
Implementing Marked Nulls in PostgreSQL

Peter Storeng
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2016



Abstract

SQL’s use of nulls has been widely criticised. This is for good reason, for simple

queries databases with nulls are giving wrong answers. One solution to this problem

is to avoid polluting databases with nulls altogether. Where possible nulls should of

course be avoided, however incomplete data is very much a reality. The amount of

data being captured and stored logically in databases is increasing rapidly and as a

consequence so is the amount of incomplete data - it cannot be ignored.

The theoretical concept of certain answers provides correctness guarantees, how-

ever calculating them is not efficient or even useful. Recently query translations which

approximate certain answers accurately on First Order queries, without producing

wrong answers and, with good complexity bounds have been suggested. Further, they

have been tested with encouraging results [14]. One issue with these translations is

that they rely on a notion of Codd Nulls, where every null is distinct.

SQL attempts to model Codd Nulls, but fails to do so exactly. A more general null

concept is one of a marked null, where nulls are given identifiers and two nulls with the

same marker/identifier are considered equal. Indeed SQL in its current modelling of

nulls cannot represent the fact two values may be the same, but that their actual value

is unknown.

This project implements marked nulls in the Postgres flavour of SQL. The aims are

twofold: firstly to allow us to represent more general results and secondly to enforce

correctness in the translations presented in [14].

i



Acknowledgements

Many thanks to Paolo Guagliardo and Leonid Libkin who were always willing to give

their precious time to discuss ideas and results both in person and via email. This

project would not have gone very far without their guidance.

ii



Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Peter Storeng)

iii



Table of Contents

1 Introduction 1

2 Roadmap 5

3 Definitions and Preliminaries 6
3.1 Homomorphisms, Valuations and Semantics . . . . . . . . . . . . . . 6

3.2 Certain Answers and Correctness Guarantees . . . . . . . . . . . . . 7

3.3 Three Valued Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.4 Translations with Correctness Guarantees . . . . . . . . . . . . . . . 9

3.4.1 A First Attempt . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.4.2 A Better Solution . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Marked Nulls in postgresSQL 12
4.1 Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Null Integer Type 14
5.1 Input Output Functionality . . . . . . . . . . . . . . . . . . . . . . . 14

5.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

5.2.1 COMMUTATOR . . . . . . . . . . . . . . . . . . . . . . . . 19

5.2.2 NEGATOR . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.3 RESTRICT . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.4 JOIN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2.5 HASHES & MERGES . . . . . . . . . . . . . . . . . . . . . 20

5.3 Indexing, Ordering and Merging . . . . . . . . . . . . . . . . . . . . 20

5.4 Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.5 Extra Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.6 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iv



6 Null Varchar Type 25
6.1 Extra Complications . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6.1.1 Type Modifiers and Length Coercion . . . . . . . . . . . . . 26

6.1.2 Macros and Bit layouts . . . . . . . . . . . . . . . . . . . . . 28

6.2 Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Experiments 30
7.1 Correctness Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.1.1 Experimental Set Up . . . . . . . . . . . . . . . . . . . . . . 30

7.2 Performance Testing . . . . . . . . . . . . . . . . . . . . . . . . . . 31

7.3 Full Price of Correctness . . . . . . . . . . . . . . . . . . . . . . . . 32

7.4 Pure Cost of Marked Nulls . . . . . . . . . . . . . . . . . . . . . . . 33

8 Conclusions and Future Work 36

A Null Varchar Header file 39

B Original Untranslated Queries 42

C Translated Queries 45

D Source Code 50

Bibliography 51

v



Chapter 1

Introduction

SQL’s evaluation procedure uses three valued logic where the result of logical oper-

ations can either be true or false but also unknown. Unknown is often thought of as

somewhere in between true and false and is caused by the presence of null values.

Null values themselves can be interpreted to mean different things. For instance

a null value could represent the fact that a value exists but is missing (missing-but-

applicable), conversely it could be interpreted that no value exists/a value does not

make sense (missing-and-inapplicable). An example of the missing-and-inapplicable

situation could be a PERSON relation with a salary attribute. The salary of someone

who is unemployed is not applicable. Indeed Codd himself argued for two distinct null

types to represent this, this however would have required a four valued logic query

evaluation procedure [5], complicating things further. We note that the missing-and-

inapplicable nulls are often due to poor database design so this paper focuses on the

case where a null is interpreted as a missing value.

Ultimately SQL must either return a tuple as part of a query or not return such a

tuple. This binary result system is at odds with three valued logic, thus at the evalu-

ation point unknown is collapsed to false. This causes some paradoxes, for example

consider the query against a PERSON relation with name and age attributes1:

SELECT * FROM PERSON WHERE age>=18 OR age<18

Clearly the WHERE constraint in the query is a tautolgy and should return all tuples in

the PERSON relation. However tuples with nulls where an age should be present will

1Designing tables with age columns is poor design, date of birth columns are used instead. Here we
use age to illustrate examples

1



Chapter 1. Introduction 2

not be selected. The selection predicates Null>=18 and Null<18 both return unknown

as does their disjunction which collapses to false under SQL’s evaluation procedure.

This ”collapsing” in subqueries combined with negation is where SQL starts to

produce blatantly wrong answers. Consider the query:

SELECT name FROM PERSON WHERE

NOT name IN

(SELECT name FROM PERSON WHERE age>=18 OR age<18)

The above query asks for the names of people who do not have an age greater than

or equal to 18 OR less than 18, which should of course be nobody. However, SQL

returns the names of all the people in the relation who have a null value for age. This is

a simplistic query but it serves the point that nulls are dangerous and even with a seem-

ingly harmless straightforward query it is possible to get blatantly wrong answers. In

fact it has been shown in [14] that queries from the TPC-H benchmark [1] produce

false positive results in the presence of nulls and the rate of false positives increases

with the null rate in the database.

From the above example it is easy to understand why some database practitioners

advocate the avoidance of nulls altogether and a return to boolean logic [7]. Theo-

reticians have come up with the idea of certain answers, answers which will be in the

query result regardless of how a null value is interpreted [16, 3]. This is a step forward,

however there is an inherent problem with this in that the computation of certain an-

swers is intractable, and at least coNP-complete [4]. Perhaps there is a middle ground

where we can approximate certain answers, avoiding wrong answers, but with good

complexity bounds.

The conclusion in [18, 14] is that such an approximation is feasible at least for

first-order SQL queries where nulls are interpreted as missing values. [14] provides a

translation of first order SQL queries to new queries which have correctness guaran-

tees. However these correctness guarantees are based on an assumption of Codd Nulls

which SQL does not quite accurately model.

In the Codd Null model every null value is distinct, in SQL this is also the case but

in SQL, somewhat surprisingly, a null is not equivalent to itself. Consider for example

the table R(A,B) with single tuple (1,NULL) and the query:

SELECT R1.A FROM R R1, R R2



Chapter 1. Introduction 3

WHERE R1.A=R2.A AND R1.B=R2.B

ie. the query πA(R∩R), which in SQL returns the empty set and not the intuitive

{1} [18].

The proposed translations’ correctness is also enforced in the marked null model.

Marked nulls allow for more general results, thus an implementation of this in SQL

would allow for more expressiveness than SQL is currently capable of.

Table 1.1: Codd Null Model

Lecturer Subject

Jones Databases

x Operating Systems

Smith y

z Algorithms and Data Structures

Above is an example of Codd nulls being represented by x,y,z. However if we

wanted to represent the fact that the Operating System and Algorithms and Data Struc-

tures courses were being taught by the same (unknown) lecturer it would be not be

possible, since nulls are distinct and do not repeat. In the marked null model, shown

below, we are able to do this simply by placing a null with the same ID for both Lec-

turer values.

Table 1.2: Marked Null Model

Lecturer Subject

Jones Databases

x Operating Systems

Smith y

x Algorithms and Data Structures

Marked nulls have already been implemented in association with data integration

and data exchange tools [19, 15]. Indeed it is easy to imagine how transforming an

attribute which contains nulls from one schema where it appears once to a new one

where it appears multiple times can generate marked nulls.

Thus with the motivation of 1. Enforcing correctness on the translation from [14]

and 2. The representation of more general results this projects aims to implement

marked nulls in SQL.



Chapter 1. Introduction 4

To do this we will use the open source PostgreSQL. We aim to implement new

versions of particular types (integer and varchar for this project) to allow for marked

nulls. We will also aim to make these new types as efficient as possible, so indexing and

hashing methods for the new types will be implemented. We will further test the new

types are behaving as expected and finally do performance testing against databases

containing SQL nulls in place of marked nulls.



Chapter 2

Roadmap

In Chapter 3 we will present formally the key concepts and definitions. We will define

the ideas of certain answers, correctness guarantees and potential answers. We will

show how using these theoretical concepts we can translate queries which may give

false positives to ones which do not. One of the key motivating factors behind this

project is that these translations are based on an assumption of Codd Nulls or Marked

Nulls neither of which SQL’s version of Nulls models.

In chapter 4 we state our implementation strategy and in chapters 5 and 6 we will

show the steps we took to implement marked nulls for integer and varchar types.

Chapter 7 will show experimental results testing for both correctness and perfor-

mance.

