. For example,

if a security practitioner mentions a CVE name called ”CVE-1999-0580”, everyone

will understand that he is referring to the same problem of inappropriate permission in

a Windows NT system. CVE dictionary is maintained by The MITRE Corporation.1

2.1.1.2 Common Vulnerability Scoring System (CVSS)

Common Vulnerability Scoring System (CVSS) is one of the industry standards that

attempts to assess the severity of software vulnerabilities. CVSS are commonly used

to assist organisations in prioritising the remediation activities that are generated as a

result of vulnerabilities discovery. CVSS are also used to calculate the severity score

of vulnerabilities discovered on a system.

CVSS scores are calculated by taking into account the complexity to exploit the

vulnerabilities and the impact of exploiting it. CVSS scores range from 0 to 10, with

10 being the most severe.2

2.1.2 Android Security and Vulnerability

Android is an increasingly popular mobile operating system which was developed as

an open source project. It is based on the Linux kernel and has now become the most

used operating system on various mobile devices. It was made to be very flexible and

open, thus increasing its popularity [9][32].

1https://cve.mitre.org/about/
2https://nvd.nist.gov/cvss.cfm



Chapter 2. Background 9

Google provided developers with Android SDK3, which purpose is to help devel-

opers create applications that can run on the Android platform. Google also provided

Android users with a marketplace called the Google Play4 store where millions of ap-

plications were uploaded, ready to be downloaded and installed by a large number of

Android users. While both initiatives by Google provides a very good popularity boost

to Android, it also provides attackers with a lot of information regarding the platform

and channels to launch attacks.

The concern around Android security has been going around three topics: Android

malware [43] and Android vulnerabilities [32][13]. Both are a major problem to the

mobile platform and has been receiving a lot of attention both in the industry and

academic research.

The Android platform has an alarmingly large number of malware and is now re-

garded as the top mobile malware platform, overtaking the previous contender, Sym-

bian [40]. Android malware has been successfully infecting many devices using var-

ious techniques that exploit the very characteristic of the Android platform. For ex-

ample, the repackaging technique makes use of the fact that unknown APK file can be

easily installed to Android application. The repackaging technique usually involves the

malware author injecting or piggybacking malicious payloads to popular applications

and redistribute it to alternative app market [43].

A study that tried to retrieve vulnerability data from many different Android de-

vices concluded that almost all major Android brands are vulnerable to critical attacks

[32]. The study also shows that the modifications made by different manufacturers to

the original version of Android released by Google are causing the device to be more

vulnerable to attacks. Additionally, the fact that patches and security updates are in-

dividually delivered by each of the phone’s manufacturers also created a large gap of

security level between each Android devices. This further proves that the open-source

spirit of Android and the freedom to change the Android operating system to suit man-

ufacturer’s taste can have bad effects on user security too.

2.2 Limitations and Weakness of Android Security Model

The security of Android operating system and its app market model were analysed by

a number of studies [31][26]. The followings are the summary of the limitations and

3https://developer.android.com/studio/index.html
4https://play.google.com



Chapter 2. Background 10

weaknesses found in them:

• App market

The Google Play store is not the only option for Android users when they want to

download apps. In China, a ban on Google Play store to operate has been made

official, resulting in the rise of numerous alternative app markets [20]. Some of

the most popular ones are Baidu App Store, Tencent App Gem, and Qihoo 360

Mobile Assistant.

• App installation and execution

Installation of apps from unknown sources are made possible by the Android

operating system. Users are allowed to install applications from APK files with-

out any verification or active security checks on the app’s behaviour and its file

integrity [31].

• App permission model

Permission in Android dictates how application interact with the device’s re-

sources and the information contained within it. Some of the permissions in

Android are declared by the Android SDK as dangerous permissions. These are

the permissions that cover resources that are related to the user’s private infor-

mation, manipulation of the user’s stored data. If an app declares that it needs a

dangerous permission, the user has to explicitly grant the permission to the app

[37].

Prior to the release of Android 6.0 (API level 23), permissions are granted on an

all-or-nothing basis. If a user wants to install an application, it has to accept all of

the app’s requested permissions. Otherwise, the installation is cancelled. After

Android 6.0 is released, permissions are no longer granted during installation.

They are granted to apps while the apps are running [2]. However, according

to Google’s data on the distribution of each version of Android, only 4.7% of

active Android devices are currently running Android 6.0 or later. This shows

that more than 95% of Android users are still granting permissions on an all-or-

nothing basis.

In addition to this, the Android SDK allows an app to request access to resources

that they don’t actually need. This can result in third-party libraries abusing the

granted permissions of their host apps. Another way that this can be exploited



Chapter 2. Background 11

is by making use of the Android’s auto-update feature. After the user granted

access to a benign application that has a bloated permission request, the app can

update itself and added malicious code that can steal user’s information.

• Malware and reverse engineering of apps

Android is the number one mobile device operating system in terms of the

amount of malware that target it [40]. Malware can enter devices through many

ways. The easiest way is by phishing the target to download a malware-injected

app by sending them links to a fake market store. Malicious APK files could

also be downloaded by the user through click-based advertising [31].

In addition to that, a new attack surface is also emerging from the use of JNI

(Java Native Interface), which is supported by the Android Native Development

Kit [1]. JNI allows apps to invoke native codes, which can cause more security

issues if written with malicious intentions.

• Security weaknesses and vulnerabilities

Security flaws and vulnerabilities in Android are found in many layers [32]. Ma-

licious attackers might try to exploit known vulnerabilities from the application

installed by users, the manufacturer’s pre-installed apps, the operating system

layer, or the Linux layer such as the Linux kernel and its native libraries [39].

2.3 Previous Work on Android Security Metrics

In order to conduct a proper assessment to all of the above weaknesses, several attempts

at analysing the security level and producing security metrics of Android devices has

been conducted. We will discuss some of them in the following sections.

2.3.1 Security Metrics for the Android Ecosystem

A previous study on the security metrics for Android tried to give security scores on

a scale of 10 to major brands of Android phone with regards to their vulnerability to

attacks.

Figure 2.1 depicts the final security score produced by the study. The study pro-

posed the use of a security metrics called FUM to produce the rankings in figure 2.1.

The rankings correspond to the frequency of security patches delivered by the phone

manufacturers and the number of vulnerabilities that the phones are exposed to.



Chapter 2. Background 12

Figure 2.1: The security level of Android devices

The FUM metric calculates security score using the following components:

1. Free, which represents the number of devices that are free from critical vulnera-

bilities

2. Update, which represents the number of devices that are currently running the

latest version of Android supported by its manufacturer

3. Mean, which represents the average number of outstanding vulnerabilities found

on the devices from the same manufacturer

The FUM metric gave 1 security score to a collection of devices. It does not pro-

duce an individual score for each identified phone. For example, we could see that in

figure 2.1, LG has a security score of 3.97. According to the FUM score, this is the

security score of all LG devices regardless of model number’s, who owns the device,

or how the device is used. The above study also gave security score to the Android

ecosystem as a whole. Android as a whole scored 2.87 out of 10, which is alarmingly

low.

The security metrics introduced by [32] is very effective in measuring the timely

delivery of updates to fix critical vulnerabilities It also produced a very useful security

score for each major Android’s brands and manufacturers and the Android ecosystem

as a whole. However, these are overall scores. We could not say that the overall



Chapter 2. Background 13

security score given to the Samsung brand of Android is similar to the security score

that should be given to a particular model of Samsung Android, held and used by an

individual.

Every Android device is different. Devices may share the same model number, but

the collection of apps installed within are obviously different depending on the users.

Devices with the same model number could also differ in the type of operating system

that it is running due to the choice that was usually given to users on whether or not

they want to do a system upgrade. We believe that there is a need for a security metric

that measures the unique security score of an individual device.

2.3.2 Malicious Application Classifier for Android Apps

In an attempt to assess the level of security in using a particular application, a lot

of studies have been conducted to develop malware classifier that could detect the

malicious and abnormal behaviour of Android applications.

We researched several different malware classifiers and identified the kind of fea-

tures that they use as a metric to determine the level of maliciousness of an application:

1. Crowdroid, a classifier for Trojan malware, uses system calls as its target feature

for analysis. The research found out that the system calls made by a genuine ap-

plication are very different compared to the one made by their malware-infested

counterpart [5].

2. ExplainDroid, a malware classifier that targets APK files. ExplainDroid uses

permissions, API calls, and actions as its features. ExplainDroid also provides

human-readable sentences that will describe the type of malware that resided

within the APK file [7].

3. Kirin, extract function calls from the application’s executables. This way, Kirin

is able to detect malware before the application is installed [10].

4. Permission-induced Risk Malware Classifier, extracts permissions from a large

number of both malicious and benign Android applications, employed three fea-

ture ranking methods (mutual information, correlation coefficient, and T-test),

and came up with a ranking for individual permissions in Android according to

their risk level [37].



Chapter 2. Background 14

5. Andromaly, uses machine learning approach to monitor sensor activities and

CPU usages. It extracts features from the monitoring result in order to detect

malicious activities in application [30].

All of the above malware classifiers have successfully assessed the malicious fea-

tures of Android application and gave a verdict to the user of whether or not it is mali-

cious. However, all of them runs on a desktop computer or at least requires the user to

setup a testing environment before they can conduct their own assessment with it. End-

users are becoming more aware of security and we believe that providing them with

a security metric that is easy-to-use and easy-to-install will be beneficial in creating a

more secure Android ecosystem.



Chapter 3

Requirement Specification

In this section, the concepts and requirements of Securitometer will be analysed and

summarised to provide a comprehensive guideline for the design and implementation

phase.

3.1 Requirement Elicitation

To grasp a full understanding of what is expected from an Android application that

analyses the device and displays security score, we went through the requirement elic-

itation phase first. Aside from collecting the required functionality, requirement elic-

itation also helped in building the evaluation plan for this application. We explored

a number of approaches in order to acquire the most comprehensive appreciation of

what must be implemented within the application [8].

3.1.1 Research on Related Projects

For this project, we researched a number of similar projects and Android applications

and take notes of the type of solution that they offer. These are applications that provide

security scan support, including malware analysis, security reporting, and vulnerability

testing. By highlighting their main features and by pointing out salient differences of

their approach to mobile security scoring, this section also provides further evidence

for the novelty of the concept of Securitometer.

15



Chapter 3. Requirement Specification 16

3.1.1.1 Virus Total for Android

VirusTotal for Android is an Android application that scans the collection of apps in

the device where it is installed. VirusTotal for Android performs a lookup service and

check whether any of the installed apps are identified as virus.1

VirusTotal for Android is actually a simplified version of a web application with the

same name. The web application is a free malicious file detector that utilises several

antivirus engines. Both the web application and Android app are owned by a subsidiary

of Google [33].

VirusTotal for Android scans each installed apps, generate a hash value of each

apps’ APK file and then perform a hash lookup to its web service. VirusTotal displays

its scan result in traffic light scheme as shown in 3.1. Apps that are regarded as mali-

cious get a red colour mark, and apps that are considered as benign get a green colour

mark. This use of traffic light colour scheme is a very good input for metrics-related

apps as it has been proven to affect user’s concern towards security [34].

Figure 3.1: Traffic light scheme for the scanning results

If the web service does not recognise the hash value, users can choose to upload

the file to VirusTotal web application so that it can perform an actual scan of the file.

Since VirusTotal for Android only performs a lookup, it does not provide real-time

protection.

1https://www.virustotal.com/en/documentation/mobile-applications/



Chapter 3. Requirement Specification 17

3.1.1.2 X-Ray

X-Ray is a mobile application, developed by Duo Security, that allows users to scan

Android device for unpatched vulnerabilities that can be potentially exploited by ma-

licious applications to gain root privileges or perform restricted actions on the device.2

X-Ray make use of the fact that a number of ”privilege escalation” vulnerabilities

has been present in the many releases of the original Android, and the fact that each

customization attempt by manufacturers and carriers adds more to the list [27].

Once installed, X-Ray will retrieve information from the device regarding the type

of system and software that are currently running. X-Ray then continue to test a num-

ber of vulnerability presence scans. When it is finished with the test, it will then display

a summary of vulnerabilities that the device is exposed to, as seen in figure 3.2. X-Ray

also displays its scan result in traffic light scheme.

Figure 3.2: X-Ray displaying vulnerability test result

X-Ray used to work by actually attempting to exploit the vulnerabilities within the

device. However, after their latest software update, X-Ray adopted the approach taken

by Android VTS (will be explained in the next section), which is to safely probe for

the presence of a vulnerability without ever exploiting it.

X-Ray’s developers have made the project to be open-source and claimed that they

2https://labs.duo.com/xray



Chapter 3. Requirement Specification 18

build the application with the average Android users as their target market. This is

reflected in the way their user interface is designed [28].

