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Abstract

Appliance energy disaggregation is playing a significant role in industry, especially in

energy conservation. Previously, people usually manually selected features to learn a

simple model (e.g., HMM) to obtain the disaggregated output from the mains reading.

However, the results produced by their experiment are not always satisfied. In this

thesis, we bring multi-layer perception, convolutional auto-encoder and long short term

memory (LSTM) to bear on the problem for prediction of energy disaggregation for

5 types of appliances. The deep learning model is able to automatically select the

features then generate the reflection between mains reading and individual appliance

energy usage. The experiments show that our deep models outperform the state-of-

the-art energy disaggregation results displayed in [20].
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Chapter 1

Introduction

1.1 Background and Motivation

The social modernisation benefits from the wide range of applications of fossil fuels,

such as oil, gas and coal. However, these carriers of economic resources will be deplet-

ed rapidly during the first half of the 21 century. According to a survey [8], our world

currently consumes an average of 16 terawatts of power in one day, 86% of which

comes from fossil fuels. It is foreseeable that changing the electric power generation

pattern will still take a long time since the nuclear power is still under developing.

As such, saving our remaining fossil fuels and developing new kinds of fuels become

urgent problems.

Moreover, the over-reliance on fossil fuels becomes the main factor that leads to the

greenhouse effect. The significant amount of CO2 emission will cause serious climate

problems. Over the last decade, The average surface temperature has increased by

0.74◦C, which leads to serious glacial melting which raises the sea level by 14cm [29].

To slow down the global warming, many researchers are focusing on the energy con-

sumption issues. Some sustainability problems can be formulated as machine-learning

tasks. Energy disaggregation is one of them which can play a important role in energy

conservation.

The task of household appliances energy disaggregation (NILM) is to take a whole

building (aggregated) energy signal, and separate it into individual appliance specific

data (i.e., plug or end use data). Mathematically, we can define NILM problem as:

P(t) = p1(t)+ p2(t)+, ...,+pn(t), (1.1)

where pi defines the individual appliance energy consumption which contributes to

1



2 Chapter 1. Introduction

the aggregated reading within that time periods. The goal of NILM is to decompose

P(t) to pi(t) we need to obtain the disaggregated measurements. A typical NILM task

can be demonstrated by Figure 1.1. The whole-house aggregated (red curve) displays

the electricity consumption of an entire house. Our task is to recover the energy con-

sumption curves (microwave, kettle and washing machine.) from the mains reading.

A set of statistical approaches have been applied to address this problem. Based on

NILM, an energy feedback system can be built to display not only the total power

consumption, but also continuously shows real-time usage, broken down by electrical

appliance. Such system can provide clear recommendation and detection of malfunc-

tions households can then be channeled into specific programs. Users can adjust their

energy usage behaviour according on the feedback to achieve saving energy [11]. A

recent survey shows that energy feedback information can enable consumers to reduce

consumption by 5− 15% [7], especially when appliance-by-appliance disaggregated

information is provided [11]. However, current electricity meters can only report the

whole-home consumption data. Installing hardware for getting appliance-specific data

is hard and expensive. According to [3], installing plug level hardware monitors (e.g.,

Kill-A-Watt, EnergyHub) may cost 300−600 dollars per house, and it may need more

effort in installation process. The upgrade of all appliances to smart-appliance is also

not simple – it needs 100 dollars additional cost compared to non-smart appliances.

As such, it is in urgent need of developing an algorithmic method for energy disaggre-

gation. George Hart had long noted the importance of this work since 1985 [16][17].

Recently it was evoked by the high demand of energy conservation and smart grid

management.
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Figure 1.1: The electricity reading data in UK-DALE dataset [19] house 1 between 19:00

to 20:00, 17th, July, 2013.

The energy disaggregation can be divided into two tasks: appliance power recon-

struction and start time, end time and mean power regression [20]. The first task is to

estimate the second-by-second energy consumption of each appliance given a series

of main electricity reading data. The typical scheme is to take the aggregated mains

reading as input and output the target appliance data second-by-second. The length of

output should be exactly the same as the input. However, in many applications, there

is no demands to know the second-by-second information. As such, the second task

is to deliver three values of start time, end time and mean power for the target appli-

ance given the main electricity reading data. Both of them are essentially regression

problems in which machine learning can play a significant role. In our project, we will

focus on the first task to get the detailed output of each appliance.

The relation between the mains reading and an individual appliance is not straight-

forward. In an ordinary house, more than twenty kinds of appliances may have been on

in one-day period. This will blur the target appliance data and add the randomness. On

the other hand, the mains reading may be affected by other factors such as the abnor-

mal of voltage and the measurement error. Other challenge includes lack of knowledge

about the number of energy level for certain appliances (e.g., a microwave can operate

in states of defrost, heat with low power, or with high power), multiple devices exhibit-

ing similar energy consumption, simultaneous switchings on/off of multiple devices,

and rare operation of some appliances. All these problems make this task challenging.
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To address these problem, in addition to repeat and improve the experiment in

[20], we propose a novel method based on deep learning to predict the mid-point of

disaggregated data rather than the whole time series. Our scheme utilises the time

series from both future and past to obtain only one data point for the target appliance.

This methods not only leads to better accuracy, but also shrinks the network size, which

directly reduces the computational complexity. Our deep-learning-based work will

contribute to the IDEAL [2] research group. Based on our system, a NILM system will

be developed in the future to analyse the energy consumption in detail across a large

number of homes and provide behavioural feedback evaluated over a multi-year period.

After building the models, our systems can be used to infer specific demand-related

behaviours of users and provide timely personalised behavioural feedback. Each user

can adjust their usage frequency of appliance according to the feedback and electricity

generating station can also benefit from the NILM system to achieve better allocation

of electricity.

1.1.1 Objectives and Achieved Results

In order to achieve our goals, in this MSc project we build upon recent advances in deep

learning models to learn the reflection between mains reading and second-by-second

appliance-specific data. We take advantage of the electricity reading data gathered

from [19] then use data augmentation technique to generate sufficient data for training.

We select 5 typical appliances for NILM (i.e., kettle, microwave, dish washer, fridge

and washing machine), and then train at least 8 models for each appliance. Our work

will be evaluated by 6 metrics: test loss, F1 score, accuracy, precision, recall rate and

absolute error. It is encouraging that our experiments show that we get improvements

in almost all metrics in 5 appliances than the state-of-the-art results shown in [20].

Overall, The whole project can be divided into two part: the first part will devote

to taking a period as input and output the disaggregated data second-by-second. In

the second part, instead of predicting the whole period, we build models which just

infer the data value at the mid-point. One advantage of this scheme is that it use the

information from past and future which LSTMs can easily takes advantage of. This

two tasks share the same dataset, but the data processing is different.
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1.1.2 Dissertation Outline

This dissertation is organised as follow: Chapter 2 summarises the related work that

build the foundation for our project. It is mainly devoted to introduce the algorithms

that were used for NILM previously their pros and cons. In Chapter 3, we first intro-

duce our dataset UK-DALE [19] then describe how we pre-process them and trans-

form them to the format we need. Then we introduce the models we used, including

multi-layer percetron, convolutional auto-encoder and LSTM. Chapter 4 focus on the

evaluation: it details the metrics that are used to evaluate the performance our system

and compare them with the state-of-the-art results. Analysis of the performance will

be also presented in this section. Following on the evaluation, Chapter 5 concludes

this work with a summary of evaluation results and analyses, as well as some ideas for

future works.





Chapter 2

Related Work

Energy disaggregation has been a tough problem all the time. It has a long history in

both industry and academic. The first touch in this area can be traced back to 1984.