Finally we conclude in chapter 8 and discuss potential future work.

5



Chapter 3

Definitions and Preliminaries

A vocabulary (or relational schema) is a set of relation names with associated arities.

A database is an instance of such a relational schema. Each relational symbol S of

arity k in a database D is a finite subset of (Adom = (Const∪Null)k) where Const
and Null are countably infinite sets of all the non-null and null values appearing in

databases respectively. Const(D) and Null(D) denote the sets of constants and nulls

appearing in database D. A tuple in relational symbol S over database D is denoted

ū ∈ S. We represent nulls with the symbol ⊥ and we use the marked null model so

nulls are allowed to repeat, thus we distinguish nulls by applying subscripts to ⊥.

A database D is complete if Null(D) = /0 and conversely a database is said to be

incomplete if Null(D) 6= /0. The active domain of D is its full domain ie.

Adom(D) = Const(D)∪Null(D)

3.1 Homomorphisms, Valuations and Semantics

For relational database instances D and D′ over a relational schema a homomorphism

h : D→ D′ is a mapping from Adom(D) to Adom(D′) where

1. ∀S ∈ D and tuple ū ∈ S then tuple h(ū) ∈ S in D′

2. h(c) = c ∀c ∈ Const(D)

Further we say h is a valuation if D′ is complete. I.e. a valuation replaces any nulls

with constant values, leaving constants as they are. A valuation can also be thought

of as a mapping from an incomplete database to a complete one. We define JDK the

semantics of incomplete databases as:

6



Chapter 3. Definitions and Preliminaries 7

JDK = {h(D) | h is a valuation} (3.1)

where h(D) is the image of h : D→ D′. So h(D)⊆ D′. So JDK is the set of all

possible complete databases an incomplete database could represent.

3.2 Certain Answers and Correctness Guarantees

We can now formally define the certain answers to a query Q over database D as:

certain(Q,D) = ∩{Q(D′) | D′ ∈ JDK} (3.2)

Essentially a certain answer is one which is in the result of a query no matter how the

null values present are interpreted.

There is however an issue with this definition in that any tuples which have null

values will not be returned. Consider again the query

SELECT * FROM PERSON WHERE age>=18 OR age<18

against a simple PERSON instance shown below:

Name Age

Sarah 18

Alison ⊥1

The certain answers in this case are {(Sarah,18)} and not the expected {(Sarah,18),

(Alison,⊥1)}. This is because ⊥1 is interpreted differently in different valuations and

thus not in the intersection.

This deficiency motivates the concept of certain answers with nulls [18]:

Definition 3.2.1. For an incomplete database D and a query Q of arity k defined over

complete databases, then we define certain answers with nulls, certain⊥(Q,D), as

{ū ∈ adom(D)k | h(ū) ∈ Q(h(D)) for all valuations h : D→ Const}

We note that for the previous example the certain answers with nulls are {(Sarah,18),

(Alison,⊥1)} since regardless of how ⊥1 is interpreted either h(⊥1)>= 18 or

h(⊥1)< 18 is true.



Chapter 3. Definitions and Preliminaries 8

Definition 3.2.2. We say a query evaluation algorithm Q has correctness guarantees

if for any database D its result is a subset of the certain answers with nulls i.e. if

Q(D)⊆ certain⊥(Q,D).

So a query evaluation method with correctness guarantees will never return wrong

answers (false positives). The aim in [18, 14] was to find a translation for a query Q

which does not have correctness guarantees to a new one Q′ say which does. i.e. Q′

such that Q′(D)⊂ certain⊥(Q,D).

3.3 Three Valued Logic

We alluded to three valued logic previously. This is the evaluation procedure which

SQL uses in query evaluation. Table 3.1 below shows the complete truth table for such

a logic. We note than an unknown truth value is a result of a comparison with a miss-

ing value null. The test: ⊥ op C; always results in unknown. In particular if op is any

=,<>,>,<,>=,<=. In SQL query σθ where θ is the selection condition will select

only tuples which evaluate to true and not the ones which evaluate to false or unknown.

We will refer to this evaluation procedure as EvalSQL. As shown by way of counter ex-

amples in the previous section there is no relationship between this evaluation proce-

dure and certain answers, though it has been shown [18] that if we restrict SQL queries

to unions of conjunctive queries (UCQs) (queries of the form ϕ1∧ ...∧ϕn) where each

ϕi is a conjunctive query) then in that case EvalSQL has certainty guarantees.

Table 3.1: Truth table for Three Valued logic

x y x AND y x OR y not x

True True True True False

True Unknown Unknown True False

True False False True False

Unknown True Unknown True Unknown

Unknown Unknown Unknown Unknown Unknown

Unknown False False Unknown Unknown

False True False True True

False Unknown False Unknown True

False False False False True



Chapter 3. Definitions and Preliminaries 9

3.4 Translations with Correctness Guarantees

Here we examine translations of queries to ones with certainty guarantees. Importantly

these should be good approximations. Indeed if we only wanted certainty guarantees

we could simply return nothing for each translated query.

3.4.1 A First Attempt

Instead of attempting to alter SQL’s evaluation procedure (EvalSQL) [18] makes a first

attempt at providing translations of queries to ones with correctness guarantees for the

part of SQL equivalent to relational algebra. It shows that we can make simple changes

to the selection conditions of a query so that a query has certainty guarantees. For

this translation new operators const(attribute) and null(attribute) need to be introduced

returning true if the value of an attribute is a constant or null respectively. Further new

queries formed by closing queries under the operations ∩,∪,−,×,σθ,πα should also

provide certainty guarantees.

This provides some issues particularly due to the difference operator. We use a

superscript t to denote a translated query to one with correctness guarantees and a

superscript f to denote the translation of a query Q to one with certainty guarantees

for the complement to the query, (i.e. Q̄(D) = Adom(D)k−Q(D), for k-ary query Q).

The difference of two queries Q1−Q2 can be translated to one which has certainty

guarantees i.e. (Q1−Q2)
t by: Qt

1∩Q f
2 . It is clear that this is correct (and proof is given

in [18]) since Q1 except Q2 is a superset of the certain answers of Q1 intersected with

the certainly not answers to Q2 (ie certain answers to Q̄2).

The issue here is that calculating Q f , though it has good theoretical bounds, is

expensive in practice as it requires calculating the active domain and cartesian products

of this. Further to that the Q f queries can be infeasibly complex.

3.4.2 A Better Solution

A better solution introduced in [14] emerged from a better understanding of how to

approximate certain answers to the difference query. To do this we use a concept of

potential answers which is a more compact improvement of maybe answers [22] where

a maybe answer to Q(D) is one in Q(v(D)) for any valuation v. To explain this we need

some definitions.

Definition 3.4.1. For a query Q with arity k on incomplete database D, we say A⊆ Adomk



Chapter 3. Definitions and Preliminaries 10

represents potential answers to Q on D if

Q(v(D))⊆ v(A), ∀ valuations v

A query Q′ returns potential answers to Q if Q′(D) represents potential answers to Q

on database D,∀D.

If we have a method for calculating potential answers we could see how we could

get certainty guarantees for calculating the difference Q1−Q2. Conceptually the cer-

tain answers would be the answers which are certain answers to Q1 but not possible

answers to Q2. We use a modified definition of the anti-semijoin to formally define the

not.

Definition 3.4.2. We say two tuples r̄ and s̄ of same length, k, over Const∪Null unify

and write r̄ ⇑ s̄ if ∃ a valuation v such that v(r̄) = v(s̄).

Definition 3.4.3. For relations R and S with matching attributes over Const∪Null we

define the left unification semijoin as

Rn⇑ S = {r̄ ∈ R | ∃s̄ ∈ S : r̄ ⇑ s̄}

and the left unification anti-semijoin as

Rn̄⇑S = {r̄ ∈ R | @s̄ ∈ S : r̄ ⇑ s̄}

which is equivalent to R− (Rn⇑ S)

Now we present the full translations for Q→ Q+ and Q→ Q? described in [14].

R+ = R (1.1)

(Q1∪Q2)
+ = Q+

1 ∪Q+
2 (1.2)

(Q1∩Q2)
+ = Q+

1 ∩Q+
2 (1.3)

(Q1−Q2)
+ = Q+

1 n̄⇑Q
?
2 (1.4)

(σθ(Q))+ = σθ∗(Q+) (1.5)

(Q1×Q2)
+ = Q+

1 ×Q+
2 (1.6)

(πα(Q))+ = πα(Q+) (1.7)

R? = R (2.1)

(Q1∪Q2)
? = Q?

1∪Q?
2 (2.2)

(Q1∩Q2)
? = Q?

1 n⇑Q?
2 (2.3)

(Q1−Q2)
? = Q?

1−Q+
2 (2.4)

(σθ(Q))? = σθ∗∗(Q?) (2.5)

(Q1×Q2)
? = Q?