3.1.1.3 Android VTS

Android VTS, almost very similar to the previous X-Ray, is a mobile application that

allows users to scan Android device for unpatched vulnerabilities. Android VTS is

developed by NowSecure Inc [21].

Android VTS’s vulnerability test platform works the same way as X-Ray. It does

not probe vulnerabilities by actually trying to exploit it, but just detected the presence

of it. This is due to the fact that Android VTS is using the same vulnerability testing

engine as X-Ray. Both X-Ray and Android VTS uses the same platform created by

Ryan Welton, a Security Researcher who is also known under the name Fuzion24

[21][38]. The user interface is also very similar as seen in figure 3.3.

Figure 3.3: Android VTS displaying vulnerability test result

However contrary to X-Ray, Android VTS designed their application to target a

more technical audience. The test results and information regarding vulnerabilities

that they present to the user are more detailed and technical.

X-Ray was developed first at 2012, as an attempt to try to detect Android vulnera-

bilities by actually exploiting it. Android VTS came around 2015, introducing harness

and removing checks that could cause instability to the device. In 2016, X-Ray adapted



Chapter 3. Requirement Specification 19

Android VTS test platform and also remove the exploiting part from their test suite.

Both X-Ray and Android VTS are open-sourced [23].

3.1.1.4 Risk-Ranking for Android Permissions

In an attempt to build a malware detection tool, an investigation of each Android indi-

vidual permission was taken [37].

The original motivation behind this study was the fact that Android permission is

very central in Android security. It also acts as an entry point in accessing private

resources. The permissions requested by an app will depict the type of behaviour that

it will display. It is the responsibility of both the user and the developers to fully

understand the risk of granting and requesting for a combination of permissions.

In order to help user understand the risk of granting each permission, the study thor-

oughly analyze a number of both malicious and benign apps, employed three feature

ranking methods (mutual information, correlation coefficient, and T-test), and come up

with a ranking for individual permissions in Android according to their risk as seen in

figure 3.4.

Figure 3.4: Ranking of permission according to their risk



Chapter 3. Requirement Specification 20

The ranking made a very good sense and was further verified by an analysis of

occurrence percentage of the top 40 riskiest permissions from the study as seen in

figure 3.5.

Figure 3.5: Occurrence percentage of top 40 Android permissions in malicious and

benign apps

For example, permissions that are related to SMS, are always ranked at the top.

This is because more than 50% of malicious apps requested this type of permission, and

only about 10% or less benign apps requested for it. The huge difference of occurrence

is supported by the report that stated about 68% of mobile threats are originated from

premium service abuser and account data stealer. SMS-related activities are a huge

contributor of these type of threats.

Another example is the fact that INTERNET, although considered as dangerous

permission by Android Developers, is not ranked at the top. This is due to the fact that

it is very common to find this permission in both malicious and benign apps.

3.1.1.5 Insights from Related Projects

After exploring a number of related apps and projects, we summarised the insights

obtained from them to further motivate the development of Securitometer.

We could divide the topic around Android security into two main categories: op-

erating system security, and application security. Interestingly, most related projects



Chapter 3. Requirement Specification 21

seem to only focus on one area of security. X-Ray and Android VTS only focus on

Android’s vulnerability, VirusTotal only focuses on malicious file detection, while Ex-

plainDroid and other research mentioned above only focus on malicious behaviour

detection. In this matter, Securitometer tries to cover the scanning for both sides. Se-

curitometer could adapt the same vulnerability test platform that is used by X-Ray and

Android VTS, while at the same time employ the test for malicious application too.

In terms of target audience and the way the user interface was purposefully de-

signed, the closest similarity found to the concept of Securitometer seems to be An-

droid VTS because it is designed for a more technical audience. This will be a bench-

mark in designing the depth of information that needs to be displayed to the user re-

garding the test suite and the test results. Android VTS also has an export feature,

which we deemed essential to be included in a security assessment tool.

3.1.2 Brainstorming

In conducting brainstorming, we mainly rely on the many subject experts around the

School of Informatics, University of Edinburgh. Subject experts here include David

Aspinall, this project’s supervisor, the AppGuarden Group which is a research group

embedded within the University of Edinburgh’s Mobility and Security Group, and the

weekly security and usability seminar group held by a usability expert.

The following points are captured from the brainstorming sessions:

1. Incorporating the Android malware classifier created by the AppGuarden Group

into Securitometer

One of the key research in the AppGuarden group is an automatic Android mal-

ware classifier called ExplainDroid. ExplainDroid extracts the best-performing

syntax-based features from an Android APK file such as permissions and API

calls. It then uses several machine learning approaches to produce a classifier.

The classifier’s performance was compared against another type of malware clas-

sifier and it did show a dramatic improvement [7].

The ExplainDroid classifier obtained for this project was a bit more advanced

than the one explained above. It takes an APK file as input, gives a verdict of

whether the app is malicious or benign, and if it is indeed malicious, it also

generates an explanation of the reason why it is malicious.

2. Taking user’s safety into account



Chapter 3. Requirement Specification 22

From the usability point of view, a lot of inputs about user’s safety are generated

during the brainstorming session. This includes the effort to make sure that the

user understands what Securitometer does to the device and whether it will cause

harm or not to the device. It was concluded that this type of explanation can be

inserted in the following areas within the app:

• Introductory pages, prior to app usage

• Main page, prior to starting the test

• Result page, in a more detailed manner

3. Development and evaluation plan

We decided that the development of Securitometer should go through a number

of versions. For each version, we inquire a number of potential users to evalu-

ate its usability and acceptability. The next version of Securitometer is usually

an improved version based on the inputs gathered from the previous version’s

evaluation.

We also decided to launch Post-Study System Usability Questionnaire (PSSUQ)

for the final version. The PSSUQ measured the followings:

• Overall user satisfaction with the application

• System usefulness

• Information quality

• Interface quality

3.1.3 Prototyping and Survey

Prototyping is less useful for identifying initial requirements [8]. Because of that,

we chose to conduct research and brainstorming for the initial phase of requirement

elicitation. After that, we build an initial prototype, conducted a survey on it, and

collect further requirement. The survey collected 60 respondents3. About 40% of

them are penetration tester and security auditors, 41% are IT employee, and the rest

are computer science students and security researcher.

Respondents are recruited by utilising the Securitometer developer’s list of col-

leagues and connection with several penetration testers and IT security auditors from

3https://goo.gl/forms/l0yoavQkc16t6n9r1



Chapter 3. Requirement Specification 23

professional service firms. The questionnaire is created using Google Forms and is

available online. The survey was designed using Likert-scale and Rating-scale and

was analysed accordingly [35][36].

The followings are the requirements gathered from prototyping and the survey after

that:

• About 81.7% of the respondents agreed that an app that requested more danger-

ous permissions have more potential to be problematic in the future, compared

to the one that requested less dangerous permissions.

We noted that we could use permissions ranking to assign a risk level to installed

applications. In support of this, we obtained a ranking of Android permission

based on a study that compares its percentage of occurrence in malicious and

benign Android apps [37].

• About 88.3% of the respondents agreed that in displaying the scanning result,

apps that are more likely to be problematic in the future should be displayed

above the other apps. We noted that this insight should be incorporated in the

way we organise our test results.

• About 95% of the respondents agreed that using traffic colour scheme to display

the score helps the user understand the impact that each app has on the security

level of the device. We noted that this insight should be incorporated in the way

we organise our user interface.

• We asked the users to rank the factors that they believe are more important in

determining Android security level. We got the following ranking:

1. Malicious app identification (score: 8.8 out of 10)

2. OS vulnerability check (score: 8.7 out of 10)

3. App permission check (score: 8.6 out of 10)

4. Checking whether phones are encrypted (score: 7.2 out of 10)

5. Checking whether passcode is used (score: 6.8 out of 10)

The last two factors represent configuration as one of the factors that determine

the security level of a device. The top three factors are mostly about the collec-

tion of applications installed on the device and operating system. Supported by



Chapter 3. Requirement Specification 24

the survey result, we decided to only use the top three-factor and not use con-

figuration as our metrics due to time constraint. Further survey is required if

Securitometer is to incorporate configuration to its metrics too.

• We also asked the users which type of vulnerability scanning app that they prefer.

We got the following:

1. Stable vulnerability check (55%)

This type of app attempts to detect the presence of vulnerabilities without

actually exploiting it, taking care to not include checks that could cause

instability problems for the end user and therefore may omit checks that

could cause these types of issues.

2. Exploit attempt (25%)

This type of app actually attempts to exploit the vulnerabilities which could

cause instability to the device being scanned.

3. Lookup based (20%)

This type of app uses the device version/build information to look up com-

mon vulnerabilities found in that Android version. No actual vulnerability

scan takes place.

We noted that stable vulnerability check are most popular both in the survey and

in real world application, as seen in Android VTS and X-Ray application before.

More details about the result of this survey are provided in section 5.2.2.1.

3.1.4 Focus Group Discussion

Focus group captures requirements by gathering a number of representatives for the

potential users and clients [8]. These representatives should have a broad idea regard-

ing user’s needs. We conducted focus group discussion with the School of Informatics

weekly security and usability seminar group held by a usability expert. The group con-

sists of usability experts and a number of MSc and UG4 researcher who are currently

studying or have studied computer security as seen in figure 3.6. Our justification for

this is that these people have the technical knowledge in both security and user inter-

face design. They are also the people who will eventually work as security practitioner

so that they represent the potential user of Securitometer.



Chapter 3. Requirement Specification 25

Figure 3.6: Focus group for Securitometer in progress (blurred for privacy)

Before conducting the focus group discussion, we have developed the first proto-

type of Securitometer. We asked them to try the first prototype, and then we handed

the questionnaire that will guide the discussion process.

A lot of inputs are accepted during the discussion, however, we collected them all

into groups and made the following summary of the focus group discussion:

• Since Securitometer’s target users are from the technical audience, more infor-

mation regarding the type of tests that are being conducted are needed.

• Introductory pages are needed to make sure that the user understands what the

application do.

• Before testing the device, more information about the device itself is needed for

reporting purpose.

• Result sharing is not necessarily useful for this type of app since it is only rele-

vant if the target user is the general Android users. It also raises user’s privacy

concern.

• The test result should provide a summary of what caused the biggest contribution

to the security score.

• The traffic colour scheme used to display security score and test result font

should take into account the background colour.

• When the tests are running, a dialogue that informs users about the current

progress of the test should be displayed.



Chapter 3. Requirement Specification 26

• Consider providing the feature that let users run the test while completing an-

other task.

3.2 Recap and Summary

The requirement elicitation activities that we conducted is not completely detached

from each other. An activity is conducted over the insights gained from the earlier one.

This was done in order to justify the novelty of Securitometer, both from the point of

view of practitioners as represented by penetration tester and security professionals, as

well as academicians as represented by security researcher and students.

We summarised the insights collected into the following list of requirements [14]:

1. Incorporate device vulnerability test suite

Elicited from: research, prototyping, survey

Success criteria:

(a) The test detects vulnerabilities present in Android devices.

(b) The test works on different CPUs.

(c) The test does not cause instability to target device.

2. Incorporate malware classifier

Elicited from: research, brainstorming, prototyping, survey

Success criteria:

(a) The classifier detects potential malware in target device’s installed apps.

(b) The classifier runs on the device without communicating any data to third

party server.

3. Incorporate app permission test

Elicited from: research, prototyping, survey

Success criteria:

(a) The test identifies permissions that are commonly found in a malicious ap-

plication.

(b) The test assigns a risk level to each app based on the type of permissions

that it requested.



Chapter 3. Requirement Specification 27

(c) The test labels an app based on its risk into the following categories: high

risk, medium risk, and low risk.

4. Include introductory pages

Elicited from: prototyping, brainstorming, survey, focus group discussion

Success criteria:

(a) The introductory pages are shown on Securitometer’s first run.

(b) The introductory pages give an elaborate explanation to the user about what

Securitometer is doing.

(c) The introductory pages ensure users that Securitometer is not harmful to the

target device.

5. OS scoring mechanism

Elicited from: prototyping, survey, focus group discussion

Success criteria:

(a) OS score will be contributed by the number of vulnerabilities found in the

device.

(b) OS score will be displayed using the colour scheme of the traffic light.

(c) Test that shows the device as being vulnerable, should be displayed first on

the application screen.

6. App scoring mechanism

Elicited from: prototyping, survey, focus group discussion

Success criteria:

(a) App score will be contributed by the number of malware found in the device

and the risk level of the app.

(b) App score will be displayed using the colour scheme of the traffic light.

(c) Apps that are more likely to be problematic should be displayed first on the

application screen.

