
Plastic Parallel Programming

Luke Blackbourn
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Master of Science

Computer Science

School of Informatics

University of Edinburgh

2016

Abstract

The rise in multi-user time-sharing systems over the past few decades has introduced a chal-

lenge in how to efficiently run multiple applications on the same hardware at the same time.

While operating system schedulers have been designed with a variety of tricks to eke out as

much performance as possible, the onus is largely on the programmer to design their applica-

tions to make optimal use of the available resources, presenting them with numerous algorithm

and thread management choices, a task which can be daunting to anyone not accustomed to

writing multi-threaded applications.

In this dissertation we present a novel solution to this problem, the concept of Plastic

Parallel Programming, which provides a framework for non-specialist programmers to write

correct efficient parallel programs that react to their environment in order to ensure that they

are continually using the most optimal strategies to solve a given problem. Using the well-

known example of the task farm parallel design pattern, a reactive framework with a high

level interface is developed, which allows the user to ignore the vast majority of decisions

that are needed to write correct parallel programs, while providing the possibility of complex

optimisations. This framework is then tested using a variety of different application types,

showing that in the right circumstances plastic parallel programming can improve the runtime

performance of applications running in a shared enviromnent. Specifically we show that, for

running applications that combine a variety of memory access types, making dynamic changes

in reaction to the starting of a second application can result in lower average runtimes for both

applications than can be acheived using standard techniques.

i

Acknowledgements

Firstly I would like to thank my supervisor Murray Cole for taking me on for this project, for

his guidance and helpful suggestions on both the code base and this dissertation. I would also

like to thank the University of Edinburgh for giving me the opportunity to work on this MSc,

along with all of the lecturers and tutors who have taken me through the past year. Thanks

should also go to Helen Colhoun for her understanding, and allowing me time off my new job

in order to get the project and write-up finished. Last, but certainly not least, a massive thank

you to my fiancée Emma for continually supporting me through a busy year, including almost

single-handedly moving both of us into a new house. Without your love and understanding this

piece of work would never have been completed!

ii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has not been submitted

for any other degree or professional qualification except as specified.

(Luke Blackbourn)

iii

Table of Contents

1 Introduction 1

2 Background 3

2.1 Parallel Design Patterns and Algorithmic Skeletons 4

2.2 PetaBricks . 5

2.3 LIRA . 6

3 Project Description and Goals 7

3.1 Plastic Parallel Programming . 7

3.2 Project Goals . 8

4 Project Implementation 9

4.1 The Classic Task Farm Design Pattern . 9

4.2 Task Farm Strategies . 10

4.2.1 Data structures . 10

4.2.2 Threading . 10

4.2.3 Task Granularity . 11

4.3 Controller Application . 12

4.4 The Plastic Task Farm . 13

4.4.1 Initialisation and running . 13

4.4.2 Tasks and Phases . 15

4.4.3 Threading . 17

4.4.4 Measurements . 18

5 Experimental Framework 19

5.1 Introduction . 19

5.2 Hardware . 20

5.3 Testing Protocols and Work Types . 20

5.4 Result Presentation and Analysis . 21

5.4.1 Data presentation . 21

iv

5.4.2 Average Normalized Turnaround Time (ANTT) 22

5.4.3 Theoretical Analysis . 24

6 Experimental Programme and Results 26

6.1 Test for Controller Use of Resources . 26

6.2 Baseline isolation runtimes . 28

6.3 Test Isolation Check . 29

6.4 Multi-application Runs and Strategies . 29

6.4.1 Implemented Strategies . 31

6.4.2 Task Granularity . 32

6.4.3 Results . 32

6.4.4 Closer Inspection . 34

6.5 Random Write Restricted Run . 36

6.6 Combined Work Type Application . 36

6.6.1 Baseline Tests . 38

6.6.2 Concurrent Applications . 38

7 Results overview 41

8 Conclusion 42

8.0.3 Potential for Future Work . 43

v

Chapter 1

Introduction

It has long been understood that the problem of writing correct parallel programs is a hard one,

having a multitude of complications that are nonexistent in classical sequential programs, such

as race conditions when multiple parts of an application may try to modify the contents of a

single memory address at the same time, and the related challenge of often not being able to

rely on happens-before relationships between parts of your code [1]. While there have been a

number of attempts to allow easier access for the non-specialist to the possible benefits of par-

allel programming, the assumed difficulty of doing so is known to put off many in the scientific

fields who would benefit from it the most [2, 3]. This means that the easily available multi-core

and multi-socket commodity hardware is being massively under-utilised, even while computer

simulations are becoming ever more important in just about every scientific discipline [4–7].

Even when researchers do have access to these resources and have the tools available to build

multi-threaded applications, resource contention becomes an issue when the hardware is shared

between multiple users, this being a problem for anyone who has to share computers, including

university students. While large-scale properly managed clusters such as the EPCC ARCHER

supercomputing service [8] have sophisticated systems such as the Open Grid Scheduler [9] to

manage tasks and resources, more basic shared computing resources are often only protected

by a request to “please nice your programs”, with stories of runaway tasks taking all of the

CPU time being common.

There have been a number of attempts to rectify some of these problems, to try to make

parallel programs easier to write, easier to optimise and more efficient to run in shared envi-

ronments. One of these is LIRA, a dynamic scheduler which is discussed in §2.3, which uses

intelligent thread pinning to minimise the interference between multiple applications running

on the same multi-socket hardware. Another is PetaBricks, discussed in §2.2, a framework

and programming language which presents a high-level interface to the programmer, making

compile-time choices as to the details of the algorithms and data structures that it uses, in order

to make optimal use of the hardware it is compiled on.

1

Chapter 1. Introduction 2

In this dissertation we introduce the notion of plastic parallel programming in §2, which

combines some of the ideas from LIRA and PetaBricks, as well as the concept of algorithmic

skeletons as defined by Cole [10] and discussed in §2.1, into an overarching framework that is

designed to allow non-specialists to write correct efficient parallel programs that dynamically

adjust themselves to their environment. We then present a summary of the goals of the summer

project and this work in §3, followed by a description of the implementation of a plastic task

farm that was written, in §4. The experimental framework that was used for testing this im-

plementation is described in §5, with details of the experiments that were carried out and their

results given in §6. These results are then reviewed in §7, with the dissertation giving its final

conclusions in §8.

Chapter 2

Background

The past half century or so has seen dramatic changes in the way that computers are used,

with the ever increasing demand for computing resources constantly providing new challenges.

Early operating systems in the 50s were batch systems, where multiple people would submit

jobs, generally on punch cards, which would then be run one at a time by an operator. There

were a number of problems with this approach, with one being the fact that there was no direct

interaction between the programmer and the computer, so if a program failed the programmer

would not be informed until much later, in which case they would have to change, then resubmit

it. Another problem was that, since only one process was run at any one time, with the next

job not started until completion of the previous one, if the process depended heavily on I/O,

which was, and still is, significantly slower than processing speed, a computer could spend a

large amount of time waiting for the I/O to complete. This design was improved in the 1960s

with the rise of multiprogramming, in which many programs could be loaded into memory

at the same time [11]. If the currently running program had to wait for some external event,

another idle program could be executed until that event had completed, dramatically reducing

the idle time of the computer. This decade also saw the rise in time-sharing computers [12],

where multiple users could directly connect to the computer, running programs almost in real

time. With many people using a computer with a single processing element simultaneously,

and expecting the system to react quickly to their input, the importance of proper scheduling of

programs on the CPU became apparent. Originally multitasking schedulers, such as those used

in the earlier versions of Windows and MacOS, often used cooperative multitasking, where a

program would execute until it voluntarily gave up control of the CPU, either when waiting

for a response from some external device or because it decided that it had been executing

for long enough. There was always, however, the possibility that a program could hold the

CPU indefinitely, for example if it entered an infinite loop. The development of pre-emptive

multitasking, in which the operating system will interrupt a process if it is deemed to have had

its ‘fair share’ of processing time, removed the problem of badly behaved programs keeping the

3

Chapter 2. Background 4

CPU, paving the way for ever more complex schedulers. These include the Linux Completely

Fair Scheduler (CFS) [13] which holds information about each process, such as whether it is

CPU bound or I/O bound, as well as allowing processes to be prioritised.

Recently, the scheduling problem has been even more complicated as CPUs started to de-

velop more cores, with high-end machines having multiple CPUs through multiple sockets,

often with Non-Uniform Memory Access (NUMA). Much work has gone into making sched-

ulers that aim to allow all tasks equal access to the processing elements, however they tend to

come with some downsides. For example schedulers do not know the details of a program,

so do not know in advance how a program may behave. They may try to make a guess, for

example noting that a certain program spends a large amount of time in memory accesses,

or is heavily CPU bound, and compensate accordingly, however a program’s behaviour may

change suddenly, leading to massively sub-optimal scheduling decisions. The scheduler is also

restricted to decisions that the application programmer makes, such as the number of threads

that a program has, and while the scheduler can decide when and where to run the threads it

has no control over how the application utilises the threads. There have been a number of at-

tempts to try to rectify these problems, for example through better adapting the program to the

hardware that it is running on or taking more control over the scheduling decisions, although

these solutions are often too complex for non-specialists to fully take advantage of.

2.1 Parallel Design Patterns and Algorithmic Skeletons

As discussed above, the large variety of choices that are necessary to produce correct and

efficient parallel programmes may be expected to dissuade researchers without a background in

software engineering from attempting to do so, even though a large proportion of the complex

software used today is written by exactly this demographic [14]. If they do attempt to write such

programs there are a host of different bugs that can occur, the proper debugging of which often

requires the use of more sophisticated methods than the standard printf method [15]. Even

when written by experts these bugs often crop up, sometimes with harmful results, such as the

race condition in Nasdaq’s system that delayed Facebook’s initial IPO by 30 minutes, resulting

in the loss of millions of dollars [16]. In fact the problem is so widespread that around 60% of

respondents to a survey of Microsoft’s technical staff reported having concurrency issues with

their software [17]. It is thus not surprising that researchers are often put off writing parallel

programs.

A standard method that is used to help less experienced programmers choose the correct

implementation to solve a particular problem involves the concept of a design pattern. Orig-

inally conceived as a way for ordinary people to understand and be able to use designs that

are frequently seen in professional architecture [18], design patterns give a solution to a com-

Chapter 2. Background 5

monly recurring problem within a particular context [19]. While design patterns gained popu-

larity in the object oriented programming community they were rapidly adopted by scientific

high-performance programming groups, in particular the concept of parallel design patterns

[20], as a way of removing the need to re-invent the wheel whenever a scientist is faced with a

problem of a standard sort. While undoubtedly a step in the right direction, since they are high

level concepts parallel design patterns still leave programmers having to make many low-level

design decisions themselves, such as details of the choice of algorithms to use, numbers of

threads, or what programming languages and libraries to use. These problems were addressed

by Cole [10] with the idea of algorithmic skeletons. The idea behind this concept is that the

algorithmic skeleton, which is written by an expert in parallel programming, provides a high-

level interface for some design pattern that a researcher can use without worrying about the

low-level details. This interface can then hide a lot of complexity that can go on behind the

scenes, with the skeleton making decisions on optimal strategies to use, as well as protecting

the researcher from many platform-dependent decisions, making their code highly portable.