1×Q?
2 (2.6)

(πα(Q))? = πα(Q?) (2.7)



Chapter 3. Definitions and Preliminaries 11

Note that σ∗ and σ∗∗ refer to the translation of selectivity conditions which we give

below. Firstly for θ∗

(A = B)∗ = (A = B)

(A = c)∗ = (A = c) if c a constant

(A 6= B)∗ = (A 6= B)∧ const(A)∧ const(B)

(A 6= c)∗ = (A 6= c)∧ const(A)

(θ1∨θ2)
∗ = θ

∗
1∨θ

∗
2

(θ1∧θ2)
∗ = θ

∗
1∧θ

∗
2

And next for for θ∗∗:

(A = B)∗∗ = (A = B)∨null(A)∨null(B)

(A = c)∗∗ = (A = c)∨null(A)

(A 6= B)∗∗ = (A 6= B)

(A 6= c)∗∗ = (A 6= c) if c is a constant

(θ1∨θ2)
∗∗ = θ

∗∗
1 ∨θ

∗∗
2

(θ1∧θ2)
∗∗ = θ

∗∗
1 ∧θ

∗∗
2

[14] proves that for the translation Q→ (Q+,Q?), Q+ provides correctness guar-

antees for Q and Q? represents potential answers to Q. Further to this it shows the

queries have the data complexity AC0, as does SQL, and shows empirically that they

work well in practice.

Thus a workable solution which provides certainty guarantees for SQL queries

equivalent to relational algebra seems realistic. Of course the proof that these transla-

tions are correct is based on the Codd Null model. Therefore the next logical step is

to implement Codd Nulls and check the translated queries still perform well. Here we

choose to implement marked nulls as the translations still hold in this case and we have

the added benefit of improving the expressive power of SQL. The upcoming chapters

detail the steps taken towards such a goal.



Chapter 4

Marked Nulls in postgresSQL

To implement marked nulls we will use PostgreSQL due to its open source nature, be-

cause it is relatively well documented [11] and it is simple to extend due to its catalog

driven nature. PostgreSQL itself is mostly coded in C and there is a well defined frame-

work for incorporating extensions through dynamic loading. The loading of shared

libraries updates the internal system catalogs allowing modification of PostgreSQL’s

inner workings ’on the fly’.

4.1 Strategy

Postgres treats Null values independent of the actual type and tends to handle them

separately. The logic for the handling of nulls is hardcoded into the postgreSQL inter-

nals and so such behaviour for marked nulls is impossible for us to implement without

making drastic changes to the core code. Thus to implement marked nulls we shall

build them in to the type itself. Therefore, our strategy in implementing the marked

nulls will be to create a new version of each type which will be composed of the base

type and a boolean flag representing whether or not it is a constant.

Defining the new type is relatively simple, however making it useful and efficient

is where the complexity lies. To make it useful we must define new operators and

functions corresponding to existing ones in the base type. A major issue we face here

is that we must handle marked null values explicitly in these operators and therefore

must implement three-valued logic. Since SQL nulls are handled separately in Postgres

the base type operators do not need to do this.

For the new type to be efficient we must also define how indexing and hashing

should work on the new type.

12



Chapter 4. Marked Nulls in postgresSQL 13

The upcoming sections describe in detail the steps that where taken to implement

marked nulls for types equivalent to integer and varchar in PostgreSQL.



Chapter 5

Null Integer Type

As mentioned in the previous section we simply define the new type as a composite

type. In C we can do this by using a struct (see definition below). In this case if

the boolean cnst component is set to true then the value component is treated as a

normal integer. Conversely if the boolean cnst component is set to false then the value

component is treated as if it where an identifier (ID) of a marked null.

t y p e d e f s t r u c t N u l l i n t e g e r

{
i n t v a l u e ;

boo l c n s t ;

} N u l l i n t e g e r ;

5.1 Input Output Functionality

The above definition simply defines a C struct but we have not yet been able to relate

that to a type in Postgres. We can do this using the CREATE TYPE construct in Post-

gres. The minimum arguments that are required are input and output functions so that

Postgres knows how to store the type and how it should present itself when printed to

screen.

CREATE TYPE null_integer (

INPUT = null_integer_in ,

OUTPUT = null_integer_out

);

Where we have already created the SQL input/output functions as:

CREATE FUNCTION null_integer_in(cstring)

14



Chapter 5. Null Integer Type 15

RETURNS null_integer

AS ’null_integer’, ’null_integer_in’

LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION null_integer_out(null_integer)

RETURNS cstring

AS ’null_integer’, ’null_integer_out’

LANGUAGE C IMMUTABLE STRICT;

Above is the SQL code which creates the SQL functions null integer in and

null integer out specified in the type. The actual implementations of these is in the

corresponding C functions.

The IMMUTABLE tag provides extra information to the query optimiser. It states that

the function cannot modify the database and always returns the same result under the

same input arguments, thus certain optimisations can be made.

The STATIC tag indicates that the functions will return unknown on (SQL) null in-

put. Therefore on null input the function is not executed, a null is returned immediately

to allow for further optimisation.

Almost all operators in the base type are declared as STRICT allowing them to not

have to deal with SQL nulls explicitly. We shall also declare our new type’s operators

as STRICT. However we note that a mixing of SQL nulls with marked nulls isn’t really

intended and recommend that marked null type attributes are declared NOT NULL so

marked nulls are allowed but not SQL nulls.

By following the steps described in [13] we can import the basic version of our

extension and insert and display the data.

DemoDir=# CREATE EXTENSION null_integer;

DemoDir=# CREATE TABLE PERSON(Name varchar(100), Age

null_integer NOT NULL);

CREATE TABLE

DemoDir=# INSERT INTO PERSON VALUES(’Sarah’,’18’),(’

Alison’,’NULL:1’);

INSERT 0 2

DemoDir=# SELECT * FROM PERSON;

name | age

--------+--------



Chapter 5. Null Integer Type 16

Sarah | 18

Alison | NULL:1

One annoyance of the above is that we must read input as strings, in particular we

are required to write ’18’ instead of 18. A good way to fix this issue is to define a

CAST function from integers to null integers.

To input marked nulls we must use the format ’NULL:ID’. The input function can

then detect that the constant flag should be set to false. Note the ’NULL:’ characters

are not restricted to being upper case and are not stored in the data structure itself,

but are stripped off in the input function and prepended back on in the output func-

tion. A ’nice’ extra feature which we have not implemented would be to make this

prepended body customisable. Also, inside the input function we have handling for

integer overflow and ensuring the value only contains digits:

DemoDir=# INSERT INTO PERSON VALUES(’Hannah’,’fifty -five’

);

ERROR: 22P02: invalid input syntax for null_integer: "

fifty -five"

DemoDir=# INSERT INTO PERSON VALUES(’Hannah’,’NULL:fifty -

five’);

ERROR: 22P02: invalid input syntax for null_integer: "

NULL:fifty -five"

DemoDir=# INSERT INTO PERSON VALUES(’Hannah’,’

188496353453453’);

ERROR: 22003: value "188496353453453" is out of range

for type integer

5.2 Operators

Operators are implemented as monadic/dyadic functions with left or/and right argu-

ments. As an example we will discuss the implementation of the = operator shown

below. Note that the CREATE OPERATOR construct is a Postgres extension and not a

part of the SQL standard [9].

CREATE OPERATOR = (



Chapter 5. Null Integer Type 17

leftarg = null_integer ,

rightarg = null_integer ,

procedure = null_integer_eq ,

commutator = = ,

negator = <> ,

restrict = mk_eqsel ,

join = mk_eqjoinsel ,

HASHES ,

MERGES

);

The leftarg and rightarg specifications allow us to use the more intuitive infix nota-

tion, with the procedure clause specifying the underlying function. ie:

DemoDir=# SELECT * FROM PERSON WHERE age = 18;

name | age

-------+-----

Sarah | 18

As opposed to calling the underlying procedure directly:

DemoDir=# SELECT * FROM PERSON WHERE null_integer_eq(age

,18);

name | age

-------+-----

Sarah | 18

The procedure given relates to the SQL function defined as:

CREATE FUNCTION null_integer_eq(null_integer ,

null_integer)

RETURNS bool

AS ’null_integer’, ’null_integer_eq’

LANGUAGE C IMMUTABLE STRICT PARALLEL SAFE;

Which in turn is defined in C with a function of the same name. The PARALLEL

SAFE refers to a new feature in PostgreSQL version 9.6 that the function can be ex-

ecuted safely in parallel mode. The C function itself is where the implementation of

all the logic is including the three valued logic which we now demonstrate. Firstly we

enter some new data:



Chapter 5. Null Integer Type 18

DemoDir=# INSERT INTO PERSON VALUES(’Hannah’,’NULL:2’),(’

Chris’,25),(’Alistair’,’NULL:1’);

INSERT 0 3

DemoDir=# SELECT * FROM PERSON;

name | age

----------+--------

Sarah | 18

Alison | NULL:1

Hannah | NULL:2

Chris | 25

Alistair | NULL:1

We have entered data for Hannah whose age is missing and Chris who is 25. We

have also entered data for Alistair who is Alison’s twin. We don’t know Alistair’s age

but we do know that it must be the same as Alison’s. This fact was not previously

expressible in SQL, thus we have achieved one part of the aim of this project. We can

now check the logic behind = is working properly:

DemoDir=# \pset null ’u’

Null display is "u".

