
Database Support for Minority Language

Policy Research

Rick Daniel

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2016





Abstract
This project covers the development of a system intended to help minority languages

researchers by providing a search website for reports produced by the European Char-

ter for Regional or Minority Languages. The source reports are presented in PDF

documents and mostly not searchable by document viewers. The built system reads

the documents using OCR and converts the contents into a searchable texts, by means

of storing them in a database and indexing them in a search server. The built system

was delivered as a proof of concept for a document database system. It reduces manual

work drastically and provides extensible nature for developers to build ideal document

database system.

iii





Declaration
I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Rick Daniel)

v





Acknowledgements

I would like to thank my supervisor, Kyriakos Kalorkoti, for his guidance and su-

pervision during the project development, also his teaching on the Computer Algebra

course,

Rob Dunbar (Head of Celtic and Scottish Studies of the University of Edinburgh), for

his inputs on the planning of the project,

Graham Dutton, for his helps on the DICE server configuration,

Dave Cochran, for his guidance on scientific writing,

Don Sannella, for his advice as my personal tutor,

M. Arapinis, D. Aspinall, I. Diakonikolas, B. Franke, K. Heafield, S. Maneth, R.

Sarkar, and K. Vaniea, for their teachings on the courses I took in my one year of

education here,

Papa, Mama, brothers, and sister, for their supports and prayers,

And of course, Lembaga Pengelola Dana Pendidikan Republik Indonesia, who made

it possible for me to pursue my postgraduate study here.

vii





Table of Contents

1 Introduction 1

1.1 Report Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background 3

2.1 Council of Europe’s European Charter for Regional or Minority Lan-

guages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.2 Problems and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Tools 9

3.1 Document Parser . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Search Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Web Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Web Server and Deployment . . . . . . . . . . . . . . . . . . . . . . 14

4 The System 15

4.1 Document Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Document Structure . . . . . . . . . . . . . . . . . . . . . . 16

4.1.2 Malformed Documents . . . . . . . . . . . . . . . . . . . . . 17

4.1.3 Processing the Documents . . . . . . . . . . . . . . . . . . . 17

4.2 Document Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2.1 Database Design . . . . . . . . . . . . . . . . . . . . . . . . 19

4.2.2 Storing the Texts . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Search Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4 Web Search Interface . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.4.1 Search Form . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.4.2 Search Results . . . . . . . . . . . . . . . . . . . . . . . . . 22

ix



4.5 Web Administrator Interface . . . . . . . . . . . . . . . . . . . . . . 23

4.5.1 Inserting Documents . . . . . . . . . . . . . . . . . . . . . . 23

4.5.2 Manual Section Separation . . . . . . . . . . . . . . . . . . . 25

4.5.3 User Administration . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.6.1 Modules Relationships . . . . . . . . . . . . . . . . . . . . . 27

4.6.2 Technical Details . . . . . . . . . . . . . . . . . . . . . . . . 28

4.6.3 Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.7 Testing and Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.7.1 System Evaluation . . . . . . . . . . . . . . . . . . . . . . . 33

4.7.2 Project Evaluation . . . . . . . . . . . . . . . . . . . . . . . 33

4.8 Setback and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . 34

5 Conclusion and Further Work 35
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.3 Reflections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Bibliography 39

x



List of Figures

4.1 System Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 A passage from Armenia’s 2nd cycle Committee of Ministers’ Recom-

mendation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Processor usage of Tesseract (Docsplit’s OCR library) when parsing a

document. Core number 7 is utilised at 100% usage by the tesseract

process (see the bottom part of the figure). . . . . . . . . . . . . . . . 18

4.4 The relational schema of the database. . . . . . . . . . . . . . . . . . 19

4.5 Typical section number and title in Committee of Experts’ evaluation

reports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.6 The front page of the website. “Seeker” refers to the name of the project. 22

4.7 Searching “slovene” on section 2.3 of documents from Austria. . . . . 23

4.8 Search results of “slovene”. . . . . . . . . . . . . . . . . . . . . . . . 23

4.9 Manage documents page. . . . . . . . . . . . . . . . . . . . . . . . . 24

4.10 Inserting new document. . . . . . . . . . . . . . . . . . . . . . . . . 24

4.11 Manage documents page after inserting new document, showing “in

progress” parsing status for the new document. . . . . . . . . . . . . 24

4.12 Editing the section separation of the previously inserted document. . . 25

4.13 Assigning covered language to corresponding sections. . . . . . . . . 26

4.14 Administrators management page. . . . . . . . . . . . . . . . . . . . 27

xi





List of Listings

4.1 Indexing module code in Section class . . . . . . . . . . . . . . . . 29

4.2 Part of search method, showing data flow from raw query into search

results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.3 Some deployment configurations found in config/deploy.rb . . . . 31

xiii

config/deploy.rb




List of Tables

4.1 Model classes of the system . . . . . . . . . . . . . . . . . . . . . . 28

4.2 Controller classes of the system . . . . . . . . . . . . . . . . . . . . 28

xv





Chapter 1

Introduction

This report covers the development process of a system built to solve a problem raised

by the School of Literatures, Languages, and Cultures of University of Edinburgh.

The researchers from the school’s Department of Celtic and Scottish Studies needed a

system to help them with minority languages research. The problem is covered in more

details in Chapter 2. The system is designed to convert and store research documents

in a searchable database. Naturally the system is also expected to have an interface for

the researchers to perform searches on the documents, as well as administrator-related

features.

The development process achieved a system that implements the primary function of

the intended system, that is enabling searches on the converted documents. The system

proved to reduce manual work drastically. Details of the implementation of the system

are covered in Chapter 4. Some unexpected difficulties caused the development process

to be delayed and some initially proposed features omitted. This leaves many available

improvements of the system. Description of how to access the system is covered in

Section 3.5.

1.1 Report Outline

The rest of the report covers the details of the project:

• Chapter 2 covers the basis organisation and data set intended for the system, the

problems, the ideal solutions of the problems, and the achieved solutions.

1



2 Chapter 1. Introduction

• Chapter 3 covers the tools and framework used in the system.

• Chapter 4 covers the details of implementation of the system, how to use it, and

difficulties found during the development process.

• Chapter 5 concludes the report and discusses possible future work.



Chapter 2

Background

This chapter covers the background of the project, particularly the Council of Europe’s

European Charter for Regional or Minority Languages, from which the problem arises,

and the problem itself. Also it states the scope of the project, which includes the

ideal solution of the problem and the deliverable solution given the time and resource

constraints.

2.1 Council of Europe’s European Charter for Regional

or Minority Languages

The Council of Europe is an organization in Europe, which focuses on human rights,

democracy, rule of law, cultural identity and diversity, and social challenges among

others. It was founded in 1949 and headquartered in Strasbourg, France. The Statute

of the Council of Europe states that “the aim of the Council of Europe is to achieve

a greater unity between its members for the purpose of safeguarding and realising the

ideals and principles which are their common heritage and facilitating their economic

and social progress” [20].

One of the aims of the Council of Europe is “the protection and promotion of the

wealth and diversity of Europe’s cultural heritage” [17]. It is protecting and promoting

the regional and minority languages of European countries through ratifying the Euro-

pean Charter for Regional or Minority Languages. It goes along with the Council of

Europe’s focus on human rights by protecting linguistic rights.

3



4 Chapter 2. Background

The European Charter for Regional or Minority Languages (ECRML) was opened in

1992 and has been since ratified by 25 states. The Charter covers 79 minority languages

from the ratifying state parties [8]. It monitors and evaluates how the state parties

apply the Charter and makes recommendations on their policies. For the monitoring

and evaluation, there are three types of reports we are concerned about:

1. State Periodical Reports

The state parties have to submit a periodical report about their policies and ac-

tions as their commitment to the Charter. The reports are submitted every three

years. There are outlines for the initial and periodical reports laid out by the

Council of Europe.