2.2 PetaBricks

The concept of hiding implementation details in order to allow portability and low-level op-

timisation, as discussed in the previous section, was put into practice by Ansel et al. [21] in

their PetaBricks programming language and compiler [22]. A programmer provides methods,

known as rules, with which state changes can be implemented in the application to produce

the result that they desire. The framework then does compile-time analysis of the system in

order to choose the most efficient rules for carrying out those state changes, which includes

combining many rules together to achieve certain goals, or varying free parameters.

One downside of the PetaBricks system is due to the fact that all of the optimisation de-

cisions are made at compile-time, meaning that they may in fact have the opposite effect to

that intended if the environment that the application is running in is changed. These changes

could range from another application starting up, using up resources, to changes in the physical

configuration of the hardware, such as the hot-swapping of a broken CPU that can be done on

some modern high-end systems such as those in the Intel Xeon E7 family [23]. In order to

address this shortcoming, we take inspiration from another system that aims to take on some of

the complexity of creating efficient parallel programs in a shared environment, LIRA, which is

discussed in the next section.

Chapter 2. Background 6

2.3 LIRA

One of the major causes of non-optimal program execution comes about due to the limited

amount of fast on-chip memory. Program data must be loaded into caches from main mem-

ory, which may take hundreds of clock cycles. This is mitigated somewhat by clever cache

coherence protocols, however the movement of threads between cores, or even worse different

sockets, can practically negate these. In order to counteract the migration of threads, which are

moved around by the scheduler to try to ensure that as many threads are running as possible,

it is possible to implement thread pinning, where threads are restricted to running on a subset

of cores. This can limit the number of times that data must be loaded from memory, at the

expense of restricting the available processing elements. It is also possible to pair together pro-

grams with different characteristics, such as one that is I/O bound and one that is CPU bound.

This allows the CPU bound process to run while the I/O bound process is waiting for the much

slower memory access, allowing both to make the maximum use of the available resources.

It is this idea which underlies LIRA [24], which controls thread placement in an adaptive

contention-aware manner. In one incarnation called LIRA-static, initial sets of tests are done

on the applications that will be run, working out the optimal positions of each, while LIRA-

dynamic uses hardware performance counters to to categorise each application according to its

recent behaviour, and changes scheduling as the application goes through behavioural phases.

This categorisation depends on the load instruction rates of the running applications, with the

scheduler choosing application pairings that minimise the sum of the differences between the

load instruction rates of the applications on each socket.

While Collins et al. [24] were able to show that intelligent thread placement could reduce

the overall runtime of various applications, LIRA still has the disadvantage that it can only

work with the threads that it is given, so a badly written program may not be able to run effi-

ciently regardless of the scheduling policy that is used. Plastic parallel programming aims to

combine the ideas behind LIRA, which show that context-dependent thread pinning and dy-

namic strategy choices can improve program runtimes in a shared environment, with the ideas

of algorithmic skeletons and PetaBricks, that shows that using high-level interfaces to hide

implementation details allows for behind-the-scenes optimisation, to create a framework that

allows non-specialist programmers to create efficient correct parallel applications that intelli-

gently react to their environment.

Chapter 3

Project Description and Goals

In this chapter we introduce plastic parallel programming, along with the goals that is is hoped

that this project would achieve.

3.1 Plastic Parallel Programming

As has been seen in the previous chapter, a number of approaches have been taken to try

to reduce the complexity associated with writing correct efficient parallel programs, while at

the same time increasing the ability of an application to pick the optimal strategies for the

environment in which it is running. While LIRA has the advantage that the application writer

does not have to worry about any of the scheduling details, and LIRA-dynamic is able to make

changes on-the-fly as the environment changes, it still has limitations in that it fully relies on

the application programmer to pick the best algorithms for the job, and correctly implement

them. PetaBricks, on the other hand, chooses the algorithms to use from a selection provided

to it by the programmer, however once the application has been compiled these choices are

fixed, so environmental changes, such as another application starting up, can render the choices

suboptimal.

In this dissertation we introduce the concept of plastic parallel programming that encom-

passes many of the ideas from algorithmic skeletons, LIRA and PetaBricks to provide a high-

level programming interface for classic design patterns, while hiding a complex mechanism for

altering strategies at runtime to give optimal performance. Inspiration is taken from the idea

of algorithmic skeletons and PetaBricks to provide a simple programming interface, represent-

ing a frequently used design pattern, with implementation details hidden in a way that allows

optimisation that the programmer does not need to worry about. This concept is developed

further by adding the dynamic element from LIRA-dynamic, allowing runtime changes in the

choice of algorithm used, as well as intelligent thread placement to optimise applications where

memory access and cache behaviour play key roles in the overall runtime.

7

Chapter 3. Project Description and Goals 8

3.2 Project Goals

The goal of this dissertation is to implement and test a plastic version of a well-known parallel

design pattern, which provides a high-level interface to the programmer and makes changes to

the way that it implements that design pattern behind the scenes depending on the environment

in which it is running. It is of course important to test that the introduction of plasticity to a

parallel design pattern actually has a positive effect on the runtime of the applications under its

control. This project aims to provide results from a large number of tests in order to ascertain

in which cases it would be most useful to use plastic parallel programming, and which forms of

application react best to added plasticity. A description of the test setup that is used is given in

§5, with the results presented in §6. While there was a strict limit on the time that was available

for testing, it is the intention here to provide as much statistical justification as possible for any

claims made, meaning that the tests that are carried out should all be justified, with enough

samples to give statistically reliable results.

Chapter 4

Project Implementation

In this section we introduce the classical task farm parallel design pattern, illustrating the sce-

narios in which it is useful as well as the difficulties associated with implementing it, before

describing our adaptation of the design pattern into a plastic task farm, which is able to modify

its behaviour depending on the environment in which is it running.

4.1 The Classic Task Farm Design Pattern

The design pattern that was chosen to be adapted for this project was the task farm, which is a

classic parallel design pattern that while relatively simple has a very large number of possible

variations [25–28]. As the name suggests the task farm depends on the concept of a task, which

is a unit of work that can be independently scheduled, meaning that tasks in a task farm must

be self-contained and not dependant on the results of any other tasks, unless explicit barriers

are put in place. Tasks are usually generated by a master thread then collected in some sort

of data structure, with worker threads taking tasks whenever they are free. Task farms are

very useful for problems such as parameter sweeps and Monte Carlo simulations, where tasks

may represent, for example, the modelling of a system with various possibly random initial

conditions, and the results aggregated to produce statistical information about the system. One

advantage of a task farm is that it is easy to convert serial programs into tasks, since there is

no intra-task concurrency, indeed this is the basis for many batch processing systems, which

essentially manage load balancing for multiple individual processes on multi-core or multi-

socket hardware [29, 30]. There are also many implementations using libraries such as MPI

[31], however this project takes a rather lower level approach, dealing directly with the threads

through the pthreads library [32], as this allows substantially more control and a larger variety

of possible optimisations.

9

Chapter 4. Project Implementation 10

4.2 Task Farm Strategies

When implementing a classical task farm, there are many choices that have to be made with re-

gards to implementation details, ranging from the design of data structures to runtime schedul-

ing decisions. The optimal decision to make in each case usually depends on both the hardware

that the application is going to be executed on, and the environment in which it will be running.

The choices that are made in an attempt to optimise the program are known here as strategies.

4.2.1 Data structures

A standard example of a strategy choice that has to be made is the form of the data structure

that holds the tasks to be run. The simplest case, which can be used when there is a single

shared-memory process, is to have a single list of tasks, with protection provided in the form

of a mutex whenever a thread wants to take a task off the list, or else having a master thread

that alters the data structure and hands out tasks. This setup however will start running into

problems if there are many threads, at which point there will be a large amount of contention

for the mutex or master thread leading to high overhead, or if the application is running on a

NUMA architecture, so threads on a different socket from the task list have to wait a significant

amount of time before getting their next task. An example strategy to improve performance in

this case is then to spread the tasks over multiple lists, with each thread taking tasks from the

list that it is closest to in memory, possibly transferring tasks over if one list becomes empty, a

process known as work stealing, similarly to the work stealing that occurs in operating system

schedulers [33].

4.2.2 Threading

Another set of strategies, that we have been concentrating on during this project, involves the

runtime decisions around thread numbers and scheduling. There is a vast literature on the ef-

fects that the numbers and placement of threads has on application runtime [see e.g. 34–37,

and contained references]. The standard rule is to ensure that threads that access the same data

structures run on the same CPU to maximise cache efficiency, while on NUMA architectures

they should access local memory as much as possible over remote memory. One way of con-

trolling this is through thread pinning, which tells the operating system scheduler to restrict the

threads to a subset of the available cores, accessed through the Linux taskset command, or

the pthread pthread setaffinity np function call. As is often the case there are downsides

associated with thread pinning, as it reduces the scheduler’s ability to load balance, so it is

possible for an entire CPU to sit idle while another is overworked if all the threads are pinned.

As well as thread placement one set of strategies is to control the number of active threads

that is used by the task farm. If all of the threads are CPU bound then it may not make sense

Chapter 4. Project Implementation 11

to have more threads than processing elements, since the remaining threads will just sit idle

and result in more work for the scheduler. However as was discussed in §2.3 where LIRA was

introduced, if threads have different characteristics, such as some being I/O bound and some

CPU bound, having more threads than cores may allow the CPU bound threads to execute

while those that are I/O bound wait for the hardware. The optimal number of threads also

depends on the environment in which the application is running, since if another application is

running at the same time that application’s threads may contend for resources, even if the total

number of threads in the initial application is less than the available CPU cores. This means

that at these points it may be appropriate to reduce the number of active threads. There are

different ways to control the number of threads, with the most obvious being to spawn and

join them as necessary. This however tends to have high costs associated with it, meaning that

implementations often use a thread pool, where threads are spawned at the beginning of the

process and wait idle, using minimal resources, until they are needed, at which point they are

woken up and carry out their work, before returning to sleep.