George et al. recorded his finding in NILM in his book [16], which opened a new door

for this domain. In general, appliances can be categorised according to their features

of states:

• Type-I: The appliances that have only ON/OFF states. They usually display similar

patterns in the ON state. Typical appliances include kettle, toaster etc.

• Type-II: The appliances which have a multiple but finite number of states. Washing

machine is a typical appliance that belongs to this type. The energy consumption pat-

tern are similar and repeatable in the same states, which facilitates the NILM process.

• Type-III: The appliances belong to this type do not has fix number of states. These

appliances are also known as Continuously Variable Devices (CVD). Since their states

are time-variant, it is very challenging to use NILM methods for disaggregation.

• Type-IV: The appliances that remain active throughout weeks or days consuming

energy at a constant rate are knows as “permeant consumer devices”. Appliances such

as telephone sets, cable TV receivers are amongst the devices are categorised to this

type. [33].

In general, different NILM methods usually get different performance in different type-

s of appliances. One similarity in these methods is that their prediction are all based on

features. The features used for energy disaggregation naturally come into two types:

steady-state analysis and transient-state analysis [33]. The methods based on these two

kinds of feature usually perform different.

7



8 Chapter 2. Related Work

2.1 Steady-state Analysis

The methods based on steady-state analysis take advantage of features that are gener-

ated from the steady-state operation. In NILM, real power (P) and reactive power (Q)

are two of the most commonly used as steady state signatures [33]. Real power is the

power that is used to do work on the load. It is measured in watts (W) and drawn by

the electrical resistance of a system doing useful work. Reactive power refers to the

power that is not used to do work on the load. It is required by inductive loads increas-

es the amount of apparent power. The Apparent power (S) can be defined by P and Q:

S =
√

P2 +Q2. The earliest research towards in NILM is based on this features [11].

This approach is able to detect the on-off appliances with only one state. However,

its performances degenerates in disaggregation of multi-state appliances [30] and the

appliances which consume similar power are always fail to be recognised.

Li. Y. et al. developed this algorithm in 2012 [23]. Their algorithm can be conclud-

ed as following steps: 1. Measure power, voltage, and frequency. 2. Normalisation. 3.

Create histogram. 4. Cluster. 5. Compute maximum likelihood classifier and repeat

these steps. And finally, they merge classifiers. Their classifiers obtain a high accuracy

in disaggregation of Type-I appliances. However, as they say, no single method has

yet been proven universally effective. Their approaches still have problems in separat-

ing Type-II, Type-III and Type-IV appliances. Ruzzelli et al. [25] extend the features

with current and the voltage to analyse the curve to overcome the limitations of power

based methods. These time-domain V-I features have shown good performance in Real

Time Recognition and Profiling of Appliances (RECAP) system [30]. However, this

method has a high sampling rate requirement and it always fail to distinguish between

overlapping events.

2.2 Transient-state Analysis

Another methods based on transient behavior of major appliances are found to be effec-

tive and their features are less overlapping in comparison with steady state signatures

[10]. Appliances with same power characteristics are able to be easily differentiated

by using this method. A good approach to extract transient feature is to calculate the

energy consumption over the turn-on transient event. Chang et al. [6] combine this

features with steady-state analysis and train the models with back propagation. Their

approach finally gets better accuracy and require less training time compared to using
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steady-state feature only.

Another typical example [28] incorporate Short-Time Fourier Transform (STFT)

and P and Q components to detect appliances and measure their energy consumption

meanwhile. The experiments yield a significant improvement over the empirically

based estimator in resolving the variable speed drive (VSD) power consumption under

small variations in the input voltage. However, although the model based on transient

behavior improve the robustness of system which makes it more adaptive to Type-II, III

and IV appliances, it in general requires continuous monitoring and higher sampling

rate, which yields a higher computational complexity.

2.3 Recent Progress in NILM

Recently, a lot of novel algorithms for energy disaggregation has come into being.

A new training algorithm of discriminative sparse coding was introduced by Kolter

et al. [21] to investigate the possibility of load disaggregation using discriminative

sparse coding based on hourly data. Their experiments show that this algorithm sig-

nificantly improves the accuracy of sparse coding for the energy disaggregation. Then

Hidden Markov models (HMMs) have become a popular tool for modelling appliances

recently [32]. This model typically builds a factorial HMM to represent most of the ap-

pliances in the household and introduce signal aggregated constraints for blind source

separation problems. It poses the optimisation problem as a convex quadratic program

and solve the relaxed problem, which yields a significant improvement over a simple

AFHMM. Song et al. developed this algorithm to be one-vs-all in 2014 [26]. They use

an iterative HMM to disaggregate five kinds of appliances. Their research open a door

for building a single model to obtain multiple disaggregated output.

2.4 Deep Learning

In recent years, deep learning approach has achieved marvelous results in many fields,

such as image classification, speech recognition and even multi-agent system [24][14][31][22].

The deep architecture shows its strong ability in automatically extracting high-level

features in data with complex structure, thus it has potential to play a important role in

energy disaggregation problems. A sophisticated model can approximate any function-

s, which provides a new idea for NILM problems. As a pioneering work, J. Kelly et al.

introduce long short term memory (LSTM) and convolutional denoising auto-encoder
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for NILM [20]. They separate the energy of five appliances from the whole-home

electricity reading and get an excellent result. They train the networks with the same

structure for all appliances, no matter what types they are. The deep learning seems to

be universal for NILM problem which dramatically decrease the workload in design-

ing the models. It becomes promising field in designing a single-structure model that

is applicable for all types of appliances.

Since deep learning is just like a black box, it is difficlut to analyse why deep learn-

ing perform so well in many domians. We believe one reason behind this magic is its

powerful representative ability. The reflection between the mains reading and disag-

gregated data is complicated. However, deep models are able to automatically extract

the features that can best represent the relation between input and output. In other

word, we do not need to worry about the feature selection (steady-state or transient-

state), deep learning just dose everything for us, even though we do not know why it

works. In addition, since the energy consumption data are sequential, convolutional

layer and LSTM are expert in handling this data. 1-D convolutional layer can scan a

region within a short time series and find the relation, while LSTM is better at catching

the long-time dependence. Combining them as a whole network should be a good idea.

However, there are still many problems remaining in deep learning models. The

parameters in a deep architecture is numerous which always yields significant compu-

tational complexity. In addition, the functions we need to optimise is in deep learning

non-convex, thus using conventional gradient descent methods may get stuck in local

minima. These are all bottlenecks for deep learning which limit its practicability, but

they cannot hide its achievements.



Chapter 3

Methodology

3.1 Resources and Tools

3.1.1 CUDA

Training a deep neural network is quite time-consuming. It is likely to take more

than 24 hours for training only one epoch without GPU when the model structure

is complex. To accelerate the training process, we installed CUDA and CUDNN (a

toolkit build in CUDA exclusive for deep learning) on our PCs and the severs provided

by the school to allow parallel computing. The GPU devices we use are Nvidia GTX

970 and Nvidia GTX TITAN X, which are powerful and they can help speed up more

than 10 times compare to using CPU only.

3.1.2 NILMTK

NILMTK [4] is a python toolkit which is designed to help researchers evaluate the

accuracy of NILM algorithms. It enables the comparison of energy disaggregation

algorithms in a reproducible manner. The disaggregation algorithms built in this pack-

age will not be directly used, but it provides powerful tools for us to simplify the data

pre-processing.