7. Report mechanism

Elicited from: prototyping, brainstorming, focus group discussion

Success criteria:



Chapter 3. Requirement Specification 28

(a) Securitometer should be able to produce a report about the target device

with an interchangeable format.

(b) The report should include the app permission test result, the malware clas-

sifier result, and the vulnerability test result.

8. Progress dialogue

Elicited from: focus group discussion

Success criteria:

(a) Securitometer should inform users of its current progress when tests are

running.

(b) User should be notified when test results are ready.

(c) Notifications should be handled in a way that will not impose a bad user

experience.

The above list of requirements will be revisited in section 5.1 as one of the ways to

evaluate this project.



Chapter 4

Design and Implementation

In this chapter, we will discuss the development and implementation of Securitometer.

This will consist of the 3 type of tests executed by Securitometer, the 2 scoring mech-

anisms displayed to the user, the user interface and other additional features developed

in order to satisfy the requirements elicited in Chapter 3.

4.1 Technology Specification

4.1.1 Minimum Target Platform

One of the earliest design decision that we have to make was determining the minimum

target platform where Securitometer could run. We decided that Securitometer should

at least be supported on any devices running API version 16 or later of the Android

SDK (Android 4.1 Jelly Bean). This should cover at least 95.2% of the devices that are

currently active at the moment1. This decision is also supported by the Google Android

Developer Guide which stated that choosing to support about 90% of the active devices

is good practice [2].

4.1.2 Solution Architecture

The Securitometer application consists of several components. Figure 4.1 depicts the

many elements that make up the whole Securitometer application.

Securitometer runs three type of test: the malware classification test, app permis-

sion test, and device vulnerability test. These three tests are then compiled into two

1https://developer.android.com/studio/projects/create-project.html

29



Chapter 4. Design and Implementation 30

Figure 4.1: Securitometer components

scoring mechanisms, 1 score for the operating system and the other one for the col-

lection of apps. The device vulnerability test contributes to the score of the operating

system. The app permission test and malware classifier contribute to the score of the

collection of apps.

The front-end of Securitometer was defined using standard Android layout mecha-

nism which is a collection of XML files. Based on the requirement elicitation activities

that we have elaborated in Chapter 3, we decided that the following pages are neces-

sary: splash screen, introductory pages, main page before the test, overall test result

page, app test result page , device vulnerability test result page, and export result. We

will provide details about each component in the coming sections.



Chapter 4. Design and Implementation 31

4.2 Back-end: Three Tests Performed

4.2.1 Malware Classification Test

Securitometer incorporated a malware classifier called ExplainDroid, within it [7]. Ex-

plainDroid’s malware classifier decide whether or not an APK file is malicious or be-

nign. ExplainDroid was originally implemented in Python. We ported ExplainDroid

to Java for Android and put the resulting code inside Securitometer. Hereafter, we will

refer to the ported classifier as Securitometer’s malware classifier.

Securitometer’s malware classifier extracts the permissions and API calls from

APK files, and then uses them as the feature for classification. These two are selected

as features because they reflect both the requirement for resources and the ability of

applications to access those resources.

The followings are the steps taken by Securitometer’s malware classifier:

1. Extract permissions and API calls from each app to use as input feature for the

classification problem

2. Sum the weight of each identified features

3. Decide whether an app is malicious or benign based on the sum result

The original version of ExplainDroid’s malware classifier uses two Linux binaries

called dexdump and aapt to extract the required input features, API calls and per-

mission request. For Securitometer’s malware classifier, we managed to simulate the

extraction of those features using the Android SDK only.

Details on how we port the malware classifier will be provided in the coming sec-

tions.

4.2.1.1 Extracting API Calls

We simplified the code used for API calls extraction from the original ExplainDroid

into the following:

def collect_api_calls(dexdump, files) :

apis = []

temp_file = "./stdout.txt"

re_f_invoke = r"invoke-"



Chapter 4. Design and Implementation 32

re_api = r"""(Landroid|Ljava|Ljavax|Ldalvik|Ljunit|

Lcom\/android|Lorg\/(apache|json|w3c|xml|xmlpull))

[a-zA-Z0-9\$\-\_\/\;\.\>\<]+:"""

for file in files:

# using dexdump to get apis

try :

out = open(temp_file, "w")

subprocess.call([dexdump, "-d", file], stdout = out)

out.close()

except:

print "Failure in execution: dexdump!"

sys.exit(0)

out = open(temp_file, "r")

for line in out :

s = line.strip()

if re.search(re_f_invoke, s) :

m = re.search(re_api, s)

if m :

api = m.group()

api = re.sub("\/", ".", api)

api = re.sub("L", "", api)

api = re.sub(";", "", api)

api = re.sub(":", "", api)

if not api in apis :

apis.append(api)

out.close()

return [apis]

Listing 1: API calls extraction in the original ExplainDroid’s malware classifier

In the original code, the APK file was fed to ExplainDroid via command line.

ExplainDroid then executes dexdump on the APK file and parse the output as needed to

build a list of API calls. ExplainDroid does not run on mobile devices, so the APK used

as input has to be copied to the same machine as ExplainDroid. This makes feature

extraction a lot easier because ExplainDroid and the APK file stands on a different

level. ExplainDroid act as a running application and the APK file is just a static data

file acting as input.



Chapter 4. Design and Implementation 33

The followings are the steps defined within Securitometer to simulate dexdump

execution in ExplainDroid:

1. Extract APK files from installed apps

The challenge here is that Securitometer targets installed apps on a device, while

Securitometer itself is also an installed app. Both Securitometer and the target

apps are standing on equal level, as an application running on the same device.

To tackle this issue, we use a class called PackageManager, provided by the

Android SDK2. PackageManager assisted us in transforming the installed app

from a running application into a static APK file. The classifier did not require

an app to be in the state of running while it extracts their features. This makes it

easier to port this functionality to Securitometer.

Securitometer scan through all installed apps using the PackageManager class,

extract their source information, and write each of them one by one as APK

file to the local storage. To be able to do this, Securitometer requires the fol-

lowing permission during installation: android.permission.READ EXTERNAL

STORAGE and android.permission.WRITE EXTERNAL STORAGE.

The following simplified code depicts how Securitometer extracts the APK files

of all installed apps:

ApplicationInfo apkInfo;

PackageManager manager;

//EXTRACT APK FILE

File f1 = new File(apkInfo.sourceDir);

String file_name = apkInfo.loadLabel(pm).toString();

file_name = file_name.replace(" ", "_");

String f2Path = (Context.getExternalFilesDir(Environment. \

getDataDirectory().getAbsolutePath()).getAbsolutePath());

File f2 = new File(f2Path + "/" + file_name + ".apk");

f2.createNewFile();

//ACTUAL WRITING

InputStream in = new FileInputStream(f1);

OutputStream out = new FileOutputStream(f2);

byte[] buf = new byte[4096];

int len;

float total = 0;

2https://developer.android.com/reference/android/content/pm/PackageManager.html



Chapter 4. Design and Implementation 34

while ((len = in.read(buf)) > 0) {

total += len;

out.write(buf, 0, len);

}

in.close();

out.close();

//DO SOMETHING WITH THE APK HERE

//..........................................

Listing 2: Extract APK files of all installed apps

2. Removing Android system apps from the scan

Android SDK’s PackageManager also included system applications in the result

when it scans through all installed apps in the device. System apps are written

in a limited-access location (root only) to prevents deletions and are often very

critical in order to keep the operating system running. Due to this reason, we

decided to exclude them from our tests. We also excluded Securitometer from

scanning itself. The following simplified code assisted us in filtering the target

apps:

ApplicationInfo apkInfo;

PackageManager manager;

if ((manager.getApplicationInfo(apkInfo.packageName, 0).flags \

& ApplicationInfo.FLAG_SYSTEM) != 0)

{

continue;

}

if (apkInfo.packageName.contains("com.mrezqi.android.securitometer"))

{

continue;

}

Listing 3: Excluding system apps and Securitometer itself

3. Executing dexdump binary inside Android device

Using another application called Terminal Emulator for Android 3, we found out

3https://play.google.com/store/apps/details?id=jackpal.androidterm&hl=en



Chapter 4. Design and Implementation 35

that dexdump is actually executable within the Android device as seen in figure

4.2.

Figure 4.2: dexdump ran in Android

ExplainDroid provides its user with two type of dexdump: the Linux version, and

the Mac version. We compared the output of Android’s version of dexdump with

that of ExplainDroid’s. We installed Terminal Emulator for Android on each

version of Android, started from Android 4.1 JellyBean (API version 16) which

is our minimum target device. All of them run the same version of dexdump with

ExplainDroid. All of the outputs are also exactly the same.

Securitometer executes dexdump by utilizing the Process class in Java for An-

droid4. The challenge here is that dexdump output is incredibly large and it took

away a lot of resources when Securitometer is trying to parse its output using the

regular expression pattern matching. The parsing of API calls is a very critical

phase in ExplainDroid’s feature extraction, so we decided not to tamper with

the amount of result that the parser collects. Instead, we focus on building an

acceptable experience for the users when they are waiting for Securitometer to

parse.

The following is the simplified version of Securitometer’s ported code in execut-

ing dexdump, written in Java for Android:

HashMap<String, Integer> apk_features;

4https://developer.android.com/reference/android/os/Process.html



Chapter 4. Design and Implementation 36

//DEXDUMP

Process p = null;

try {

//EXECUTE DEXDUMP

p = Runtime.getRuntime().exec("dexdump -d " \

+ f2.getAbsolutePath());

//PARSE DEXDUMP OUTPUT WITHOUT WRITING IT TO FILE

BufferedReader reader = new BufferedReader( \

new InputStreamReader(p.getInputStream()));

String line = reader.readLine();

while (line != null) {

String re_f_invoke = "invoke-";

Pattern jav_re_f_invoke = Pattern.compile(re_f_invoke);

String re_api = "(Landroid|Ljava|Ljavax|Ldalvik|Ljunit|" +

"Lcom/android|Lorg/(apache|json|w3c|xml|" +

"xmlpull))[a-zA-Z0-9$-_/;.><]+:";

Pattern jav_re_api = Pattern.compile(re_api);

try {

line = line.trim();

Matcher m_invoke = jav_re_f_invoke.matcher(line);

if (m_invoke.find()) {

Matcher m_api = jav_re_api.matcher(line);

if (m_api.find()) {

String api = m_api.group();

api = api.replaceAll("/", ".");

api = api.replaceAll("L", "");

api = api.replaceAll(";", "");

api = api.replaceAll(":", "");

//NEW API CALLS FOUND

if (!apk_features.containsKey(api)) {

apk_features.put(api, 1);

//UPDATE NOTIFICATION MESSAGE HERE

//.................................

}

}

}



Chapter 4. Design and Implementation 37

}

catch(Exception e) {

e.printStackTrace();

}

line = reader.readLine();

}

} catch (Exception e) {

e.printStackTrace();

} finally {

if (p != null) {

p.destroy();

}

}

Listing 4: Executing dexdump in Securitometer

Notice that in the code above, we put in a notification feature for the execution

of dexdump. This is because parsing dexdump’s output could take a long time,

and we don’t want to prevent users from using their phone for that long just

to complete a security scan. By providing a notification service that contains

the progress of dexdump’s execution, users can hide the Securitometer in the

background and use other apps and be notified of whether or not Securitometer

has completed its scan yet. This will be discussed further in the user interface

sections.

4. Delete APK file

Extracting APK files could take a huge amount space from the target device’s

storage. We took care to make sure that after we are done extracting features

from one app, we deleted its extracted APK file to prepare more storage for the

next one.

4.2.1.2 Extracting Permissions

We simplified the code used for permission request extraction from the original Ex-

plainDroid into the following:

def collect_permissions(aapt, files) :

perms = []

pkg = ""



Chapter 4. Design and Implementation 38

temp_file = "./stdout.txt"

re_f_perm = r"E: uses-permission"

re_pkg = r"A: package=\"([a-zA-Z\.0-9\_\-\$]+)\""

re_perm = r"(android\.permission\.)([A-Z\_]+)"

for file in files:

# using aapt to get permssions and actions

try :

out = open(temp_file, "w")

subprocess.call([aapt, "l", "-a", file], stdout = out)

out.close()

except :

print "Failure in execution: aapt!"

sys.exit(0)

out = open(temp_file, "r")

# find an "E: "

f_E = 0

for line in out :

s = line.strip()

if re.search(re_f_perm, s) :

f_E = 1

continue

elif f_E == 1:

f_E = 0

m = re.search(re_perm, s)

if m :

perm = m.group()

if not perm in perms :

perms.append(perm)

elif re.search(re_pkg, s):

m = re.search(re_pkg, s)

pkg = m.group(1)

out.close()

return [perms, pkg]

Listing 5: Permission extraction in the original ExplainDroid’s malware classifier



Chapter 4. Design and Implementation 39

Similar to the dexdump execution, the original ExplainDroid was fed APK files via

command line and then it executes aapt. The output of aapt execution against the APK

file is then parsed as needed to build a list of permission request.