4.2.3 Task Granularity

One important topic that is often overlooked when describing a task farm is the question of

how a task itself is defined. In batch processing systems this is generally simple, as a task

is an individual process with the task farm effectively acting as a scheduler or load balancer,

however when the task farm is contained within a single process the job of partitioning work

into individual tasks becomes a lot more flexible. An example of this occurs when the job

consists of iterating over some data structure such as an array or linked list, and carrying out

some work on each data element. This sort of job is common in parameter sweeps [38], where

the initial array could consist of structures containing sets of initial conditions of interest, or

Monte Carlo simulations, where repeated random sampling builds up statistical results. In this

scenario the entire program could be a single large task, referred to here as course-grained or

low granularity tasks, or each piece of work on a single array element could be a task, called

fine-grained or high granularity tasks, as long as the pieces of work are independent of each

other. There are also intermediate levels of granularity where each task takes a subset of the

array to work on.

As with thread pinning there are advantages and disadvantages for any chosen granularity.

For low granularity tasks there is less overhead and less contention for shared data structures,

although if there are fewer tasks than available processing elements there is obviously wasted

CPU time, and since each task will tend to run for longer there is a higher likelihood that there

will be idle time at the end when there are only a couple of tasks left to run. Conversely if

there is a large number of fine-grained tasks there is a lot more likelihood of contention for

access to shared data structures, and since each task will run for less time the ratio of time

Chapter 4. Project Implementation 12

spent getting new tasks versus running tasks will be increased. The optimal task granularity

itself will depend on the architecture that the application is being run on, and while, similarly

to threads, there are general rules of thumb that can be applied to decide on granularity in

advance, it is only really through testing that the ideal granularity can be found.

4.3 Controller Application

One of the features that was present in LIRA-adaptive and allowed dynamic changes to the

system was a thread that each application had which periodically woke up, checked various

pieces of information that have been collected from hardware counters during the course of the

execution of each application, and using this data notified the main threads of each program

as to which schedule should be used. This ability to do runtime monitoring lies at the heart

of plastic parallel programming, with the monitoring threads being promoted to having a pro-

cess of their own, known here as the controller, which assesses the environment in which the

applications are running and tells each application which strategies it should use at any given

time. There is essentially no limit to how complex the controller could become, or the factors

which it could take account when making its decisions, although it should be remembered that

the more work the controller does the more CPU time it will itself take up, meaning that the

benefits to the other applications must be greater to make it worthwhile. For the sake of this

project, due to time constraints and the need for the tests to be repeatable, the controllers’ deci-

sions were hard-coded into simple scripts, implementing pre-decided strategies depending on

which stages the applications were at and how many applications were running. The design of

the controller was however made such that this could easily be extended if desired for future

work.

Since the controller necessarily has to communicate with the applications in order to both

get details as to the applications’ current state and to inform them of which strategies to use,

some sort of messaging protocol is necessary. It was decided to use the Zero Message Queue

(ØMQ) lightweight messaging library [39] for this purpose, which has the facility for simple

client-server communication using standard TCP sockets. The controller binds to a given port

on localhost, with any participating application connecting to that port, registering with the

controller when it starts, getting strategies to use when it reaches certain phase points in its life-

cycle, and de-registering when it exits. This use of standard sockets means that the controller

could easily be converted to run on a separate machine in a distributed system. The behaviour

of the controller is largely reactive, responding to messages from the applications, which means

that it spends most of its time sleeping, waiting for the next incoming message, and does not

take up much CPU time. This was verified by a set of tests in which applications ran either

with or without the controller, using the same strategies each time apart from the controller

Chapter 4. Project Implementation 13

communication. As seen in §6.1 the controller used an insignificant amount of CPU time,

however care should of course be taken as the addition of more applications and more complex

decision making by the controller would likely lead to a noticeable increase in resource usage.

4.4 The Plastic Task Farm

The idea behind the plastic task farm is to take the variability in implementation details that

was mentioned in the previous section, and make it available at runtime, so that the task farm

can choose what strategy to use depending on the environment at that time. This variability

is hidden behind the high-level algorithmic skeleton interface, so that the programmer does

not even have to be aware that changes are being made behind the scenes. In this project

we concentrated on strategies involving thread placement, in particular number of threads and

thread pinning, since there was limited time to implement the task farm, and in order to run a

thorough set of tests the space of available strategies could not be too large. The details of the

strategies that were investigated are described in §6.4.

4.4.1 Initialisation and running

Using the API for the implemented plastic task farm requires four main stages: initialisation;

adding tasks and phase points; running; and finalisation. A general picture of the system is

given in figure 4.1, which shows the lifetimes of two applications and the controller. The ini-

tialisation phase merely consists of a call to tf init, passing the port number with which to

communicate with the controller and a character string denoting the file to write output data to,

and returning a tf context t, which is an opaque struct that is passed to any taskfarm func-

tions and keeps track of the state of the system. During the initialisation phase the application

sets up the data structures that it will use, and registers with the controller on the given port.

The controller will pass back an initial strategy to use, in particular details of the thread pool

size. In this implementation the thread pool size cannot change after it is initially set, however

it would not be too hard to add variable thread pool sizes in. When it has the initial strategy

the task farm then sets up the initial data structures that are used to store and distribute tasks,

and spawns the initial threads. When instructed to, the spawned threads will execute all of

the tasks, with the initial program thread acting as the master, doing all of the communication

with the controlling application and directing the worker threads. After initialisation, tasks and

phase points can be added, a process which is described in §4.4.2.1 and §4.4.2.2. When all

tasks have been added the tf run function is called, which instructs the master thread to set

the worker threads running, executing all of the tasks that were added. The final action is a call

to tf finalise, which cleans up the data structures and outputs any final metrics, which are

described in §4.4.4.

Chapter 4. Project Implementation 14

Register

app_id=1
initial strategy

Register

app_id=2
initial strategy

starting phase 1

next strategy

starting phase 2

finishing

next strategy

Ok

finishing

Ok

starting phase 1

next strategy

starting phase 2

next strategy

Application 1

Application 2

Controller

Time

Phase 0

Phase 1

Phase 2

Phase 0

Phase 1

Phase 2

Tasks

Initialisation and task/phase setup

Initialisation and task/phase setup

Figure 4.1: System diagram showing two applications starting, registering with the controller,

running tasks in three phases, then de-registering and exiting.

Chapter 4. Project Implementation 15

4.4.2 Tasks and Phases

Two of the most important parts of the plastic task farm are the concepts of tasks and phases.

These are fundamentally intertwined, and described in the next two sections.

4.4.2.1 Tasks

The most fundamental part of a task farm application is the process of adding tasks. In this

project a task is always a function that takes a void pointer to some user-defined data structure,

taking any input from and putting any input into that structure or memory referenced by it.

It is the job of the user to control any memory access restrictions in memory referenced in

this structure. The act of adding a task to the parallel task farm is as simple as calling the

tf add task function, which tasks as its arguments the tf context t struct returned from the

initialisation routine, a pointer to a work function, which must be of type void (*)(void *),

and a pointer to a data structure to pass in to the work function.

As described in §4.1, one of the standard uses of the task farm parallel design pattern is

for parameter sweeps, where the same piece of work is repeated multiple times, with the only

differences being input parameters, a scenario which is well suited to automation over an array

containing input values and pointers to where to put results. This is the principle behind the

tf add foreach function, which allows an extra layer of indirection between the programmer

and the implementation decisions. As an example of its use, consider a data structure

s t r u c t {
double i n p u t , o u t p u t ;

} d a t a s t r u c t ;

with the working array

d a t a s t r u c t w o r k a r r a y [SIZE] ;

where the input values in the array are set to some initial value. A call to tf add foreach

would then be

t f a d d f o r e a c h (t f c o n t e x t , w o r k a r r a y , s i z e o f (d a t a s t r u c t) ,

SIZE , num phases , f l a g s , work func) ;

where tf context is the structure returned by the initialisation function, num phases is the

number of phases that the loop over the array should take, flags gives the types of phase

points to use, as described in §4.4.2.2, and work func is the function that is called on each of

the elements of the array. The decision on how to distribute the array iterations over different

tasks and how to organise the tasks into the number of requested phases is left entirely up to

the plastic task farm, giving it a large amount of flexibility. Ideally the number of phases to use

would also be set by the framework rather than the programmer, however since this was one of

Chapter 4. Project Implementation 16

the factors that was varied in the experiments it was easier to include it in the API than to build

it into the framework at this stage. In this project’s implementation the distribution is arranged

such that there is one task per phase for each thread in the thread pool, so increasing the value of

num phases increases the task granularity. For example if there are 5000 elements in the array

that is being looped over, there are 16 threads in the thread pool and num phases has the value

1, then there will be 16 tasks, that is each thread will only have one task to run in the entire

program, with each task carrying out 312 or 313 pieces of work from the work array. If on the

other hand num phases has the value 100, then there will be 1600 tasks, with each task doing

three or four of the work array elements, with a phase point after every 16 tasks. In the first case

there is obviously significantly less overhead, since the threads are distributed all of their work

at the beginning and spend the rest of the time doing that work, however once the work starts

there is no possibility for strategy changes until the program has finished. On the other hand

the second case has the threads continually carrying out small pieces of work, meaning that the

time spent retrieving tasks may be a significant fraction of the overall runtime. The numerous

number of phases also means that it will be in contact with the controller frequently, possibly

leading to large overheads, although also allowing the application to be quickly notified of

changes in strategies if the environment changes.

4.4.2.2 Phases

Since the controller is designed to spend most of its time waiting for messages, in order to

reduce its impact on the system, it is up to the running applications to decide when to contact

the controller in order to receive instructions as to what strategies they should be taking. The

frequency of these communications could potentially have a powerful effect on the efficiency

of the program for similar reasons as the task granularity. If the application communicates with

the controller too frequently then it could spend more time communicating with the controller

than carrying out its tasks, and the controller could become swamped with messages, leading

to it using more of the valuable resources itself. On the other hand not contacting the controller

frequently enough means that the application cannot react quickly to changes in environment.

The correct frequency for communication itself depends on the environment, since a stable

environment would mean that a lower communication frequency is necessary.

In this project the communication between application and controller is determined by the

existence of phase points, which delimit groups of tasks. Phases are numbered sequentially,

with phase points being global synchronisation points, meaning that there is a strict happens-

before relationship between the phases, although not necessarily between the tasks in each

phase, as described below. When the final task that was added to the task farm before a given

phase point has started, the application’s master thread initiates a controller communication,

notifying it of the change of phase, and receiving the strategy to use for the next phase. There

Chapter 4. Project Implementation 17

are different types of phase points, depending on the needs of the tasks before and after them.