3.1.3 Pandas

Pandas provides a large number of functions and methods enable us to quickly and

easily process data in Python without having to switch to a more domain specific lan-

guage or software. The original data format of UK-DALE is hdf5. We use NILMTK

11
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to convert hdf5 files into DataFrame, and use Pandas for data processing and extrac-

tion. It also facilitates the transformation DataFrame into numpy.array, which is the

standard data input type in Lasagne.

3.1.4 Theano

Theano is an excellent Python library which enables us to define, optimise, and eval-

uate mathematical expressions involving multi-dimensional arrays efficiently. It has a

tight connection with Numpy and allows scientific calculation using numpy.array. Its

functions allow to use of a GPU which can accelerate more than 100 times compared to

using a CPU only. Theano provides a powerful tool that many deep learning package

can build upon.

3.1.5 Lasagne

Lasagne is a lightweight library to build and train neural networks build on Theano.

It has no excessive design on the abstract class and it uses the top-down breadth-first

algorithm to obtain the network parameters. This package is very flexible. Any users

can create their own layers by inheriting the naive layer class in the package. Also, a

lot of useful functions are provided to facilitate the model evaluation. We design and

train deep learning models based on Lasagne.

3.2 Dataset

3.2.1 Dataset Introduction and Visualisation

Our project builds and test models based on the UK-DALE dataset [19] which contains

domestic appliance-level energy consumption and whole-house energy consumption

from five UK houses. Table 3.1 summarises statistics for data collection in each house.

The correlations of sum of submeters with mains describe how much of the vari-

ance in the mains signal is captured by the submeters. The proportion of energy subme-

tered are calculated by the submeters divided by the total energy recorded by mains.

The dropout rate measures the radio that data were loss due to the errors and noise.

House 1 has the most completed data and we use them for generating the synthetic

data. Figure 3.1 visualises the power demand for a typical day. The data is noisy, so

the submeter reading may exceeds the mains reading at some time slots. Also, there
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House 1 2 3 4 5

Building type end of ter-

race

end of ter-

race

mid-

terrace

flat

Number of occupants 4 2 2 2

Total number of meters 54 20 5 6 26

Sample rate of mains

meters

16kHz &

1Hz &6s

16kHz &

1Hz &6s

6s 6s 16kHz &

1Hz &6s

Date of first measure-

ment

2012-11-

09

2013-02-

17

2013-02-

27

2013-03-

09

2014-06-

29

Date of last measure-

ment

2015-01-

05

2013-10-

10

2013-04-

08

2013-10-

01

2014-11-

13

Total duration (days) 786 234 39 205 137

Average mains energy

consumption per day

(active kWh)

7.64 7.17 13.75

Correlations of sum of

submeters with mains

0.96 0.86 0.47 0.55 0,90

Proportion of energy

submetered

0.80 0.68 0.19 0.28 0.79

Mean dropout rate (ig-

noring large gaps)

0.02 0.02 0.02 0.02 0.02

Table 3.1: The table is a snippet from [19]. It summarises the general statistics for

UK-DALE.

may exists a small offset of time stamp between mains and submeter. For example,

in Figure 3.2, there is a exceptional pulse in microwave reading (blue curve) at about

16:30, which makes the data over the mains reading. In addition, the time stamps are

not perfectly aligned. These noise may slightly influence our prediction.
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Figure 3.1: The electricity reading data in UK-DALE dataset [19] house 1, 17th, July,

2013.
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Figure 3.2: The electricity reading data in UK-DALE dataset [19] house 1, 16:00-16:40,

29th, July, 2013. It gives an example of noisy data.

Figure 3.3 visualise the histogram of mains power demand for 5 houses. The

distribution of five houses are different, and house 5 has a large mean values than

other 4 houses, which means that a predictor may get different performance in dif-

ferent house. Figure 3.1 and 3.3 are generated by scripts available at github.com/

ackKelly/ukdale_plots.

github.com/ackKelly/ukdale_plots
github.com/ackKelly/ukdale_plots
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Figure 3.3: Histogram of mains power demand for 5 houses.

3.2.2 Choice of Appliances

In our project, we select kettle, microwave, washing machine, dish washer and fridge

as target appliances. The reason is that we can get enough activations for these appli-

ances in the dataset, and they consume a large proportion of energy. The appliances

that just consume a small part of energy tend to be lost as noise. Their information are

also less useful than others. Moreover, the activation of target appliance are represen-

tative. Kettle always display a simple activation pattern, while washing machine is the

most complex one. Some key statistics of the target appliance are shown in Table 3.2.

We only calculate the values when their energy consumption is above each on power

threshold. These values are provided in [20]. To get a better understanding of the data

distribution, we visualise the histograms of target appliances in house 1. According

to Figure 3.4, the energy consumption of kettle, fridge and dish washer approximately

follow Gaussian distributions, while microwave and washing machine data are more

complicated.
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Table 3.2: General statistics of target appliances.

Appliance On power

threshold (W)

Maximum

power (W)

Minimum

power (W)

Average

Power (W)

Kettle 2000.0 3948.0 2003.0 2342.1

Fridge 50.0 3323.0 50.5 94.6

Washing machine 20.0 10.5 399.0 568.6

Microwave 200.0 200.0 201.0 1442.1

Dish washer 10.0 3817.0 11.0 709.8

0 500 1000 1500 2000 2500 3000
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50000
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200000
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300000
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400000
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2000 2100 2200 2300 2400 2500
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Figure 3.4: Histograms of appliance power demand from House 1 (over on power

threshold).
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3.3 Data Pre-processing

3.3.1 Activations Extraction

The activations of appliances are extracted by the method built in the NILMTK pack-

age [4]. The arguments that passed to the functions are provided in [20]. We show

them in Table 3.3. This function only gets the periods that values are above the on

power threshold, and it ignores ‘off’ periods less than Min. off duration seconds of

sub-threshold power consumption as well as the activation lasting less seconds than

Min. on duration. The number of activations and the maximum duration and the mini-

mum duration for each appliances are shown in Table 3.4.

Table 3.3: Arguments passed to get activation() method.

Appliance On power thresh-

old (W)

Min. on duration

(secs.)

Min. off duration

(secs.)

Kettle 2000 12 0

Fridge 50 60 12

Washing m. 10 1800 160

Microwave 200 12 30

Dish washer 10 1800 1800

Table 3.4: Number of activations and maximum and minimum duration per house.

1 2 3 4 5 Max. Dura-

tion (secs.)

Min. Dura-

tion (secs.)

Kettle 3131 789 84 766 195 696 24

Fridge 17427 3448 0 4827 2986 66318 72

Washing m. 560 50 0 0 112 12198 2046

Microwave 3562 384 0 0 66 3396 24

Dish washer 211 91 0 0 47 8580 3030

3.3.2 Positive and negative data

Only using activations data for training a neural network is insufficient. We need to

generate more data to prevent the model from over-fitting. We decide the input window
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length for each appliance based on [20] and the longest duration of activations and

generate the positive samples and negative samples for model training.

Positive sample indicates the data that contains a activation. We locate an activation

at the beginning, then use a window that contains a activation of target appliance and

slide it randomly for replication (but the full activation must be included). We illustrate

this process in Figure 3.5. To simply our problem, we only allow the data window

contains just one and intact activation. The window length and duplicated number is

shown in Table 3.5.

Table 3.5: Windows length and replication numbers.

Window length Window dura-

tion (secs.)

Duplicated number

Kettle 128 768 100

Fridge 512 3072 10

Washing machine 2000 12000 200

Microwave 128 768 100

Dish washer 1536 9216 200

Figure 3.5: A sketch map to illustrate how positive data is generated.