Many steps that are taken for the API extraction part are almost similar with the

steps for permission extraction. In order to save computing resources, we wrote the

API extraction code and the permission extraction code within the same loop. How-

ever, for the sake of clarity, we described them as a separate entity. The followings are

the steps defined within Securitometer to simulate aapt execution in ExplainDroid:

1. Removing Android system apps from the scan

This part was already explained in the API extraction part.

2. Extracting permission request

Extracting permission request is a lot easier to simulate within an Android ap-

plication compared to dexdump, because of the PackageManager class. Pack-

ageManager provides a way to scan through a list of installed apps within the

device, including the list of permissions requested by each app. Due to this, the

process usually completes in a very little time. To make sure that the output of

ExplainDroid’s execution of aapt and Securitometer’s output from PackageM-

anager class are the same, we compared the output from executing both of them

for 10 different apps. All of the outputs are also exactly the same.

The following is the simplified version of Securitometer’s ported code in extract-

ing installed apps’ requested permissions, written in Java for Android:

HashMap<String, Integer> apk_features;

PackageInfo permissionInfo;

//AAPT

for (String perm : permissionInfo.requestedPermissions) {

//NEW PERMISSION FOUND

if (!apk_features.containsKey(perm)) {

apk_features.put(perm, 1);

}

}

Listing 6: Extracting permissions in Securitometer



Chapter 4. Design and Implementation 40

4.2.1.3 The Classification

Originally, ExplainDroid is a Python-based tool which classifies whether or not an

APK file is malicious or not. ExplainDroid also attempts to improve peoples under-

standing of potential threats hidden in APK file by presenting a sentence that will

describe the type of malware that resided within the application. ExplainDroid con-

sists of a classifier, a feature selector, a keyword selector, and a sentence selector [7].

For the development of Securitometer, we only ported the classifier component of Ex-

plainDroid from Python to Java for Android. This is because Android SDK does not

yet support the ability to filter intents from the device’s installed app which is required

for the keyword and sentence selector components. 5

The following steps are taken in order to port the classification step to Java:

1. Features extraction (API calls and permissions)

This part is already explained in the previous section.

2. Importing the classification data to Securitometer

We decided to include ExplainDroid’s classification data into Securitometer’s

asset files. These data are represented in a text file containing the name of the

selected feature and its corresponding weight. When Securitometer runs, it will

proceed to read these files and save its values into a hashmap for fast retrieval

using the feature name as the key.

3. Determining whether an app is malicious or benign

ExplainDroid’s malware classifier produced its classification data by assigning

weights to the features extracted from its training phase. Figure 4.3 depicts a

sample combination of these feature name and their corresponding weights:

Figure 4.3: Feature name and its corresponding weight

The weight here represents the malicious quality of the feature intuitively. A

negative weight indicates a suspicious functionality from the usage of the feature

in the wild while a positive weight indicates a normal functionality.

5https://code.google.com/p/android/issues/detail?id=3217



Chapter 4. Design and Implementation 41

We ported the exact code of calculating the malicious value of an app from Ex-

plainDroid to Securitometer. We summed the weight of each extracted features

and regarded that as the app’s value. If the sum is negative, then we classified

the app as malicious. If the sum is zero or positive then we classified the app as

benign.

To verify that we have incorporated ExplainDroid into Securitometer, we tested

it against the samples apps that were given by the original creator of Explain-

Droid. Figure 4.4 shows the result of the original ExplainDroid’s malware clas-

sifier:

Figure 4.4: ExplainDroid’s malware classifier result

Figure 4.5 shows the result of Securitometer’s malware classifier. Securitome-

ter’s malware classifier is exactly the same as that of ExplainDroid, except that

it is wholly written in Java for Android instead of Python:

Figure 4.5: Securitometer’s malware classifier result



Chapter 4. Design and Implementation 42

4.2.2 Application Permission Test

This test’s objective is to assign a risk level to each installed apps. The risk-level are

based on the type and number of permissions that it requested. Securitometer utilised

a ranking of permissions obtained from a research that produces the top-40 riskiest

permissions commonly found in malicious applications.

We incorporated the ranking of permission in a .JSON file as depicted below:

{

"android.permission.READ_SMS": [0.4428, 1],

"android.permission.RECEIVE_SMS": [0.4200, 2],

"android.permission.SEND_SMS": [0.3961, 3],

"android.permission.WRITE_SMS": [0.1988, 4],

"com.android.alarm.permission.SET_ALARM": [0.1443, 5],

"android.permission.RECEIVE_WAP_PUSH": [0.1403, 6],

"android.permission.READ_PHONE_STATE": [0.1140, 7],

"android.permission.READ_EXTERNAL_STORAGE": [0.1044, 8],

"android.permission.RESTART_PACKAGES": [0.0804, 9],

"android.permission.SYSTEM_ALERT_WINDOW": [0.0711, 10],

"android.permission.RECEIVE_BOOT_COMPLETED": [0.0668, 11],

"android.permission.CHANGE_WIFI_STATE": [ 0.0630, 12],

"android.permission.WAKE_LOCK": [0.0611, 13],

"android.permission.DISABLE_KEYGUARD": [0.0562, 14],

"android.permission.ACCESS_NETWORK_STATE": [0.0553, 15],

"android.permission.WRITE_SETTINGS": [0.0551, 16],

"android.permission.READ_CONTACTS": [0.0535, 17],

"android.permission.RECEIVE_MMS": [0.0530, 18],

"android.permission.WRITE_EXTERNAL_STORAGE": [0.0506, 19],

"android.permission.EXPAND_STATUS_BAR": [0.0450, 20],

"android.permission.WRITE_CONTACTS": [0.0444, 21],

"android.permission.CHANGE_NETWORK_STATE": [0.0415, 22],

"android.permission.INTERNET": [0.0413, 23],

"com.android.browser.permission.READ_HISTORY_BOOKMARK": [0.0365, 24],

"android.permission.CHANGE_CONFIGURATION": [0.0346, 25],

"android.permission.PROCESS_OUTGOING_CALLS": [0.0344, 26],

"android.permission.GET_PACKAGE_SIZE": [0.0339, 27],

"android.permission.PERSISTENT_ACTIVITY": [0.0338, 28],

"android.permission.ACCESS_WIFI_STATE": [0.0334, 29],

"android.permission.READ_CALL_LOG": [0.0329, 30],

"android.permission.CAMERA": [0.0309, 31],

"com.android.browser.permission.WRITE_HISTORY_BOOKMARK": [0.0287, 32],

"android.permission.CALL_PHONE": [0.0273, 33],



Chapter 4. Design and Implementation 43

"android.permission.SET_WALLPAPER_HINTS": [0.0252, 34],

"android.permission.GET_ACCOUNTS": [0.0249, 35],

"android.permission.GET_TASKS": [0.0237, 36],

"android.permission.WRITE_CALL_LOG": [0.0232, 37],

"android.permission.ADD_SYSTEM_SERVICE": [0.0190, 38],

"android.permission.ACCESS_FINE_LOCATION": [0.0182, 39],

"android.permission.ACCESS_MOCK_LOCATION": [0.0168, 40]

}

Listing 7: Ranking of permission in JSON

The key in the JSON file represents the name of the requested permission. The first

value represents the risk score that users are exposed to when they granted access to

that permission. The higher the risk score, the higher the risk of granting access to that

permission. The second value represents the permission ranking. Permissions that are

ranked on top (low number) are the riskiest.

The application permission test makes use of the list of permissions extracted from

the previous test. If the test found a match between an app’s requested permissions and

the above ranking of permissions, it will add the value of that permission’s risk score

to the calculation of that app’s security score.

Both the malware classifier and the application permission test results are calcu-

lated as a single score, which is the app’s score. This is because both of them have

the same component for their test target, the collection of installed apps on the device.

Details about the score calculation are provided in the next scoring mechanism section.

4.2.3 Device Vulnerability Test

Securitometer’s vulnerability test suite is implemented using the same test platform as

that of Android testS and X-Ray. The test platform was developed by Ryan Welton, a

Security Researcher who is also known under the name Fuzion24 [21][38]. The test

platform contains a number of vulnerability detection tests written in Java for Android

and C which can be compiled using Android NDK (Native Development Kit). Android

NDK allows developers to use C and C++ code in their application. The official NDK

guide recommended the use of NDK to developers only if they really need to squeeze

out extra performance for computationally intensive apps. It also recommends NDK if

developers need to reuse other developers libraries built in C or C++.

The vulnerability test suite by Fuzion24 provided Securitometer with a total of 22



Chapter 4. Design and Implementation 44

different tests as seen in Table 4.1, each with their own proof of concept:

No Popular name CVE ID Category CVSS2

1 ZipBug CVE-2013-4787 Zip bug 6.1

2 put user/get user CVE-2013-6282 Kernel bug 7.2

3 KillingInTheNameOf CVE-2011-1149 Kernel bug 7.2

4 Towelroot CVE-2014-3153 Kernel bug 7.2

5 Linux L2TP Socket CVE-2014-4943 Kernel bug 8.3

6 WeakSauce CVE-2014-3847 System bug 4.9

7 Graphics Buffer Overflow CVE-2015-1474 Graphics bug 9.3

8 StageFright CVE-2015-3864 Media bug 10.0

9 StageFright CVE-2015-3829 Media bug 10.0

10 StageFright CVE-2015-3828 Media bug 10.0

11 StageFright CVE-2015-3824 Media bug 10.0

12 StageFright CVE-2015-1539 Media bug 10.0

13 StageFright CVE-2015-1538 Media bug 10.0

14 StageFright 2.0 CVE-2015-6602 Media bug 9.3

15 OpenSSL Transient CVE-2015-3825 Serialization bug 7.2

16 PingPong root CVE-2015-3636 Kernel bug 4.9

17 Samsung Remote Code CVE-2015-7888 System bug 9.0

18 StageFright CVE-2015-6608 Media bug 10.0

19 GraphicsBuffer Unflatten CVE-2015-1528 System bug 9.3

20 StageFright CVE-2015-6616 Media bug 10.0

21 Bug 22214934 CVE-2015-3860 System bug 7.2

22 Bug 25187394 CVE-2016-0807 System bug 7.2

Table 4.1: Fuzion24 vulnerability test suite

There are actually more tests available in the platform however we decided to re-

move any test that will cause the target device to become unstable. We tried each pro-

vided test against 6 different Android phones with different API version and removed

any test that causes the application to end abnormally.

The following are the steps taken in running Fuzion24 device vulnerability test

within Securitometer:

1. Filter the type of vulnerability tests that are relevant to target device’s OS



Chapter 4. Design and Implementation 45

2. Execute each vulnerability test

4.2.3.1 Filtering and Executing the Test

Android used to only support one type of CPU, the ARMv5 architecture. Now with

more devices being produced, the support for more type of CPUs are also increasing

[1]. Different CPUs support different instruction sets. Each instruction sets has some-

thing called Application Binary Interface (ABI) which defines how binaries such as

the .so files should be created and interact with the system on machine-level.

When using Android NDK, developers must specify the ABI for each CPU archi-

tecture that they want to support. Since some of the tests are written in C and compiled

to support several ABIS, there is a need to filter which test are suitable for the target

device Securitometer is installed in.

In Android NDK, the following ABIs are supported: armeabi, armeabi-v7a, arm64-

v8a, x86, x86-64, mips, mips64 [1]. The fuzion24 vulnerability test cases are both

written both in Java and C. Those that are written in C are currently compiled to support

3 ABIS namely: armeabi, armeabi-v7a, and x86.

For tests that are written in Java, we do not need to filter them based on their ABI.

However, for tests that are written in C, we need to filter out tests that can’t run on the

target device.

The followings depict the process that Securitometer went through to filter the

vulnerability test that it is going to execute on target device’s OS:

1. The following Java interface are used as a blueprint for each vulnerability test:

Figure 4.6: Interface for each vulnerability test

2. Each vulnerability test is enclosed in their own class and has an attribute called

List supportedArchitecture.

3. Another class called VulnerabilityOrganizer is used to scan target device’s sup-

ported ABI by utilising the ro.product.cpu.abi property of Android. After that,



Chapter 4. Design and Implementation 46

it compares the target device’s supported architecture with every test suite avail-

able. If the comparison matched, that particular test is executed.