DemoDir=# SELECT name ,age=’NULL:1’ FROM PERSON;

name | ?column?

----------+----------

Sarah | u

Alison | t

Hannah | u

Chris | u

Alistair | t

DemoDir=# SELECT name ,age=18 FROM PERSON;

name | ?column?

----------+----------

Sarah | t

Alison | u

Hannah | u

Chris | f



Chapter 5. Null Integer Type 19

Alistair | u

We set nulls to be shown as ’u’ standing for unknown and first test if any ages are

equal to ’NULL:1’. This is true for Alison and Alistair but since we don’t what missing

value ’NULL:1’ represents the remaining results are unknown. The second query is

shown for completeness to demonstrate that A = B where A and B are constants will

return a definite answer.

Also note that the intersection query involving nulls from chapter 1 now returns the

intuitive result:

DemoDir=# CREATE TABLE R(A null_integer ,B null_integer);

CREATE TABLE

DemoDir=# INSERT INTO R VALUES(1,’NULL:999’);

INSERT 0 1

DemoDir=# SELECT R1.A FROM R R1, R R2 WHERE R1.A=R2.A AND

R1.B=R2.B;

a

---

1

The real power in creating operators is down to supplying extra information to the

query optimiser. This extra information can lead to significant performance benefit.

The remaining clauses in the CREATE OPERATOR construct above exist for this reason,

we now summarise these:

5.2.1 COMMUTATOR

This clause simply states that for operator OP1 which has a commutator OP2 then:

A OP1 B ⇐⇒ B OP2 A

I.e. we can switch the positions of A and B and use OP2 instead of OP1. The reason that

this clause is important to Postgres is that if B is a column with an index on it Postgres

cannot make use of this fact without the commutator clause because it always expects

the index column to be the left argument. Clearly equality is commutative thus the

commutator above is itself.



Chapter 5. Null Integer Type 20

5.2.2 NEGATOR

OP2 is a negator to OP1 if:

A OP1 B ⇐⇒ NOT(A OP2 B)

The benefit of this is it allows expressions to strip the NOT operator and replace OP2

with OP1. The negator to equality is clearly not equal which we will implement as <>.

5.2.3 RESTRICT

The restrict clause allows us to name a selectivity estimation function. These are func-

tions which provide estimates on the number of rows in a table that will satisfy a

WHERE condition involving this operator. The optimiser then has a good idea of how

many rows will be selected.

5.2.4 JOIN

Similar to the restrict clause the join clause specifies a join selectivity estimation func-

tion. I.e. it estimates the percentage of rows in a table will satisfy the join condition in

a WHERE condition of the form: table1.column1 OP table2.column2.

5.2.5 HASHES & MERGES

Hashes means it is permissible to use hashing for join/selection conditions involving

this operator. For this to work a hash function must be defined. The merges clause

indicates it is possible to use this operator in a merge join. For this to work there

must be a total order defined on the data type. These two clauses are desirable as

they tend to be much faster than the default nested loops join method. However they

cause some issues on implementation for the new type which we shall discuss in detail

subsequently.

5.3 Indexing, Ordering and Merging

PostgreSQL provides a simple structure for implementation of different indexing strate-

gies. To implement a B-tree index we just need to be able define a total ordering for

a type and Postgres will handle the rest. The PostgreSQL code for doing so is shown

below:



Chapter 5. Null Integer Type 21

CREATE OPERATOR CLASS null_integer_ops

DEFAULT FOR TYPE null_integer USING btree AS

OPERATOR 1 <& ,

OPERATOR 2 <=& ,

OPERATOR 3 = ,

OPERATOR 4 >=& ,

OPERATOR 5 >& ,

FUNCTION 1 null_integer_btree_cmp(

null_integer , null_integer);

Postgres uses the notion of an operator class. This specifies that certain operators

will fulfil different roles. We are free to specify the operators for these roles when

creating an operator class. For example for the B-tree indexing method operator 1

should be a ’less than’ operator, operator 2 ’less than or equal’, operator 3 ’equal’,

operator 4 ’greater than or equal’ and operator 5 ’greater than’.

Notice here we have appended the ampersand character to the expected operators

(except for equality). This is because we must be able to define a total order for a

B-tree index to make sense. The normal inequality operators will return unknown on

a marked null input, this cannot be allowed here. Thus we create the ’dual’ to the

normal inequality operators which define a total order with the marked nulls ’less’

than constants. We reserve <,<=,>=,> for the correct three value operators. To

demonstrate consider ’<&’.

We say A <& B is true if:

1. If A and B are both constants and A < B.

2. If A is a marked null and B is a constant.

3. If A is a marked null with ID IDA and B is a marked null with ID IDB such that

IDA < IDB.

and false otherwise (never unknown).

For B-tree indexing Postgres also requires us to define a comparison function which

returns a negative number, 0 or a positive number depending on whether the first ar-

gument is less than equal to, equal to or greater than the second argument. This is the

role of null integer btree cmp function above.

We are now able to create indexes and are able to do ordering on the null integer col-

umn with respect to the operators defined for indexing:



Chapter 5. Null Integer Type 22

DemoDir=# SELECT * FROM PERSON ORDER BY age;

name | age

----------+--------

Alison | NULL:1

Alistair | NULL:1

Hannah | NULL:2

Sarah | 18

Chris | 25

DemoDir=# CREATE INDEX ageIndex ON PERSON(age);

CREATE INDEX

DemoDir=# \d PERSON

Table "public.person"

Column | Type | Modifiers

--------+------------------------+-----------

name | character varying(100) |

age | null_integer | not null

Indexes:

"ageindex" btree (age)

Since the datatype is now capable of being fully ordered the MERGES clause in the

definition of the = operator now makes sense as a merge join works on the principle

that two tables can be sorted by their join column(s).

5.4 Hashing

Similar to the MERGES clause requiring a total order to be defined for the type, the

HASHES clause requires a hash function to be defined for the type. We define the hash-

ing operator class as such:

CREATE OPERATOR CLASS null_integer_ops

FOR TYPE null_integer USING hash AS

OPERATOR 1 = ,

FUNCTION 1 hash_null_integer(null_integer);



Chapter 5. Null Integer Type 23

where the hash null integer specifies a hashing function ultimately implemented

in C. Here instead of writing our own hash function we indirectly call one defined in

existing Postgres libraries. This is an adaptation of ’My Hash’ [17].

5.5 Extra Functions

The translations described in 3.4 require operators const() and null() which return

true/false on constant input and false/true on (marked/codd) null input respectively.

Thus we create the functions is null() and not null() for this purpose:

CREATE FUNCTION is_null(null_integer)

RETURNS bool

AS ’null_integer’, ’is_null’

LANGUAGE C IMMUTABLE PARALLEL SAFE;

CREATE FUNCTION not_null(null_integer)

RETURNS bool

AS ’null_integer’, ’not_null’

LANGUAGE C IMMUTABLE PARALLEL SAFE;

CREATE OPERATOR @@ (

leftarg = null_integer ,

procedure = is_null ,

restrict = mknull_sel ,

negator = @!

);

CREATE OPERATOR @! (

leftarg = null_integer ,

procedure = not_null ,

restrict = mk_not_null_sel ,

negator = @@

);

Here we also create operators corresponding to the functions. This is so that we

can take advantage of providing the restrict and negator clauses for optimisation.



Chapter 5. Null Integer Type 24

5.6 Issues

Issues with this implementation of marked nulls all stemmed from attempting to im-

plement three-valued logic into operators that Postgres expects should use boolean

logic. Although Postgres implements three-valued logic it does so by labelling opera-

tors strict. This allows nulls to be handled outside the operator. Since these operators

never receive a null input they never return null/unknown output.

Postgres uses the terminology that a function is complete if it never returns nul-

l/unknown on non-null input. In the eyes of the Postgres internals our null integer

operators are not complete since an operation involving a marked null, which is built

into the type and considered by Postgres a normal non-null value, will return unknown.

By default this is allowed however once we try to make certain optimisations Post-

gres starts to complain. In particular the inbuilt restrict and join clauses for equality like

operators ’eqsel’ and ’eqjoinsel’ require the operator to be complete or they will return

an error. This was a major issue as without this optimisations a major performance hit

is incurred.

To remedy this we went through the onerous task of creating dual versions of eqsel

and eqjoinsel, mk eqsel and mk eqjoinsel respectively. This essentially involved

copying the underlying C functions and any sub-functions and editing the code sections

which caused error on unknown output. We instead returned false on unknown output.

We packaged this class of functions into another extension thus allowing us to keep the

optimisations required.



Chapter 6

Null Varchar Type

The implementation of the Null Varchar datatype turned out to be significantly more

challenging than implementation of a Null Integer datatype. The reason for this of

course seeds from its varaiable length nature.

In Postgres all variable length data types share the ’varlena’ header defined in C as:

s t r u c t v a r l e n a

{
char v l l e n [ 4 ] ;

char v l d a t [ ] ;

} ;

In particular we see the C VarChar type (the underlying datatype for the corre-

sponding PosgreSQL Varchar) is defined as so:

t y p e d e f s t r u c t v a r l e n a VarChar ;

The varlena struct is a struct containing a flexible array member where the last element

is an incomplete array. The first element of the struct, vl len , is used to describe the

variable length data portion vl dat which for varchar types will store the string. Note

this is different to the normal way of storing C strings in memory as a pointer to a null

terminated string.