Negative sample indicates the data that does not include any activations. Generat-

ing the negative sample is simper: we just randomly select a window and only accept

the data that does not contain target activations. Since the dataset is sparse in terms

of activation, this method is quite efficient. The proportion of positive samples and

negative samples we accept is approximately 2:1.
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3.3.3 Synthetic aggregate data

In order to improve the robustness of models, we add the synthetic data in training

set. We create synthetic data based on the positive data, and start by locating the start

time and end time of activation for all target appliances. First, we create a data window

whose window length is equal to target positive data. We go through all appliances and

decide whether to add an activation or not with a probability. There is a 50% chance

that the target activation will appear in the data window, and 50% chance that we just

add a zeros sequence. For other 4 appliances (distractor), there is only 30% chance

that the distractor activation will appear in the sequence. Whether a distractor will

appear or not is independent with other distractors. However, since the window length

is different for each appliance, it is likely that the distractor does not include the whole

activation for distractors. We extent the distractor activation in both side with windows

that have the same window length as the target appliance, then slide the target window

in this range at a random start point. This process is illustrated in Figure 3.6.

It is possible that the synthetic data does not include the whole distractor activation

in a piece of data, but this scheme does guarantee that the window contains at least

one data point of distractor activation. However, it is relatively a naive approach to

creating synthetic data since it ignores many structures that appear in real situation.

Bad synthetic data will even degenerate the model performance. The effect of synthetic

data is displayed in evaluation section.

Figure 3.6: A sketch map to illustrate how synthetic data is generated.

3.3.4 Data combination and standardisation

After all data are generated, we aggregate them into 3 dataset for training, validation

and testing. The specific data number for each dataset is shown in Table 3.7. We do not
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add synthetic data in validation set and test set since they are all artificially generated.

Normally, neural network can be training more efficiently when the data has zero mean

and their absolute value is close to zero. As such, every data point will minus their

approximate mean and divide by the approximate standard error. These values are

obtained by their real mean and standard error round up to the nearest multiple of 100.

This standardisation can center the data values to have zero mean and they can be also

easily recovered. The normalised parameters are shown in Table 3.8.

Table 3.6: The specific composition of training, validation and test for target appliances.

Appliance

(train/valid/test)

Positive data

(×104)

Negative data

(×104)

Synthetic data

(×104)

Total (×104)

Kettle 28/7/7 7/7/7 35/0/0 70/14/14

Fridge 12/6/6 8/2/2 20/0/0 40/8/8

Dish washer 8/2/2 2/2/2 10/0/0 20/4/4

Microwave 24/6/6 6/6/6 30/0/0 60/12/12

Washing machine 7.2/1.9/1.9 1.9/1.9/1.9 10/0/0 19/3.8/3.8

Table 3.7: Normalised parameters.

appox. mean approx. standard error

Kettle 700 1000

Fridge 200 400

Washing machine 400 700

Microwave 500 800

Dish washer 700 1000

3.3.5 Data Processing for Mid-point Value Prediction

Getting the dataset for mid-point value prediction is much simpler. We use consecutive

6-month (2014-05-01 to 2014-11-01) data in house 1 for training, the data in January

of 2014 for validation and data in April for testing. For this task, the window length we

use is different from the previous one. First we extract the data in a successive period

and slide a data window with a step size of 1 to obtain the data we need. Then we do

the standardisation as before. The data number and window length are shown in Table

3.9.
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Table 3.8: Data summarisation for mid-point prediction.

Window length Training set num. Val. set num. Test set num.

Kettle 129 2650072 431872 417472

Fridge 299 2649902 431702 431302

Washing machine 599 2649602 431402 417002

Microwave 129 2650072 431872 417472

Dish washer 599 2649602 431402 417002

3.4 Models and Algorithms

Our project is based on deep learning models which make a combination of different

layers, including multi-layer perceptron (MLP), convolutional layer and long short

term memory (LSTM) layer. We detail these models in this section.

3.4.1 Multi-layer Perceptron

3.4.1.1 Forward propagation

Multi-layer perceptron (MLP) is the most naive structure of deep learning models. The

basic element of MLPs is a linear layer with an activation function. Note that the acti-

vation is different from the appliance activation mentioned before. Supposed we have

a input vector x = (x1,x2, ...,xd)
T , we can obtain the output vector y = (y1,y2, ...,yd)

T

by yk = ∑
d
i=1 wkixi + bk. Defining a weight matrix W and a bias vector b, the output

can be obtained by y = Wx+b. Figure 3.7 illustrates the forward propagate process.

3.4.1.2 Error function

In regression problem, Euclidean distance (squared error function) is usually used to

measured the distance between ground truth and the prediction since it directly reflect

the prediction performance and it is smooth in parameters space. The error function

can be written as:

En =
1
2

K

∑
k=1

(yn
k− tn

k )
2 (3.1)

Here the target is denoted by tn
k and the prediction is denoted by yn

k . The goal of

training is to set W and bias b to minimise E given the training set.
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Figure 3.7: The forward propagation for one layer in MLP.

3.4.1.3 Parameters Update

We update the parameters by stochastic gradient descent (SGD). The basic idea of SGD

is to adjust the weight matrix by moving a small direction down the gradient, which is

the direction along which E decreases most rapidly. For a parameter w, the update rule

is:

∆wi := v∆wi +η
∂E
∂wi

, (3.2)

wi+1 = wi +∆wi (3.3)

Here v is the momentum, which can force the objective to move more quickly along

the shallow ravine and it may help the optimisation to jump over the local minima.

The learning rate (aka. step size) is denoted by η here, which decides how long the

parameters move toward the gradient direction in one update process. Algorithm 1

describes the SGD process for MLPs.

In general, the outputs are always rectified by an activation to improve the model

representative ability. Previously, the function in 3.3 (sigmoid) was in common used

since it has great property. However, the gradient of this function is very closed to 0

which makes the model difficult to train, especially when the model includes multiple

layers. To solve the gradient vanishing problem, Rectified Linear Units (ReLU) was

proposed which enables the model to be trained more efficiently.

sigmoid: y =
1

1+ e−x . (3.4)



3.4. Models and Algorithms 23

Algorithm 1 Stochastic Gradient Descent Training
1: Inputs:

Training set X = (x1,x2, ...,xn)

Ground truth Y = (y1,y2, ...,yn)
2: Initialize:

Initialise weights W to small random numbers.

3: while not converged do
4: for all k, i, ∆wki← 0

5: for n← 1 to N do
6: for k← 1 to K do
7: yn

k ← ∑
d
i=0 wkixn

i

8: δn
k ← yn

k− tn
k

9: for i← 1 to N do
10: ∆wki← ∆wki +δn

kxn
i

11: end for
12: end for
13: end for
14: for all k, i: wki← wki−η∆wki

15: end while
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ReLU: y =

{
0 x≤ 0

x others
. (3.5)

For a single layer with sigmoid activations and squared error loss function, the

gradient ∂En

∂wi
can be obtained by:

∂En

∂wi
=

∂En

∂yn
∂yn

∂an
∂an

∂wi
, (3.6)

with

y = f (a),
∂y
∂a

= f (a)(1− f (a)). (3.7)

Therefore:
∂En

∂wi
= (yn− tn) f (an)(1− f (an))xn

i (3.8)

3.4.2 Convolutional Layer

Recently, Krizhevsky et al. [22] brought convolutional neural network (CNN) to our

vision. This model has already achieved marvellous results in different areas, espe-

cially in image classification and video [31][18]. 2-D convolutional layer is able to

catch the spatial (2-D) structure of the input images and different convolutional ker-

nels allows the network to extract different features of an image. The UK-DALE is

essentially time series data. 1-D convolutional kernels enable the model to catch the

local temporal dependency and get a better understanding of the relation in a small

time period.