2. Committee of Experts’ evaluation reports

The Committee of Experts examines the state reports submitted by the state par-

ties. It addresses problems and questions found on the reports and evaluates

them directly by visiting the states. It then gives its own evaluation reports based

on the examination and evaluations. It submits the reports to the Committee of

Ministers.

3. Committee of Ministers’ Recommendation

The Committee of Ministers receives the evaluation reports and decides to pub-

lish them. It then makes recommendation reports for the states about necessary

actions on their policies regarding the Charter.

2.2 Problems and Scope

Researchers in the Department of Celtic and Scottish Studies from the School of Liter-

atures, Languages, and Cultures of University of Edinburgh use the reports of ECRML,

for example to help them in drafting legislation. They face problems in finding needed

information from numerous documents. In order to extract information about some-

thing, they manually open each document where the information may be found and

search it. However, most of the documents cannot be searched in a document viewer

because they are malformed. This makes searching certain information a tedious task

to perform manually.



2.2. Problems and Scope 5

The aim of the project is to build a system that enables the users to perform searches on

the documents of the Council of Europe’s reports. Before it can be used as a searching

tool, the system needs to process the documents into a searchable database. The inten-

dend workflow of the system for enabling search on one document is by parsing the

contents of the documents, storing the parsed contents into a database, and indexing

the stored contents. These processes are carried out by the system after an adminis-

trator provides the document. After the document has been processed into the system,

the users can use the web interface to carry out a search. Detailed workflow and the

structure of the system are covered in Chapter 4.

An ideal solution to the problem is a system that performs well on every aspect of the

workflow and reduces manual work drastically. A system with the following specifi-

cations would automate most of the work and solve the problem completely:

• It processes the input documents and extracts metadata information automati-

cally. The administrators of the system should be able to provide only the orig-

inal documents and leave the system to determine the type of the document,

country of origin, and year and cycle of publication. No further involvement of

the administrators should be needed after the original documents have been fed

to the system.

• It parses every detail of the documents automatically, including accompanying

figures, tables, and charts. In cases where the documents cannot be parsed nor-

mally, it needs to use optical character recognition (OCR) to parse them. It

should also reports any problems found in the documents to the administrators.

• It extracts the contents and stores them accordingly, by separating each chapter

of the documents into different database entries. It needs to detect where each

chapter starts and ends, extract the contents of each chapter, and determine the

minority languages mentioned in each chapter.

• It indexes each searchable component of the documents, such as section num-

bers, section titles, document type, country of origin, year and cycle of publi-

cation, and minority languages mentioned. It needs to make sure every search

query can be performed in short time.

• It provides an intuitive search interface and displays the results accurately. The

users should be able to access the original document and get into the specific

page where the result is found.



6 Chapter 2. Background

In order to build the ideal system as mentioned above, we need significant resources

and time. The scope of this project is to build a system as close as the ideal one

within the time and resource constraints. With one developer and around eight weeks

of development time, we deliver a system with following accomplishments:

• It receives the original documents as input. However, the administrators need

to provide its metadata. This is due to irregularities among documents which

disallow the system to determine exactly where to find the metadata. This does

not require an extra step of work for the administrators as they are required at

the same time the administrators upload the documents.

• It parses the documents well using OCR. The high amount of malformed docu-

ments and inaccurate normal parsing force the system to use OCR for all docu-

ments. This approach gives better parsing result but takes longer time and more

computing resources. The text contents are read just fine, however, the accom-

panying figures, tables, and charts may not be read correctly. For the case of the

Council of Europe’s reports, it is acceptable as there are not many figures and

charts involved.

• It can determine and separate sections of only one type of report, the Committee

of Experts’ report. This is due to these reports being similar in structure and

given higher priority, as they are the ones that the minority languages researchers

focus on. The State Periodical Report is more irregular because it is provided by

every country separately. The Committee of Ministers’ Recommendation report

does not need to be separated into sections as there is only one section for each

document. However, the system provides an interface for the administrators to

separate the sections manually. It also enables the administrators to edit the

automatically separated sections of the Committee of Experts’ report.

• It indexes each searchable component of the documents well. However, a docu-

ment is only indexed properly given accurate section separation and metadata.

• It provides two modes of search. The homepage shows one search field and

enables the users to perform basic search using arbitrary strings queries. Basic

search processes the search query and finds the results in the contents of the

documents. The second mode of search is advanced search, where the users can

narrow the search by filtering section, document type, country of origin, year

and cycle of publication, or minority languages.



2.2. Problems and Scope 7

Thus we have delivered a proof of concept system which was the main intention of the

project proposal. The technical executions and visual details of the delivered system

are covered in Chapter 4.





Chapter 3

Tools

This chapter covers the tools used for the system. Each section covers relevant tools

for certain function and compares them to each other. Comparisons of strengths, weak-

nesses, and familiarity to the developer are considered as decision factors. The stake-

holders of the project also require all tools used to be free and open-source. The impli-

cation is that this project is also released as an open-source project (the repository can

be accessed in [32]).

3.1 Document Parser

There are many tools that can be used to extract contents of PDF documents. Most

of these tools are open-source and free to use. We consider tools that conform to

our requirements and decide which one to use. In this section we cover pdftotext,

PDFxStream, Yomu, PDF::Reader, and Docsplit.

pdftotext

One of the standard tools for extracting texts from PDF documents is pdftotext. This

tool comes with many Linux distributions freely. It is often a good choice, being a

default tool and has been used by many people. However, this tool is a standalone

command line program. Integrating it with our system needs extra steps of work that

may consume much of the development time. This tool also cannot parse texts from

the malformed documents properly, which is a serious issue for this project (see Sec-

tion 4.1).

9



10 Chapter 3. Tools

PDFxStream

One of the first requirements that we seek when deciding which document parser to use

is that it can handle all types of contents, which are among others texts, images, tables,

and charts. Considering that capability, PDFxStream comes up as one of the better

choices, with it being used by many companies and government institutions to process

billions of documents every year [11]. PDFxStream claims to be able to extract data

from PDF documents fast and accurately. Compared to pdftotext, it extracts text 13%

faster [12].

However, this tool is not free. In order to get a PDFxStream complete server-side

license, we need to buy it for US$5,000, with an additional US$1,000 per year for

support and maintenance [13]. This does not comply with our free and open-source

policy. This tool also runs on a Java or .NET framework, which is not the framework

that we choose for this project (see Section 3.4).

Yomu and PDF::Reader

Yomu and PDF::Reader are open-source Ruby gems for extracting texts and metadata

from PDF documents [35, 22]. Because we use Ruby on Rails for our web framework

(see Section 3.4), both tools are easy to integrate. However, both tools also cannot

parse malformed documents.

Docsplit

Docsplit is a tool for extracting texts, pages, images, and metadata from documents.

It is available as a command line tool and Ruby gem. It uses GraphicsMagick, Pop-

pler, Ghostscript, Tesseract, and pdftk as underlying libraries [5]. A Ruby gem [1]

is available as a wrapper for it to be used with Ruby on Rails web framework (see

Section 3.4).

One feature that makes Docsplit the best choice for the project is its optical charac-

ter recognition (OCR) capability, which is made possible using Tesseract [34]. OCR

is the only available automatic solution for the malformed documents problem. In

the malformed documents, the texts cannot be converted properly because of missing

encoding information. Using OCR, the documents are parsed not by reading its em-

bedded text contents, but by treating the documents as images and converting the texts

in the images into machine-readable texts. Tesseract is an open-source OCR software,

and is one of the most accurate [34, 6].