The following simplified code depicts the vulnerability organizer’s job:

public List<VulnerabilityTest> getTests(){

ArrayList<VulnerabilityTest> all;

ArrayList<VulnerabilityTest> filtered;

//ADD ALL TEST

all.add(new CVE_2013_4787()); all.add(new CVE_2013_6282());

all.add(new CVE_2011_1149()); all.add(new CVE_2014_3153());

all.add(new CVE_2014_4943()); all.add(new CVE_2014_3847());

all.add(new CVE_2015_1474()); all.add(new CVE_2015_3864());

all.add(new CVE_2015_3829()); all.add(new CVE_2015-3828());

all.add(new CVE_2015_3824()); all.add(new CVE_2015_1539());

all.add(new CVE_2015_1538()); all.add(new CVE_2015_6602());

all.add(new CVE_2015_3825()); all.add(new CVE_2015_3636());

all.add(new CVE_2015_7888()); all.add(new CVE_2015_6608());

all.add(new CVE_2015_1528()); all.add(new CVE_2015_6616());

all.add(new CVE_2015_3860()); all.add(new CVE_2015_0807());

//GET SUPPORTED ABI

String cpu1 = SystemUtils.propertyGet("ro.product.cpu.abi");

String cpu2 = SystemUtils.propertyGet("ro.product.cpu.abi2");

//FILTER TEST

for(VulnerabilityTest test : all){

if(test.getSupportedArchitectures() == null) {

System.out.println("Error for : " + test.getCVE());

}

if(test.getSupportedArchitectures().contains(CPU.ALL)){

filtered.add(test);

} else {

if(isArchitectureSupported(test, cpu1) &&

isArchitectureSupported(test, cpu2)){

filtered.add(test);

}

}

}

return filtered;



Chapter 4. Design and Implementation 47

}

Listing 8: Vulnerability organizer

4.3 Back-end: Two Scoring Mechanism

As explained in the previous sections, Securitometer actually performs three type of

tests. However, because the target of these tests can be categorised to just two: Apps

and Operating System. We decided to compile the result of the above tests into two

scoring mechanisms namely: App Score and OS Score.

4.3.0.1 App Score

The app permission test and malware classifier contribute to the score of the collection

of apps. Figure 4.7 depicts the scoring mechanism for an individual app.

Figure 4.7: Score calculation for apps permission test

The process first started with the malware classifier. If Securitometer classified an

app as a potential malware, it immediately assigned the lowest individual score to it,

which is 0. If the app is classified as benign, Securitometer ran the app permission test

to get the app’s risk score.

Risk scores are assigned by scanning through the app’s list of requested permis-

sions. We used a ranking of Android permission based on a study that compares its

percentage of occurrence in malicious and benign Android apps [37]. The top 40 riski-

est permissions are listed in the ranking and given a score called risk level, as seen in

figure 3.4.



Chapter 4. Design and Implementation 48

To get an individual app score, we first calculated the sum of the apps permission’s

score. Then we divided it by the maximum score that it could get from permission

rankings. The reason we multiply the risk score by 10 is because we want the security

level to be on the scale of 10. We then subtract the risk score from 10 in order to give

a higher score for devices that are more secure. The following is the formula to get an

individual app score:

IndividualAppScore = 10− (SumO f PermissionScore/MaximumScore)∗10

After Securitometer assigned an individual score for each app, it then calculated the

average of these individual scores to display the overall score of the device’s collection

of apps. The following is the formula to get the overall app’s score:

OverallAppScore = SumO f IndividualAppScore/NumberO f Apps

4.3.0.2 OS Score

The device vulnerability test contributes to the score of the operating system. Each

vulnerability within the test suite already has a CVSS2 score assigned. Since CVSS2

score has been widely adopted by notable organisations such as NIST (National In-

stitute of Standards and Technology) in their National Vulnerability Database and the

newer CVSS3 score is still in its initiation phase [24], we decided to use this score to

represent the security level of target device’s OS. We also want the security level to be

on the scale of 10 and CVSS2 is already on the scale of 10.

The overall OS security score is then calculated by summing the CVSS2 score of

each test that the OS are vulnerable to, dividing it by the total CVSS2 score of all tests

that the Securitometer executed on the OS. We multiply the score by 10 to put it on the

scale of 10. Then we subtract the score from 10 to give a higher score for devices that

are more secure.

The following is the overall OS vulnerability score formula:

OverallOSScore = 10− (VulnerabilityScore/MaximumScore)∗10

4.4 Front-end: Securitometer Application

In this section, we present the justification for Securitometer’s user interface and the

changes that it went through throughout the development process.



Chapter 4. Design and Implementation 49

4.4.1 Splash Screen and Introductory Pages

The very first prototype of Securitometer has 3 pages namely: the main page, the app

permission page, and the OS vulnerability test page. We did not change the number

of Securitometer main pages even after we finished building the final version of Se-

curitometer. However, during a focus group discussion to evaluate the prototype, the

suggestions to add a splash screen and introductory pages for the first run was abun-

dant. According to the suggestions, our prototype was lacking a lot of information on

the type of test that it is running, and whether or not the test is harmful to the user.

We incorporated this suggestion and created a splash screen and introductory pages

for the first run of Securitometer as seen in figure 4.8.

Figure 4.8: (a) Splash screen (b-f) Introductory pages

The structure of the introductory pages is originated from a study that uses the

concept of 5W1H (What, Why, When, Where, Who, and How) to design a guiding

system [41]. We adapted our description of Securitometer into the 5W1H structure.



Chapter 4. Design and Implementation 50

The first page answers the what and the how, it introduce the user to what the purpose

of Securitometer is and how it is going to achieve that purpose. The second page

answers the why. It gives a reason to the user to actually consider using Securitometer.

Lastly, the third page answers the when.

At the time when we presented the first prototype, participants in our focus group

discussion seems to believe that Securitometer might cause harm to their device which

is not the case. Our survey results for the prototype also stated that 50% of the respon-

dents think that Securitometer is harmful. This is why we added the last introductory

page to Securitometer, to make sure that users know about how Securitometer takes

care not to include any tests that could cause problems for the user. We also added an

additional URL that gives the user a chance to understand more about what Securito-

meter is doing.

4.4.2 Main Page

As seen on figure 4.9 the main page consist of device information on the top title bar,

application title, and more information on the blank white screen. The start button is

located at the bottom-right of the screen. This button was implemented using the An-

droid’s Floating Action Button. We believe that the bold style of the newest Android’s

Material Design makes the Floating Action Button strikingly hard to ignore.

Figure 4.9: Empty main page



Chapter 4. Design and Implementation 51

4.4.3 Running the Test

Incorporating the malware classifier that requires feature extraction from each appli-

cation take away a lot of resources in running time. Securitometer runs slowly if the

user happens to install a lot of applications on their device or the application that they

install is particularly large.

To ensure that the user feels like they have freedom over the test, we added the

ability to skip the app test (both malware classifier and app permission test) for apps

that the user are confident about whether it is a threat or not to the security of the device

as seen in figure 4.10. Users can also skip the whole app permission test if they only

care about the OS vulnerability test. OS vulnerability test runs very fast so we did

not give any option to skip this test. We could not offer the choice to just use the app

permission test without the use of malware classifier as this could cause inconsistency

in the scoring mechanism.

Figure 4.10: (a) App test (b) OS test

For users that would like to run a full test even though the app test took a long

time, we put progress notification on the Android notification bar. Securitometer will

continue to run in the background and user can still monitor its progress through the

Android notification bar as seen in figure 4.11. For the progress notification, to avoid

overflowing the limited space on notification bar, we truncated the extraction progress

tracker by converting large numbers to smaller format by using k, M, etc as the unit



Chapter 4. Design and Implementation 52

symbol.

Figure 4.11: Securitometer progress in notification

We also realised that some users use the task manager in their device to kill running

applications. To avoid the Securitometer notifications get stuck on the notification bar

even though its process has already been killed, we run a kill notification service in the

device whose only purpose is to make sure that if the Securitometer application gets

killed, its notification also goes away.

4.4.4 Displaying the Result

Test results are showed in 3 different levels. They are as follow:

• Overall Test Result

This is the result that is first presented right after the test is completed. It contains

a summary of the test being run and the overall score of the device.

Right after the test is completed, a dialogue containing summaries of the two

tests are shown as seen in figure 4.12.



Chapter 4. Design and Implementation 53

Figure 4.12: Test result summaries

After the user clicked dismiss, the summaries along with the overall score of

each test are displayed in a card view as seen in 4.13. The overall score is also

presented in a bar form representing the device level of security. The traffic light

colour scheme is used to fill the bar as it has been proven to affect user’s concern

toward security [34]. The bar is filled with red if the score is below 3.3, amber

is shown if the score is between 3.3 and 6.6, and green if the score is above 6.6.

The range of the score is simply based on dividing the scale of 10 into 3.



Chapter 4. Design and Implementation 54

Figure 4.13: Overall test result

Prior to this look, the overall test result went through a number of slight revision

as seen in figure 4.14. The changes were made to provide users with more in-

formation. Since one of our target users are security tester, we believe that more

information means more things to write on the report.

Figure 4.14: Changes made from oldest to the latest version

• Category Test Result

The second level result, or category test result, is displayed if the user clicked

any of the test categories. Test category here means either the app permission test

or the OS vulnerability test. Both shares a similar look to maintain consistency

but contain very different information as seen in figure 4.15.



Chapter 4. Design and Implementation 55

Figure 4.15: (a) App test results (b) OS test results

• Detailed Individual Result

Lastly, the detailed individual result is displayed if the users decide to click the

”View Details” button on the second level result. In OS vulnerability test, this

will display the details regarding the vulnerability test, including its CVE num-

ber, the description of the test, the link to its proof of concept, and its CVSS2

score. In the app permission test, this will display the list of permissions re-

quested by the app and the risk level associated with that risk according to Secu-

ritometer’s ranking of risk. The way information are organised is very different

between the two type of test as seen in figure 4.16, because displaying a correct

and complete information is more important here than consistency.



Chapter 4. Design and Implementation 56

Figure 4.16: (a) App details (b) OS vulnerability details

4.4.5 Reporting the Result

Securitometer equipped itself with the capability to export its test results. Test results

can be exported into a .JSON file or copied to clipboard. The options to export result

is always available on the menu bar. If the user missed this option, the option to export

is also offered each time a summary of test results is displayed. These options are

depicted in figure 4.17:



Chapter 4. Design and Implementation 57

Figure 4.17: Export result options

We believe that JSON is the perfect format for Securitometer’s result as it has a

very good structure for parsing thus making it very interchangeable.



Chapter 5

Evaluation

In this chapter, we evaluate the success of our project in two ways: by carrying out

feature-based evaluation against the requirements elicited in chapter 3, and by con-

ducting a usability and acceptability study to potential users.

5.1 Feature-based Evaluation

5.1.1 Goals and Methodology

The main objective of this project is to develop Securitometer, an Android application

that will probe for security flaws and vulnerabilities of the device where it is installed,

and provide a security score of the device. The security score should represent the level

of risk that the owner of the device is exposed to.

At the earliest stage of this project, we carried several requirement elicitation activ-

ities namely: research, brainstorming, focus group discussion, prototyping and survey.

We have also summarised the insights that we gained from these activities. Therefore,

we carry a feature-based evaluation where we assess the success of the project by com-

paring the final product developed against our initial list of requirements, as elaborated

in section 3.2.

5.1.2 Results and Analysis

The followings are the results of comparing Securitometer’s final version with its initial

requirement:

1. Incorporate device vulnerability test suite

58



Chapter 5. Evaluation 59

Securitometer has successfully incorporated a widely used device vulnerability

test suite namely the fuzion24 vulnerability test suite as seen in section 4.2.3.

We took care not to cause instability to the target device during Securitometer’s

vulnerability detection process. The vulnerability test suite also support different

CPU architectures as seen in listing 8.

Unmet success criteria: None

2. Incorporate malware classifier

Securitometer has successfully incorporated a malware classifier called Explain-

Droid [7], as one of its test suite. ExplainDroid’s malware classifier decide

whether or not an APK file is malicious or benign. ExplainDroid was origi-

nally implemented in Python. We ported ExplainDroid to Java for Android and

put the resulting code inside Securitometer as seen in listing 2, listing 4, listing

6, and figure 4.5. By porting the whole classifier, it is able to run offline without

the need to send any data to third party server.

Unmet success criteria: None

3. Incorporate app permission test

Securitometer has successfully incorporated an app permission test that utilises a

ranking of permissions obtained from a research that produces the top-40 riskiest

permissions commonly found in malicious applications as seen in 4.16. This test

also gives a label to each app according to its risk level as seen in 4.15.

Unmet success criteria: None

4. Include introductory pages

Securitometer displays four introductory pages on its first run. We based the

structure of the introductory pages from a study that uses the concept of 5W1H

(What, Why, When, Where, Who, and How) to design a guiding system as seen

in figure 4.8 [41]. We also make sure to add information about how Securitome-

ter takes care not to cause any instability to its target device.