3.4.2.1 Forward propagation

The forward propagation for a convolutional layer is straightforward. It takes features

maps as input, and use different kernels to do the convolutional operation. The number

of output maps are exactly the same as the number of convolutional kernels. Assuming

that the size of convolutional kernel is m×m, and the stride for the convolution is 1,

then each hidden unit is connected to a small (m×m) region of the input space. This is

called the local receptive field. Assuming that the input space is d×d, then we finally

get a (d−m+1)× (d−m+1) hidden unit space. Each hidden unit extracts a feature

from a local region of input. For a hidden units hi, j, we have:

hi, j = act(
m−1

∑
k=0

m−1

∑
l=0

wk,lxi+k, j+l +b) (3.9)
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Figure 3.8: The forward propagation for one layer in a convolutional layer.

This process is illustrated in Figure 3.8. Here act(·) is the activation function. Usually

convolutional layer is always follow a pooling layer [22], but we do not find it useful

in our architecture so we just remove it. One advantage of convolutional layer is that

the weights is shared between different input maps which dramatically decreases the

number of parameters. This can make the model less possible to over-fit.

3.4.2.2 Parameters Update

Compared to MLP, the parameters update in CNN is much more complicated. For

back propagation we need to consider the region of hidden units connected to each

input unit. We want to back-propagate the δ values as before:

δ
l
s = ∑

j∈ connected to s
w jsδ

l+1
j f ′(as). (3.10)

If we have an m×m kernel size, we can pad the map of δl+1 with (m− 1) rows and

columns at top and bottom, left and right. Back propagation can then be carried out as

a convolution using the weight matrix to scan the padded feature map. But the weight

matrix is rotated by 180◦. Assuming that the activation is linear, this process is display

in Figure 3.9. Finally, we can get the residual:

δ
l = rot(W l+1,180◦)∗δ

l+1 ◦ f ′(al) (3.11)
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Figure 3.9: The residual computation for a convolutional layer.

Here ∗ denotes the convolution operation. Once we get the residual, the gradient of W

and b can be obtained by:
∂E
∂W

= ∑
j

δ
l
j ∗ f (al) (3.12)

∂E
∂b

= ∑
j

δ
l
j (3.13)

3.4.3 Long Short Term Memory

3.4.3.1 Recurrent Neural Network

Recurrent neural network (RNN) is often to used for modelling sequential data with

time dependence between feature vectors. In RNN, the values of hidden units not

only determine the output, but also influence the hidden unit at the next time step.

Given a input series x = (x1,x2, ...,xT ), a one-direction RNN computes the hidden

units h = (h1,h2, ...,hT ) and the output y = (y1,y2, ...,yT ) by iterating the following

equations from t = 1 to T [14]:

ht = σ(Wxhxt +Whhxt−1 +bh) (3.14)

yt =Why +by (3.15)
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where W is the weight matrix from xt to ht and ht−1 to ht , b denotes the bias and σ(·) is

the element-wise sigmoid function. Figure 3.10 displays the forward propagation. The

Output layer

Hidden layer

Input layer

W1 W1 W1 W1 W1

W2 W2 W2 W2

W3 W3 W3 W3 W3

Time 1 2 3 4 5

Figure 3.10: The forward propagation for a typical RNN layer.

main difference between RNN and MLP is that RNN has a connection between current

and past, so it is expert in catching the time dependency in sequential data. However,

the back propagation in RNNs is expensive. We need to cache the unit outputs as well

as the errors at each time step. Then we back prop from the final time step to zero,

and compute the derivatives at each step. Finally, we compute the weight updates by

summing the derivatives through time. The back-prop rule follows the equation blow:

δ
t
h = σ

′(at
h)(

K

∑
k=1

δ
t
kwhk +

H

∑
h′=1

δ
t+1
h′ whh′)

= σ(at
h)(1−σ(at

h))(
K

∑
k=1

δ
t
kwhk +

H

∑
h′=1

δ
t+1
h′ whh′)

(3.16)

δ
t
j ≡

∂L
∂at

j
(3.17)

∂L
∂wi j

=
T

∑
t=1

∂L
∂at

j

∂at
j

∂wi j
=

T

∑
t=1

δ
t
jb

t
i, (3.18)

where L denotes the error and δ denotes the residual.
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3.4.3.2 Bidirectional Recurrent Neural Network

One disadvantage of RNN is that it can only make use of the previous information, but

it cannot get any context from the future [14]. In energy consumption data, the current

values have a strong dependency with the future data. Bidirectional recurrent neural

networks (BRNNs) solve this problem by allowing the network to propagate from both

directions (past and future). Defining the forward sequence
−→
h t and backward sequence

←−
h t , the forward propagation of BRNNs can be represented as:

−→
h t = σ(Wx

−→
h xt +W−→h −→h

−→
h t−1 +b−→h ) (3.19)

←−
h t = σ(Wx

←−
h xt +W←−h←−h

←−
h t+1 +b←−h ) (3.20)

yt =W−→h y

−→
h t +W←−h ty

←−
h t +by (3.21)

The two hidden layers are independent in BRNNs [13] so the information from past and

future will not influence each other. BRNNs has outperformed many deep structure in

sequential data, including phoneme recognition and protein gene classification [15][9].

The back-prop in BRNNs is similar to normal RNNs, just adding the term in residual

that propagation from the future:

δ
t
h = σ(at

h)(1−σ(at
h))(

K

∑
k=1

δ
t
kwhk +

H

∑
−→
h =1

δ
t+1−→
h

wh
−→
h +

H

∑
←−
h =1

δ
t−1←−
h

wh
←−
h ) (3.22)

3.4.3.3 Long Short Term Memory

Conventional RNNs will meet a problem when processing sequential data: the range

of information that RNNs can access is quite limited. The information decays through

time because of that gradient vanishing problem. As such, the models are only sensitive

to a short series of data but it can almost learn nothing when the time step is over 10 [5].

To solve this problem, LSTM was proposed to catch the dependency of both long term

and short term through time. A typical LSTM block includes four elements: input gate,

output gate, forget gate and the cell. The basic structure of a LSTM block is shown in

Figure 3.11 [14].

This architecture provides the linear self-recurrence for each hidden unit which

promise the long-term memory. Moreover, the memory cell in the block has at its

core a recurrently self-connected linear unit [12]. This is called the “Constant Error

Carousel” (CEC). The CEC provides short-term memory storage for extended time

periods. The weights between input gate, output gate, forget gate and cell are all able
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Figure 3.11: A typical block and connection in LSTM.

to learn to classify what context should be stored, when should the information be dis-

carded and when to read the memory. The forward propagation can be represented as

follow:

• Input gates:

at
ι =

I

∑
i=1

wiιxt
i +

H

∑
h=1

whιbt−1
h +

C

∑
c=1

wcιst−1
c (3.23)

bt
ι = f (at

ι) (3.24)

• Forget gates:

at
Φ =

I

∑
i=1

wiΦxt
i +

H

∑
h=1

whΦbt−1
h +

C

∑
c=1

wcΦst−1
c (3.25)

bt
Φ = f (at

Φ) (3.26)

• Cells:

at
c =

I

∑
i=1

wicxt
i +

H

∑
h=1

whcbt−1
h (3.27)

st
c = bt

Φst−1
c +bt

ιg(a
t
c) (3.28)