3.2. Database 11

Using OCR means using more computing resources and longer time. In this project,

documents are inserted into the system only once at the beginning. So, the long parsing

time is experienced only at the beginning, which is before the system goes live. This

will not affect the intended users directly as after parsing, the texts are stored in a

database and can be processed fast.

We decided to use Docsplit as the tool to parse the documents. The decision is based on

the reasons that it is capable of parsing the documents properly, free and open-source,

easy to integrate with the web framework, while having no significant weaknesses.

3.2 Database

We consider two classes of database management systems to store the documents,

non-relational (NoSQL) and relational (RDBMS). The developer is familiar with both

NoSQL and RDBMS, having experiences with MongoDB, Redis, BigTable, Mem-

cached, Riak, PostgreSQL, MySQL, and SQLite. There are many options to choose

from both classes, but we narrow it down to one representative of each class. We take

MongoDB as representative of NoSQL and PostgreSQL as representative of RDBMS,

being the most widely used and advanced one from each class. We compare the two of

them and decide which one to use.

MongoDB

MongoDB is the most popular NoSQL database management system [3]. As NoSQL,

it is highly scalable and flexible, as it does not require schema to define the data [15].

It supports high write rate and high volume of data [14]. However, there are cases of

data inconsistency and loss in real world use [25].

In this project, the database acts only as storage. The reports do not get revised, so

most of the database entries are only written once. New reports come in cycles of three

years, so there is no need for high volume storage. With no requirement of high write

rate and high volume of data, PostgreSQL is the more preferred choice, along with

other factors explained below.

PostgreSQL

PostgreSQL is one of the most popular open-source RDBMS [3]. It is an advanced

RDBMS and is used by around 30% of technology companies, based on 2012 research



12 Chapter 3. Tools

done by 451Research [26]. It uses schema to define the stored data.

In this project, the structure of data to be stored in the database is already pre-defined,

therefore the schema design is useful as we want to make sure all data follow the same

structure. The database design is covered in more details in Section 4.2. We also

design the database in a relational model, where there are many JOIN queries involved

among the tables. PostgreSQL, as a relational database, performs three times faster

in this sense than MongoDB. PostgreSQL is also proven to outperform MongoDB in

memory use, and is the better general purpose database overall [25].

For the purpose of this project, PostgreSQL is the better choice. We decided to use it

as the database management system for the reasons stated above.

3.3 Search Server

As mentioned previously, the database in this project acts only as storage engine. In

order to have the database entries searchable, we need to index them using a search

server. As the data is indexed using a search server, we can customise how to index the

data.

Elasticsearch is the most popular search server [3]. It is based on Apache Lucene.

Combined with Ruby gem Searchkick, it supports and handles full-text search, result

snippets, word-stemming, whitespace, and misspellings [7, 31]. This gives the users

flexibility and ease when doing a search.

In this project, we want the users to be able to search the entire extracted texts from

the reports. This is made possible by the full-text search capability of Elasticsearch.

The custom index enables a faster advanced search, by indexing the needed fields to

narrow down the search space. We also want to show the users where in the docu-

ments the search results are found. Using the result snippets, we can show parts of the

documents where the results are found, including several sentences before and after

the results. And finally, we want to give the users flexibility searching English words.

For example, searching the word “consistency” should also give results on the words

“consistencies” and “consistent”. Extra features like auto-complete, personalisation

(for example, showing results most related to a user’s previous search queries), and

did-you-mean suggestions also make Elasticsearch the obvious choice.



3.4. Web Framework 13

The Ruby gem availability makes it easy to integrate with the web framework, the

popularity makes it easy to discuss problems found with other developers, and its fa-

miliarity to the developer makes it ready to use without spending time learning it. We

decided to use Elasticsearch as the search server for this project based on the reasons

stated.

3.4 Web Framework

We saw that we use various tools to process the documents into searchable entities.

Those processes work in the background without the users knowing what happened.

What the users see is a web interface capable of performing searches. So we need to

be able to provide the users with a web interface and integrate it with the data we pro-

cessed beforehand. We also have an administrators interface where the administrators

can carry out their tasks, which include documents management and users manage-

ment.

The web framework we choose to delegate such tasks to is Ruby on Rails. We use

Ruby on Rails for the following reasons.

Familiarity

The developer of this project has been working with Ruby on Rails for two years. With

tight time constraint, experience with the tools is one of the most prioritised factors, as

we cannot spend significant time learning new ones.

Integration

The framework is supported by many external libraries called gems. The tools we

mentioned before can be integrated easily into the system using various gems.

Ease of development and maintainability

This framework uses the convention-over-configuration paradigm. This means that the

developer does not need to specify things already set by the framework. This reduces

much work for the developer. It is easy to maintain because it has its own conventions,

so when another developer is added into the project, as long as the new developer is

familiar with Ruby on Rails, there is no problem with knowledge transfer.



14 Chapter 3. Tools

Model-view-controller (MVC) architectural pattern

The MVC separates the system into three core components. The models manage the

data and are connected directly to the database. The views display the data to the users.

The controllers connect both of them by receiving user input, sending commands to

change data to the models, and sending commands to change view to the views. This

pattern is widely used and maintains logic separation.

Popularity

As mentioned before in this project’s proposal, Ruby (the underlying programming

language of Ruby on Rails) has around 116,804 gems [30] and the Ruby on Rails

framework is used by many websites, including GitHub, Airbnb, Hulu, and Sound-

Cloud [28]. Therefore, it is a very popular framework and there is a large community

behind it where problems can be discussed.

3.5 Web Server and Deployment

As stated in the project proposal, we planned to deploy the system in a University

of Edinburgh School of Informatics’ server, integrated into the DICE system [16].

However, due to time and access limitations, we could not get the server ready for de-

ployment. We decided to fall back to another virtual server provided by DigitalOcean

[4] for a demo purpose to deploy the proof of concept system. The final version of the

project will be deployed to the DICE server in the future, complying with the proposal.

The web server is running Ubuntu with Ruby on Rails, PostgreSQL, and Elasticsearch

installed, along with other dependencies of the project. The deployment configura-

tions are covered in Section 4.6.3. The deployed system can be accessed in [33]. An

administrator access is provided with the email “admin@seeker.com” and the pass-

word “adminpassword123”.



Chapter 4

The System

This chapter covers the details of how the developed system works (see Section 3.5

on how to access the developed system). Each section covers each core module of

the system (see Figure 4.1). The core modules are the parsing module, the database

module, the indexing module, and the web module. The web module is divided into a

search module and an administrator module.

The main workflow of the system is divided into two parts. The first one is the process

of inserting the documents into the system. The second one is the process of searching

the inserted documents. A document is inserted by the administrators through the

administrator module to the parsing module, then passed to the database module to be

stored, and finally prepared for searching by the indexing module. A user may then

perform a search through the web interface that communicates with the database and

indexing modules. The overall diagram of the system can be seen in Figure 4.1 and

detailed explanations of each component follow in the next sections.

4.1 Document Parsing

The main purpose of this project is turning the reports from the ECRML into a search-

able database. In order to do that, the contents of the reports need to be extracted

from the PDF documents provided by ECRML’s website [18]. Using Docsplit [5],

we use OCR to extract texts from the documents. The parsing module takes the URL

and information about a document and outputs the parsed texts of the document (see

Section 4.5.1 for an example of document insertion).

15



16 Chapter 4. The System

Figure 4.1: System Diagram.

4.1.1 Document Structure

This section covers the structure of the reports. Each type of report retrieved from

ECRML’s website follows a certain structure, as outlined by the ECRML. To enable

an advanced search function, the sections of the documents need to be parsed and

stored separately (see Section 4.2.2).