Postgres chooses to use this method because firstly storing pointers to disk is mean-

ingless and so requires extra handling and secondly this allows for the storing of data

contiguously on disk allowing for faster disk reads.

The obvious way therefore to define our Null Varchar type would be as follows:

t y p e d e f s t r u c t N u l l v a r c h a r

{
boo l c n s t ;

25



Chapter 6. Null Varchar Type 26

VarChar v a l u e ;

} N u l l v a r c h a r ;

Again using the cnst flag to indicate whether value is a marked null, and so contains

its ID, or if it a normal constant value.

The C standard states that a struct containing a flexible array member ”shall not

be a member of a structure or an element of an array” [6]. This effectively ruled this

method out so we instead defined it as such:

t y p e d e f s t r u c t N u l l v a r c h a r

{
char n v l e n [ 4 ] ;

boo l c n s t ;

char n v d a t [ ] ;

} N u l l v a r c h a r ;

Note that after proceeding with this definition further research showed that the C

standard does in fact allow for a nested struct with a flexible array member in the case

it is the last element of that structure [20]. In any case the two definitions amount to

the same thing and in fact the existing C macros for setting and getting both the size

and data values would be required to be altered for both methods. We discuss this in

the next subsection.

6.1 Extra Complications

Using the flexible array member method to store variable length data has some added

complications. The input function must be careful to allocate the correct amount of

memory on the heap. The input function is provided with the input as a null terminated

string as usual. From this we can extract the length and add the extra offset (5 bytes)

required for the nv len and cnst members to allocate memory for the Null varchar

struct.

6.1.1 Type Modifiers and Length Coercion

Before we define the type input function we must first define type modifier input/output

functions. These are required for types that support extra constraints attached to a type

declaration known as modifiers [10]. The Varchar datatype supports an integer modifier

which specifies the maximum number of characters that it can hold. Similarly this is

mandatory for the Null Varchar type. The type modifier should be made available to



Chapter 6. Null Varchar Type 27

the input function so that Varchar entries with too many characters can be rejected

before being inserted to the table. Once these functions are defined we can create the

type:

CREATE TYPE null_varchar (

input = null_varchar_in ,

output = null_varchar_out ,

LIKE = pg_catalog.varchar,

typmod_in = null_varchartypmodin ,

typmod_out = null_varchartypmodout

);

In fact although the type modifier is passed as an argument to the input function,

oddly it is not the correct value. Instead to ensure the input is of correct length we

must define a length coercion cast function which is called after the input function (if

defined) to ensure the length is correct:

CREATE FUNCTION null_varchar(null_varchar , integer,

boolean)

RETURNS null_varchar

AS ’null_varchar’, ’null_varchar’

LANGUAGE C IMMUTABLE STRICT PARALLEL SAFE;

CREATE CAST (null_varchar AS null_varchar)

WITH FUNCTION null_varchar(null_varchar , integer,

boolean)

AS IMPLICIT;

This behaviour was entirely undocumented and required much trial and error to be

uncovered. We note the length coercion function has the same name as the type as this

matches the way other length coercion functions are defined. Also, the CAST function

’casts’ from null varchar to null varchar. Essentially the underlying function checks

the null varchar does not have more characters than it should. If it does but these are

only whitespace characters these are stripped out, otherwise an error is returned:

DemoDir=# CREATE TABLE PERSON(Name null_varchar (10) NOT

NULL, Age null_integer NOT NULL);

CREATE TABLE

DemoDir=#



Chapter 6. Null Varchar Type 28

DemoDir=# INSERT INTO PERSON VALUES(’Sarahhhhhhhh’,’18’);

ERROR: 22001: value too long for type character varying

(10)

LOCATION: null_varchar , null_varchar.c:247

DemoDir=#

DemoDir=# INSERT INTO PERSON VALUES(’Sarah ’,’18’);

INSERT 0 1

6.1.2 Macros and Bit layouts

Recall the deinition of the varlena struct included a 4 character array header and the

flexible array member. By inspecting the source code and comments in [2] we see that

Postgres uses the first two bits of the first byte in v len to store information about how

the data is stored (compressed/uncompressed and aligned/unaligned). The remaining

bits are for the length of the data.

Using the ’first two’ bits has a different meaning depending on the endianess of

the machine the code is running on. Thus there are two versions of the get/set macros

depending on the architecture. Big endian machines require us to mask the first two

bits to extract the length whereas little endian machines require us to shift two bits.

See the comments in [2] for further details.

We note these details because the new type has the extra cnst member causing the

existing access macros to be invalid and new versions of them to be written adding

significantly to the complexity, see the header file in Appendix A for the definition of

these macros (specifically for little endian machines). Another method to define the

Null varchar struct may have been to typedef it to be the same as the varlena struct

and use the first byte of the vl dat array to encode the constant/null information. How-

ever this resolves to the same problem as macros will still be required to access the

data/constant value.

6.2 Operators

We leave most of details of the implementation of the operators for the null varchar

type out as they are generally similar to the null integer type. We just remark that

to define an ordering we use the normal alphabetic ordering with marked nulls ap-

pearing before constants (using alphabetic ordering on IDs within marked nulls). This



Chapter 6. Null Varchar Type 29

can then be used for merge joins and indexing. As before we use two versions of

the inequality operators, the original <,<=,>,>= ones for three valued logic and

< &,<= &,> &,>= & to define a total order.

Additionally we implement a like function for null varchar. This function behaves

as expected when the comparison involves constants, will always return unknown if

one of the two comparisons is a marked null the only exception to this being when the

two things being compared are the same marked null.

DemoDir=# SELECT * FROM PERSON;

name | age

----------+--------

Sarah | 18

Alison | NULL:1

Hannah | NULL:2

Chris | 25

Alistair | NULL:1

NULL:AAA | NULL:2

DemoDir=# SELECT name LIKE ’NULL:A%’,name LIKE ’A%’,name

LIKE ’NULL:AAA’ FROM PERSON;

?column? | ?column? | ?column?

----------+----------+----------

u | f | u

u | t | u

u | f | u

u | f | u

u | t | u

u | u | t

In particular the comparison NULL:AAA like ’NULL:A%’ is unknown as the ’AAA’

is just an ID and though the IDs seem to match this says nothing about the missing data

that they represent.



Chapter 7

Experiments

Having implemented the new types we now show some experimental results. We will

firstly test for correctness and then performance.

7.1 Correctness Tests

The testing that the translations in [14] are correct was completed as part of that re-

search. The correctness which we wish to test for is that if we replace the integer and

varchar data types with null integer and null varchar datatypes and populate incom-

plete databases with precisely the same data (except replacing SQL nulls with marked

nulls) that the marked null queries return the exact same results.

7.1.1 Experimental Set Up

We create two mirror incomplete databases (one for SQL nulls and one for marked

nulls) and check that we get the same query results (possibly with marked nulls in

place of SQL nulls).

As done in [14] we will use the DBGen tool from the TPC-H benchmark to con-

struct databases of size approximatley 1GB. The TPC-H database and queries are cho-

sen ”to have broad industry-wide relevance” [21]. We will use the four translated

queries from [14]. Two of which are modified TPC-H queries and two of which are

standard textbook queries [8] with subqueries listed in Appendix C.

To test the queries in the two separate databases are the same we simply save the

query results to csv files and use the linux diff command to check they are the same.

Note that we need to slightly modify the queries for the marked null database to use

30



Chapter 7. Experiments 31

the is null() and not null() functions instead of IS NULL or IS NOT NULL. In fact

instead we use the equivalent operators @@ and @! (see chapter 5.5) to take advantage

of operator optimisation.

experimentsSQL=# COPY ’Q1’ To ’q1_SQL.csv’ With CSV;

experimentsSQL=# COPY ’Q2’ To ’q2_SQL.csv’ With CSV;

experimentsSQL=# COPY ’Q3’ To ’q3_SQL.csv’ With CSV;

experimentsSQL=# COPY ’Q4’ To ’q4_SQL.csv’ With CSV;

experimentsSQL is the database with integer and varchar datatypes with SQL nulls.

We replace Q1- Q4 with the queries shown in Appendix C.

experiments=# COPY ’Q1’ To ’q1_marked.csv’ With CSV;

experiments=# COPY ’Q2’ To ’q2_marked.csv’ With CSV;

experiments=# COPY ’Q3’ To ’q3_marked.csv’ With CSV;

experiments=# COPY ’Q4’ To ’q4_marked.csv’ With CSV;

experiments is the database with null integer and null varchar datatypes and marked

nulls.

$: diff q1_marked.csv q1_SQL.csv

$: diff q2_marked.csv q2_SQL.csv

$: diff q3_marked.csv q3_SQL.csv

$: diff q4_marked.csv q4_SQL.csv

We run the diff command comparing the csv output. No differences are shown.

We generated 10 different mirror instances and compared the queries as above each

time and continued to find no differences. Thus we conclude the marked null type and

operators work as expected.