• Outputs gates:

at
ω =

I

∑
i=1

wiωxt
i +

H

∑
h=1

whωbt−1
h +

C

∑
c=1

wcωst
c (3.29)

bt
ω = f (at

ω) (3.30)

• Final outputs:

bt
c = bt

ωh(st
c) (3.31)
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Here sigmoid function is usually used as f (·), and h(·) is denoted by tanh function:

tanh(x) = ex−e−x

ex+e−x . For backward propagation, first we define:

ε
t
c ≡

∂L
∂bt

c
, ε

t
s ≡

∂L
∂st

c
(3.32)

• Final outputs:

ε
t
c =

K

∑
k=1

wckδ
t
k +

G

∑
g=1

wcgδ
t+1
g (3.33)

• Outputs gates:

δ
t
ω = f ′(at

ω)
C

∑
c=1

h(st
c)ε

t
c (3.34)

• States:

ε
t
s = bt

ωh′(st
c)ε

t
c +bt+1

Φ
ε

t+1
s +wcιδ

t+1
Φ

+wcιδ
t+1
Φ

+wcωδ
t
ω (3.35)

• Cells:

δ
t
c = bt

ιg
′(at

c)ε
t
s (3.36)

• Forget gates:

δ
t
Φ = f ′(at

Φ)
C

∑
c=1

st−1
c ε

t
s (3.37)

• Input gates:

δ
t
ι = f ′(at

ι)
C

∑
c=1

g(at
c)ε

t
s (3.38)

By combining BRNNs with LSTM, our structure is able to extract features in long-

range context from past to future. We find the bidirectional LSTM gets a great im-

provement over conventional neural network.

3.5 Models Construction and Networks Training

We design our neural networks experimentally, and construct them using Lasagne in

Python. In principle, it is not necessary to add a convolutional layer in the LSTM

networks. But our experiments show that the convolutional layer can slightly improve

the performance since it is good at catching the dependency within a small time gap.

For comparison, we train as least five networks for each appliance in the second-by-

second disaggregation, and train three networks for the mid-point prediction. The

specific structures are shown in Figure 3.12 - 3.16.
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3.5.1 Second-by-second Energy Disaggregation

The first three models were trained to disaggregate for kettle, microwave, fridge and

dish washer. However, the window length for washing is large (2000), we have to

shrink the initial structure to fit the network into GPU device memory. We train the

LSTM in Figure 3.15 instead of the model Figure 3.14 for washing machine and reduce

the hidden unit number in dense layer. Experiments show that the results are still

satisfied. For comparison, we also down-sample the washing machine data to 1000

(with sample rate of 12 seconds), and train the architecture in Figure 3.14 for it.

Table 3.9 shows the number of parameters in our models. The range of parameters

is from 1850505 to 799008884. With the same number of hidden unit, LSTM layer

has most number of parameter since it has complex inner connection structure. Con-

volutional layer has the least number because it has sparse inner connection between

the feature maps and the weights are shared. More weights does not lead to better per-

formance. Over-complicated model may cause serious over-fitting thus degenerating

the performance. This will be discuss in the next chapter.

For all networks, the parameters are initialed by the default setting in Lasagne

(Gaussian with zero mean). We set the initial learning rate to be 0.1, and it will decrease

across the training time. The Nesterov momentum is set to be 0.9 for accelerating the

convergence. Each network are train for 50 epochs with minibatch of 1000. In order

to test the effect of synthetic data, we remove all the synthetic data from the training

set and train the same networks. The comparisons are discussed in the next chapter.

Table 3.9: Number of parameters in models for second-by-second disaggregation. “-”

indicates the models we did not train.

MLP CNN LSTM naive LSTM

Kettle 1850505 5396162 2731784 -

Fridge 29111296 88080500 43001938 -

Washing machine 444052000 685845772 - 380003080

Down-sample Washing m. 111026000 337949188 164020080 -

Microwave 1850505 5396162 2731784 -

Dish washer 251921792 799008884 - 224135504
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Mains Reading

Disaggregation

Dense Layers (hidden units = window length*6, 
activation = ReLU )

Dense Layers (hidden units = window length*8, 
activation = ReLU )

Dense Layers (hidden units = window length*4, 
activation = ReLU )

Dense Layers (hidden units = window length*3, 
activation = ReLU )

Dense Layers (hidden units = window length*4, 
activation = ReLU )

Dense Layers (hidden units = window length, activation 
= linear )

Figure 3.12: The MLP for second-by-second disaggregation.

3.5.2 Mid-point Prediction

Since we just need to regress only one values rather that the whole series, the size of

network for mid-point prediction is much smaller. The specific number in our model is

shown in Table 3.10. Three networks are trained for this task, including MLP, convolu-

tional auto-encoder and LSTM. The initial learning rate are set from range of 0.001 to

0.005 for different structure, and each network is trained for 50 epochs with minibatch

of 1000.

Table 3.10: Number of parameters in models for mid-point prediction.

MLP CNN LSTM

Kettle 4441681 6448451 6333654

Fridge 10022481 14711251 14300354

Washing machine 40204881 59659651 57400454

Microwave 4441681 6448451 6333654

Dish washer 40204881 59659651 57400454
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Mains Reading

Disaggregation

1D Convolutional Layer (filter num. = 8, filter size = 4, stride = 1, 
activation = ReLU)

Dense Layers (hidden units = (window length-3)*8 or 4, activation 
= ReLU )

Dense Layers (hidden units = window length, activation = ReLU )

Dense Layers (hidden units = (window length-3)*8 or 4, activation 
= ReLU )

1D Convolutional Layer (filter num. = 8, filter size = 4, stride = 1, 
activation = ReLU)

Dense Layers (hidden units = (window length-3)*8 or 4, activation 
= ReLU )

Dense Layers (hidden units = window length, activation = linear )

Figure 3.13: The convolutional auto-encoder for second-by-second disaggregation.

3.5.3 Network Training with Nesterov Momentum

Deep models always enjoy better converge rate with momentum. In our structure,

we use another developed momentum update rule [1]. As described in Algorithm 1,

the standard gradient descent update with momentum µ and learning rate λ can be

represented as:

∆w = µ∆w−λ
∂E
∂w

(3.39)

w = w+∆w (3.40)

The momentum term pushes the parameters by µ∆w. Ignoring the gradient term, the

position of parameters in the next step is approximately at w+µ∆w. The new position

can be treat as “lookahead” [1], which is the neighbour we end up in the next step. As

such, it will be more efficient to replace the gradient in old place w with the gradient

at w+µ∗∆w [27]. Figure 3.17 [1] explains this new rule. With Nesterov Momentum,

the update process is:

wa = w+µ∆w (3.41)

∆w = µ∆w−λ
∂E
∂wa

(3.42)

w = w+∆w (3.43)
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Mains Reading

Disaggregation

1D Convolutional Layer (filter num. = 16, filter size = 4, stride = 1, 
activation = ReLU)

Dense Layers (hidden units = window length*4, activation = ReLU )

Dense Layers (hidden units = window length, activation = linear )

Bidirectional LSTM Layer (hidden units = window length, activation = 
linear)

Bidirectional LSTM Layer (hidden units = window length*2, activation = 
linear)

Figure 3.14: The LSTM auto-encoder for second-by-second disaggregation.

