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Abstract 

 

As quantum technologies are showing a growing progress, we will be soon facing a physical 

implementation of a quantum computer. It is well-known the fact that the quantum model can surpass 

the computational efficiency of any classical machine. Therefore, we consider the problem of 

delegating a hard computation to a quantum computer, such that the input of the computation 

remains private. 

We analyse from a complexity theoretic point of view what classes of problems can be solved in this 

encryption scheme. In this way, we determine to what extent we can securely take advantage of the 

power of a quantum server. 

We indicate that there is a strong relation between how hard is to encrypt a problem and how hard is 

to solve it. For this reason, we further investigate what classes of problems admit this type of 

encryption. 

 Moreover, we examine a quantum protocol which also performs this secure delegated task and which 

achieves additional security properties. Finally, we inspect the possibility of creating a classical 

encryption scheme which inherits the security conditions imposed by this quantum protocol. 
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1. Introduction 
 

 

The evolution of traditional computers as described by Moore’s law is challenged by a series 

of technological limitations. Since the power of these machines is proportional to the number of 

transistors they have, the trend has been the construction of smaller and more efficient components. 

For this reason, we will be soon facing computer constituents of size no bigger than an atom [1]. The 

main issue that emerges is that at this scale we cannot use anymore the laws of classical physics to 

describe the behaviour of these devices. Instead, we need to use the theories which govern the 

microscopic world [2, 3]. Thus, at this point quantum computing steps in. 

Quantum Computing arose from the idea of modelling any natural phenomena using the laws 

of physics. The quantum mechanics principles allow us to describe any process of the nature [1, 4]. 

Therefore, in order to develop more powerful computing devices, scientists decided to harness 

quantum properties of atoms, which would provide the basis for the memory and processor of the 

new machine [5]. 

Bernstein and Vazirani [4, 5] were the first to reach the remarkable conclusions that quantum 
computers can solve certain problems much faster than the best classical computational model, the 
probabilistic Turing Machine and that no possible evolution of classical computers could compare to 
the power brought by the quantum paradigm [6]. This model of computation based on quantum 
mechanics has first attained outstanding practical results when Peter Shor and Lov Grover developed 
quantum algorithms for problems such as searching an element in an unsorted database or factoring 
large numbers [7], which outclassed the efficiency of the best known classical solutions. 
 
The advantages of quantum computing were also emphasized by Isaac Chuang and Michael Nielsen 

[1] who grappled with the question: “Why this struggle to obtain full control of quantum systems?”. 

They argue that the main reason lies in the fact that the use of quantum theory for information 

processing tasks leads to an impressive speedup, which is out of reach for standard traditional 

machines [1, 3]. Moreover, even if this outstanding improvement in speed would not be applicable 

for any type of problem, the breakthrough achieved through exploiting quantum processes would 

allow us to gain a better understanding of the Universe [3, 5] and even uncover unknown physical 

phenomena. In this sense, Seth Lloyd has developed a quantum algorithm which can simulate certain 

quantum physical systems [8] and which could therefore play an important role in areas such as high 

energy physics, chemistry or cosmology [6, 8]. 

 However, perhaps the most significant impact brought by quantum computing is revealed in 

the field of cryptography. Firstly, current classical public key cryptography is based on computationally 

infeasible problems [9]. This fact illustrates their vulnerability against a quantum computer. Because 

a quantum computer is able to efficiently solve hard problems such as factorization, or discrete 

logarithm [4, 10], it could easily break the most popular cryptographic algorithms: RSA, Diffie-Hellman, 

ElGamal, etc.  

On the other hand, quantum information theory also provides some very promising solutions for 

cryptographic tasks [11]. The most trivial example is the ability to generate pure random numbers. 

This would guarantee that we can construct keys which secure the privacy of data, in such a way that 

it would be impossible for an attacker to estimate their values [3, 12]. From this property was born 
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the concept of quantum cryptography [11, 12]. Specifically, quantum cryptography refers to a key 

distribution protocol which provides information theoretic security. This means that they would not 

only be secure against both classical and quantum adversaries, but against any adversaries. The reason 

is that the security is based on the fundamental theorems of quantum physics [13] instead of difficult 

mathematical computations. To be precise, the keys are generated by measuring certain properties 

of quantum particles and by using the “Uncertainty Principle” [12] we can derive that any malicious 

eavesdropper is going to be detected.  