7.2 Performance Testing

We have shown that queries on the marked null data types are correct. However for

them to become useful the extra query latency should not be too expensive. We shall

complete two performance tests.

Firstly, for the four queries, we will compare the original untranslated query on

SQL null database (with varchar and integer datatypes), shown in Appendix B, against

the best translated query from [14] on the marked null database (with null varchar

and null integer datatypes), shown in Appendix C. This gives us the full price of

correctness taking into account the translations and marked nulls.



Chapter 7. Experiments 32

Figure 7.1: Q1 and Q2 statistics

Secondly we will compare the original queries on SQL null database against the

original queries on the marked null database. This will give the pure cost of the marked

nulls.

For each of these tests we will randomly generate null values at three different null

rates (0.01,0.03 and 0.05). For each of these rates we generate 5 pairs of databases

(D,D′). Where D is populated with SQL nulls and uses varchar and integer datatypes

and D′ uses the null varchar and null integer datatypes and has marked nulls where

D has SQL nulls for columns of these types. Then we create 5 instantiations of each

query (different arguments each time) which we run three times on each database pair.

We time these and inspect the results.

7.3 Full Price of Correctness

We see the comparisons for Q1 and Q2 in figure 7.1 and for Q3 and Q4 in figure 7.2.

We see that the full price of correctness for queries Q1 and Q3 is cheap. For these

two queries the relative cost is less than 10% for Q1 and less than 2% for Q3 for all

null rates. For query Q2 there was a big speedup, around 105 times faster. This was

expected and a similar speedup was shown in [14].

The most interesting result is for Q4. Here we see around a 3.5 times slowdown.

[14] reported a factor 2 slowdown without the marked nulls. Is this extra slowdown

due the marked nulls? we return to this question after studying the pure cost of marked

nulls in the upcoming section.



Chapter 7. Experiments 33

Figure 7.2: Q3 and Q4 statistics

7.4 Pure Cost of Marked Nulls

Next we attempted to assess the pure cost of marked nulls by comparing the original

query on the SQL database against the original query on the marked null database

(queries in Appendix B). However in running these tests we ran into a major issue.

The query Q4 running on the marked null database failed with error:

ERROR: XX000: function 608457 returned NULL

LOCATION: FunctionCall2Coll , fmgr.c:1327

experiments=# SELECT proname FROM pg_proc WHERE oid

=608457;

proname

-----------------

null_integer_eq

And by checking Postgres internal catalog tables we see that the underlying function

null integer eq associated with the ’=’ operator is the cause of the issue. This

was the same error which was returned when we observed (and fixed) issues with

the restrict and join clauses in chapter 5.6. In particular the failure was inside the C

function FunctionCall2Coll and due to the operator returning null on non-(SQL)

null input.

We were able to track this down to the index scan. Indeed if we turned index scan-

ning off in Postgres by running set enable indexscan = false; and rerunning the

query it succeeded. Fixing this issue in the way we did previously, by copying code

and removing the hard coded errors on null output for this is infeasible due to the large

swathes of code involved, if even possible. In fact on further research it seems that this



Chapter 7. Experiments 34

Figure 7.3: Q1 and Q2 pure cost of marked null statistics

Figure 7.4: Q3 and Q4 pure cost of marked null statistics

three valued behaviour is not allowed for hash joins either. With respect to hashing

we read in [12] that the underlying function should ”be complete: that is, it should

return true or false, never null, for any two nonnull inputs.... it might yield an error

complaining that it wasn’t prepared for a null result”. Thus despite not observing any

issues with hashing it seems it is not even a good idea for our three valued ’=’ to be

involved in hash joins.

With no immediate fix to this problem we decided to implement a two valued equal-

ity operator ’=&’ which returned false in all operations involving marked nulls (except

for returning true on comparing the same marked null). Using the two valued equals

which could do hashing and indexing without any issues we generated ’pure marked

null cost’ results.

In figure 7.3 and figure 7.4 we see the pure cost of marked nulls. Indeed for all

queries and for all null rates the queries against the marked null database are within a

couple of percentage points of the SQL queries. This is of course using the two valued

equality operator rather than the 3 valued.

One outstanding question is why there is an extra slowdown in the translated Q4 in

the marked null database compared to the translated query in SQL null database. It was

shown to be around a factor 2 slower in [14] but here we observe a factor 3.5 slowdown.



Chapter 7. Experiments 35

The pure cost of marked nulls seems to be almost free from our results in figures 7.3

and 7.4. However these tests used the original untranslated query. In particular the

translations on the marked null database uses the is null and not null functions via

their operators ’@@’ and ’@!’. For these we did create our own restrict optimisation

functions. However these were very crude and returned hardcoded estimations. We

conjecture that Posgres by treating null values separately from their types can more

easily gather statistics on these which can be used for optimisation which may be part

of the extra slowdown. If this is the case it is hard to see how we can optimise is null

and not null further since the marked nulls are built in to the type. Further research

is required here to check whether this is the cause of the extra slowdown, and if so

research into Postgres’ optimisation techniques should be undertaken to see if it can be

improved.



Chapter 8

Conclusions and Future Work

This research has implemented marked nulls in SQL. We have seen this fixes some

unreasonable deficiencies of SQL’s current null model. Using this marked null model

we can say definitively that a null is equal to itself. Further to this we are also able to

represent the fact that two or more missing values are the same, albeit unknown, value.

We have confirmed that queries involving the marked null types return correct re-

sults. One of the main motivating factors behind this project was to enforce correctness

on the translations with certainty guarantees first proposed in [18] and further improved

on in [14]. We saw that the translations combined with the marked null datatypes per-

formed at least not significantly slower in three out of the four test queries. On one

query we saw a 3.5 times slowdown. This is not too disappointing however as we are

still within realistic reach of the original query performance and certainly are not or-

ders of magnitudes away. Indeed further to that it certainly seems with more testing

and research that gap can be closed.

What was more disappointing was some of the errors that we uncovered due to the

discord between our three value logic and the Postgres internals. Postgres has a notion

of strict operators allowing it to short circuit evaluation where the input is a null value.

In fact for certain optimisations to be taken advantage of we have seen that Postgres

expects these operators to be complete, in particular equality. Since we have built our

marked null values into the type there is the possibility to return null on (to Postgres

eyes) non-null input.

We were able to create a work around for the restrict and join operator clauses, but

for the B-tree index scan issue we were not. We decided to implement two versions

of all the equality and inequality operators. We have boolean operators which always

give definite answers to be used for ordering, indexing and hashing. However we also

36



Chapter 8. Conclusions and Future Work 37

kept the three value ’more correct’ operators which we observed failed in some specific

instances.

The failure we observed could be fixed by altering one of the C functions in the

Postgres internals. However this is not a good solution since for the new types to

become readily available we want to bundle them into a packaged extension which can

be installed as a simple Postgres add on.

With further work it would almost certainly be possible to implement custom hash-

ing and B-tree indexing methods which allow for operators returning null. This would

allow us to keep the standard SQL evaluation procedure EvalSQL while still benefiting

from all possible performance optimisations. Thus we view this research as a major

step towards a realistic ambition of efficient marked null implementation. Ultimately

a goal where we have a syntax such as SELECT CERTAIN built into SQL (as suggested

by [14]) allowing us to return only certain answers, possibly with a small performance

hit, is achievable.

If more general results is always a good thing why stop at the level we have? For

example we can represent the fact that two missing values are the same by marking

them with same ID, but we cannot represent further relationships between two values.

E.g. going back to our Person relation with name and age attributes if we had miss-

ing ages for Alison (NULL:1) and Hannah (NULL:2) but we knew that Hannah was

Alison’s mother and gave birth to her on her 25th birthday we would know there was

a relationship between these two values (NULL:1 = NULL:25) so even in the marked

null model we can lose information.

Such information could perhaps be represented by adding an extra ’clause’ member

to the underlying C struct. However we believe in reality the extra storage requirements

and extra maintainability complexity would be too expensive to be useful except in

very rare instances.

There are further questions to be asked in the marked null model also. We expect

nulls to be input with an ID and suggest a mixing of marked nulls with SQL nulls to

be at best bad practice and at worst disallowed entirely. This means that new incom-

plete information should be marked with a relevant ID. If we leave this to the user

we leave open the possibility that they mark a null with an ID which already exists in

the database and accidentally creating a relationship where one should not exist. We

advocate that for such situations, unless an ID is specifically supplied with a null, the

database should be responsible for generating a new previously unseen ID. This could

easily be done by using integer IDs and maintaining a variable with current highest ID



Chapter 8. Conclusions and Future Work 38

and incrementing by one to generate new IDs.

Our closing remark is that although this project ultimately encountered some un-

expected obstacles preventing a perfectly clean implementation we have demonstrated

that not only are marked nulls achievable they generally, with some imperfections, per-

form well. Further to this when we combine them with correctness translations they

continue to perform well. Therefore we expect to see in the near future a solution to

SQL’s blatantly wrong query results based on a marked null model.