By default when moving from one phase to another the application will communicate the tran-

sition to the controller, receiving in reply the strategy to adopt for the next phase. The most

basic phase type just does this communication, with tasks from the next phase able to start be-

fore the next strategy is received, in fact the next task may start before the previous tasks from

before the phase point have finished. This is most useful when the controller should know that

a new phase has started, but it is not expected that there will be a change in strategy, and it is

desired that the next set of tasks should finish as soon as possible. The controller communica-

tion can be turned off by using the PHASE BYPASS CONTROLLER flag, which also ensures that

the phase number is not incremented. By itself it is no different to not having a phase point,

but it can be combined with other flags such as the PHASE WAIT FOR TASKS flag. This creates

the second sort of phase point which is similar to a barrier in OpenMP [40], in which it is

guaranteed that all tasks from before the barrier are finished before any tasks are started after

the barrier. Another phase point type comes by using the PHASE WAIT FOR STRATEGY flag. In

this case the application does not continue with the post-phase tasks until it receives a reply

from the controller and implements the next strategy. This final form of phase point is used for

all of the tests that are described here.

Phase points are added via the function tf next phase which takes as arguments the

tf context t struct and flags representing the phase point type that is desired, or via the

tf barrier function which is an alias for a phase where there is no controller communication,

but all tasks started before the phase point must finish before the next tasks start.

4.4.3 Threading

Thread control in the plastic task farm comes about through a mix of pthreads and the

ØMQ communication library. When the initial thread pool is spawned each thread sets up

a communication channel with the main thread using ØMQ in-process communication. With

the communication channel set up the thread then waits for the startup message from the master

thread, at which point it will start removing tasks from the task list and running them. When a

worker thread finds a phase point it communicates this to the master thread, then either waits

on a phase barrier, as described in §4.4.2.2 or carries on running tasks from the next phase.

Between each task threads check whether there is a message from the master thread, either

telling the thread to block until an unblock message is received, or telling the thread to termi-

nate. The thread blocking is the mechanism that is used if fewer threads are required than were

originally spawned in the thread pool, with threads using up minimal resources while they wait

on a waking signal, while being easy to resurrect if more threads are required. This allows a

highly efficient and flexible mechanism for adjusting the number of threads in the application,

and could be easily extended if different strategies were needed.

Chapter 4. Project Implementation 18

4.4.4 Measurements

At various points in the lifecycle of the plastic task farm various timings are taken, in order to

give as much information as possible about how each thread behaves. These timings all depend

on wall clock times, rather than cumulative CPU time, since it is this time that is most relevant

for most users, although cumulative time can easily be calculated by adding up the timings for

each thread. The reported times include the time that each thread was running for, the time

that a thread was running tasks for, the total time that a thread was blocked on a mutex for, and

the total time that a thread was blocked by the master thread, waiting for an unblock message.

These results could be output at the end of each phase for debugging, or at the end of the

application run for standard execution. During all of the testing that is described in the results

section the percentage of time any thread spent mutex blocked never rose above 0.17%, with

the vast majority of thread runs spending effectively no time mutex blocked, with a percentage

so low that it registered as zero when printed to six decimal places. This suggests that the task

farm implementation was highly efficient for the circumstances in which it was used. This

overhead would however be expected to rise as the number of threads increases, meaning that

a different strategy for holding and distributing tasks could become necessary.

Chapter 5

Experimental Framework

5.1 Introduction

While there is good reason to believe that combining the best parts of PetaBricks and LIRA

would produce a system that can increase application performance, it is of course vital to test

this, particularly as there are often effects such as caching that are very difficult to predict. Dif-

ferent types of application will require different strategies to get the most out of the hardware,

while there may be applications in which the added overhead of plastic parallel programming

outweighs any benefit that may be gained through the flexibility offered. It is thus vital to carry

out comprehensive testing to show that there are circumstances where plastic parallel program-

ming can produce significant optimisations, as well as finding the best strategies to implement

in those cases. There are of course a huge range of possible tests, with an essentially unlim-

ited number of application types and strategies to try, but due to time constraints it was only

possible to test a small subset of these, although there were enough to demonstrate that plastic

parallel programming has the potential to have a significant positive impact.

In this chapter we describe the setup for the tests that are run to try out plastic parallel

programming. In §5.2 we describe the environment in which the tests take place, in particular

the relevant details of the hardware setup on which the tests are run, with §5.3 describing the

testing protocols that were used, as well as the types of application work that were tried, in

order to find the optimal strategies for various different types of application. We attempt to

cover a large range of different behaviours in a relatively short period of time. Finally in §5.4 a

description is given of the data analysis routines and presentation methods that are used, along

with some predictions based on simple heuristic arguments.

19

Chapter 5. Experimental Framework 20

Motherboard Dell PowerEdge R810 05W7DG quad socket [43]

RAM 64GB NUMA, 16GB per socket DDR3 1333MHz

CPUs 4 × Intel Xeon L7555 Octa-core 1.84Ghz

L1 Cache 32K per CPU, split into data and instruction, core private

L2 Cache 256K per CPU, core private

L3 Cache 24M per CPU, shared between cores

Hyperthreading disabled

Table 5.1: Hardware details

5.2 Hardware

All of the tests that were done were run on the informatics machine xxxii, which has a four-

socket NUMA architecture [41], meaning that each socket has part of the memory which it

can access very quickly, with access to the other non-local memory taking significantly longer.

Each socket contains an octa-core Intel Xeon L7555 CPU, giving a total of 32 cores, each

running at 1.86GHz [42]. More details are given in table 5.1. The core IDs are distributed

so that the first socket has cores with IDs 0,4,8,12,16,20,24,28, and similarly with the other

cores.

5.3 Testing Protocols and Work Types

All of the tests that were run were restricted using the Linux taskset command to only run

on half of the available cores, either the cores on sockets 0 and 1, or the cores on sockets 2 and

3. This allowed two sets of runs to be done at the same time without interfering, or let another

user run processes on the other sockets, which was necessary since this was a shared machine.

The first set of tests that were done, described in §6.3, verified that running two sets of tests

on the two sets of sockets did not make a noticeable difference to one set of tests pinned to the

first set of sockets.

All of the tasks done during the tests shared a common underlying theme, involving access

to a shared array, which consists of 2,000,000 doubles. This gives an array with a total size

of 16MB, meaning that the entire array can fit into the L3 cache of one of the CPUs, however

if two applications are running on the same socket there will be cache contention. This means

that caching effects will be very important in the interaction between multiple applications.

Each piece of work in an application accesses this shared array in some form, with an entire

application consisting of 5000 pieces of work, a number chosen because it gave a runtime that

was long enough such that results could be statistically significant over the background noise,

but runtimes were short enough, at around a minute per application, that a large number of tests

Chapter 5. Experimental Framework 21

could be run. This also allowed a large range of different granularities to be tested, since for 16

CPUs each task could consist of between 1 and 312 pieces of work.

Four different memory access patterns were used when accessing the shared array, since

they each produce different caching effects, which are the main effects that were expected to

be important in this project. These covered memory read/write, and random/sequential access,

with the sequential access moving over the entire array, while the random access used the re-

entrant random number generator to generate indices, although accessing the array the same

number of times as the sequential access. This did pose a problem when comparing these two

types of work, in that calling the random number generator takes a significant amount of time,

in fact in a set of initial tests work using the random number generator took many times longer

than work that accessed the array sequentially, even when caching effects were taking into

account. In order to more meaningfully compare the effect of caching behaviour on different

work types calls to the same random number generator were added to the sequential access

work, with the returned value ignored. Since the programs were all compiled with the -O2 flag,

which among other optimisations tells GCC to remove dead code, the variable the number was

stored into was marked volatile to ensure that the random number generator was called as

expected. When this change was made the timings for sequential and random memory access

were essentially the same when cache coherence effects were accounted for.

5.4 Result Presentation and Analysis

In this section we describe the analysis that we perform on the results of the tests, the way that

we present the results, and give an introduction to the main statistic that we use when reporting

the data, the Average Normalized Turnaround Time (ANTT).

5.4.1 Data presentation

There are numerous ways in which it is possible to present experimental data, which include

methods that do not accurately represent the data, or skew the presentation so as to attempt

to force a result, a fact that is well known through the saying popularised by Mark Twain:

‘lies, damned lies and statistics’. There has been a resurgence in recent years in attempting

to ensure that experiments are properly designed and results fairly reported, with numerous

studies reporting problems with many previous research articles [44–46]. While the author

cannot pretend to be an expert at statistics, it will be attempted to present the results here in

a way such that it is clear when results are significant, and when they are purely the result

of chance or noise. The graphical methods of presentation will thus vary slightly depending

on the aim of the test, trying to toe the line between being comprehensive and looking overly

cluttered.

Chapter 5. Experimental Framework 22

One common method of result presentation is via a box-and-whisker plot, which gives a

representation of the spread of the data, as well as statistics about the data. A standard plot

consists of a box which encompasses the first and third quartiles (that is the box contains half

of the data points, with the first and last quarter of the sorted data points outside the box), with

the median value denoted by a thick black horizontal bar. It is known that the median is less

susceptible to outliers [47], which are a particular problem in these test since all outliers tend

to lie in the same direction, with occasional tests having dramatically increased runtimes due to

outside interference such as system processes or other users on the system. The ‘whiskers’ on

the box plot show the range of data points that lie within 1.5 standard deviations of the mean,

with any points outside this range viewed as outliers and represented using circles. While the

box plot does a good job of giving the layout of the data, it does not by itself give any indication

of how significant the results are. In order to visualise these the box plots include notches,

which represent confidence intervals around the mean, with the relevance that if the notches

of two plots do not overlap then that is ‘strong evidence’ that there is a significant difference

between the two medians [48]. The details of the calculations that are used to calculate the

notches can be found at [49] but are not discussed further here.

As well as the box plots it is also often useful to display other information in a graphic.

Where it is deemed useful a horizontal red line is overlaid over the plot, representing the mean

of the distribution. The graphics also make use of violin plots, laid in gold under the box plot,

which represent the distribution of the data in the same way as a histogram. The violin plot

includes a thick black vertical line which represents the interquartile range, as well as a white

dot at the median.

All of these elements are combined in figure 5.1, which gives sample results for the run-

times of two applications, running separately in isolation. Some results to note are that the first

application has a more widely spread distribution, largely caused by the presence of the out-

lier, which pulls the mean value, represented by the horizontal red line, away from the median.

This reinforces the decision to use the median rather than the mean as the measure of central

tendency. The second feature to note is that there is a large amount of overlap between the

notches in the two bar plots. This means that it is not possible to state that the average runtimes

are different in any meaningful sense.