 

Our project is related to an important component of cryptography, namely encryption, and in 

fact, we will be focusing on the following problem: 

Suppose a client wants to determine the result of a computation on some input, but lacks the 

necessary resources to perform the computation himself. He has access to a server which has 

unbounded power and can solve the problem and send the outcome back to the client. However, the 

main issue is that the client wants to ensure the privacy of his data, so he needs to find a way to hide 

the input of the computation from the server. Moreover, as we assumed the server has limitless 

computational capabilities, the encryption process must not be based on solving hard mathematical 

problems, because then, the server could crack the cipher and get the plaintext input. 

The problem described is known as secure delegated computation [14]. Considering that an encryption 

solution to this problem is meant to be information-theoretically secure [9] (not even an unbounded 

powerful attacker could decipher it), this type of protocol would play a decisive role in the 

advancement of cloud computing. Additionally, the invulnerability assertion makes this model of 

encryption a perfect candidate for a cryptographic primitive of a strong, reliable cryptosystem [4, 9]. 

Now, taking into account the prospective quantum speedup in solving hard problems, we analyse the 

secure delegated computation task in the situation where we use a quantum computer in the role of 

the powerful server [15] completing the computation for the client. 

 In this thesis we are concerned with an encryption framework called Generalised Encryption 

Scheme (GES) [16]. This model describes the class of encryption protocols where the classical client 

derives the result of a difficult computation using the server’s ability to efficiently solve 

computationally infeasible problems, while at the same time protecting the privacy of his input. 

Therefore, all the deduced results in this paper do not refer to a specific encryption protocol, but to 

an entire family of encryption schemes which solve the secure delegated computation task. 

Our target is to study what types of problems could be solved by a client in the Generalised Encryption 

Scheme scenario. In other words, we examine the relation between solving a problem and the 

complexity of encrypting it using this framework. Thus, besides the practical motivation of securely 

using the resources of a quantum computer to obtain the outcome of a hard computation, the 

Generalised Encryption Scheme also leads to important results in the field of Complexity Theory [17]. 

In Section 4 we will review a series of essential theorems proved by Martin Abadi [16] regarding the 

implications of encrypting a problem, which emphasize the idea that the harder a problem is, the more 

difficult it is to encrypt without revealing anything about the input. The fundamental result obtained 

by Abadi shows that there is a strong connection between encryption and nonuniform complexity [17, 

18]. More precisely, we have that any encryptable function can be evaluated by a nondeterministic 

algorithm receiving an external polynomial advice. 
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 The main contribution of our project is the investigation, based on the aforementioned result,  

whether problems which are efficiently computed by a quantum machine [19] (𝐵𝑄𝑃 problems) admit 

a Generalised Encryption Scheme.  

But why are we interested if we can resolve problems from this particular complexity class? 

First of all, 𝐵𝑄𝑃 is the most important and well-known quantum complexity class. It refers to the 

decision problems which can be solved with high probability by a quantum computer in polynomial 

time [1, 19]. Because quantum computing is inherently probabilistic, we can view the class 𝐵𝑄𝑃 as 

the quantum analogue of the tractable classical classes 𝑃 or 𝐵𝑃𝑃 [17]. Secondly, there are not many 

known precise relations between quantum and classical complexity. Abadi’s results [16] tell us that 

we can define an encryption scheme for any problem solvable in polynomial time and at the same 

time that there can be no such scheme for the “hardest” problems solvable by a nondeterministic 

algorithm. However, because there is no acknowledged complexity connection between the classes 

𝑁𝑃  and 𝐵𝑄𝑃  [20], we do not know whether there exists an encryption scheme for every 𝐵𝑄𝑃 

problem. 

What we want to show is the following no-go result: no 𝑩𝑸𝑷−𝑯𝒂𝒓𝒅 problem can be encrypted 

using the Generalised Encryption Scheme. Considering Abadi’s central theorem, proving this 

statement is equivalent to showing that the class 𝐵𝑄𝑃  cannot be included in the class 𝑁𝑃/𝑝𝑜𝑙𝑦 

(𝑁𝑃/𝑝𝑜𝑙𝑦  [18, 20] refers to problems solved by a nondeterministic algorithm using an external 

polynomial advice). 