State Periodical Reports

There are two outlines provided by ECRML for state parties to follow for their period-

ical reports, the initial report outline [9] and subsequent 3-yearly report [10]. However,

not every state party follows the outline exactly. For example, the outline states that

a section is titled “Part I”, but some state parties may write “Part 1”, “Part One”, “1.

Part I”, or “Part A” instead, or there are variations of “Introduction”, “Introductory”,

with or without extra words added, and there are sections not written by the submitter

in some documents. The resulting reports structures are then easy to read for a hu-

man but hard to distinguish for a computer. This makes separating the documents into

sections a difficult task.

Committee of Experts’ evaluation reports

The Committee of Experts’ evaluation reports are submitted by the Committee of Ex-

perts itself, so there is less, if none at all, variation in document structure and naming.

Therefore, section separation can be done automatically by the system. As this is the

type of document that the researchers are most concerned about, the automatic separa-

tion helps to reduce manual work significantly.



4.1. Document Parsing 17

Committee of Ministers’ Recommendation

The Committee of Ministers’ Recommendation reports are usually 1-2 pages long,

containing recommendations made by the Committee of Ministers regarding the policy

of the state party of the document. It does not need section separation as the reports

contain only one section. The report is usually included as the second chapter of the

corresponding Committee of Experts’ evaluation report, as the ECRML publishes the

Committee of Experts’ evaluation reports after the Committee of Ministers gives their

decision to publish them [19].

4.1.2 Malformed Documents

The main problem of parsing the documents is that most of the documents on the

ECRML’s website are broken. A document viewer can only display the document.

However, when a reader wants to search the document using the search feature of the

document viewer, it results in nothing. Furthermore, when texts of the documents are

copied and pasted to another place, it results in gibberish texts containing unreadable

symbols, as can be seen in Figure 4.2. The causes are that the documents are missing

encoding to map the texts into readable texts, or that the documents use fonts that

are not available on the reader’s machine. To solve this problem, the system needs to

convert the unreadable texts into readable ones. The solution is to use OCR.

4.1.3 Processing the Documents

As stated before, we use the OCR capability of Docsplit to extract the texts from the

documents by treating the documents as images and recognising the texts contained

in the images. This is done by Docsplit’s use of ImageMagick and Tesseract. As

Tesseract is one of the most accurate OCR tools available, the results are texts that

are accurate compared to the original texts in the documents and can be processed by

computers.

For a document to be inserted into the system, an administrator has to provide the

URL to the document and its other information (document type, country of origin,

and cycle and year of publication). The parsing module of the system then downloads

the document into the the local server and starts parsing it using Docsplit. Due to

OCR usage, the parsing process usually takes a long time and high processor usage



18 Chapter 4. The System

(a) The passage highlighted in a document viewer.

(b) The passage copied and pasted in a text editor.

Figure 4.2: A passage from Armenia’s 2nd cycle Committee of Ministers’ Recommen-

dation.

depending on the length of the document. For example, a 29-pages report takes about

3 minutes and 20 seconds to parse, utilising single core of the processor at 100% usage

(see Figure 4.3). After the parsing process is finished, the parsed texts are then stored

to the database by the database module.

Figure 4.3: Processor usage of Tesseract (Docsplit’s OCR library) when parsing a doc-

ument. Core number 7 is utilised at 100% usage by the tesseract process (see the

bottom part of the figure).

4.2 Document Database

As we need to provide the users a system that is fast and reliable, we have to make

sure the time-consuming parsing process is not repeated unnecessarily. Therefore,

after the texts are parsed, we store them into a database so they can be used and



4.2. Document Database 19

searched over and over again without the need to re-parse them. This section cov-

ers the database module, describing the database design and how the parsed texts are

stored. The database module takes the parsed texts and stores them according to the

database schema.

4.2.1 Database Design

We designed the database to be in relational form, where we can minimise data redun-

dancy. For example, a document is separated into sections, so we create one database

entry for the document and one database entry for each section, where each section

refers to the document entry. This way we do not need to store the document informa-

tion in the section entries redundantly, as only one document entry is needed.

Each entry is stored in a corresponding table. Section entries are stored in the SECTIONS

table and document entries are stored in the DOCUMENTS table. Other than the two men-

tioned, we also have tables COUNTRIES where the state parties of ECRML are stored

and LANGUAGES where the minority languages covered by the state parties are stored.

The relational schema can be seen in Figure 4.4.

Figure 4.4: The relational schema of the database.

O = Optional; FK = Foreign key

A document entry contains the information that the administrator provides when the

document was inserted (see Section 4.1.3). It also has a flag attribute parsing finished

to mark whether the time-consuming parsing process has finished or not. A section en-

try contains its number, name (title), and content. We also have a section part field

to store a long section (see Section 4.2.2). Because each report belongs to a state party,



20 Chapter 4. The System

we store the country id in the document entry to refer to the country. Each section

belongs to a document, we store document id to refer to the document. And as a sec-

tion may cover a minority language, we optionally store language id in its entry. We

simplify the database design by assuming that one section covers at most one minority

language, however, it can be changed in future development. Also as seen on [8], a lan-

guage may belong to multiple countries and a country may have multiple languages, so

we create many-to-many relationship between COUNTRIES table and LANGUAGES table

using association table COUNTRIES LANGUAGES.

4.2.2 Storing the Texts

After the parsing module has finished, the parsed texts are then passed to the database

module to be stored. The raw texts then need to be separated into sections before they

are stored in the database. As mentioned before, only the Committee of Experts’ evalu-

ation report documents can be separated automatically. Therefore, the other two types

of documents are stored as a document with one section. However, the system has a

feature where the administrator can separate the sections manually (see Section 4.5.2).

For the Committee of Experts’ evaluation reports, each section starts with a section

number followed by section title (see Figure 4.5). Therefore we decide to separate the

section by finding the section title patterns and storing the texts between two found

titles as one section. This is done after fixing the parsed texts where the section title

may come right after the section number, which does not follow the pattern. After

finishing separating, we also store the whole document content as one special section

called “Full Content” section, to ensure that no data is lost. This is just like what we

do to the other two types of document.

Figure 4.5: Typical section number and title in Committee of Experts’ evaluation reports.

Because there is a limitation on Elasticsearch where a string longer than 32,766 char-

acters cannot be indexed, we automate the section storing process by dividing a long

section into several shorter ones. This is where we use the section part field on the

database as mentioned in Section 4.2.1. This separation does not affect the users and



4.3. Search Index 21

administrators when they search or edit the sections of the documents, as it is made as

if the long section were stored as one section entry.

4.3 Search Index

We use the database as storage so that we do not lose the documents data, however

we cannot utilise the database to perform a search on the raw data in a reasonable

amount of time. This is because PostgreSQL, the database of choice, does not perform

as well as Elasticsearch in searching. As stated in Section 3.3, we use the search

server Elasticsearch to index the data stored in the database. This index is stored in

the local server to ensure fast communication between the web, the search server, and

the database. To enable a fast search performance, we need to index appropriate fields.

This section covers which part of the data we index.

The obvious data to index is the content of each section. We want the users to be able

to search for any text in the documents. As mentioned in Section 4.2.2, there is a limit

on the length of a string that Elasticsearch can index. This problem is overcome by the

database module instead.

We also want the users to be able to narrow down the search space when using the

advanced search feature. Therefore we need to be able to find sections based on the

criteria wanted by the users quickly. So we index the fields where each criterion is

stored. The fields for this requirement are the section table’s section number and

section name, the document table’s year and cycle, the country table’s name, and

the language table’s name. In addition, to prioritise search results on separated sections

(see Section 4.5.2), we also index whether the section is “Full Content” or not. All

those fields are related to any section entry, and the Ruby gem Searchkick that we

use works automatically with Elasticsearch to index the sections based on the fields

mentioned (see Section 4.6).