5.4.2 Average Normalized Turnaround Time (ANTT)

As mentioned in the previous section, the main statistic that is going to be used to make compar-

isons across different tests is the Average Normalized Turnaround Time (ANTT). This statistic

represents the amount by which multiple applications interfere with each other when running

at the same time, as opposed to each one running in isolation. This is the statistic that was

used by Collins et al. [24] to demonstrate the efficacy of LIRA, and is based on a suggestion

Chapter 5. Experimental Framework 23

72
74

76
78

80
82

1 2

●

●

●

1 2

72
74

76
78

80
82

Application number

R
un

tim
e

(s
ec

on
ds

)

Figure 5.1: Example distribution plot

Chapter 5. Experimental Framework 24

made by Eeckhout [50] as a statistic to evaluate performance in multi-user systems. Given n

applications running simultaneously, the ANTT can be defined as

ANT T =
1
n

n

∑
i=1

T MP
i

T SP
i

(5.1)

where T SP
i is the runtime for the ith application when it is running in isolation, and T MP

i is

the runtime for that application when it is running in the shared environment. As applications

interfere with each other, increasing their runtimes, the ANTT increases from the “ideal” value

of 1. The definition of ANTT gives a clear direction for testing, with applications first being

run in isolation in order to calculate T SP
i , then run together, either without plasticity or with

plasticity and using various different strategies, in order to find the scheme that gives the lowest

ANTT, which will be the optimal strategy to use. Since the ANTT involves ratios of runtimes

it is also possible to compare different work types, even if they have different base runtimes, in

order to decide which strategies work best for which types of work.

5.4.3 Theoretical Analysis

The relative simplicity of the applications that were run during the testing phase means that it

is possible to make various estimates of the ANTT, given simplifying assumptions about the

behaviour of the applications. These can then be used to compare against the actual results as

a help to understanding the behaviour of the applications in the real world, and possibly help

to work out what assumptions were not valid, shining a light on what is happening behind the

scenes.

Let us suppose that a program has perfectly divisible tasks, so that a running application

can be described as running at a certain number t1 of tasks per second, with the entire program

consisting of T1 tasks, taking a total time of S1 = T1/t1 seconds. When it runs with another

application the scheduler is assumed to assign it and the other task equal access to the resources,

so it will then on average run at a speed of t1/2 tasks per second. Suppose now that the first

task starts up, with the second task starting after s seconds, that is a fraction p1 of the time

through the isolated run, where p1 = s/S1 = st1/T1. At this point the first application will have

done st1 tasks, so it will have T1− st1 tasks remaining. Since it will now run at t1/2 tasks per

second, assuming that the second application runs for the entire remaining time, it will take an

extra (T1− st1)/(t1/2) = 2((T1/t1)− s) seconds, giving the first application a total runtime of

2((T1/t1)− s)+ s = 2T1/t1− s, which is equal to s(2− p1)/p1. The runtime, when compared

to the run in isolation, has then increased by a factor of T MP
1 /T SP

1 = (s(2− p1)/p1)/(s/p1) =

2− p1. This means, for example, that if the second application starts half way through the first

application’s run and carries on running until the first application has finished, the runtime of

the first application will increase by a factor of 3/2.

Chapter 5. Experimental Framework 25

Suppose similarly that the second application runs at t2 tasks per second, with the program

consisting of T2 tasks, giving an isolated runtime of S2 = T2/t2 seconds. If it starts up while the

first application is running then it will then initially run for 2((T1/t1)−s) seconds at the reduced

speed of t2/2 tasks per second, carrying out t2((T1/t1)− s) tasks. Since the first application has

now finished, it will carry out the remaining T2 − t2((T1/t1)− s) tasks at the full speed t2,

taking a further (T2/t2)− (T1/t1)+ s seconds. This then gives the second application a total

runtime of (T2/t2)+ (T1/t1)− s, so the runtime will have increased by a factor T MP
2 /T SP

2 =

1+(T1t2/T2t1)− st2/T2.

It is now simple to calculate the ANTT for this simplified case, giving

ANT T =
1
2

(
T MP

1

T SP
1

+
T MP

2

T SP
2

)
,

=
1
2
(2− p1 +1+(T1t2/T2t1)− st2/T2) ,

=
1
2
(2+1− p1 +(T1t2/T2t1)− p1(T1t2/T2t1)) ,

= 1+
1
2
(1− p1 +(T1t2/T2t1)(1− p1)) ,

= 1+
1
2
(1− p1)

(
1+

T1t2
T2t1

)
,

= 1+
1
2
(1− p1)

(
1+

S1

S2

)
. (5.2)

It is easy to put some rigorous bounds on this, under the assumptions that the second application

starts part way through the first application, that is 0 ≤ p1 ≤ 1, and assuming that the first

application finishes before the second application does, which means that 1− p1 ≤ S2/S1,

then the ANTT is bounded by 1 ≤ ANT T ≤ 2. This gives us a range of values in which

the assumptions we made above may be reasonable, with an ANTT value outside this range

meaning that one or more of the assumptions are not valid.

One final set of assumptions that can be made are allowed by the restrictions that were put

in place during testing, namely that in this project all of the applications that were running at

any one time were of the same type, meaning that they each had the same isolated runtime, at

least in the statistical sense. This means that S1 = S2 and equation (5.2) simplifies to

ANT T = 2− p1. (5.3)

If p1 take the value 1/2, the ANTT takes the simple value of 3/2, assuming that all of the

assumptions listed above hold. It was decided for the majority of runs to start the second

application half way through the first application’s run, in order to have a consistent baseline

with which to compare ANTT values, both one set of tests with another and compared to the

theoretical results. The only set of runs that this was not carried out on was the final set,

discussed in §6.6 where the second application was started after a random time in order to

better simulate real world behaviour.

Chapter 6

Experimental Programme and Results

In this chapter we discuss the experiments that were run in an attempt to verify the efficacy

of plastic parallel programming. The tests were split into three main phases. The first phase

of testing was run to check that plastic parallel programming was feasible in that there wasn’t

excess overhead generated by having an extra controller process, having communication with

the controller, or distributing tasks as described in §4.4. In all of these cases the applications

were run in isolation, apart from the possible existence of the controller process, so these tests

were also used to get the baseline runtimes T SP
i for use in the ANTT calculations. It was also

checked that it was possible to conduct two set of tests simultaneously on two different sets

of sockets, using taskset, without interfering with each other. In the second phase a large

number of tests were run with two simple applications running in contention, in order to gauge

the interactions within the four different work types. These were run over a range of work loads,

strategies and granularities in order to try to get a handle on how plastic parallel programming

could best be used. The final phase used slightly more real world conditions, with the second

application starting a random time after the first application started and workloads that are

slightly more reminiscent of those found in real life applications, in order to ensure that plastic

parallel programming could work in more complex situations.

6.1 Test for Controller Use of Resources

The first set of tests that was run had a single application, which used the sequential reading

work type, running in isolation. The first case had the application running without any com-

munication with the controller and without a controller application running, while the second

case had the application communicating with the running controller application, but the only

strategy that was used gave the application full access to the available resources. The results are

shown in figure 6.1. As can be seen the addition of the controller has no statistically significant

effect on the runtime of the single application. The figure also supports the decision to use the

26

Chapter 6. Experimental Programme and Results 27

8.
2

8.
4

8.
6

8.
8

9.
0

Without controller With controller

● ●

●
●

●

●

●
●

●

●

●

●

●

●

R
un

tim
e

(s
ec

on
ds

)

Figure 6.1: Isolated application running with and without controller

Chapter 6. Experimental Programme and Results 28

median rather than the mean runtimes, since the means are clearly skewed by the few outliers,

as discussed in §5.4.1.

6.2 Baseline isolation runtimes

The same tests were then done with the other memory access types, sequential memory writes

and random memory read/write. Similarly it was found that there was no significant differ-

ence between running without the controller and running with the controller but not changing

strategies, so the non-controller results are not shown here. Figure 6.2 shows the results for

the applications using the four different memory access types to the shared array, sequential

read/write and random read/write. The horizontal blue line marks the value of the median of

the results for each work type, which is the value that is used as T SP
i in the following sets of

results.

There are some interesting aspects in the results that are worthy of note. First, as may

be expected, the different work types give significantly runtime, even though, as described in

§5.3, an effort was made to ensure that time differences do not come about through different

numbers of instructions or calls to functions such as rand r. This means that the differences

in runtime are largely the result of different caching behaviour, which is backed up by the

measured runtimes. The fastest run, with a median runtime of 8.26 seconds, is in the sequential

read, the memory access type where caches are most efficient. Work involving random reads

take slightly longer, around 9.31 seconds, presumably largely through lower-level cache effects,

since the entire array fits into the L3 cache of each socket. Sequential writes take significantly

longer, at around 13.25 seconds, due to the fact that writes to the first element of a cache line on

one socket will necessitate that the corresponding cache line on the other socket is invalidated.

The random write work takes a lot longer, at around 56.67 seconds, since almost every array

access will be for a different cache line and result in a cache invalidation on the other socket,

resulting in vast amounts of communication between the sockets, and thus the greatly increase

runtime. One point of interest is the bi-modal distribution that occurs in the sequential write.

In order to check whether this was just an anomaly the set of tests for sequential write were

repeated 150 times, which showed the same bimodal distribution, strongly suggesting that

there is some underlying reason for this distribution, although the precise reason is not clear,

and would warrant more investigation if there were time.

The results here were also used to check how many times the test should be run to ensure

that the results are statistically significant. If it is desired that there is a 95% confidence that

the sample mean is within a margin M of the actual mean, in a distribution with a standard

deviation σ, then at least

n =

(
1.96σ

M

)2

Chapter 6. Experimental Programme and Results 29

samples are needed [51]. Using this calculation with the four distributions in figure 6.2, with

the desire that the margin M is within 1% of the mean, the number of samples needes for the

sequential read, sequential write, random read and random write was calculated to be 8, 9,

12 and 89 respectively, rounding up. Given the times taken to run the tests it was decided

that it was not feasable to run every test 89 times. It was decided to use 20 runs for the set

of tests described in §6.4.3 that included granularity tests, since there were are large number

of granularities to test. Other tests were to be run 50 times. This gives sample sizes that are

significantly more than needed in all cases apart from the random writes, in which case there is

a 95% confidence that the actual mean should lie within a distance of M = 1.18 from the mean

when n = 20, and within a distance M = 0.75 of the mean for n = 50. While the distributions

will of course change the required sample size, these numbers give an idea of the significance

of any results that are presented here.

6.3 Test Isolation Check

The next set of tests that were run were designed to check that it was possible, using the

taskset command, to restrict sets of applications to sockets in a way such that they did not

interfere with each other, as described in §5.3. This was done by running the same application,

with the sequential read workload, along with the controller, without anything else executing

on the machine. Then two sets of the application and controller were run concurrently, with one

set restricted to the first two sockets, and the second set restricted to the second two sockets.

The results of these tests are shown in figure 6.3. The gold left-hand plot shows the runtimes

when the applications was run by itself, with the middle and right-hand plots showing the

runtimes of the two tests that were run together. Interestingly running two set of tests together

actually seemed to slightly reduce the runtime of each, however overall there is little difference

between the two, suggesting that the test setup that was used was sound.