Unmet success criteria: None

5. OS scoring mechanism

We have developed a scoring mechanism for the target device’s operating sys-

tem. This score is calculated from the result of the device vulnerability test.



Chapter 5. Evaluation 60

Section 4.3.0.2 provided the details including the formula used to calculate the

OS score.

Securitometer uses the colour scheme of the traffic light to display the vulner-

ability result. Tests that state the device as vulnerable is displayed as red, not

vulnerable is displayed as green, and failed test is displayed as yellow as seen in

figure 4.15.

Unmet success criteria: None

6. App scoring mechanism

We have developed a scoring mechanism for the target device’s collection of

installed apps. This score is calculated from the result of both the malware clas-

sifier and the app permission test. Section 4.3.0.1 provided the details including

the formula used to calculate the app score.

Securitometer uses the colour scheme of the traffic light to display the app test

result. Tests that state the app as malicious are displayed as red. High-risk apps

are displayed as dark amber. Medium-risk apps are displayed as light amber.

Low-risk apps are displayed as green as seen in figure 4.15.

Unmet success criteria: None

7. Report mechanism

Securitometer has successfully equipped itself with the capability to export its

test results. JSON is chosen as the format because it is easy to parse thus making

it an interchangeable format.

Unmet success criteria: None

8. Progress dialogue

We realise that running the malware classifier takes a lot of resources including

time. In order to ensure that Securitometer’s scan does not prevent users from

using their phone for a very long time, we provide a notification service that

contains the current progress of the malware classifier as seen in 4.11. Users can

hide the Securitometer in the background and use other apps and be notified of

whether or not Securitometer has completed its scan yet.

Unmet success criteria: None



Chapter 5. Evaluation 61

After comparing our final version of Securitometer with the initial requirements,

we concluded that all goals regarding the functional aspects of Securitometer stated in

section 3.2 were met.

5.2 Usability and Acceptability Study

5.2.1 Goals and Methodology

Through this evaluation, we aim to answer the following questions:

1. Who will benefit the most from Securitometer?

2. How helpful do potential users regard the security metrics used by Securitometer

in evaluating the security of a device?

3. How well do potential users understand the purpose of Securitometer?

4. How useful is the system as regarded by the potential users?

5. How clear is the quality of information presented by Securitometer?

6. How do the potential users regard the quality of Securitometer’s user interface?

7. Overall, how satisfied is the potential users (penetration testers and IT security

auditors) with Securitometer?

Figure 5.1 depicts the methodology used in conducting usability and acceptability

study for Securitometer. We conducted 2 usability and acceptability surveys to answer

the above questions. The initial survey was disseminated after the first prototype of

Securitometer was completed. This initial survey has two purposes: to find areas that

need improvement from Securitometer, and to find out who will benefit the most from

Securitometer. Due to the purpose mentioned above, this initial survey was designed

to answer question 1-3.

We received 60 responses for this initial survey1. We got the answer for questions

1-3. We also got a lot of inputs on how to improve Securitometer from this initial

survey, because the questionnaire was filled with a lot of open-ended questions.

After the initial survey, We made a lot of changes and improvement to Securito-

meter. We incorporated the inputs we received from it and produced a final version of

Securitometer as we see today.
1https://goo.gl/forms/0PgkHcqvZxTlGQ8z1



Chapter 5. Evaluation 62

Figure 5.1: Methodology for usability and acceptability study

After the final version is completed, we decided to launch the final survey to further

evaluate Securitometer’s usability and acceptability aspect. Because we already got

the answer to question 1, and we see that it is not necessary to enquire about this

question again, we decided to exclude question 1 from the final survey. We received

40 responses for the final survey.

The final survey was designed to answer questions 2-7. We asked questions 2-3

again because we would like to see how potential users responded to them after the

changes that we have made to Securitometer and compare them with their previous

responses. We received 39 responses for the final survey2. To answer questions 5-

8, we used the standard PSSUQ (Post Study System Usability Questionnaire) [19].

PSSUQ can be used to calculate the followings:

• System usefulness, as represented by question 4.

• Information quality, as represented by question 5.

• Interface quality, as represented by question 6.

• Overall user satisfaction with the application, as represented by question 7.

2https://goo.gl/forms/gqCMTCYntinoF1zm1



Chapter 5. Evaluation 63

In PSSUQ, responders have to decide their level of agreements towards the follow-

ing 19 statements:

No Question Category

1 Overall, I am satisfied with how easy it is to use this app Usefulness

2 It was simple to use this app Usefulness

3 I can effectively complete my work using this app Usefulness

4 I am able to complete my work quickly using this app Usefulnes

5 I am able to efficiently complete my work using this app Usefulness

6 I feel comfortable using this app Usefulness

7 It was easy to learn to use this app Usefulness

8 I believe I became productive quickly using this app Usefulness

9 The app gives error messages that clearly tell me how to

fix problems

Information Quality

10 Whenever I make a mistake using the app, I recover eas-

ily and quickly

Information Quality

11 The information (such as online help, on-screen mes-

sages, and other documentation) provided with this app

is clear

Information Quality

12 It is easy to find the information I needed Information Quality

13 The information provided for the app is easy to under-

stand

Information Quality

14 The information is effective in helping me complete the

tasks and scenarios

Information Quality

15 The organization of information on the app screens is

clear

Information Quality

16 The interface of this app is pleasant Interface Quality

17 I like using the interface of this app Interface Quality

18 This app has all the functions and capabilities I expect it

to have

Interface Quality

19 Overall, I am satisfied with this app Overall

Table 5.1: PSSUQ’s list of questions

PSSUQ requires respondents to give their answer on a 7-point scales (lower num-

ber, means higher satisfaction with the application). We represent the 7-point scales



Chapter 5. Evaluation 64

answer with the following category: strongly agree, agree, slightly in agreement, neu-

tral. slightly in disagreement, disagree, strongly disagree. To conclude the final survey,

we calculate the average of user’s responses in PSSUQ. The average score of questions

1-19 represents overall user satisfaction with the app. The average score of questions

1-8 represents the app’s level of usefulness. The average score of questions 9-15 rep-

resents the quality of information provided by the app. Lastly, the average score of

questions 16-18 represents the quality of the app’s interface.

Respondents for both surveys are recruited by utilising the Securitometer devel-

oper’s list of colleagues and connection with several penetration testers and IT security

auditors from professional service firms. Both questionnaires are created using Google

Forms and are available online.

5.2.2 Results and Analysis

5.2.2.1 Initial Survey

This is a survey on the first prototype of Securitometer. The final survey about the

latest version of Securitometer is elaborated in details in the next section.

The initial survey was filled by 60 respondents over the period of 15 days, from 11

July to 25 July 2016. Figure 5.2 illustrate the demographics of our respondents:

Figure 5.2: Demographics for initial survey

Our first effort in demographics is ensuring that all of the respondents are users

of the Android smartphone. We then continue to ask the respondents about their oc-

cupation. We gave respondents the ability to choose more than one choice for their

occupation/background thus explaining the bar chart results in figure 5.2.

The purpose of the demographic questions are to compare the respondents’ back-

ground and classify the respondents into two: Android users who are IT security pro-

fessionals, and Android users who are not. By utilising this classification, we can



Chapter 5. Evaluation 65

conduct a more meaningful analysis based on the respondent’s background.

For clarity, we will refer to Android users who are IT security professionals as just

”IT security professionals”. We will also refer to Android users who are not IT security

professionals as just the ”General Android users”.

Based on figure 5.2 and the results that we got from our demographic questions,

we depicted the distribution of our respondents according to their familiarity with pro-

fessional IT security in the following diagram:

Figure 5.3: Classification of respondents for initial survey

The initial survey works like a walkthrough for the Securitometer’s first prototype.

It guides respondents through each page, then confirms whether respondents agree with

the design choice or not. Some of the results have been elaborated before in section

3.1.3. They are as follow:

• About 81.7% of the respondents agreed with our justification for the use of app

permission test. We did not see a notable difference between the answers from

IT security professionals and the general Android users.

• About 95% of the respondents agreed on the use of traffic colour scheme to

display the score helps users understand the impact that each app has on the

security level of the device.

• Malicious app identification, OS vulnerability test, and App permission test are

the top three metrics that respondents believe to represent the security level of a

device.

• Stable vulnerability check is the most popular type of vulnerability testing suite

(55%). We believe it is because its nature of not causing any harm to the device.



Chapter 5. Evaluation 66

We notice that when we divide the result between IT security professionals and

the general Android users, it seems that a majority of general Android users

(about 76.9%) choose stable vulnerability check over the exploit attempt and

lookup based (both at 11.55%). While for IT security professionals the choice

varies between stable vulnerability check (about 38.2%), exploit attempt (about

35.2%), and lookup based (about 26.4%).

• About 50% of the respondents think that Securitometer could harm their de-

vices. We did not see a notable difference between the answers from IT security

professionals and the general Android users.

We also asked open-ended questions in the initial survey in order to elicit input for

a better version of Securitometer. The summary of the inputs are as follow:

• Complains about the user interface

The first prototype of Securitometer is deemed as lacking a lot of aesthetic as-

pects. This is probably due to the fact that not a lot of thoughts are put into it

during the prototype development phase. Figure 4.13 shows the comparison be-

tween the first prototype’s user interface as evaluated in this survey and the latest

version of Securitometer.

• Complains about the lack of information regarding the test performed

The first prototype actually already have the full main functionality of Securit-

ometer except for the malware classifier. However, the amount of information

provided to the user is deemed to be very lacking if found at all.

With regards to our objectives for conducting the initial survey, which is to answer

question 1-3 from section 5.2.1. The followings are the results:

1. Who will benefit the most from Securitometer?

Figure 5.4 is the distribution of Securitometer’s potential users according to our

survey. About 83.3% believed Securitometer will be beneficial to penetration

testers, and 73.3% believed it is useful as well to security researchers. This

aligns with the motivation behind Securitometer as stated in section 1.1, which

is to develop new security tools that are more suited and is specially made for

mobile devices.



Chapter 5. Evaluation 67

Figure 5.4: Securitometer’s potential users

About 41.7% believed that company owners might be able to benefit from Secu-

ritometer too. This aligns with the sample usage scenarios that we provided in

section 1.2.

One notable observation is that 50% of the total respondents believed that the

general Android users could benefit the most from Securitometer. More specif-

ically on the demographics, about 42.3% of the general Android users that an-

swered the survey think that they will benefit the most from Securitometer. We

originally thought that Securitometer’s users will consist of just security profes-

sionals. This result could also be interpreted as the sign of how the need from

general Android users on security awareness and security education is increas-

ing.

2. How helpful do potential users regard the security metrics used by Securitometer

in evaluating the security of a device?

• App security metric

Figure 5.5 depicts how user values the app security metric that we devel-

oped. About 11.7% respondents think that the app metrics is extremely

helpful in evaluating the security of a device. Another 43.3% think that it

is very helpful. This makes up a majority of 55% who think that the app

metric is very helpful.

However, note that a large number of respondents (38.3%) think that the

app metric is just moderately helpful. Combined with those who think that

the app metric is just slightly helpful, it makes up a total of 45%. This is is

not to our satisfaction. This result is one of the reasons why we added an

extra test to the app security metrics, which is the malware classifier. We



Chapter 5. Evaluation 68

Figure 5.5: Survey result on the app security metrics

also decided to make a lot of changes to the way information are delivered

to the users regarding the app metric and scoring mechanism.

• OS security metric

Figure 5.6 depicts how user values the OS security metric that we devel-

oped. About 18.3% respondents think that the OS metrics is extremely

helpful in evaluating the security of a device. Another 45% think that it is

very helpful. This makes up a majority of 63.3% who think that the OS

metric is very helpful.

Figure 5.6: Survey result on the OS security metrics

Almost similarly with the app metric, a total of 35% of the respondents

think that the OS metric is just moderately and slightly useful. We decided

to incorporate the inputs requested from our open-ended questions to the

way information are delivered to the user regarding the OS metric.

3. How well do potential users understand the purpose of Securitometer?



Chapter 5. Evaluation 69

Figure 5.7: Respondent’s level of understanding

Figure 5.7 is the distribution of the respondent’s level of understanding about

what Securitometer is about. We noticed that about 21.7% of the respondents

understood the concept behind Securitometer very well. A large majority of

68.3% understood it relatively well. We consider the rest of the respondents to

fail to meet our criteria of understanding Securitometer’s concept. In respond to

this, we decided to make changes to the amount of information provided to the

user as well as adding better introductory pages to Securitometer.