4.4 Web Search Interface

What the users see when using the system is only the search interface. They can

perform searches on the inserted documents through the search interface. This is con-



22 Chapter 4. The System

nected to the database and search server through the web framework’s controllers (see

Section 3.4). There are two main pages the users can see, the search form page and the

search result page.

4.4.1 Search Form

The system is designed to be a search engine website for the ECRML reports, so the

first page that the users see when accessing the website is a page with the search form.

A user can type the search query into the form and the system performs the search for

them. The search query is handled in a way that the sections containing all terms in the

query are prioritised in the results. The system also prioritises the results from contents

not in “Full Section” sections.

Figure 4.6: The front page of the website. “Seeker” refers to the name of the project.

A user can also perform an advanced search, where they can narrow the search results

by adding filters. It is available on the front page by clicking the “Add more filters”

link. They can then choose the type of the filter and the content. They can narrow

the search results by section number, section title/name, country of origin, language

covered, or document year and cycle. For example, they can perform search only on

section 2.3 of documents from Austria (see Figure 4.7).

4.4.2 Search Results

After submitting a search query, a user is then presented with the search results for the

query. The search results page is opened in a new browser tab in order to preserve the

query submitted by the user in the search form page. The search results are presented



4.5. Web Administrator Interface 23

Figure 4.7: Searching “slovene” on section 2.3 of documents from Austria.

as a list of sections that match the query. For example, Figure 4.8 shows the results of

the advanced search query from Section 4.4.1.

Figure 4.8: Search results of “slovene”.

Each entry of the search results shows a section, displaying its section number and

title, a link to the original document, information about the document, and a snippet of

passage where the search keyword is found. It also highlights the submitted query.

4.5 Web Administrator Interface

The other users of the system are the administrators. They are tasked to manage the

documents, which include inserting new documents, providing information of the doc-

uments, and maintaining separation of sections of the documents.

4.5.1 Inserting Documents

After logging in into the website, an administrator can access the document manage-

ment page through a link on the front page. The document management page can be



24 Chapter 4. The System

seen as in Figure 4.9.

Figure 4.9: Manage documents page.

An administrator can insert a new document into the system by clicking the “New

Document” link on the document management page above, and the system then shows

a form to be filled in by them. For example, an administrator wants to add a new

Committee of Experts’ evaluation report from United Kingdom, they fill in the form

as in Figure 4.10. After submitting the information, the system then downloads the

document and invokes the parsing module to start performing OCR on the document

(see Section 4.1). The document management page shows the new document with

its parsing status, which says whether the parsing process is still running or finished

already (Figure 4.11). It is a static page where the administrator needs to refresh it

manually to see whether the parsing status has been updated.

Figure 4.10: Inserting new document.

Figure 4.11: Manage documents page after inserting new document, showing “in

progress” parsing status for the new document.



4.5. Web Administrator Interface 25

4.5.2 Manual Section Separation

In order to enable the users to narrow their searches by sections, the sections of the

documents need to be stored and indexed separately. As discussed in Section 4.2.2,

Committee of Experts’ evaluation reports may be separated automatically by the sys-

tem, but the other two types of reports are not. An administrator can separate the

sections manually using this interface. They can also edit the existing section separa-

tion of the documents, including the Committee of Experts’ evaluation reports, as the

automatic separation by the system may not be perfect.

The documents are indexed by sections, which means that when a user searches for

a query, the system returns one result per section. Therefore, it is important for the

administrators to separate the sections accordingly to improve the search results. Fur-

thermore, the system is designed to prioritise search results from sections not stored as

“Full Content”.

As can be seen in Figure 4.11, for each document that has been parsed successfully,

there is an “Edit Sections” button. An administrator can manage how the sections of a

document are separated to each other by clicking that button.

Figure 4.12: Editing the section separation of the previously inserted document.

Figure 4.12 shows the section separation page. As mentioned before in Section 4.2.2,

all documents are also stored as a special section containing all texts contained. We

call the special section “Full Content”. In the section separation form, this section

cannot be modified and acts as the source for the editing administrator to copy and

move the passage to the proper section. The administrator can add a new section with

a button at the bottom of the form and a new empty section will be added. They can

also delete the sections (except the “Full Content” section) by clicking the “Delete



26 Chapter 4. The System

Section” button next to each section. There is currently no duplicate-checking done

on the sections submitted by the administrators, as it is not computationally efficient to

compare very long strings to each other (a 29-pages report may contain around 100,000

characters). However, future development may modify the section separation interface

in a way that duplicate-checking can be done efficiently (see Section 5.2).

Another filter available for the users to narrow their search is the minority language

covered. After a document is inserted into the system, there is no language assign-

ment to the sections yet, as we have not discovered a way to automatically associate a

chapter with its corresponding minority language. An administrator can then manually

assign a minority language to any section that covers it. For example, in the previously

uploaded United Kingdom’s document, there are several sections each covering differ-

ent minority languages in the United Kingdom. Figure 4.13 shows how the language

can be assigned to the section.

Figure 4.13: Assigning covered language to corresponding sections.

When the editing administrator finishes separating the sections, they click the “Save

sections” button and the system will update the database and index to the new sections.

4.5.3 User Administration

In the current state of the system, there is no user registration system yet. However, an

administrator can add new administrators for the system through the user administra-

tion interface. The administrators management page can be accessed through the link

in the front page.

An administrator adds new administrator by clicking the “New User” button as can be

seen in Figure 4.14. The system then shows a page with the new administrator form.

The administrator then fills in the information regarding the new administrator, which

contains their email address, password, and password confirmation.



4.6. Integration 27

Figure 4.14: Administrators management page.

After being created by hitting the “Save” button, the new administrator can log into the

system using the submitted email and password and perform the administrators’ tasks.

4.6 Integration

Figure 4.1 pictures the overall diagram where we can see how the system is centralised

on the web module. Ruby on Rails and its gems make integrating all the modules

into one seamless system easy. This section covers an overview on the relationships

among modules, an example to show how the modules are connected to each other,

and the deployment configurations. This serves as an illustration of the technical work

undertaken during the development process. The example is taken from some parts of

the code which give the general overview on the workflow of the system.

4.6.1 Modules Relationships

The web module, as the central module, is built with the MVC paradigm (see Sec-

tion 3.4). Table 4.1 and Table 4.2 lists the models and controllers of the system and

what they function as (each view corresponds to a controller’s method, it renders the

method’s output).

Each model class represents a table in the database. The model classes integrate the

database module to the web module. Some tables are not represented by any model

class, for example the COUNTRIES LANGUAGES table. This unrepresented table is in-

tegrated through the Ruby on Rails association method has and belongs to many.

This method represents a many-to-many relationship between two model classes.

The controllers collectively serve as the backbone of the system, where they connect

every module with each other. The documents controller acts as the main controller



28 Chapter 4. The System

Model name Function

Country It corresponds to the COUNTRIES table in the database.

Document It corresponds to the DOCUMENTS table in the database.

Language It corresponds to the LANGUAGES table in the database.

Section It corresponds to the SECTIONS table in the database.

User It corresponds to the USERS table in the database.

Table 4.1: Model classes of the system

Controller name Function

Application controller The parent controller, default from Ruby on Rails. As su-

per class, codes that apply to all controllers go here.

Documents controller The main controller of the system. It serves core functions:

displaying the search interface, processing search queries

and displaying the search results, displaying documents

management pages, processing manual section separation

inputs, receiving new documents, and invoking the pars-

ing module. It is connected to the Document and Section

models.