Of course, proving such a statement is at least as difficult as proving that 𝑃 is not contained in 𝑁𝑃 [17, 

21], so instead, we give strong evidence for this extremely important complexity theory result by 

relativizing the relation between the 2 classes [22]. This means that we indicate the separation 

between the 2 complexity classes with respect to an oracle (the machines from the 2 classes are 

allowed to make queries to an oracle - which is a fixed language). 

In Section 7 we describe a candidate problem we found for the oracle separation, named Simon’s 

Problem [23]. We start by proving that the problem can be solved by a 𝐵𝑄𝑃 algorithm.  

Then, using a diagonalization approach [20] we show that we can build an oracle 𝑂 such that Simon’s 

Problem cannot be solved by a nondeterministic polynomial time algorithm which has access to 𝑂. 

The second part consists of indicating that the no-go result holds even when the algorithm receives 

an extra polynomial size advice [24]. 

For this proof we use an innovative technique. We build a matrix where each line refers to a 

possible advice received by a nondeterministic machine, each column refers to a possible input of the 

problem and the cell of the matrix on position (𝑖, 𝑗) specifies if the machine receiving advice 𝑖 accepts 

or not the input 𝑗. An advice is considered good if the machine receiving that advice decides correctly 

any input. Using this method, we intend to show that we can construct an oracle, such that for every 

input, a fraction of the total number of advices are not good, so we can eliminate them. Consequently, 

when we reach the last input we can conclude that no possible polynomial advice can help a 

nondeterministic machine to always decide correctly, which ends our proof. 

In Section 8 we study another candidate problem for the separation between the quantum and the 

classical complexity class, called the Forrelation Problem [25]. This is an even more interesting 

problem as it belongs to the class 𝐵𝑄𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒. Using a series of polynomial reductions between 

different problems, we end at a problem which is easier to solve than Forrelation called Distribution 
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Correlation. For Distribution Correlation [25] we can follow the same proof we used for Simon’s 

problem, which implies that we can draw the same no-go conclusion for the Forrelation problem. 

Our second main contribution is related to a quantum protocol named Universal Blind Quantum 

Computing (UBQC) [26] described in Section 5. This protocol has the same aim as the Generalised 

Encryption Scheme, which is, allowing a client to solve a hard problem by communicating with a 

quantum server. The main differences from GES are that the client is no longer entirely classical, but 

must have minimal quantum abilities and the problem itself must be hidden from the server [26, 27].  

Starting from this protocol we investigate the existence of a classical version of UBQC (CUBQC), namely 

a protocol where the computation is also encrypted, but where the client is entirely classical and the 

interaction between the client and the quantum server is classical too. Moreover, CUBQC must satisfy 

the correctness and security conditions imposed by the quantum protocol UBQC. 

The motivation behind this new protocol can be illustrated in the following example. Suppose we have 

a standard computer and would like to use a quantum server to compute for us the longest path in a 

graph 𝐺. Then, this encryption protocol would guarantee us that we would get the correct answer 

without the quantum computer inferring the input 𝐺, or even the fact that he was actually performing 

a “graph longest path” task. 

The novelty regarding this topic consists of proving a connection between CUBQC and GES.  

Specifically, in Section 6 we show that we can represent CUBQC as an instance of the GES framework, 

which meets the conditions set by UBQC. This proof implies that any result regarding what class of 

problems can or cannot be solved in the GES scenario also applies to the CUBQC protocol. Thus, if GES 

cannot solve BQP-Hard problems we have the same no-go result for CUBQC. 

 

Because our major proofs and results are correlated with the field of Complexity Theory, we will give 

in Section 3 an extensive description of the necessary Complexity Theory background. We will put 

accent on the two models of computation which are most relevant to our project: Oracle Turing 

Machines [20, 22] and Advice Turing Machines [24, 28]. We are going to outline examples of problems 

and well-known theorems regarding these two classes and also illustrate some proof techniques 

useful to our contributions. 

Section 2 presents an overview of the principles which lie at the basis of Quantum Computation. 