Mains Reading

Disaggregation

1D Convolutional Layer (filter num. = 16, filter size = 4, stride = 1, 
activation = ReLU)

Dense Layers (hidden units = window length*2, activation = 
ReLU )

Dense Layers (hidden units = window length, activation = 
linear )

Bidirectional LSTM Layer (hidden units = window length*1.5, 
activation = linear)

Dense Layers (hidden units = window length*3, activation = 
ReLU )

Figure 3.15: The LSTM auto-encoder for appliances with a long window length.
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Mains Reading

Mid-point Prediction

Dense Layers (hidden units = window length*8, activation = ReLU )

Dense Layers (hidden units = window length*6, activation = ReLU )

Dense Layers (hidden units = window length*4, activation = ReLU )

Dense Layers (hidden units = window length*6, activation = ReLU )

(a) The MLP for mid-point prediction.

Mains Reading

Mid-point Prediction

1D Convolutional Layer (filter num. = 8, filter size = 4, stride = 1, activation = 
ReLU)

Dense Layers (hidden units = (window length-3)*6, activation = ReLU )

1D Convolutional Layer (filter num. = 4, filter size = 4, stride = 1, 
activation = ReLU)

Dense Layers (hidden units = (window length-3)* 4, activation = ReLU )

Dense Layers (hidden units = (window length-3)*6, activation = ReLU )

(b) The convolutional auto-encoder for mid-point prediction.

Mains Reading

Mid-point Prediction

1D Convolutional Layer (filter num. = 10, filter size = 4, stride = 1, 
activation = ReLU)

Dense Layers (hidden units = window length*4, activation = ReLU )

Bidirectional LSTM Layer (hidden units = window length, activation 
= linear)

Bidirectional LSTM Layer (hidden units = window length*2, 
activation = linear)

1D Convolutional Layer (filter num. = 6, filter size = 4, stride = 1, 
activation = ReLU)

Dense Layers (hidden units = window length*2, activation = ReLU )

(c) The LSTM auto-encoder for mid-point prediction.

Figure 3.16: Deep learning architectures for mid-point prediction.
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Momentum Update

Gradient step

Actual step

Momentum 
step

Nesterov Momentum Update

Actual step

Momentum 
step

“lookhead” gradient 
step

Figure 3.17: The comparison of momentum update. The momentum is about to carry

us to the tip of the green arrow. With Nesterov momentum we instead evaluate the

gradient at this “looked-ahead” position.



Chapter 4

Evaluation

4.1 The Converge Rate of Neural Networks

4.1.1 Second-by-second Disaggregation

The converge rate of training loss and validation loss are shown in Figure 4.1. Here the

validation loss is an unbiased estimator of test loss. All training loss and validation loss

experience a smooth decline during the training process across all appliances, and the

final test loss is very closed to the validation loss. Interestingly, for network using the

whole dataset, the training loss is always lower during the train process compared to

the networks using the incompleted data (only one exception for fridge LSTM. Their

curves almost coincide, see Figure 4.2). However, it seems that the validation loss

curves display similar patterns for all appliances. One possible reason is that more data

guarantees better robustness for our model. And it is a good point we can investigate

in the future.

4.1.2 Mid-point Prediction

There are some interesting patterns in convergence of mid-point prediction in Figure

4.3. For example, the validation loss curve in microwave Con. net experiences a seri-

ous fluctuation at the beginning, then it becomes stable. This is difficult to explain. In

addition, during the training for the MLP of dish washer, the validation loss increases

across time while the training loss is declining. This represents that the model becomes

over-fitted from the beginning of training.

37
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Figure 4.1: The converge rate of training loss and validation loss of models for second-

by-second disaggregation. The “N.S.” follow the model name indicates that the training

set does not contain any synthetic data, but the model structure is the same.
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Figure 4.2: A comparison of converge rate of training loss for Con. nets and LSTM nets

with different training set.

4.2 Key Metrics and Comparison

First, we define the following metrics that will appear in this section as [20] and [4]:

TP = number of ture positives = ∑
t

AND(y(i)t = on, ŷ(i)t = on)

FP = number of false positives = ∑
t

AND(y(i)t = o f f , ŷ(i)t = on)

FN = number of false negetives = ∑
t

AND(y(i)t = on, ŷ(i)t = o f f )

P = number of positives in ground truth = ∑
t
(y(i)t = on)

N = number of negetives in ground truth = ∑
t
(y(i)t = o f f )

y(i)t = appliance i actual power at time t

ŷ(i)t = appliance i estimated power at time t

yt = aggregation actual power at time t

recall =
TP

TP+FP

precision =
TP+TN

P+N

F1 = 2× precision× recall
precision + recall

accuracy =
TP+TN
P+N

mean absolute error =
1
T

T

∑
t=1
|ŷt− yt |
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Figure 4.3: The converge rate of training loss and validation loss of models for mid-point

prediction.

4.2.1 Second-by-second Disaggregation

4.2.1.1 Test on Random Samples

The key metrics to evaluate the performance for the task of second-by-second disag-

gregation are shown in Figures 4.4. The test set we use here is formed of random

samples rather than a consecutive time period. The data from house 1 to 5 all appear

in training set and test set, but there is no overlap between them. The experiments of

Con. net is done by my group mate Zongzuo Wang. It seems that the performances of

our model degenerate with the activation complexity of appliance. For example, kettle

is a Type-I appliance and it has only two states (on and off). Its “on” state is easiest

to be recognised. However, washing machine often requires complex working process

and its activation duration is quite long, thus its patterns are the most difficult to learn.

Overall, MLPs get the worst performance among all models as we expected, but

there is one point confuses us is that LSTMs do not outperform other models in general.

One possible reason is that the data in training set do not strictly follow a fix time order,

so LSTM fail to catch the time context or it just obtains the mistaken time dependency.
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In addition, the LSTM we design is always less complex than the Con. net so it may

less successful to represent the complicated reflection. These are the issues we need to

improve in the future.

According to the figure, the synthetic data in the training set do help in the mass, al-

though it is not obvious for some appliances. Deep learning always enjoys the success

of large amount of data due to its high model complexity. Synthetic data can be treated

a technique of data augmentation, which are proved to be effective in improving the

performance in deep models.

It is surprised that LSTMs get such bad performances in washing machine, includ-

ing its down-sample version (In [20] predictions for washing machine using LSTM are

bad as well, getting F1 scores of 0.03 only). One possible reason is that the activations

of washing machine is long and complicated, which makes its memory “in a mass”.

Especially to deserve to be mentioned, the models trained with down-sample dataset

get similar performance with the normal dataset in washing machine. This gives a new

way of thinking to simplify the model structure and accelerate the training process.

Table 4.1: Disaggregation performance in [20].

F1 score Precision s-

core

Recall

score

Accuracy s-

core

Mean abso-

lute error

Kettle 0.48 1.00 0.39 0.99 16

Dish washer 0.60 0.45 0.99 0.95 21

Fridge 0.81 0.83 0.79 0.85 25

Microwave 0.62 0.50 0.86 0.99 13

Washing m. 0.25 0.15 0.99 0.76 44

Compared to the results in [20] shown in Table 4.1, we get improvement in F1 s-

cores among all appliances, especially in LSTM for dish washer and washing machine.

Our works improve the performance for LSTM in disaggregation of multi-states appli-

ances, although there are still some problems. However, our mean absolute error are

in general large than Kelly’s. This is because we implement our model for different

test set. In our test set, the ratio of number of positive sample and negative sample is

1:1, but it has much more negative samples in real situation. Deep models tend to be

more accurate in predicting negative data, thus decreasing the mean absolute error for

the whole.
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Figure 4.4: Second-by-second disaggregation performance on random samples in UK-

DALE dataset.