Users controller It handles the users management interface. It is connected

to the User model.

Table 4.2: Controller classes of the system

of the system, carrying out the core functions. It receives inputs from the users (in-

cluding the administrators) and modifies the relevant database tables through their rep-

resentative model classes. Because the indexing module is connected to the database

module in a model class, all the modules are then integrated within the controllers.

Section 4.6.2 further describes the interconnection among the modules.

4.6.2 Technical Details

The parsing process of a document is executed after an administrator submits it with

the form in Section 4.5.1. Because the parsing process takes time, it is done asyn-

chronously in the background. The background job is performed using the Ruby gem



4.6. Integration 29

SuckerPunch [27]. This job actually performs the tasks of the parsing module and

partially the database module, where it downloads the document to the local server,

performs OCR on it, separates the sections automatically given it is a Committee of

Experts’ evaluation report, and saves the sections to the database. The source code for

this job can be found in the directory app/jobs/document parser job.rb.

When a section is saved to the database, it is split automatically into chunks of 30,000

characters (see Section 4.2.2). This is done via the add section class method of

the Section (app/models/section.rb) model class. In the same class, we define

the indices used by Elasticsearch in the search data instance method. The method

is part of the Ruby gem Searchkick [31] which ties the Ruby on Rails model class

with Elasticsearch. This is part of indexing module, and we can see how the indices

mentioned in Section 4.3 are put into code in Listing 4.1.

Listing 4.1 Indexing module code in Section class

searchk ick ca l l backs : : async , h i g h l i g h t : [ : content , : sect ion number ,

: section name , : count ry ] , wo rd s ta r t : [ : sect ion number ]

def search data

{
content : content ,

sect ion number : sect ion number ,

section name : section name ,

count ry : document . count ry &.name,

year : document . year ,

cyc le : document . cycle ,

language : language &.name,

f u l l c o n t e n t : f u l l c o n t e n t ?

}
end

The searchkick method connects the model to Elasticsearch, with the following op-

tions:

• callbacks: :async

This means that we want Elasticsearch to run indexing process in the back-



30 Chapter 4. The System

ground.

• highlight: [:content, :section number, :section name, :country]

This means that we want Elasticsearch to highlight parts of the contents of the

content, section number, section name, and country fields that match the

query when displaying the results to the users.

• word start: [:section number]

This means that we want Elasticsearch to index the section number field in

a way that searching by section number gives all sections with section number

started with the query. For example, a search on section number “1.3” gives

sections 1.3, 1.3.1, 1.3.2, and so on.

We define the indices in the search data method. The method returns a hash contain-

ing the indexed fields and their contents. The first three indices are clear, they contain

the value of fields of the same name from each section. As mentioned in Section 4.3,

the index fields country, year, and cycle contain the section’s document’s country

name, year, and cycle respectively. The syntax &. is called “safe navigation operator”

in Ruby, where it calls the method (name in the country and language cases) or re-

turns nil if the caller is nil. And finally, we index the full content field by calling

the full content? method of each section (see the source code for its implementa-

tion).

When a user performs a search, they send a parameter containing the query to the

system. The parameter is received in DocumentsController’s search method. This

method parses the parameter sent by the user and converts it into a search query for the

Section’s model (which in turn sends the query to Elasticsearch using searchkick).

For example, the basic search sends a parameter q containing searched text, the search

method executes as shown in Listing 4.2 (the full source code can be found in the

directory app/controllers/documents controller.rb).

Listing 4.2 Part of search method, showing data flow from raw query into search

results

search query = params [ : q ]

f i e l d s = [ : content ]

h i g h l i g h t = { tag : ’<strong> ’ }



4.6. Integration 31

boost where = { f u l l c o n t e n t : fa lse }
@search resul ts = Sect ion . search ( search query , f i e l d s : f i e l d s ,

h i g h l i g h t : h i g h l i g h t , boost where : boost where )

@search resul ts = @search resul ts . paginate ( page : params [ : page ] ,

per page : 10)

render : s ea r ch r es u l t s

We can see how the query in the parameter q is passed as parameter for the Section’s

search method, with the following options:

• fields: [:content]

This means that we want to search the occurrence of the given query in the

content field of the section.

• highlight: { tag: ’<strong>’ }

This means that we want to add the HTML tag <strong> before the highlighted

content matching the query and </strong> after it. The tag displays the match-

ing content in bold text.

• boost where: { full content: false }

This means that we want to prioritise search results from sections that are not

part of “Full Content” section (see Section 4.3 and Section 4.5.2).

After that, the search results are split into pages of ten results each. This is so that the

search results page is not crowded with all the results in one place. Finally the method

renders the search results page where the search results are displayed to the user.

4.6.3 Deployment

The system runs on the web server Passenger [21], which is integrated into the Apache

HTTP server on the DigitalOcean virtual server. We use a Ruby gem called Capistrano

[2] to automate the deployment process. Capistrano works through SSH to the server

by pulling the code from the repository, preparing it for production environment, and

restarting Passenger. The deployment configurations can be found in config/deploy.

rb and config/deploy/production.rb.

config/deploy.rb
config/deploy.rb


32 Chapter 4. The System

Listing 4.3 Some deployment configurations found in config/deploy.rb

set : repo u r l , ’ g i t@gi thub . com: a r a i s h i k e i w a i / seeker . g i t ’

se t : dep loy to , ’ / home / seeker ’

se t : l i n k e d f i l e s , f e t ch ( : l i n k e d f i l e s ,

[ ] ) . push ( ’ con f i g / database . yml ’ , ’ con f i g / secre ts . yml ’ )

se t : l i n k e d d i r s , f e t ch ( : l i n k e d d i r s , [ ] ) . push ( ’ log ’ ,

’ p u b l i c / s torage ’ )

Listing 4.3 lists some of the deployment configurations with the following behaviours.

• set :repo url

This line tells Capistrano to pull the code from the assigned repository [32].

• set :deploy to

This line tells Capistrano to pull the code into the assigned directory on the vir-

tual server. This directory is where Passenger points to and loads the application.

• set :linked files and set :linked dirs

This line tells Capistrano to create symbolic links on the code directory to the

assigned files and directories. There are several reasons for this to be done.

Firstly, we do not want to publish the two files config/database.yml and

config/secrets.yml to the repository (therefore they do not get pulled by

Capistrano when deployed) because they contain private information such as

database password and secret key base (required by Ruby on Rails), so we pre-

pare the two files beforehand on the server and link to them after deployment.

Also, when deploying the system, Capistrano basically removes the old deploy-

ment and pulls the new code into new deployment directory. Therefore, all the

files and directories are replaced and this could result in missing files. Because

the system downloads the documents into the server in the public/storage di-

rectory, we want to keep this directory intact everytime we deploy the system

or a patch. We also want to use the same log files throughout the system life-

time. Therefore, we prepare the directories log and public/storage in another

location on the server beforehand and link to them.

config/deploy.rb


4.7. Testing and Evaluation 33

4.7 Testing and Evaluation

4.7.1 System Evaluation

The system makes use of Rspec [29] to perform unit tests on the software. The tests

cover the documents management interface, checking whether the users can access

each page correctly. However, the unit test suite is not able to evaluate whether texts

resulting from parsing are correct or not. This needs to be done manually by the ad-

ministrators. This can be done by the administrators altogether with editing the section

separation of the documents. Manual evaluation is also needed on the search results.

However, because we index the sections properly, Elasticsearch will perform the search

correctly.

To compare the performance impact of the system to manual work, we can take the

following example. There are around three hundred reports available on the ECRML’s

website [18]. Most of the reports are very long, containing more than twenty pages. A

manual overall search means that the person needs to read over six thousands pages to

get information. Using the system, it may initially take a long time to converts all the

reports, but searching for an information takes less than one second.