The subchapters presenting the quantum operators, gates and measurements [29] are necessary for 

the understanding of the proof that a particular problem belongs to the quantum class 𝐵𝑄𝑃. On the 

other hand, the MQBC subsection [6, 29] is not required for perceiving our results, but is useful in 

understanding how the UBQC quantum protocol works. 
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2. Quantum Computing 
 

 

 The central unit of quantum information and computation is the qubit [2, 3, 5], the quantum 

analogue of a classical bit. To physically implement qubits many different systems can be used 

including atoms, ions, nuclear spins and photons [1]. The classical bits can take 2 possible values, 0 or 

1. Qubits analogous expression are the states |0⟩ and |1⟩. However, the crucial difference is that a 

qubit can also act as if it is in the 0 and 1 state at the same time [3, 4]. Specifically, the qubit state can 

be described as a linear combination of |0⟩ and |1⟩. We can get a better picture of this statement by 

considering the physical representation of a qubit: for a particle, its spin state can be aligned up 

(corresponding to state |1⟩), down (corresponding to state |0⟩) or be arbitrarily aligned, in between 

these 2 states (a linear combination of the up and down states) [1, 4]. Therefore, any qubit |𝜓⟩ can be 

written as a superposition of |0⟩  and |1⟩ :  |𝜓⟩ = 𝑎|0⟩ + 𝑏|1⟩ , where 𝑎, 𝑏  ϵ ℂ are also known as 

amplitudes [2]. 

In fact, |𝜓⟩ is a vector in a complex Hilbert Space ℋ of dimension 2, while the |0⟩ and |1⟩ states are 

vectors representing the coordinate axes of this complex space. For this reason, we say that (|0⟩, |1⟩) 

constitute a computational basis [1, 3] for any qubit.  

Given a classical bit we can decide if it is 0 or 1 by checking its value. On the other hand, for its 

quantum counterpart we cannot determine the pair of amplitudes (𝑎, 𝑏) associated with its state [2, 

28]. This is because if we measure |𝜓⟩ then we always obtain either the value 0 or 1. Basically, a 

measurement would destroy the quantum state |𝜓⟩ and collapse it to either the state |0⟩ or |1⟩. 

Moreover, the result of the measurement is nondeterministic, we get the result 0 with probability 

|𝑎|2 and the result 1 with probability |𝑏|2. Since we are talking about probabilities, the 2 values should 

sum up to 1, and we have that |𝑎|2  + |𝑏|2  = 1. When we have this property for |𝜓⟩, we say this 

quantum state is a pure state [5]. In this way, we know that the norm of the vector state |𝜓⟩ is equal 

to 1 (|𝜓⟩ is a unit vector of the ℋ space). 

This main difference between the standard state of a classical bit and the “unusual” superposition of 

a quantum bit can be explained through the next experiment. Imagine the bit as an ordinary coin. The 

value of the bit represents the result of tossing that coin: heads → 0 or tails → 1. On the other hand, 

the qubit can also reveal the status of the coin while it is in the air. At this moment, the coin is neither 

heads nor tails and is rather in a continuum process alternating between the 2 values, described as a 

superposition of the heads and tails states (for instance |𝜙⟩ =
1

√2 
|0⟩ + 

1

√2 
|1⟩). Then, after the coin 

has landed, but before we actually see it, we know that with probability (
1

√2 
)
2
the coin is heads and 

with probability (
1

√2 
)
2

 is tails. Finally, when we look at the coin, equivalent to making the 

measurement, we observe the result: either heads (state |0⟩) or tails (state |1⟩). 

For a better understanding of the qubit concept we can also view it from a geometric perspective [3]. 

Let |𝜓⟩ 𝜖 ℋ be a quantum pure state: |𝜓⟩ = 𝑎|0⟩ + 𝑏|1⟩ with |𝑎|2 + |𝑏|2 = 1. Then, we can express 

|𝜓⟩ as: 

|𝜓⟩ =  cos
𝜃

2
⋅ |0⟩ + 𝑒𝑖𝜑 ⋅ sin

𝜃

2
⋅ |1⟩, where θ ϵ [0, π], 𝜑 ϵ [0, 2π]. 
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The Hilbert Space ℋ can be represented as a 2-sphere (Figure 1) and each pure state such as |𝜓⟩  is a 

unit vector situated on the boundary of this 2-sphere, whose north and south pole correspond to the 

computational basis states |0⟩ and |1⟩.  