6.4 Multi-application Runs and Strategies

Having done the baseline tests, the multi-application tests were then run. As mentioned pre-

viously each multi-application test involved two instances of the same application, with the

second instance starting half way through the first application’s run, using the isolation tests to

calculate the timing for this. The first application was generally started with full access to the

available resource, then when the second application was started a strategy decision had to be

made as to how the first application would react, and the set starting conditions for the second

application. When the first application finished the second application was then given access

to all of the resources.

Chapter 6. Experimental Programme and Results 30

8.
2

8.
3

8.
4

8.
5

8.
6

8.
7

●

R
un

tim
e

(s
ec

on
ds

)

8.26

(a) Runtime for sequential read
12

.9
13

.1
13

.3
13

.5

●

R
un

tim
e

(s
ec

on
ds

)

13.25

(b) Runtime for sequential write

9.
2

9.
4

9.
6

9.
8

●R
un

tim
e

(s
ec

on
ds

)

9.31

(c) Runtime for random read

52
54

56
58

60
62

64

●

R
un

tim
e

(s
ec

on
ds

)

56.67

(d) Runtime for random write

Figure 6.2: Distribution of runtimes for each work type, running in isolation apart from the con-

troller, and not changing strategies. The blue line marks the value of the median, which is used

in later ANTT calculations.

Chapter 6. Experimental Programme and Results 31

8.
2

8.
4

8.
6

8.
8

9.
0

9.
2

Fully isolated run

●

8.
2

8.
4

8.
6

8.
8

9.
0

9.
2

R
un

tim
es

 (
se

co
nd

s)

8.
2

8.
4

8.
6

8.
8

9.
0

9.
2

Taskset isolated runs

● ●

8.
2

8.
4

8.
6

8.
8

9.
0

9.
2

Figure 6.3: Test runs in full isolation (left) and with two sets of runs separated using taskset

(right)

6.4.1 Implemented Strategies

As has been mentioned previously one of the major factors that is expected to affect runtime

is the way that threads are scheduled among the sockets, with the workloads described above

designed to measure this. This is the main characteristic that was considered when deciding

what strategies to test. The first strategy, if it can truly be called that, allows the plastic task

farm to spawn the maximum number of threads, that is 16 in the setup as described above, with

all thread placement decisions left to the operating system scheduler.

The second strategy is designed to minimise the work that the scheduler has to do by

ensuring that there are always the same number of threads as cores, so threads do not lie in

the runnable state waiting for CPU time. In this case when the second application starts, the

number of active threads in the first application is reduced by half, with the second application

then starting using only 8 threads. Since this implementation of the plastic task farm does

not have the ability to change the thread pool size, the second application actually spawns

16 threads, but 8 are immediately put to sleep. When the first application then finishes the 8

sleeping threads in the second application’s thread pool are woken up and can get to work.

The third and final strategy, following from the success that LIRA had, adds thread pinning

to the reduction in the number of threads. When the second application starts, the threads of

the first application are reduced in number and pinned to the cores of the first socket, while

the second application has its threads pinned to the second socket. When the first application

finished the second application is allowed free reign, with any blocked thread woken up and

free to be scheduled over all 16 cores.

Chapter 6. Experimental Programme and Results 32

6.4.2 Task Granularity

As well as the four different memory access types and the three different strategy types, one

other aspect of the plastic task farm that was tested was to find the optimal task granularity,

as described in §4.4.2.1. For each of the twelve combinations of work type and strategy type

tests were run for a large range of values, with the number of phases in the main foreach loop

ranging from 1 to 100, with each task consisting of between 312 and 3 elements from the work

array.

6.4.3 Results

Figure 6.4 shows the results for the ANTT values for runtimes for the tests that were done

over the four different memory access types, three different strategies, and 22 different task

granularities. As was mentioned above each set of tests here was only repeated 20 times due

to time constraints. The columns represent the different memory access types, with sequential

read on the left, followed by sequential write, then random read and random write on the right.

The rows give the different strategies, with the ‘use-all’ strategy at the top, the thread restriction

strategy in the middle, and the thread pinning strategy at the bottom. The figure only uses box-

and-whisker plots so as to not overly crowd the picture.

The first thing to note from these results is that for the sequential reads and writes neither the

strategy used nor the task granularity seem to have a significant result, with the ANTT value

staying very closely to the theoretically predicted value of 3/2 from §5.4.3. This suggests

that, while the use of processing resources is diminished by being shared between the two

applications, there is very little cache contention, suggesting that in this, admittedly restricted,

case plastic parallel programming may not have any benefits. For sequential writes it can be

seen that the ANTT value stays pretty consistently around the value 2, with the main effect

of the different strategies seeming to be to greatly increase the runtime variability. This high

value of the ANTT supports the understanding that the isolated runs make efficient use of the

cache, while the inability to fit the entire data array into the L3 cache when two applications

are running sequentially means a runtime increase by more than may be expected.

One final point of note is the sharp drop in ANTT for the random write work with the third

strategy, with the ANTT decreasing to almost 1. This is a significant result, which suggests

that the thread pinning strategy is highly effective when doing the random writing work, and is

discussed in more detail below.

C
hapter6.

E
xperim

entalP
rogram

m
e

and
R

esults
33

1 8 16 25 35 45 60 70 80 90 100

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 8 16 25 35 45 60 70 80 90 100

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 8 16 25 35 45 60 70 80 90 100

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 8 16 25 35 45 60 70 80 90 100

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 8 16 25 35 45 60 70 80 90 100

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 8 16 25 35 45 60 70 80 90 100

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 8 16 25 35 45 60 70 80 90 100

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 8 16 25 35 45 60 70 80 90 100

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 8 16 25 35 45 60 70 80 90 100

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 8 16 25 35 45 60 70 80 90 100

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 8 16 25 35 45 60 70 80 90 100

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

1 8 16 25 35 45 60 70 80 90 100

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Number of phases

A
N

T
T

Figure 6.4: ANTT values for different memory access types, strategies and task granularities. The memory access types are sequential read (left column),

sequential write (second column), random read (third column) and random write (right column). The strategies are unconstrained (top row), restricted

number of threads (middle row) and restricted threads with thread pinning (bottom row)

Chapter 6. Experimental Programme and Results 34

6.4.4 Closer Inspection

Since it is hard to note anything apart from general trends in figure 6.4, we present here a com-

parison of the results, only at the highest granularity, from a set of tests that were re-run, with

each combination of memory access type and strategy done 50 times in order to bring up the

statistical significance of the results, as described in §6.2. The results from this set of tests,

including a non-plastic set where the controller was not used, are presented in figure 6.5. From

here we see, as described before, that for sequential read there is little real statistically signif-

icant deviation from the theoretically expected value of ANT T = 3/2, for any of the runtime

strategies as well as the case without a controller. For the sequential write we can see that the

runtimes without the controller are almost identical to those with the controller but allowing

the task farm freedom to spawn the full number of threads and use all of the cores, while both

of the thread-restriction strategies give a small, but statistically significant, increase in runtime

for the majority of the time, although it is interesting to note that in both cases the outliers

tend to lie at shorter runtimes rather than longer, suggesting that the restrictive strategies could

potentially offer more optimal runtimes, but the scheduler does not often provide the correct

conditions.

For the random array access one element that jumps out is that for both the read and the

write, the second strategy performs significantly worse than either of the other strategies or the

non-plastic case. The reason for this may be that, with the large number of cache misses that are

expected with the random reads and writes, threads spend a fair proportion of their time blocked

waiting for the cache line to be read in. In these circumstances it may be more efficient to have

more threads waiting in the background that can be scheduled while this is happening, with a

restricted number of threads removing this option, leading to longer runtimes. A final point,

that is possibly the most important in terms of this project, is that for the work that involves

random writes to the array, the thread-pinning strategy gives a significant runtime performance

improvement of around 30% when compared to the non-plastic case, with a resulting ANTT

that is actually below 1. This is remarkable, since it means that on average the applications ran

faster when they were running together than when they were in isolation. This suggests that the

scheduling that was used when the application was run in isolation was largely sub-optimal,

with caching effects resulting in larger runtimes than was necessary, while the restrictions

when using the third strategy forced the scheduler to use more optimal thread placement. The

importance of thread placement in this case suggests that it is likely to be the most fruitful type

of work for this implementation of the plastic task farm, and is investigated more thoroughly

in the next section.

Chapter 6. Experimental Programme and Results 35

1.
45

1.
50

1.
55

1.
60

1.
65

1.
70

●
●

●

●

●
●

●

●

●
●
●●●

●
●

●

●●
●●

●
●

●

●

●

●

●

●●●

●

A
N

T
T

(a) ANTT for sequential read
1.

8
2.

0
2.

2
2.

4
2.

6

● ●

● ●

●●

●●

●●

A
N

T
T

(b) ANTT for sequential write

1.
45

1.
50

1.
55

1.
60

●

●

●

●

●
●

●

●

●

A
N

T
T

(c) ANTT for random read

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

● ●

●

●

●

●

●
●

A
N

T
T

(d) ANTT for random write

Figure 6.5: Distribution of ANTT values for each work type, with second application starting

halfway through first application’s run. In each plot the left-hand figure is the test with no con-

troller, the next figure has the ‘use-everything’ strategy, the third figure has the strategy with

reduced number of threads and the fourth figure uses the thread pinning strategy.

Chapter 6. Experimental Programme and Results 36

6.5 Random Write Restricted Run

As was noted in the above section, with the runs whose memory access pattern consisted of

writes to random addresses, there was effectively no slowdown when two applications ran

overlapping using the thread pinning strategy, as opposed to a single application running by

itself. This strongly suggests that the single application was in fact running suboptimally,

even when in isolation. This can be understood because when it was running in isolation the

application was spread over two NUMA sockets, and whenever a memory location on one

socket was written to the entire cache line containing that memory location on the other socket

had to be marked as invalid. This obviously entails a large amount of overhead, suggesting that

it could even be faster to restrict the isolated application to a single socket for such runs.

In order to test this, and confirm that the results were in fact unique to the random write

work type, the applications were again run, once again in isolation, but this time with their

threads pinned to the cores of a single socket. While this meant that the applications only

had half the number of working threads, which naively one may expect would mean they took

twice as long to run, from the results in the previous section it may be expected that for the

random write workload, inter-socket effects may dominate this difference. The results are

shown in figure 6.6, with each plot showing the original run, using sixteen threads spread over

two sockets, on the left and the second run, with eight threads on a single socket, shown on

the right. Clearly from this figure the random write workload is unique in that it actually runs

faster when restricted to a single socket, suggesting that the overhead associated with cache

invalidation is greater than any gains made by running with more threads.