There has been a plan to present the system to Professor Rob Dunbar, the Head of

Celtic and Scottish Studies of the University of Edinburgh, as the representative of mi-

nority languages researchers, and have him evaluate it. However, it was not possible in

the end because of tight schedules of both the development process and the represen-

tative. Nevertheless, the supervisor of the project has carried out some functionality

tests and was happy with the results.

4.7.2 Project Evaluation

The system has been built with focus on its primary objective. It did not achieve the

ideal solution stated in Section 2.2, but it achieved a proof of concept system with many

available improvements. We discuss the difficulties found during the development

process in Section 4.8, and possible improvements in Section 5.2.



34 Chapter 4. The System

4.8 Setback and Recovery

We faced many setbacks during the development process. The fact that most docu-

ments cannot be parsed without using OCR was not expected at all. The study on how

to parse the malformed documents while integrating the parsing process into the sys-

tem so that it can be done automatically (see Section 3.1) took most of the development

time. Significant amount of time was also spent in the process of coding the automatic

section separation (see Section 4.2.2). The developer found out that despite the pat-

tern discovered, there was noise coming from the “Contents” page of the documents,

the page numbers, and bad line breaks. This resulted in the fact that many proposed

features did not get to be implemented, such as the user ticketing system and user per-

sonalisation. Long correspondence time with the University of Edinburgh School of

Informatics’ computing support also delayed the preparation of the virtual server for

deployment, as the developer did not have full access to the server to configure it. We

decided to move the deployment temporarily to DigitalOcean server (see Section 3.5).



Chapter 5

Conclusion and Further Work

This chapter concludes the report and suggests possible future work on the project.

5.1 Conclusion

The developer of the project successfully built a system that covers core functions of

the ideal system. The developed system can create a searchable database from the

documents of ECRML reports. A minority language researcher can use the system to

search for information they need just within one step of typing search query into the

search form. Compared to manual work of opening the ECRML’s website, opening

relevant documents, and reading through the unsearchable malformed documents, the

system greatly reduces time and effort needed to get information. The created database

can also be modified by the administrators to refine the search experience.

5.2 Future Work

The built system is still far under-developed compared to the ideal system. There are

many things that can be improved to achieve a system that completely removes manual

work and is easy and intuitive to use. Here are some possible extensions to the project.

• Automatic document feed

In the current state of the system, an administrator has to insert the ECRML

35



36 Chapter 5. Conclusion and Further Work

documents manually, including typing in the document information such as the

country of origin, they type of the document, and the year and cycle of publi-

cation. An automatic document feeding system can be developed to update the

system’s database when a new report is published by ECRML. It also fetches the

document information automatically from the document itself.

• User experience

In the current state of the system, a user may find restriction when using the

search form. For example, a user may want to perform a more advanced query

that is not possible to be executed through the current search form, such as find-

ing a section from Germany’s periodical state reports from 2005 to 2010 and

covers Danish or Romani languages. A new search form can be introduced

where the users can translate what they want to the form easily. Possible ad-

ditions include logic operator option, filter additions, pre-filled or autocomplete

(either using existing information or prediction) fields, and manual query for

more advanced users.

• User interface

As can be seen in the screenshots provided in Chapter 4, the current system uses

only basic HTML with minimum stylings. A user may find it irritating to their

eyes and prefers more beautification of it. An advanced styling can be introduced

to give the website a modern look.

• Administrator interface: section separation

As stated in Section 4.5.2, there is currently no duplicate-checking on manual

section separation. This problem can be solved by modifying the section separa-

tion interface into a more advanced one, where there is only one field containing

the whole content of a document. The administrator separates the section by

selecting the lines from the content for each section. This way, duplication or

overlap can be detected visually by the administrator or automatically by the

system.

• User registration and personalisation

As mentioned in this project’s proposal, we expected to have a personalisation

system for the users. However, there was not enough time to implement it. The

personalisation implementation implies a user registration system, where any



5.2. Future Work 37

user can register as a user of the website. Personalisation includes search op-

tions, favorite documents/countries, and customised indexing, where a user may

choose which fields they want to boost when indexing.

• Ticketing system

Also proposed in the project specification is the ticketing system, where a user

can communicate with the administrators. The main purpose of this feature was

proposed to be a suggestion box, where a user can give recommendation to the

administrators about documents they want to be included in the system. There

was also not enough time to implement this feature.

• Adaptation for other languages

The documents intended for the built system are in English. However, there are

documents in other languages among ECRML reports. The system can be ex-

tended to adapt to other languages. There are a few things to take a look into

when adapting the system into another languages, such as the OCR to recog-

nise words from other languages and the indexing system to recognise other

languages (so that it gives similar experience to the English one when searching

for “language” will also give “languages”).

• Adaptation for other organisations

With the modular design of the built system, there are possibilities that the sys-

tem can be modified for other organisations’ needs. Another organisation who

wants to convert their documents to a searchable database can modify this project

by adjusting necessary modules to match their documents. For example, an or-

ganisation with different structure of document but with similar behaviour of

search can modify only the parsing and the database modules.

Gaelic Language Plans

A related similar project that needs the capability of the system is the Gaelic Lan-

guage Plans from Scotland. This project was founded on The Gaelic Language

Act and, among others, the Council of Europe’s European Charter for Regional

or Minority Languages [23]. However, significant extra effort will be needed as

the plans do not follow a common format and can be in various document for-

mats (PDF, Microsoft Word, or HTML) [24]. Furthermore, they are not held in

any central repository, and this future system would act as one. This project is



38 Chapter 5. Conclusion and Further Work

of great interest to minority language researchers in Scotland and would also be

of interest to institutions charged with developing Gaelic plans. It was always

intended as a further development of the system reported here.

5.3 Reflections

The project arose from a problem faced by minority languages researchers. At first, we

had a lot of things planned for the proposed system, however, it turned out that there

were many unexpected problems occurring during the development process. One of the

major problems was that most of the ECRML reports had been submitted in malformed

documents. We took several days to find out the solution of the problem. However,

after finding out the problem and resolving it, the system became more impactful, as

without the OCR solution to parse the malformed documents, it is nearly impossible

for the researchers to get desired information from the malformed documents quickly.

We sacrificed many proposed features to make sure the main objective was reached

properly.

We decided on the tools and frameworks mostly based on familiarity and popularity.

This had to be done as there were not enough time to learn new ones. However, we

also learnt some new technologies that were required by the project. Among others, we

learnt how to integrate an OCR-based document parser into a web system, we learnt to

setup a search system built on a website, a database, and a search server, and we learnt

how to deploy a website into a production server.

The built system is not perfect, but it can be improved in various ways. Nevertheless,

the current system is useful for minority languages researchers and may get refined in

the future.



Bibliography

[1] Jeremy Ashkenas, Samuel Clay, and Ted Han. docsplit. https://rubygems.

org/gems/docsplit. Accessed 28 July 2016.

[2] Capistrano. http://capistranorb.com/documentation/overview/

what-is-capistrano/.

[3] DB-Engines. Db-engines ranking. http://db-engines.com/en/ranking. Ac-

cesssed 7 April 2016.

[4] DigitalOcean. https://www.digitalocean.com/.

[5] Docsplit. https://documentcloud.github.io/docsplit/.

[6] Ubuntu Documentation. Ocr. https://help.ubuntu.com/community/OCR.

Accesssed 31 July 2016.

[7] Elasticsearch. https://www.elastic.co/products/elasticsearch. Ac-

cessed 31 July 2016.