From this initial survey, we have obtained a solid answer to question 1 from section

5.2.1. We also received several inputs that could make Securitometer better. After

proceeding to make changes and update Securitometer according to the above inputs,

we believe that there is a need to revisit question 2 and question 3 again for the final

survey.

5.2.2.2 Final Survey

The final survey consisted of two parts: the follow-up questions from the previous

initial survey, and the PSSUQ (Post Study System Usability Questionnaire).

The final survey was filled by 39 respondents over the period of 10 days, from 1

August to 10 August 2016. We kept the original demographic questions from the initial

survey and obtained the following distribution of respondents:

The distribution looks quite similar to the initial survey only with fewer respon-

dents. This is probably because the questionnaire was live for fewer days compared

to the initial survey. About 61.5% of our respondents are IT security professionals,

the rest 38.5% are general Android users. Due to the similarity on the distribution of

respondents’ background, we decided that the decision to compare the result of this



Chapter 5. Evaluation 70

Figure 5.8: Demographics for final survey

survey and the initial survey is justified.

One of our objectives for conducting the final survey is to revisit question 2 and

question 3 from section 5.2.1. The followings are the result:

1. How helpful do potential users regard the security metrics used by Securitometer

in evaluating the security of a device?

• App security metric

After the initial survey completed, we added the following new features

to the app metric: displaying more information about the test to the user,

incorporating malware classifier to the metric, and adding a notification

feature to the app permission test.

Figure 5.9: Final survey result on the app security metrics

After incorporating the new features and changes to the app security metric,

we noticed an increase in the total number of respondents who think that

the app metrics is either extremely helpful or very helpful (from 55% to

74.3%) as seen in figure 5.9.



Chapter 5. Evaluation 71

• OS security metric

The following new features are added to the OS metric after the initial

survey ended: displaying more information about the test, informing users

that the test involved are harmless.

Figure 5.10: Final survey result on the OS security metrics

After incorporating the new features and changes to the OS security metric,

we noticed an increase in the total number of respondents who think that

the app metrics is either extremely helpful or very helpful (from 63.3% to

76.9%) as seen in figure 5.10.

2. How well do potential users understand the purpose of Securitometer?

Figure 5.11: Respondent’s level of understanding in final survey

Figure 5.11 is the distribution of the respondent’s level of understanding about

what Securitometer is about after we made major changes to its introductory

pages. We noticed an increase in the total respondents who understood the con-

cept very well (from 21.7% to 35.9%).



Chapter 5. Evaluation 72

To answer question 4-7 from 5.2.1 we disseminated the PSSUQ along with the

final survey. The PSSUQ measured four components of this project: overall user satis-

faction, app usefulness, information quality, and interface quality. We will discuss the

result of each component as follow:

1. How useful is the system as regarded by the potential users?

Question Level of Agreement

(lower number, means higher degree)

1 2 3 4 5 6 7

Overall, I am satisfied

with how easy it is to use

this app

13 17 6 3 0 0 0

It was simple to use this

app

12 20 6 1 0 0 0

I can effectively complete

my work using this app

12 18 6 2 1 0 0

I am able to complete my

work quickly using this

app

11 18 7 2 1 0 0

I am able to efficiently

complete my work using

this app

12 19 5 3 0 0 0

I feel comfortable using

this app

10 18 6 4 1 0 0

It was easy to learn to use

this app

10 19 8 2 0 0 0

I believe I became pro-

ductive quickly using this

app

8 13 9 6 1 2 0

Table 5.2: PSSUQ’s questions 1-8

Table 5.2 shows how the respondent’s value the usefulness of Securitometer. By

calculating the average of the above questions, we get a value of 2.09 which

is high. We conclude that the respondents highly regarded Securitometer as a



Chapter 5. Evaluation 73

useful application.

2. How clear is the quality of information presented by Securitometer?

Question Level of Agreement

(lower number, means higher degree)

1 2 3 4 5 6 7

The app gives error mes-

sages that clearly tell me

how to fix problems

6 12 11 6 1 3 0

Whenever I make a mis-

take using the app I re-

cover easily and quickly

5 13 13 3 3 2 0

The information (such

as online help, on-screen

messages, and other

documentation) provided

with this app is clear

8 16 7 2 3 2 1

It is easy to find the infor-

mation I needed

7 17 7 3 2 2 1

The information provided

for the app is easy to un-

derstand

8 17 5 3 3 3 0

The information is effec-

tive in helping me com-

plete the tasks and scenar-

ios

9 19 5 3 1 2 0

The organization of infor-

mation on the app screens

is clear

10 19 5 2 1 2 0

Table 5.3: PSSUQ’s questions 9-15

Table 5.3 shows how the respondent’s value the quality of information provided

by Securitometer. By calculating the average of the above questions, we get a

value of 2.59 which is high. We conclude that the respondents valued Securito-



Chapter 5. Evaluation 74

meter’s quality of information highly.

3. How do the potential users regard the quality of Securitometer’s user interface?

Question Level of Agreement

(lower number, means higher degree)

1 2 3 4 5 6 7

The interface of this app

is pleasant

12 17 8 1 0 0 1

I like using the interface

of this app

12 18 6 2 0 0 1

This app has all the func-

tions and capabilities I ex-

pect it to have

9 17 6 4 1 2 0

Table 5.4: PSSUQ’s questions 16-18

Table 5.4 shows how the respondent’s value the quality of Securitometer’s user

interface. By calculating the average of the above questions, we get a value of

2.16 which is high. We conclude that the respondents valued Securitometer’s

quality of information highly.

4. Overall, how satisfied is the potential users (penetration testers and IT security

auditors) with Securitometer?

Question Level of Agreement

(lower number, means higher degree)

1 2 3 4 5 6 7

Overall, I am satisfied

with this app

11 20 4 2 2 0 0

Table 5.5: PSSUQ’s question 19

Table 5.5 shows the value obtained for PSSUQ’s question 19. To calculate the

overall user satisfaction for Securitometer, we calculate the average of all ques-

tions in table 5.2, 5.3, 5.4, and 5.5. We get a value of 2.29 which is high. We

conclude that overall, the respondents are highly satisfied by Securitometer.

We have compared the evaluation of Securitometer’s first prototype with the eval-



Chapter 5. Evaluation 75

uation of Securitometer’s final version. Thus, we have successfully revisited question

2 and 3 from section 5.2.1. In comparing the results of both evaluation, we noticed an

increasing trend in user’s understanding and acceptance of the application.

We have also successfully disseminated the Post Study System Usability Ques-

tionnaire which answers question 4-7 from section 5.2.1. We concluded that the final

version of Securitometer is highly regarded by the respondents both in terms of the

level of usefulness, information quality, interface quality, and overall user satisfaction.



Chapter 6

Conclusion

6.1 Concluding Remarks

We took a look at the Android security ecosystem. As the leader of the smartphone

market, it is doing quite poorly with at least one critical vulnerabilities found in 87.7%

of these mobile operating system. Imagine having a private corporate network that is

connected to hundreds of Android devices with critical vulnerabilities waiting to be ex-

ploited by malicious attackers and the system administrator has no control whatsoever

with the configuration of the connected devices.

Motivated by the problems above, we set out to design and develop a new security

tool that is more suited and is specially made for Android devices. Prior to developing

anything, we made sure to conduct a number of requirement elicitation activities in

order to acquire the most comprehensive appreciation of what must be implemented

within the proposed new tool. We researched the Android’s ecosystem, Android’s

security and vulnerabilities, penetration testing, and security tools that are related to

mobile devices. We also conducted brainstorming and focus group discussion with

two type of research groups: 1 group is filled with security experts to gain the technical

standpoint, the other group is filled with usability experts to gain the user’s viewpoint.

We developed Securitometer, an Android application that probe for security flaws

and vulnerabilities of the device where it is installed, and provide a security score

of the device. In developing Securitometer, we implemented three type of security

test namely: malware classification test, app permission test, and device vulnerability

test. We developed these three test by basing our design on well-established research

and tools. The malware classification test is created by porting a malware classifier

called ExplainDroid to Java for Android. The app permission test is adopted from a

76



Chapter 6. Conclusion 77

research that assign risk level and rankings to Android permissions. Lastly, the device

vulnerability test is adopted from fuzion24’s test suite, a widely used vulnerability test

suite for Android. We ported and incorporated all three test in the one Securitometer

app.

In order to communicate the results of the above three test to the user, we developed

two scoring mechanisms: app score and OS score. We also carefully designed and

developed the user interface and user experience for Securitometer. In order to achieve

the highest appreciation in this aspect, we quickly develop a prototype at the early stage

of this project. We conducted user study on the prototype (focus group and survey) and

incorporate the inputs that we obtained from them to the Securitometer that we now

know.

In evaluating Securitometer from a software engineering point of view, we made

sure to validate Securitometer’s feature by conducting tests on each of its features. We

made sure that it worked in the way that we intended it to by comparing its output with

the output of the original research or tools that it based itself on.

In evaluating Securitometer from a usability point of view, we evaluated Securito-

meter by conducting surveys. We found that Securitometer is regarded as useful to not

only penetration tester and security researcher, but also the general Android users. We

also found that these users regarded the experience of using Securitometer as consid-

erably satisfying in terms of its level of usefulness, information quality, and interface

quality. This concludes the development and evaluation of Securitometer, the Android

security metrics application.

6.2 Limitations of this Project

Although our work on Securitometer and its evaluation have yielded some positive re-

sults, the design of this project is not without flaws. The first limitation concerns the

limited reach of our requirement elicitation activities. We believe that a security mea-

surement application such as Securitometer should go through a lot of iterations and

user evaluation. We only conducted two user evaluations: one for the prototype and the

other one for the final version. After singling out the potential users for Securitometer

from the first user evaluation, we believe that a more rigorous and targeted requirement

elicitation activities need to be conducted in order to achieve the highest appreciation

of the user’s needs. This was not possible for us to complete due to our limited reach

to the target users and the limited amount of time available for this project.



Chapter 6. Conclusion 78

The second limitation concerns the way respondents are recruited for the final eval-

uation of Securitometer. Due to the limited number of security professionals out there,

we recruited most respondents from the developer’s professional network. Most re-

spondents of this category might already know the identity of the developer. This

might affect their sentiment in answering the survey questionnaires. To balance this,

we also recruited random respondents for the category of general Android users. We

believe that even though this might not be the perfect response to this limitation it

should suffice to make the evaluation more objective than just recruiting friends and

colleagues as respondents.

6.3 Future Work

Security metrics and mobile security are both a growing field. I suggest the following

areas as the main topic that could be further researched for the future development of

Securitometer and the likes:

1. Introducing new metrics from device settings, configuration, communication

history and connected networks.

2. Improving the accuracy of the incorporated malware classifier by collecting an

anonymous list of installed applications. This might need further research on

user privacy.

3. Improving the notification feature to let the user know if the device has not been

scanned after a period of time. More research on usability might need to be

included for this.

4. Automatic update of the permission ranking by feeding the application with up-

dated data from an online malware classifier.

5. Adding more vulnerability test to the fuzion24 test suite. This will need a rig-

orous test to make sure that the test is stable and is not harmful to the target

device.