Appendix A

Null Varchar Header file

/ *

*******************************************************************

* N u l l v a r c h a r t y p e Based on v a r l e n b u t need t h e e x t r a boo lean

f i e l d

* t o check f o r marked n u l l / c o n s t a n t

******************************************************************

* /

t y p e d e f s t r u c t N u l l v a r c h a r

{
char n v l e n [ 4 ] ;

boo l c n s t ;

char n v d a t [FLEXIBLE ARRAY MEMBER ] ;

} N u l l v a r c h a r ;

t y p e d e f s t r u c t
{

u i n t 3 2 n v a h e a d e r ;

boo l n v a c o n s t ;

char n v a d a t a [FLEXIBLE ARRAY MEMBER ] ;

} n v a r a t t r i b 4 b ;

t y p e d e f s t r u c t
{

u i n t 8 n v a h e a d e r ;

boo l n v a c o n s t ;

char n v a d a t a [FLEXIBLE ARRAY MEMBER ] ;

} n v a r a t t r i b 1 b ;

39



Appendix A. Null Varchar Header file 40

# d e f i n e NVARHDRSZ (VARHDRSZ + s i z e o f ( boo l ) )

# d e f i n e NVARHDRSZ SHORT o f f s e t o f ( n v a r a t t r i b 1 b ,

n v a d a t a )

# d e f i n e SET NVARSIZE ( NV PTR , l e n ) ( ( ( n v a r a t t r i b 4 b *) ( NV PTR ) )−>
n v a h e a d e r = ( ( ( u i n t 3 2 ) ( l e n ) ) << 2) )

# d e f i n e NVARDATA( NV PTR ) ( NV PTR )−>n v d a t

# d e f i n e NVARDATA 4B( NV PTR ) ( ( ( n v a r a t t r i b 4 b *) ( NV PTR ) )−>
n v a d a t a )

# d e f i n e NVARDATA 1B( NV PTR ) ( ( ( n v a r a t t r i b 1 b *) ( NV PTR ) )−>
n v a d a t a )

# d e f i n e NVARSIZE( NV PTR ) ( ( ( ( n v a r a t t r i b 4 b *) ( NV PTR ) )−>n v a h e a d e r

>> 2) & 0x3FFFFFFF )

# d e f i n e NVARCNST 1B( NV PTR ) ( ( ( n v a r a t t r i b 1 b *) ( NV PTR ) )−>
n v a c o n s t )

# d e f i n e NVARCNST 4B( NV PTR ) ( ( ( n v a r a t t r i b 4 b *) ( NV PTR ) )−>
n v a c o n s t )

# d e f i n e NVARATT IS 1B (PTR) \
( ( ( ( n v a r a t t r i b 1 b *) (PTR) )−>n v a h e a d e r & 0x01 ) == 0x01 )

# d e f i n e NVARATT IS SHORT ( NV PTR )

NVARATT IS 1B ( NV PTR )

# d e f i n e NVARDATA ANY(PTR) \
( NVARATT IS 1B (PTR) ? NVARDATA 1B(PTR) : NVARDATA 4B(PTR) )

# d e f i n e NVARCNST(PTR) \
( NVARATT IS 1B (PTR) ? NVARCNST 1B(PTR) : NVARCNST 4B(PTR) )

# d e f i n e NVARATT IS 1B E (PTR) \
( ( ( ( n v a r a t t r i b 1 b *) (PTR) )−>n v a h e a d e r ) == 0x01 )

# d e f i n e NVARSIZE 1B (PTR) \
( ( ( ( n v a r a t t r i b 1 b *) (PTR) )−>n v a h e a d e r >> 1) & 0x7F )

# d e f i n e NVARSIZE 4B (PTR) \
( ( ( ( n v a r a t t r i b 4 b *) (PTR) )−>n v a h e a d e r >> 2) & 0x3FFFFFFF )



Appendix A. Null Varchar Header file 41

# d e f i n e NVARSIZE SHORT(PTR)

NVARSIZE 1B (PTR)

# d e f i n e NVARSIZE ANY EXHDR(PTR) \
( NVARATT IS 1B (PTR) ? NVARSIZE 1B (PTR)−NVARHDRSZ SHORT : \
NVARSIZE 4B (PTR)−NVARHDRSZ)

/ * T o a s t i n g Macros * /

# d e f i n e NVARATT IS EXTERNAL(PTR)

NVARATT IS 1B E (PTR)

# d e f i n e NVARTAG EXTERNAL(PTR)

NVARTAG 1B E(PTR)

s t a t i c i n t n u l l v a r c h a r c m p ( N u l l v a r c h a r * arg1 , N u l l v a r c h a r * a rg2 ) ;



Appendix B

Original Untranslated Queries

−−o r i g i n a l u n t r a n s l a t e d SQL n u l l Q u e r i e s from :

−−Making SQL Q u e r i e s C o r r e c t on I n c o m p l e t e Databases : A F e a s i b i l i t y

S t u d y

−−Guagl iardo , Paolo and L i b k i n , Leon id and o t h e r s

−−No changes r e q u i r e d t o t h e s e q u e r i e s t o run marked n u l l d a t a b a s e

−−Q1 ( a d j u s t e d t p c h query 1 )

SELECT DISTINCT
s suppkey , o o r d e r k e y

FROM
s u p p l i e r ,

l i n e i t e m l1 ,

o r d e r s ,

n a t i o n

WHERE
s s u p p k e y = l 1 . l s u p p k e y

AND o o r d e r k e y = l 1 . l o r d e r k e y

AND o o r d e r s t a t u s = ’F ’

AND l 1 . l r e c e i p t d a t e > l 1 . l c o m m i t d a t e

AND EXISTS (

SELECT

*
FROM

l i n e i t e m l 2

WHERE
l 2 . l o r d e r k e y = l 1 . l o r d e r k e y

AND l 2 . l s u p p k e y <> l 1 . l s u p p k e y

42



Appendix B. Original Untranslated Queries 43

)

AND NOT EXISTS (

SELECT

*
FROM

l i n e i t e m l 3

WHERE
l 3 . l o r d e r k e y = l 1 . l o r d e r k e y

AND l 3 . l s u p p k e y <> l 1 . l s u p p k e y

AND l 3 . l r e c e i p t d a t e > l 3 . l c o m m i t d a t e

)

AND s n a t i o n k e y = n n a t i o n k e y

AND n name = ’ $ n a t i o n ’ ;

−−parame te r $ n a t i o n r e p l a c e d by a random n a t i o n when g e n e r a t i n g

q u e r i e s

−−Q2 ( a d j u s t e d t p c h query 2 )

SELECT
c c u s t k e y ,

c n a t i o n k e y

FROM
c u s t o m e r

WHERE
c n a t i o n k e y IN ( $ c o u n t r i e s )

AND c a c c t b a l > (

SELECT
avg ( c a c c t b a l )

FROM
c u s t o m e r

WHERE
c a c c t b a l > 0 . 0 0

AND c n a t i o n k e y IN ( $ c o u n t r i e s )

)

AND NOT EXISTS (

SELECT *
FROM o r d e r s

WHERE o c u s t k e y = c c u s t k e y

) ;



Appendix B. Original Untranslated Queries 44

−−parame te r $ c o u n t r i e s r e p l a c e d by a random n a t i o n key when

g e n e r a t i n g q u e r i e s

−−Q3 ( t e x t b o o k query 1 )

SELECT o o r d e r k e y

FROM o r d e r s

WHERE NOT EXISTS (

SELECT *
FROM l i n e i t e m

WHERE l o r d e r k e y = o o r d e r k e y

AND l s u p p k e y <> $supp key ) ;

−−parame te r $ s u p p k e y r e p l a c e d by a random s u p p l i e r key when

g e n e r a t i n g q u e r i e s

−−Q4 ( t e x t b o o k query 2 )

SELECT o o r d e r k e y

FROM o r d e r s

WHERE NOT EXISTS
( SELECT *

FROM l i n e i t e m , p a r t , s u p p l i e r , n a t i o n

WHERE l o r d e r k e y = o o r d e r k e y

AND l p a r t k e y = p p a r t k e y

AND l s u p p k e y = s s u p p k e y

AND p name LIKE ’%$ c o l o r%’

AND s n a t i o n k e y = n n a t i o n k e y

AND n name = ’ $ n a t i o n ’ ) ;

−−parame te r $ n a t i o n r e p l a c e d by a random n a t i o n when g e n e r a t i n g

q u e r i e s

−−parame te r $ c o l o r r e p l a c e d by a random c o l o u r on query g e n e r a t i o n



Appendix C

Translated Queries

−−b e s t t r a n s l a t e d q u e r i e s from :

−−Making SQL Q u e r i e s C o r r e c t on I n c o m p l e t e Databases : A F e a s i b i l i t y

S t u d y

−−Guagl iardo , Paolo and L i b k i n , Leon id and o t h e r s

−−Note t h a t he re we have r e p l a c e d IS NULL w i t h @@

−−and IS NOT NULL w i t h @! on marked n u l l co lumns

−−Q1 ( marked n u l l v e r s i o n o f t r a n s l a t e d t p c h query 1 )

SELECT DISTINCT
s suppkey , o o r d e r k e y

FROM
s u p p l i e r ,

l i n e i t e m l1 ,

o r d e r s ,

n a t i o n

WHERE
s s u p p k e y = l 1 . l s u p p k e y

AND o o r d e r k e y = l 1 . l o r d e r k e y

AND o o r d e r s t a t u s = ’F ’

AND l 1 . l r e c e i p t d a t e > l 1 . l c o m m i t d a t e

AND l 1 . l r e c e i p t d a t e IS NOT NULL
AND l 1 . l c o m m i t d a t e IS NOT NULL
AND EXISTS (

SELECT

*
FROM

l i n e i t e m l 2

45



Appendix C. Translated Queries 46

WHERE
l 2 . l o r d e r k e y = l 1 . l o r d e r k e y

AND l 2 . l s u p p k e y <> l 1 . l s u p p k e y

AND l 2 . l s u p p k e y @!