6.6 Combined Work Type Application

So far we have been looking at highly simplified workloads, consisting of a single memory

access type, and have found that while most workloads benefit from having access to more

threads and sockets, when random writes to an array are involved it is actually better to re-

strict the application to running on a single socket, meaning that there is no need for costly

inter-socket communication. These workloads do not however really demonstrate the power

of plastic parallel programming, since even with the final workload that showed an improve-

ment when the pinning strategy was used, the strategy would have been unnecessary if each

application had been pinned to a single socket in the first place.

In order to demonstrate the true power of plastic parallel programming a final set of tests

were run, using an application that used a mixture of different workloads. This application

spends around the first half of its runtime doing work that involves sequential reads, and the

second half of the time doing work with random writes. As we have seen these two types of

work have very different conditions for optimal running, with sequential reads best with more

Chapter 6. Experimental Programme and Results 37

8
10

12
14

16

●

●

●

●
●
●

●

●●

●

R
un

tim
e

(s
ec

on
ds

)

(a) Runtime for sequential read
14

16
18

20
22

24
26

●

●

R
un

tim
e

(s
ec

on
ds

)
(b) Runtime for sequential write

10
12

14
16

18

●

●

●
●

●

●●

●

R
un

tim
e

(s
ec

on
ds

)

(c) Runtime for random read

40
45

50
55

60

●

●

●●

●●●

R
un

tim
e

(s
ec

on
ds

)

(d) Runtime for random write

Figure 6.6: Runtimes for the four different work types, each with a single application running

isolation. In each plot the left-hand figure gives the application allowed access to two sockets,

running with sixteen threads. The right-hand figure shows the application restricted to a single

socket with eight threads.

Chapter 6. Experimental Programme and Results 38

threads and spread over multiple sockets, and random writes best restricted to a single socket.

This means that an optimal strategy may be to run each application with as many threads as

possible during the first work set, then restricted to a single socket during the second work set.

6.6.1 Baseline Tests

An initial set of tests were run on this application in isolation, in order to get baseline values,

in the same way as previous tests. In all of the cases each test was repeated 50 times. The first

set of tests had the application pinned to a single socket, that is 8 CPU cores, which we have

seen is ideal for the second random write work type. The second set of tests had the application

allowed access to two sockets, which is best for the sequential reads. Both of these cases were

run without any controller. The third set of tests involved the controller, which instructed the

application to switch from using two sockets for the first workload to using a single socket

for the second workload, giving fully optimal conditions. The results of these three sets of

tests are shown in figure 6.7 as the three left-hand plots, with median values 61, 49 and 40

seconds respectively. As can be seen the slowest run was when the application was restricted

to one socket, suggesting that the runtime improvement that comes about using two rather than

one sockets for the first workload is greater than the penalty that is imposed on the second

workload. This is not surprising since as we saw in figure 6.6 that the sequential read ran twice

as quickly when using two cores rather than one, while the random read only ran around 43%

faster when running on one socket as opposed to two.

While previous results have been demonstrated in terms of the ANTT, there is a problem

here in that the ANTT needs a single baseline runtime for the calculate. While the previous tests

were done with a baseline of the application running using full resources, here we would like

to make as comprehensive a comparison as possible, so ideally the multiple-application runs

should be compared with all forms of the single-application runs. For this reason rather than

the ANTT, the average runtime is used. Since both of the running applications are identical

it is easy to work out what the ANTT would be for any given baseline run in this case. As a

guideline the plots for the individual application runs have been marked with a green horizontal

line at 3/2 times the median runtime, which represents the expected ideal runtime for the

concurrently run applications given the heuristic arguments from §5.4.3.

6.6.2 Concurrent Applications

Having run the baseline tests, tests were done with two sets of the application running concur-

rently. In order to add more realism to the tests, in each case the first application was started,

then the second application started some time uniformly distributed between 2 and 48 seconds

later. In the first set of runs there was no controlling application, so both applications ran spread

over the entire two sockets. In the second set the strategy was used that each application was

Chapter 6. Experimental Programme and Results 39

restricted to a single socket upon finishing the first piece of work, a strategy which proved opti-

mal in the isolated runs. The average runtime for the two applications in each case is shown by

the fourth and fifth plot in figure 6.7, with median values of 73 and 72 seconds. It is rather sur-

prising that using the strategy that was optimal in the single-application cases does not produce

any significant improvement over not using the controller at all. When the reason for this was

investigated it was noted that the second application almost always took significantly longer

to run than the first application. The reason for this seems to be the following. It has been

noted that the runtime decrease by doubling the number of sockets from one to two in the first

sequential reading workload is significantly greater than that gained by halving the number of

sockets, from two to one, for the second random write workload. Since, on average, the second

application starts half way through the first application, then on average the first application

has two sockets on which to run its first workload, then a single socket on which to run the

second workload, thus fully optimal conditions. However the second applications has to share

the sockets while running its first workload, and has no advantage during its second workload

as it cannot utilise the extra socket when the first application exits. This means that there is no

significant different between the runs without the controller and with this first strategy.

This understanding of the reasons for suboptimal behaviour suggested that a more com-

plex strategy would be needed, which was implemented as follows. When the first application

started, it got full access to the two sockets, with optimal conditions for running its first work-

load. If the first application reached the second workload before the second application had

started then it was restricted to the first socket, the same as when it was running in isolation.

If the second application started while the first was still doing its first workload, then both of

them were allowed full access to the resources, letting the operating system schedule them as it

willed. If, however, the first application started its second workload while the second applica-

tion was running, or the second application started running while the first was doing its second

workload, the first application was restricted to only four of the cores on the first socket, allow-

ing the second application to use the remaining twelve cores, giving it a significant speedup of

its first workload. When the second application then started the second workload, each appli-

cation was pinned to a single socket, which once again was the most optimal setup. The results

from this set of tests are shown in the right-hand plot of figure 6.7, with a median of 56 seconds.

As can be seen there is a substantial improvement in runtime compared with either of the other

multi-application cases, with the average runtime of the two applications actually being around

the same as the runtime for the single application when constrained to one socket. This seems

to represent a case where plastic parallel programming produces a more optimal result that can

be achieved through any static means.

Chapter 6. Experimental Programme and Results 40

40
50

60
70

80
90

run 1 run 2 run 3 run 4 run 5 run 6

●

●

●

●
●

●

●●
●●●

●

●

●

●●●●●●●

●

●

40
50

60
70

80
90

A
ve

ra
ge

 r
un

tim
es

 (
se

co
nd

s)

Figure 6.7: Average runtimes for the tests described in §6.6. The three left-hand figures are

runtimes for individual applications, the three right-hand figures are average runtimes for the

concurrent applications. The green lines show 3/2 times the median runtime for the individual

applications, representing the ideal ANTT values as described in §5.4.3.

Chapter 7

Results overview

In the previous chapter we presented the results from a large number of tests, some more

successful than others, which were aimed at finding situations in which plastic parallel pro-

gramming could be reliably shown to improve overall runtime performance of concurrently

running applications. We showed how different work types required different strategies in or-

der two run optimally, with caching behaviours being the main area that was focused on. It

was seen how workloads that involved sequential access to an array, as well as random read-

ing, which have the ability to efficiently make use of cache lines, are generally well served

by being allowed more resources, up to a certain point, with the operating system scheduler

giving efficient thread placement. In cases where the cache could not be relied up however, in

particular the workload the involved writing to random array elements, tailoring the scheduling

policy to the details of the system become much more important. For simple applications that

largely involve one work type it may be possible to do this statically, however as the final set

of results showed, with more realistic applications that involve multiple types of work in an

environment with random starting and stopping of other applications, having dynamic control

becomes much more important. The final strategy of the previous section managed to give a

reduction of around 23% to the average runtime of the two applications, which is a significant

result in a world where vast amounts of research are going into methods to squeeze every last

drop out of the available resources.

41

Chapter 8

Conclusion

This dissertation has discussed the creation and testing of an implementation of a plastic task

farm. This extends the well-known task farm parallel design by adding plasticity, that is the

ability to dynamically alter details of the implementation to best suit the environment that it is

running in. By presenting a high-level interface the plastic task farm is able to hide many of

the details of its implementation, thus allowing it to pick optimal strategies depending on the

hardware and environment. A large number of tests were run in order to verify that this method

of optimisation is useful, with results presented in a way that is aimed to convince the reader

that any differences are in fact statistically significant.

The set of tests described in §6.4 was done on highly simplified applications, each of which

did work involving a particular memory access type and pattern, with either sequential or ran-

dom access, and involving either reads or writes. From these tests it was found that the operat-

ing system scheduler manages very well in the majority of cases, however there are situations

where explicit control of the program threads is important, that being the random writes work-

load in this case. While optimal behaviour in all of this first set of applications could in fact be

achieved through simple thread affinity settings throughout the lifetime of the application, the

tests gave valuable insights that were used later on. With the more complex application that

was introduced in §6.6, which combined the sequential read and random write workloads, it

has been shown that these ‘one-size-fits-all’ strategies no longer work, and demonstrate when

plastic parallel programming really comes into its own. By carefully tailoring the strategies

to the application and the hardware that the application ran on it was possible to significantly

reduce the overall runtime.

As we have seen from the results in the previous chapter, the efficacy of plastic parallel

programming depends strongly on the details of the application that is being run. While this

project has only looked at a couple of different application varieties, concentrating on different

memory access types, there are countless other categories of application, including CPU bound

vs I/O bound, embarrassingly parallel vs inherently sequential, distributed vs local etc. Since

42

Chapter 8. Conclusion 43

incorrect strategy choices can easily decrease performance rather than increasing it, and the

interaction of different application types with the hardware is very hard to predict, it would

take a lot of work to find strategies tailored for every case that is likely to be encountered.

The positive results that have been shown in the last set of results however suggest that this

is a worthwhile task, and could provide large benefits in a world where the efficient use of

computing resources is becoming ever more important.

8.0.3 Potential for Future Work

In this dissertation we have dipped our toes into the possibilities that are available with plastic

parallel programming, showing that the plastic task farm has the ability to provide runtime

improvements in a small subset of toy applications under highly controlled test conditions.

There are thus a multitude of ways in which plastic parallel programming could be extended.

There are many design patterns, each aimed at a different parallel situation, that could be

implemented with plastic parallel programming, including geometric decomposition patterns,

or the divide and conquer pattern among many others [see e.g. 20].

As well as a multitude of design patterns to choose from, there are an essentially unlimited

number of strategies that could be used for different application types. While it may be pos-

sible to deduce optimal strategies theoretically for some simple cases, it may be necessary to

do many simulations in order to find more general categories of application for which a given

strategy is optimal, especially when more than two applications are involved. It may be pos-

sible to use something similar to the autotuner that was used by PetaBricks [21], although the

complexity may become far too great and require much more sophisticated methods. As well as

thread placement strategies, there are many other types such as data structure and distribution

strategies, some of which were mentioned in §4.1.