Appendix A

Appendix: Screenshot of

Securitometer

79











 



Appendix B

Appendix: Initial Survey

{

"buildInfo": {

"fingerprint": "Meizu\/meizu_m2note \

\/m2note:5.1\/LMY47D\/1464266312 \

:user\/release-keys",

"kernelVersion": "3.10.65-user",

"brand": "Meizu",

"manufacturer": "Meizu",

"model": "m2 note",

"release": "5.1",

"sdk": "22",

"builddate": 1464266461000,

"id": "LMY47D",

"cpuABI": "armeabi-v7a",

"cpuABI2": "armeabi",

"supportedABIs": [

"arm64-v8a",

"armeabi-v7a",

"armeabi"

],

"versionCode": 1,

"versionName": "v.1"

},

"appResults": [

{

"name": "Brightest Flashlight Free",

"label": "MALWARE",

"score": 0,

"permissions": "[android.permission.READ_PHONE_STATE, \

85



Appendix B. Appendix: Sample Exported Result from Securitometer 86

android.permission.READ_EXTERNAL_STORAGE, \

android.permission.WAKE_LOCK, \

android.permission.ACCESS_NETWORK_STATE,\

android.permission.WRITE_EXTERNAL_STORAGE, \

android.permission.INTERNET, \

android.permission.ACCESS_WIFI_STATE, \

android.permission.CAMERA, \

android.permission.ACCESS_FINE_LOCATION]"

},

{

"name": "Smart Voice Recorder",

"label": "BENIGN",

"score": 8.529483579538518,

"permissions": "[android.permission.READ_PHONE_STATE, \

android.permission.READ_EXTERNAL_STORAGE, \

android.permission.WAKE_LOCK, \

android.permission.ACCESS_NETWORK_STATE, \

android.permission.WRITE_SETTINGS, \

android.permission.WRITE_EXTERNAL_STORAGE, \

android.permission.INTERNET]"

},

{

"name": "Terminal Emulator",

"label": "BENIGN",

"score": 9.214381638383593,

"permissions": "[android.permission.READ_EXTERNAL_STORAGE, \

android.permission.WAKE_LOCK, \

android.permission.WRITE_EXTERNAL_STORAGE, \

android.permission.INTERNET]"

}

],

"osResults": [

{

"name": "ZipBug 9950697",

"isVulnerable": false

},

{

"name": "CVE-2013-4787",

"isVulnerable": false

},

{

"name": "ZipBug 9695860",



Appendix B. Appendix: Sample Exported Result from Securitometer 87

"isVulnerable": false

},

{

"name": "CVE-2013-6282",

"isVulnerable": false,

"exception": "java.lang.Exception: Error running test"

},

{

"name": "CVE-2014-3153",

"isVulnerable": false

},

{

"name": "CVE-2014-4943",

"isVulnerable": false

},

{

"name": "CVE-2014-3847",

"isVulnerable": false

},

{

"name": "CVE-2015-1474",

"isVulnerable": false

},

{

"name": "CVE-2015-1538-1",

"isVulnerable": false,

"exception": "java.lang.Exception: Test error"

},

{

"name": "CVE-2015-1538-2",

"isVulnerable": false,

"exception": "java.lang.Exception: Test error"

},

{

"name": "CVE-2015-1538-3",

"isVulnerable": false,

"exception": "java.lang.Exception: Test error"

},

{

"name": "CVE-2015-1538-4",

"isVulnerable": false,

"exception": "java.lang.Exception: Test error"



Appendix B. Appendix: Sample Exported Result from Securitometer 88

},

{

"name": "CVE-2015-1539",

"isVulnerable": false,

"exception": "java.lang.Exception: Test error"

},

{

"name": "CVE-2015-3824",

"isVulnerable": true

},

{

"name": "CVE-2015-3828",

"isVulnerable": false,

"exception": "java.lang.Exception: Test error"

},

{

"name": "CVE-2015-3829",

"isVulnerable": false,

"exception": "java.lang.Exception: Test error"

},

{

"name": "CVE-2015-3864",

"isVulnerable": false,

"exception": "java.lang.Exception: Test error"

},

{

"name": "sf-itunes-poc",

"isVulnerable": true

},

],

}

Listing 9: Sample report by Securitometer



Appendix C

Appendix: Initial Survey

89









































Appendix D

Appendix: Final Survey

109

































Bibliography

[1] Android. Abi management. Available online: https://developer.android.

com/ndk/guides/abis.html.

[2] Android. Supporting different devices. Available online: https://developer.

android.com/training/basics/supporting-devices/index.html.

[3] Sam Bakken. Appealing google play’s suspension of the vts for android app, Dec

2015.

[4] Mario Ballano. Mobile attacks: Cybercriminals’ new cash cow.

Available online: http://www.symantec.com/connect/blogs/

mobile-attacks-cybercriminals-new-cash-cow, Aug 2014.

[5] Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: behavior-

based malware detection system for android. In Proceedings of the 1st ACM

workshop on Security and privacy in smartphones and mobile devices, pages 15–

26. ACM, 2011.

[6] Ngai Chee Ban. Is penetration testing recommended for industrial control sys-

tems?, 2013.

[7] Wei Chen, David Aspinall, Andrew D. Gordon, Charles A. Sutton, and Igor Mut-

tik. More semantics more robust: Improving android malware classifiers. In

Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and

Mobile Networks, WISEC 2016, Darmstadt, Germany, July 18-22, 2016, pages

147–158, 2016.

[8] Steve Easterbrook. Lecture 4: Requirements elicitation, Aug 2016.

[9] William Enck, Damien Octeau, Patrick McDaniel, and Swarat Chaudhuri. A

study of android application security. In USENIX security symposium, volume 2,

page 2, 2011.

125

https://developer.android.com/ndk/guides/abis.html
https://developer.android.com/ndk/guides/abis.html
https://developer.android.com/training/basics/supporting-devices/index.html
https://developer.android.com/training/basics/supporting-devices/index.html
http://www.symantec.com/connect/blogs/mobile-attacks-cybercriminals-new-cash-cow
http://www.symantec.com/connect/blogs/mobile-attacks-cybercriminals-new-cash-cow


Bibliography 126

[10] William Enck, Machigar Ongtang, and Patrick McDaniel. On lightweight mobile

phone application certification. In Proceedings of the 16th ACM conference on

Computer and communications security, pages 235–245. ACM, 2009.

[11] Patrick Engebretson. The basics of hacking and penetration testing: ethical hack-

ing and penetration testing made easy. Elsevier, 2013.

[12] Grant H Fenner and Robert W Renn. Technology-assisted supplemental work

and work-to-family conflict: The role of instrumentality beliefs, organizational

expectations and time management. Human Relations, 2009.

[13] Clint Gibler, Jonathan Crussell, Jeremy Erickson, and Hao Chen. Androidleaks:

automatically detecting potential privacy leaks in android applications on a large

scale. In International Conference on Trust and Trustworthy Computing, pages

291–307. Springer, 2012.

[14] M. Glinz. On non-functional requirements. In 15th IEEE International Require-

ments Engineering Conference (RE 2007), pages 21–26, Oct 2007.

[15] Cedric Halbronn and Jean Sigwald. iphone security model & vulnerabilities. In

Proceedings of Hack in the box sec-conference. Kuala Lumpur, Malaysia, 2010.

[16] IDC Research Inc. Idc: Smartphone vendor market share, 2015.

[17] Willy Jimenez, Amel Mammar, and Ana Cavalli. Software vulnerabilities, pre-

vention and detection methods: A review1. Security in Model-Driven Architec-

ture, page 6, 2009.

[18] Kaspersky Lab. System vulnerability and exploits, 2016.

[19] James R Lewis. Ibm computer usability satisfaction questionnaires: psychomet-

ric evaluation and instructions for use. International Journal of Human-Computer

Interaction, 7(1):57–78, 1995.

[20] Steven Millward. 9 alternative android app stores in china, Mar 2016.

[21] Keith Mokris. Android vts now on google play, Oct 2015.

[22] Norton. Internet security threat report 2016. 2016.

[23] NowSecure. Android vts. Available online: https://github.com/

AndroidVTS/android-vts, 2016.

https://github.com/AndroidVTS/android-vts
https://github.com/AndroidVTS/android-vts


Bibliography 127

[24] NIST NVD. Cvss v3 released. Available online: https://nvd.nist.gov/

CVSS/CVSS-v3-information.aspx.

[25] Samantha Rush. Problematic use of smart phones in the workplace: an introduc-

tory study. BArts (Honours) thesis. Central Queensland University, Rockhamp-

tonAvailable: http://hdl. cqu. edu. au/10018/914191, 2011.

[26] Giovanni Russello, Arturo Blas Jimenez, Habib Naderi, and Wannes van der

Mark. Firedroid: Hardening security in almost-stock android. In Proceedings

of the 29th Annual Computer Security Applications Conference, ACSAC ’13,

pages 319–328, New York, NY, USA, 2013. ACM.

[27] Matthew Schwartz. Android app ids smartphone, tablet vulnerabilities, Jul 2012.

[28] Duo Security. X-ray for android. Available online: https://github.com/

duo-labs/xray, 2016.

[29] Mohamed Nassim Seghir and David Aspinall. EviCheck: Digital Evidence for

Android, pages 221–227. Springer International Publishing, Cham, 2015.

[30] Asaf Shabtai, Uri Kanonov, Yuval Elovici, Chanan Glezer, and Yael Weiss. an-

dromaly: a behavioral malware detection framework for android devices. Journal

of Intelligent Information Systems, 38(1):161–190, 2012.

[31] Sufatrio, Darell J. J. Tan, Tong-Wei Chua, and Vrizlynn L. L. Thing. Securing

android: A survey, taxonomy, and challenges. ACM Comput. Surv., 47(4):58:1–

58:45, May 2015.

[32] Daniel R. Thomas, Alastair R. Beresford, and Andrew Rice. Security metrics for

the android ecosystem. In Proceedings of the 5th Annual ACM CCS Workshop

on Security and Privacy in Smartphones and Mobile Devices, SPSM ’15, pages

87–98, New York, NY, USA, 2015. ACM.

[33] Kevin Townsend. Virustotal policy change rocks anti-malware industry, May

2016.

[34] James Turland, Lynne Coventry, Debora Jeske, Pam Briggs, and Aad van

Moorsel. Nudging towards security: Developing an application for wireless

network selection for android phones. In Proceedings of the 2015 British HCI

Conference, British HCI ’15, pages 193–201, New York, NY, USA, 2015. ACM.

https://nvd.nist.gov/CVSS/CVSS-v3-information.aspx
https://nvd.nist.gov/CVSS/CVSS-v3-information.aspx
https://github.com/duo-labs/xray
https://github.com/duo-labs/xray


Bibliography 128

[35] Wade M Vagias. Likert-type scale response anchors. Clemson International

Institute for Tourism & Research Development, Department of Parks, Recreation

and Tourism Management. Clemson University, 2006.

[36] Christian Vanek. What is a likert scale survey question & how to use it, Apr 2012.

[37] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang. Exploring permission-

induced risk in android applications for malicious application detection. IEEE

Transactions on Information Forensics and Security, 9(11):1869–1882, Nov

2014.

[38] Ryan Welton and Marco Grassi. Current state of android privilege escalation, Oct

2015.

[39] Lei Wu, Michael Grace, Yajin Zhou, Chiachih Wu, and Xuxian Jiang. The impact

of vendor customizations on android security. In Proceedings of the 2013 ACM

SIGSAC conference on Computer & communications security, pages 623–634.

ACM, 2013.

[40] Sara Yin. Android malware reports overtake symbian, Aug 2011.

[41] Yonghai Yu and Yun Bi. A study on x201c;5w1h x201d; user analysis on inter-

action design of interface. In Computer-Aided Industrial Design Conceptual De-

sign (CAIDCD), 2010 IEEE 11th International Conference on, volume 1, pages

329–332, Nov 2010.

[42] Z. Zhao and F. C. Colon Osono. x201c;trustdroid x2122; x201d;: Preventing

the use of smartphones for information leaking in corporate networks through

the used of static analysis taint tracking. In Malicious and Unwanted Software

(MALWARE), 2012 7th International Conference on, pages 135–143, Oct 2012.

[43] Y. Zhou and X. Jiang. Dissecting android malware: Characterization and evolu-

tion. In 2012 IEEE Symposium on Security and Privacy, page 95 to 109, May

2012.


	Introduction
	Motivation
	Objectives
	Achievements
	The Securitometer Android Application
	Use of CVE and CVSS for Scoring Mechanism

	Porting a Python Classifier to Java for Android
	Usability Aspects of Securitometer Application

	Document Outline

	Background
	Software Vulnerability
	Industry Standard: CVE and CVSS
	Common Vulnerabilities and Exposures (CVE)
	Common Vulnerability Scoring System (CVSS)

	Android Security and Vulnerability

	Limitations and Weakness of Android Security Model
	Previous Work on Android Security Metrics
	Security Metrics for the Android Ecosystem
	Malicious Application Classifier for Android Apps


	Requirement Specification
	Requirement Elicitation
	Research on Related Projects
	Virus Total for Android
	X-Ray
	Android VTS
	Risk-Ranking for Android Permissions
	Insights from Related Projects

	Brainstorming
	Prototyping and Survey
	Focus Group Discussion

	Recap and Summary

	Design and Implementation
	Technology Specification
	Minimum Target Platform
	Solution Architecture

	Back-end: Three Tests Performed
	Malware Classification Test
	Extracting API Calls
	Extracting Permissions
	The Classification

	Application Permission Test
	Device Vulnerability Test
	Filtering and Executing the Test


	Back-end: Two Scoring Mechanism
	App Score
	OS Score


	Front-end: Securitometer Application
	Splash Screen and Introductory Pages
	Main Page
	Running the Test
	Displaying the Result
	Reporting the Result


	Evaluation
	Feature-based Evaluation
	Goals and Methodology
	Results and Analysis

	Usability and Acceptability Study
	Goals and Methodology
	Results and Analysis
	Initial Survey
	Final Survey



	Conclusion
	Concluding Remarks
	Limitations of this Project
	Future Work

	Appendix: Screenshot of Securitometer
	Appendix: Sample Exported Result from Securitometer
	Appendix: Initial Survey for Securitometer Prototype
	Appendix: Final Survey for the Final Version of Securitometer
	Bibliography