AND l 1 . l s u p p k e y @!

)

AND NOT EXISTS (

SELECT

*
FROM

l i n e i t e m l 3

WHERE
l 3 . l o r d e r k e y = l 1 . l o r d e r k e y

AND ( l 3 . l s u p p k e y <> l 1 . l s u p p k e y

OR l 3 . l s u p p k e y @@

OR l 1 . l s u p p k e y @@ )

AND ( l 3 . l r e c e i p t d a t e > l 3 . l c o m m i t d a t e

OR l 3 . l r e c e i p t d a t e IS NULL
OR l 3 . l c o m m i t d a t e IS NULL )

)

AND s n a t i o n k e y = n n a t i o n k e y

AND n name = ’ $ n a t i o n ’ ;

−−parame te r $ n a t i o n r e p l a c e d by a random n a t i o n when g e n e r a t i n g

q u e r i e s

−−Q2 ( marked n u l l v e r s i o n o f t r a n s l a t e d t p c h query 2 )

SELECT
c c u s t k e y ,

c n a t i o n k e y

FROM
c u s t o m e r

WHERE
c n a t i o n k e y IN ( $ c o u n t r i e s )

AND c a c c t b a l > (

SELECT
avg ( c a c c t b a l )

FROM
c u s t o m e r

WHERE



Appendix C. Translated Queries 47

c a c c t b a l > 0 . 0 0

AND c n a t i o n k e y IN ( $ c o u n t r i e s )

)

AND NOT EXISTS (

SELECT *
FROM o r d e r s

WHERE o c u s t k e y = c c u s t k e y

)

AND NOT EXISTS (

SELECT *
FROM o r d e r s

WHERE o c u s t k e y @@

)

−−parame te r $ c o u n t r i e s r e p l a c e d by a random n a t i o n key when

g e n e r a t i n g q u e r i e s

−−Q3 ( marked n u l l v e r s i o n o f t r a n s l a t e d t e x t b o o k query 1 )

SELECT o o r d e r k e y

FROM o r d e r s

WHERE NOT EXISTS (

SELECT *
FROM l i n e i t e m

WHERE l o r d e r k e y = o o r d e r k e y

AND ( l s u p p k e y <> $supp key OR l s u p p k e y @@) )

−−parame te r $ s u p p k e y r e p l a c e d by a random s u p p l i e r key when

g e n e r a t i n g q u e r i e s

−−Q4 ( marked n u l l v e r s i o n o f t r a n s l a t e d t e x t b o o k query 2 )

WITH

p a r t v i e w AS (

SELECT p p a r t k e y

FROM p a r t

WHERE p name @@

UNION
SELECT p p a r t k e y

FROM p a r t



Appendix C. Translated Queries 48

WHERE p name LIKE ’%$ c o l o r%’ ) ,

supp v iew AS (

SELECT s s u p p k e y

FROM s u p p l i e r

WHERE s n a t i o n k e y @@

UNION
SELECT s s u p p k e y

FROM s u p p l i e r , n a t i o n

WHERE s n a t i o n k e y = n n a t i o n k e y

AND n name = ’ $ n a t i o n ’ )

SELECT o o r d e r k e y

FROM o r d e r s

WHERE NOT EXISTS (

SELECT *
FROM l i n e i t e m , p a r t v i e w , supp v iew

WHERE l o r d e r k e y = o o r d e r k e y

AND l p a r t k e y = p p a r t k e y

AND l s u p p k e y = s s u p p k e y )

AND NOT EXISTS (

SELECT *
FROM l i n e i t e m , supp v iew

WHERE l o r d e r k e y = o o r d e r k e y

AND l p a r t k e y @@

AND l s u p p k e y = s s u p p k e y

AND EXISTS ( SELECT * FROM p a r t v i e w ) )

AND NOT EXISTS (

SELECT *
FROM l i n e i t e m , p a r t v i e w

WHERE l o r d e r k e y = o o r d e r k e y

AND l p a r t k e y = p p a r t k e y

AND l s u p p k e y @@

AND EXISTS ( SELECT * FROM supp v iew ) )

AND NOT EXISTS (

SELECT *
FROM l i n e i t e m

WHERE l o r d e r k e y = o o r d e r k e y

AND l p a r t k e y @@

AND l s u p p k e y @@

AND EXISTS ( SELECT * FROM p a r t v i e w )

AND EXISTS ( SELECT * FROM supp v iew ) )

−−parame te r $ n a t i o n r e p l a c e d by a random n a t i o n when g e n e r a t i n g



Appendix C. Translated Queries 49

q u e r i e s

−−parame te r $ c o l o r r e p l a c e d by a random c o l o u r on query g e n e r a t i o n



Appendix D

Source Code

A digital copy of the full source code has been submitted along with this dissertation.

However as an extra reference it is stored as a git version control repository here:

https://bitbucket.org/ps288/marked null/.

The final version of this code used for this dissertation was committed on August

18th 2016.

50



Bibliography

[1] (2014). Tpc benchmark h, standard specification.

[2] (2016). Postgres source code. http://doxygen.postgresql.org/postgres_

8h_source.html. Accessed: 2016-08-12.

[3] Abiteboul, S., Hull, R., and Vianu, V. (1995). Foundations of databases: the

logical level. Addison-Wesley Longman Publishing Co., Inc.

[4] Abiteboul, S., Kanellakis, P., and Grahne, G. (1987). On the representation and

querying of sets of possible worlds, volume 16. ACM.

[5] Codd, E. F. (1990). The relational model for database management: version 2.

Addison-Wesley Longman Publishing Co., Inc.

[6] Committee, I. C. (2011). 6.7.2.1 structure and union specifiers. http://c0x.

coding-guidelines.com/6.7.2.1.html. Accessed: August 9, 2016.

[7] Darwen, H. and Date, C. (1995). The third manifesto. ACM SIGMOD Record,

24(1):39–49.

[8] Daye, C. J. (2003). An Introduction to Database Systems. Pearson.

[9] Developers, P. (2016 (accessed August 1, 2016)a). PostgreSQL 9.5.3

CREATE OPERATOR. https://www.postgresql.org/docs/9.6/static/

sql-createoperator.html.

[10] Developers, P. (2016 (accessed August 1, 2016)b). PostgreSQL 9.5.3 CREATE

TYPE. https://www.postgresql.org/docs/9.5/static/sql-createtype.

html.

[11] Developers, P. (2016 (accessed August 1, 2016)c). PostgreSQL 9.5.3 Documen-

tation. http://www.postgresql.org/docs/9.5/static/index.html.

51



Bibliography 52

[12] Developers, P. (2016 (accessed August 1, 2016)d). PostgreSQL 9.5.3 Operator

Optimization Information. http://www.postgresql.org/docs/9.5/static/

xoper-optimization.html.

[13] Developers, P. (2016 (accessed August 1, 2016)e). PostgreSQL 9.5.3 Packaging

Related Objects into an Extension. https://www.postgresql.org/docs/9.4/

static/extend-extensions.html.

[14] Guagliardo, P., Libkin, L., et al. (2016). Making sql queries correct on incomplete

databases: A feasibility study.

[15] Haas, L. M., Hernández, M. A., Ho, H., Popa, L., and Roth, M. (2005). Clio

grows up: from research prototype to industrial tool. In Proceedings of the 2005

ACM SIGMOD international conference on Management of data, pages 805–810.

ACM.

[16] Imieliński, T. and Lipski Jr, W. (1984). Incomplete information in relational

databases. Journal of the ACM (JACM), 31(4):761–791.

[17] Jenkins, B. (1997 (accessed August 1, 2016)). Burtleburtle hashing. http://

burtleburtle.net/bob/hash/doobs.html.

[18] Libkin, L. (2016). Sqls three-valued logic and certain answers. ACM Transac-

tions on Database Systems (TODS), 41(1):1.

[19] Marnette, B., Mecca, G., Papotti, P., Raunich, S., Santoro, D., et al. (2011). ++

spicy: an open-source tool for second-generation schema mapping and data ex-

change. Clio, 19:21.

[20] Seacord, R. C. (2014). The CERT C Coding Standard: 98 Rules for Developing

Safe, Reliable, and Secure Systems. Pearson Education.

[21] TPC (2016 (accessed August 15, 2016)). Tpc=h decision support benchmark.

http://www.tpc.org/tpch/.

[22] van der Meyden, R. (1998). Logical approaches to incomplete information: A

survey. In Logics for databases and information systems, pages 307–356. Springer.