[8] European Charter for Regional or Minority Languages. Language covered by the

european charter for regional or minority languages. http://www.coe.int/

t/dg4/education/minlang/AboutCharter/LanguagesCovered.pdf. Ac-

cesssed 25 July 2016.

[9] European Charter for Regional or Minority Languages. Outline for periodical

reports to be submitted by contracting parties. http://www.coe.int/t/dg4/

education/minlang/StatesParties/OutlineInitial_en.pdf. Accesssed

31 July 2016.

[10] European Charter for Regional or Minority Languages. Revised out-

line for three-yearly periodical reports to be submitted by contracting par-

39

https://rubygems.org/gems/docsplit
https://rubygems.org/gems/docsplit
http://capistranorb.com/documentation/overview/what-is-capistrano/
http://capistranorb.com/documentation/overview/what-is-capistrano/
http://db-engines.com/en/ranking
https://www.digitalocean.com/
https://documentcloud.github.io/docsplit/
https://help.ubuntu.com/community/OCR
https://www.elastic.co/products/elasticsearch
http://www.coe.int/t/dg4/education/minlang/AboutCharter/LanguagesCovered.pdf
http://www.coe.int/t/dg4/education/minlang/AboutCharter/LanguagesCovered.pdf
http://www.coe.int/t/dg4/education/minlang/StatesParties/OutlineInitial_en.pdf
http://www.coe.int/t/dg4/education/minlang/StatesParties/OutlineInitial_en.pdf


40 Bibliography

ties. http://www.coe.int/t/dg4/education/minlang/StatesParties/

Outline3yearly_en.pdf. Accesssed 31 July 2016.

[11] Snowtide Informatics. Pdfxstream. https://www.snowtide.com/. Accesssed

28 July 2016.

[12] Snowtide Informatics. A performance comparison of pdf text extraction libraries.

https://www.snowtide.com/performance. Accesssed 28 July 2016.

[13] Snowtide Informatics. Pricing and online purchasing. https://www.snowtide.

com/purchasing. Accesssed 28 July 2016.

[14] Moshe Kaplan. When to use mongodb rather than mysql (or other

rdbms): The billing example. https://dzone.com/articles/

when-use-mongodb-rather-mysql. Accessed 31 July 2016.

[15] MongoDB. Nosql databases explained. https://www.mongodb.com/

nosql-explained. Accessed 13 April 2016.

[16] The University of Edinburgh School of Informatics. What is dice? http://

computing.help.inf.ed.ac.uk/what-is-dice.

[17] Council of Europe. European charter for regional or minority lan-

guages. http://www.coe.int/t/dg4/education/minlang/aboutcharter/

default_en.asp. Accesssed 25 July 2016.

[18] Council of Europe. European charter for regional or minority languages. http:

//www.coe.int/t/dg4/education/minlang/Report/.

[19] Council of Europe. European charter for regional or minority languages.

http://www.coe.int/t/dg4/education/minlang/aboutmonitoring/

default_en.asp. Accesssed 25 July 2016.

[20] Council of Europe. Statute of the council of europe. http://www.coe.int/

en/web/conventions/full-list/-/conventions/treaty/001. Accesssed

25 July 2016.

[21] Phusion Passenger. https://www.phusionpassenger.com/.

[22] Pdf-reader. https://github.com/yob/pdf-reader.

[23] Gaelic Language Plans. The gaelic language (scotland) act

http://www.coe.int/t/dg4/education/minlang/StatesParties/Outline3yearly_en.pdf
http://www.coe.int/t/dg4/education/minlang/StatesParties/Outline3yearly_en.pdf
https://www.snowtide.com/
https://www.snowtide.com/performance
https://www.snowtide.com/purchasing
https://www.snowtide.com/purchasing
https://dzone.com/articles/when-use-mongodb-rather-mysql
https://dzone.com/articles/when-use-mongodb-rather-mysql
https://www.mongodb.com/nosql-explained
https://www.mongodb.com/nosql-explained
http://computing.help.inf.ed.ac.uk/what-is-dice
http://computing.help.inf.ed.ac.uk/what-is-dice
http://www.coe.int/t/dg4/education/minlang/aboutcharter/default_en.asp
http://www.coe.int/t/dg4/education/minlang/aboutcharter/default_en.asp
http://www.coe.int/t/dg4/education/minlang/Report/
http://www.coe.int/t/dg4/education/minlang/Report/
http://www.coe.int/t/dg4/education/minlang/aboutmonitoring/default_en.asp
http://www.coe.int/t/dg4/education/minlang/aboutmonitoring/default_en.asp
http://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/001
http://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/001
https://www.phusionpassenger.com/
https://github.com/yob/pdf-reader


Bibliography 41

2005. http://gaeliclanguageplansscotland.org.uk/en/why/

the-gaelic-language-act.

[24] Gaelic Language Plans. Portfolio of gaelic plans. http://

gaeliclanguageplansscotland.org.uk/en/tools-resources/

development/plan-portfolio.

[25] Abraham Polishchuk. Sql vs nosql ko. postgres vs mongo. https://www.

airpair.com/postgresql/posts/sql-vs-nosql-ko-postgres-vs-mongo.

Accessed 31 July 2016.

[26] PostgreSQL. Frequently asked questions. http://www.postgresql.org/

about/press/faq/. Accessed 13 April 2016.

[27] Sucker punch. https://github.com/brandonhilkert/sucker_punch.

[28] Rails. http://rubyonrails.org. Accessed 13 April 2016.

[29] Rspec. http://rspec.info/.

[30] RubyGems. Stats. https://rubygems.org/stats. Accessed 7 April 2016.

[31] Searchkick. https://github.com/ankane/searchkick.

[32] Seeker. https://github.com/araishikeiwai/seeker.

[33] Seeker. http://46.101.91.181/.

[34] Tesseract. https://github.com/tesseract-ocr/tesseract.

[35] Yomu. https://github.com/Erol/yomu.

http://gaeliclanguageplansscotland.org.uk/en/why/the-gaelic-language-act
http://gaeliclanguageplansscotland.org.uk/en/why/the-gaelic-language-act
http://gaeliclanguageplansscotland.org.uk/en/tools-resources/development/plan-portfolio
http://gaeliclanguageplansscotland.org.uk/en/tools-resources/development/plan-portfolio
http://gaeliclanguageplansscotland.org.uk/en/tools-resources/development/plan-portfolio
https://www.airpair.com/postgresql/posts/sql-vs-nosql-ko-postgres-vs-mongo
https://www.airpair.com/postgresql/posts/sql-vs-nosql-ko-postgres-vs-mongo
http://www.postgresql.org/about/press/faq/
http://www.postgresql.org/about/press/faq/
https://github.com/brandonhilkert/sucker_punch
http://rubyonrails.org
http://rspec.info/
https://rubygems.org/stats
https://github.com/ankane/searchkick
https://github.com/araishikeiwai/seeker
http://46.101.91.181/
https://github.com/tesseract-ocr/tesseract
https://github.com/Erol/yomu

	Introduction
	Report Outline

	Background
	Council of Europe's European Charter for Regional or Minority Languages
	Problems and Scope

	Tools
	Document Parser
	Database
	Search Server
	Web Framework
	Web Server and Deployment

	The System
	Document Parsing
	Document Structure
	Malformed Documents
	Processing the Documents

	Document Database
	Database Design
	Storing the Texts

	Search Index
	Web Search Interface
	Search Form
	Search Results

	Web Administrator Interface
	Inserting Documents
	Manual Section Separation
	User Administration

	Integration
	Modules Relationships
	Technical Details
	Deployment

	Testing and Evaluation
	System Evaluation
	Project Evaluation

	Setback and Recovery

	Conclusion and Further Work
	Conclusion
	Future Work
	Reflections

	Bibliography