One more way in which plastic parallel programming may be adjusted is by altering the

quantity that is being optimised for. The current iteration optimises on what is pretty much

the simplest metric, the runtime, which in many ways is no longer the factor that is most

important nowadays. The rapid increase in large server farms has brought the problem of

dissipating the heat they produce to the forefront, with some estimates suggesting that around

40% of the energy consumed is used for removing heat [52]. Power usage and heat dissipation

in mobile devices is also a major concern, severely limiting the ability to create ever faster,

smaller gadgets [53]. This means that strategies that minimise power consumption could have

massive positive environmental and economical impacts. While being even more challenging

to determine than optimal strategies for minimising runtime, the benefits of plastic parallel

programming in this area could potentially be huge.

Bibliography

[1] Edward A. Lee. “The problem with threads”. In: Computer 39.5 (2006), pp. 33–42.

[2] Krste Asanovic et al. “A View of the Parallel Computing Landscape”. In: Commun.

ACM 52.10 (2009), pp. 56–67.

[3] James Larus and Dennis Gannon. “Multicore Computing and Scientific Discovery”. In:

The Fourth Paradigm: Data-Intensive Scientific Discovery (2009), pp. 125–129.

[4] John C Wooley and Herbert S. Lin. “Computational modeling and simulation as

enablers for biological discovery”. In: Catalyzing Inquiry at the Interface of Computing

and Biology [online]. National Academies Press, 2005, pp. 117–202.

[5] Alfio Quarteroni. “Mathematical models in science and engineering”. In: Notices of the

AMS 56.1 (2009), pp. 10–19.

[6] Isabella von Sivers et al. “Humans do not always act selfishly: social identity and

helping in emergengy evacuation simulation”. In: Transportation Research Procedia 2

(2014), pp. 585–593.

[7] Philip Esper. “The role of computer modelling and E-engineering in civil, structural

and geotechnical engineering”. In: 2006 2nd International Conference of Information

& Communication Technologies. Vol. 1. IEEE. 2006, pp. 7–11.

[8] ARCHER national supercomputing service. URL:

https://www.epcc.ed.ac.uk/facilities/archer (visited on 08/12/2016).

[9] Open Grid Scheduler. URL: http://gridscheduler.sourceforce.net (visited on

08/12/2016).

[10] Murray Cole. Algorithmic Skeletons: Structured Management of Parallel Computation.

Cambridge, MA, USA: MIT Press, 1991. ISBN: 0-262-53086-4.

[11] Andrew S. Tanenbaum and Herbert Bos. Modern Operating Systems. 4th. Upper Saddle

River, NJ, USA: Prentice Hall Press, 2014.

[12] C Gordon Bell. “Fundamentals of time shared computers”. In: Computer Design 7.2

(1968), pp. 44–59.

44

BIBLIOGRAPHY 45

[13] Tim Jones. Inside the Linux 2.6 Completely Fair Scheduler. 2009. URL: http:

//www.ibm.com/developerworks/library/l-completely-fair-scheduler

(visited on 03/29/2016).

[14] Steve M. Easterbrook. “Climate change: a grand software challenge”. In: Proceedings

of the FSE/SDP workshop on Future of software engineering research. ACM. 2010,

pp. 99–104.

[15] Peter Welch, Jon Kerridge, and Fred Barnes. “Classification of Programming Errors in

Parallel Message Passing Systems”. In: Communicating Process Architectures 2006:

WoTUG-29: Proceedings of the 29th WoTUG Technical Meeting, 17-20 September,

Napier University, Edinburgh, Scotland. Vol. 64. IOS Press. 2006, p. 363.

[16] Joab Jackson. Nasdaq’s Facebook glitch came from race conditions. 2012. URL:

http://www.pcworld.com/article/255911/nasdaqs_facebook_glitch_came_

from_race_conditions.html (visited on 08/12/2016).

[17] Patrice Godefroid and Nachiappan Nagappan. “Concurrency at Microsoft: An

exploratory survey”. In: CAV Workshop on Exploiting Concurrency Efficiently and

Correctly. 2008. URL:

https://www.microsoft.com/en-us/research/publication/concurrency-at-

microsoft-an-exploratory-survey/.

[18] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A pattern language:

towns, buildings, construction. Vol. 2. Oxford University Press, 1977.

[19] Erich Gamma et al. Design patterns: Elements of reusable object-oriented software.

Addison-Wesley Professional Computing Series. Addison-Wesley, 2005. ISBN:

9781405837309.

[20] Timothy G Mattson, Beverly A Sanders, and Berna L Massingill. Patterns for Parallel

Programming. Pearson Education, 2004.

[21] Jason Ansel et al. “PetaBricks: A Language and Compiler for Algorithmic Choice”. In:

Proceedings of the 30th ACM SIGPLAN Conference on Programming Language

Design and Implementation. PLDI ’09. Dublin, Ireland: ACM, 2009, pp. 38–49.

[22] The Petabricks System. Massachusetts Institute of Technology. 2012. URL:

http://projects.csail.mit.edu/petabricks (visited on 01/04/2016).

[23] Intel R© Xeon R© Processor E7 Family: Reliability, Availability and Serviceability. Intel.

2014. URL:

http://www.intel.co.uk/content/dam/www/public/us/en/documents/white-

papers/xeon-e7-family-ras-server-paper.pdf (visited on 08/12/2016).

BIBLIOGRAPHY 46

[24] Alexander Collins et al. “LIRA: Adaptive Contention-Aware Thread Placement for

Parallel Runtime Systems”. In: Proceedings of the 5th International Workshop on

Runtime and Operating Systems for Supercomputers. ACM. 2015, p. 2.

[25] Horacio González-Vélez. “Self-adaptive skeletal task farm for computational grids”.

In: Parallel Computing 32.7 (2006), pp. 479–490.

[26] Marco Danelutto. “Adaptive task farm implementation strategies”. In: Parallel,

Distributed and Network-Based Processing, 2004. Proceedings. 12th Euromicro

Conference on. IEEE. 2004, pp. 416–423.

[27] Ranieri Baraglia et al. “An optimized task-farm model to integrate reduced

dimensionality Schrödinger equations on distributed memory architectures”. In: Future

Generation Computer Systems 15.4 (1999), pp. 497–512.

[28] Jan Dünnweber et al. “Making a Task Farm Component Parallelize Loops for the

Grid”. In: Integrated Research in Grid Computing CoreGRID Integration Workshop.

2006, p. 93.

[29] Slurm task-farming. URL: https://www.tchpc.tcd.ie/node/1127 (visited on

08/13/2016).

[30] Irish Centre for High-End Computing: Task Farm. URL:

https://www.ichec.ie/support/documentation/task_farming (visited on

08/13/2016).

[31] A simple MPI task farm. URL:

http://www.inf.ed.ac.uk/teaching/courses/ppls/farm.c (visited on

08/13/2016).

[32] pthreads - POSIX threads. URL:

http://man7.org/linux/man-pages/man7/pthreads.7.html (visited on

08/14/2016).

[33] Robert D Blumofe and Charles E Leiserson. “Scheduling multithreaded computations

by work stealing”. In: Journal of the ACM (JACM) 46.5 (1999), pp. 720–748.

[34] Radhika Thekkath and Susan J Eggers. “Impact of sharing-based thread placement on

multithreaded architectures”. In: Computer Architecture, 1994., Proceedings the 21st

Annual International Symposium on. IEEE. 1994, pp. 176–186.

[35] Guy E Blelloch and Phillip B Gibbons. “Effectively sharing a cache among threads”.

In: Proceedings of the sixteenth annual ACM symposium on Parallelism in algorithms

and architectures. ACM. 2004, pp. 235–244.

BIBLIOGRAPHY 47

[36] David Ott. Optimizing Applications for NUMA. 2011. URL: https:

//software.intel.com/en-us/articles/optimizing-applications-for-numa

(visited on 08/13/2016).

[37] Robert L McGregor, Christos D Antonopoulos, and Dimitrios S Nikolopoulos.

“Scheduling algorithms for effective thread pairing on hybrid multiprocessors”. In:

19th IEEE International Parallel and Distributed Processing Symposium. IEEE. 2005,

28a–28a.

[38] Rajkumar Buyya et al. “Scheduling parameter sweep applications on global Grids: a

deadline and budget constrained cost–time optimization algorithm”. In: Software:

Practice and Experience 35.5 (2005), pp. 491–512.

[39] ØMQ. iMatix Corporation. 2014. URL: http://www.zeromq.org (visited on

03/14/2016).

[40] omp barrier. URL: https://software.intel.com/en-us/node/524510 (visited on

08/13/2016).

[41] Christoph Lameter. “Numa (non-uniform memory access): An overview”. In: Queue

11.7 (2013), p. 40.

[42] Intel R© Xeon R© Processor L7555. URL:

http://ark.intel.com/products/46494/Intel-Xeon-Processor-L7555-24M-

Cache-1_86-GHz-5_86-GTs-Intel-QPI (visited on 08/13/2016).

[43] Dell PowerEdge R810. URL: https://www.dell.com/downloads/global/

products/pedge/pedge_r810_specsheet_en.pdf (visited on 08/14/2016).

[44] John PA Ioannidis. “Why most published research findings are false”. In: PLoS Med

2.8 (2005), e124.

[45] Carol Kilkenny et al. “Survey of the quality of experimental design, statistical analysis

and reporting of research using animals”. In: PloS one 4.11 (2009), e7824.

[46] Michael J Marino. “The use and misuse of statistical methodologies in pharmacology

research”. In: Biochemical pharmacology 87.1 (2014), pp. 78–92.

[47] Analytical Methods Committee et al. “Robust statistics: a method of coping with

outliers”. In: Technical brief 6 (2001).

[48] John M. Chambers et al. Graphical methods for data analysis. Wadsworth, 1983.

[49] R Core Team. boxplot.stats - R documentation. R Foundation for Statistical Computing.

2013. URL: https://stat.ethz.ch/R-manual/R-

devel/library/grDevices/html/boxplot.stats.html (visited on 08/08/2016).

BIBLIOGRAPHY 48

[50] Lieven Eeckhout. “Computer architecture performance evaluation methods”. In:

Synthesis Lectures on Computer Architecture 5.1 (2010), pp. 1–145.

[51] Issues in Estimating Sample Size for Confidence Intervals Estimates. URL:

http://sphweb.bumc.bu.edu/otlt/MPH-

Modules/BS/BS704_Power/BS704_Power2.html (visited on 08/15/2016).

[52] Z Song, X Zhang, and C Eriksson. “Data Center Energy and Cost Saving Evaluation”.

In: Energy Procedia 75 (2015), pp. 1255–1260.

[53] Arden L Moore and Li Shi. “Emerging challenges and materials for thermal

management of electronics”. In: Materials Today 17.4 (2014), pp. 163–174.