4.2.1.2 Test on a Consecutive Month

Here we select a consecutive month (the April of 2014) for testing. The strides of data

selection for each appliance is exactly the same as their window lengths. The second-

by-second disaggregation performances are shown in Figure 4.5. Compared to testing

on random samples, the disaggregation performances decline here as we respected,

especially for long-activation appliances. The reason for failures is that our original

training set does not cover enough patterns of data, so the model losses robustness in

some extent. More data are needed for training to address this problem.

4.2.2 Mid-point Prediction

Figure 4.6 presents the performance of mid-point prediction on a consecutive month.

We test our models on the data in one month (April of 2014). Surprisingly, MLPs

get the best F1 scores for disaggregation of kettle, fridge, dish washer and washing
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Figure 4.5: Second-by-second disaggregation performance on data collected in April,

2014.

machine. Neither Con. net nor LSTM shows advantages here. Theoretically, MLPs has

the simplest structure and the worst representative ability. However, since the network

just need to predict one value, it seems that it is a bit of overkill in these cases to use

Con. net and LSTM. The test set we use here is extracted from a consecutive month.

Compared to the results in Table 4.1, our bests model get greater performances in

kettle, fridge and washing machine, but worst F1 score in dish washer and microwave.

The mid-point prediction methods outperform the second-by-second disaggrega-

tion on the same test set with better efficiency and less complexity. Since second-by-

second disaggregation requires more complicated models, using large dataset as mid-

point prediction for training becomes infeasible. The mid-point prediction method

perfectly solves this problems by just output one value in a time period. Its ability of

utilising the context for past and future makes it a more powerful and robust methods

for NILM task.
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Figure 4.6: Disaggregation performance of mid-point prediction in April 2014.

4.2.3 Results Comparison

Figure 4.7 displays a general comparison of means and standard error for key metrics of

four disaggregation schemes, including the results in [20], second-by-second disaggre-

gation on random samples, second-by-second disaggregation on a consecutive month

and mid-point prediction. According to the bar chart, S.B.S test on random samples

gets highest scores in most of the metrics. However, putting this scheme into practice

is infeasible since it achieves such a bad performance on a consecutive month. More

training data is still needed to improve its robustness. Mid-point prediction seems to be

a more practical scheme as it outperforms the second-by-second method by more than

50%. It has more stable performance among target appliances as it gets low standard

errors in all metrics. The scheme outperforms the result in [20] by 36% as well.
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Figure 4.7: A comparison means and standard error for key metrics of four disaggrega-

tion schemes. S.B.S and M.P. represent “second-by-second” and “mid-point prediction”

respectively.

4.3 Disaggregation Examples

4.3.1 Second-by-second Disaggregation

Figure 4.8 shows some typical examples produced by all networks architectures. Each

column presents output produced by different networks. The rows represent different

appliances. Our networks are successful in extracting activation from noisy input.

However, if the activation is too complicated (e.g., the zigzag activation in microwave),

the models still fail to recover it.

4.3.2 Mid-point Prediction

Figure 4.9-4.13 display some disaggregation examples for all appliances. Surprising-

ly, mid-point prediction models give much better prediction of zigzag activation in

microwave than second-by-second disaggregation. In general, just predicting one mid-

point is less sensitive to noise and the outputs are also smoother.
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Figure 4.8: Second-by-second disaggregation examples.
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Figure 4.9: A disaggregation example for kettle.
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Figure 4.10: A disaggregation example for microwave.
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Figure 4.11: A disaggregation example for fridge.
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Figure 4.12: A disaggregation example for dish washer.
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Figure 4.13: A disaggregation example for washing machine.



Chapter 5

Discussion and Conclusion

5.1 Conclusion

In this dissertation, deep neural networks have been used to disaggregate the energy

consumption of five appliances from the aggregated data. Two schemes are imple-

mented in our project: the first one is the second-by-second disaggregation, which

takes a series of mains reading and recover the disaggregated data of the same period.

The second one takes mains reading as input but only predict the mid-point value. In

general, the first scheme gets higher metrics score in a random dataset but worse per-

formance in a consecutive period. It requires more complex model and longer time

for training. The implementation of another scenario is easier, but it seems that the

sophisticated models (Con. net, LSTM) cannot bring their superiority into full play.

The experiments show that our models and methods are in general more effective than

the other benchmark work in [20], but LSTMs sometimes get very poor performance

which is beyond our expectation.

To improve the performance of our model, some tricks have been implemented and

proved to be effective. Synthetic data is quite useful in improving the robustness of our

models, although it requires more training time. However, we did not add extra training

data in mid-point prediction, so most of the models are over-fitted in varying degrees.

Reducing the size of model for long-activation appliances (dish washer and washing

machine) are also useful. The models should be flexible and adaptive with different

set. Our experiments show that the F1 scores improve by 80% for dish washer when

we shrink the network. This gives us new ways of thinking in designing a model.

Second-by-second disaggregation is a conventional scheme for NILM, but mid-

point prediction is quite promising since it is more applicable in real situation. First,

49
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it can utilise the context information for past and future, which are more likely to give

a better prediction. Also, it is easier to implement it in smart meter since it has lower

hardware requirement. We realise that our work is just the first step towards adapting

the vast number of techniques from the deep learning community to NILM. There are

still limitations in our work which we can improve in the future.

5.2 Limitation and Future work

5.2.1 Hyper-parameter Optimisation

Hyper-parameter indicates the layer number of model, hidden unit number, network

structure and so forth. Our experiments results present a challenge for LSTMs. It

does not play its full potential in the sequential data which it should be expert in.

One possible solution is to design the model structure more carefully. However, there

is still no a systematical theory for how to design a good deep learning model. All

models design should be based on the characteristic of dataset. Nevertheless, training

a deep model is quite time-consuming, which makes it more difficult for evaluation

and adjustment. Finding a good way to design the model based on data is interesting

and worthy to be explored.

5.2.2 Training Data Preparation

Due to the limitation of hardware, we just use a small number of data for training.

However, deep models always require large number of data to avoid over-fitting. We

will focus on expending our dataset in the future, including generating more artificial

data and add data from other dataset for training. In addition, the time stamps of

training data in the second-by-second disaggregation are not carefully aligned. This

may influence the performance of LSTMs. We may regenerating the training data

later, and re-train the models.

5.2.3 Optimisation

The networks sometimes give unreasonable predictions. For example, it may output

some values which are under zero. Also, the sum of prediction for all appliances should

not be over the mains reading at the same time slot. These are the prior knowledge

should ne taken into consider. If we add some constrains in the prediction, we can
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get more reasonable prediction [32]. For instance, we can achieve it by solving the

following optimisation:

argmin
x1,x2,...,xn,ut ,t

∑
t
(
||yt−∑

N
i=1 xi,t−ut ||2

σ2
η

+ ||xi,t− x̂i,t ||2)

yt =
N

∑
i=1

xi,t +ut +η, η∼ N(η;0,σ2
η)

x̂i,t ∝ ∏
t

exp(λ||ut−ut−1||)

(5.1)

where ut is sum of the unknown appliances which we do not train a neural network for

disaggregation, yt is the whole-home meter reading and x̂i,t is the output of the neural

network. By adding these constrains, we can get optimised values, which can smooth

the output and leads to better performance.

5.2.4 Put our Methods into Practice

Overall, neural networks preform well in NILM. However, it is almost not possible to

get instant disaggregated results without powerful hardware supported. Putting them

into practice still has a long way to go. Installing a GPU on smart meter for disag-

gregation is more costly than a plug level hardware monitor. In fact, the computation

requirement is always a bottleneck for deep learning application for embedded system-

s. We will investigate building a small-size network to reduce complexity in our future

work.
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