 

              Figure 1. 2-sphere representation of Hilbert Space. Source [29] 

An essential question we need to address is related to the amount of information which can be stored 

in a qubit [13]. We might be tempted to think that since the sphere contains an unbounded number 

of unit vectors, each associated with a different pair (𝜃𝑖, 𝜑𝑖), we could use as storage space all the bits 

required for the unbounded binary representation of 𝜃𝑖 or 𝜑𝑖. Unfortunately, as shown before, the 

measurement makes the state |𝜓⟩ collapse to |0⟩ or |1⟩ , so we just get only one bit of information[1]. 

Consequently, in order to have access to more information, we need to consider systems consisting 

of several qubits.  

Such a composite system is defined as the tensor product [4, 26] between individual smaller quantum 

systems. Essentially, the tensor product is an operation which allows 2 different vector spaces to join 

together and form a bigger vector space. For instance, if we have the vector space 𝐴 with dimension 

𝑚 and the vector space 𝐵 with dimension 𝑛, then the tensor product between 𝐴 and 𝐵, notated as 

𝐴 ⨂ B, is a vector space of dimension 𝑚 ⋅ 𝑛. A quantum state from 𝐴 ⨂ B is just a superposition of 

states |𝑎𝑖⟩ ⨂ |𝑏𝑖⟩ (which is usually written |𝑎𝑖𝑏𝑖⟩), where |𝑎𝑖⟩ is a vector from 𝐴 and |𝑏𝑖⟩ is a vector 

from 𝐵. Therefore, if we have the orthonormal basis {|𝑖1⟩, |𝑖2⟩,… , |𝑖𝑚⟩} for 𝐴 and the orthonormal 

basis  {|𝑗1⟩, |𝑗2⟩,… , |𝑗𝑛⟩}  for 𝐵 , then the set { |𝑖1⟩  ⨂ |𝑗1⟩, |𝑖1⟩  ⨂ |𝑗2⟩,… . , |𝑖𝑚⟩  ⨂ |𝑗𝑛⟩ } forms an 

orthonormal basis for 𝐴 ⨂ B.  

Take the case of the vector space composed of quantum states containing 2 qubits. This vector space 

can be written as 𝐴 ⨂ B, where 𝐴 =  𝐵 = 2-dim ℋ. As a result, any 2-qubit quantum state |𝜓⟩ can be 

written as a linear combination of the states |00⟩, |01⟩, |10⟩, |11⟩: |𝜓⟩ =  𝑎00|00⟩ + 𝑎01|01⟩ + 

𝑎10|10⟩ + 𝑎11|11⟩. ⟩. Exactly as in the 1-qubit scenario, after the measurement |𝜓⟩ will collapse to 

the state |𝑖𝑗⟩ with probability 𝑎𝑖𝑗, 𝑖, 𝑗 𝜖 {0,1}. 

An important state containing 2 qubits is |Φ⟩ =
1

√2
(|00⟩  + |11⟩), called the Bell state [3, 5], which 

introduces the concept of entanglement [2]. This notion refers to a quantum state consisting of 

multiple qubits, which cannot be expressed as a tensor product between individual systems, but only 

as an entire ensemble. In fact, we can prove that the Bell’s state is entangled, by showing there does 

not exist any single-qubit states |𝑥⟩ = 𝑎|0⟩ + 𝑏|1⟩ and |𝑦⟩ =  𝑐|0⟩ + 𝑑|1⟩, such that |Φ⟩ = |𝑥⟩ ⨂  |𝑦⟩. 

The fundamental property of entangled qubits is that measurements performed on them appear to 

be correlated as indicated in the following scenario. 
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Suppose we draw apart the 2 qubits of the entangled quantum state |Φ⟩ in 2 locations extremely far 

from each other. If we measure the first qubit of |Φ⟩, with probability 
1

2
 we get the outcome 0 and the 

state after the measurement becomes |Φ⟩ = |00⟩ and with probability 
1

2
 we obtain the result 1 and 

the state after the measurement becomes |Φ⟩ = |11⟩. After this, if we measure the second qubit we 

would normally expect the result of this measurement to also be completely random. However, it 

turns out that the outcome of the measurement on the second qubit is equal to the measurement 

result we got for the first qubit. The correlation is also visible if we try different kinds of measurements 

[4, 8] on the 2 qubits: there are still connections between the outputs of the measurements on the 

first and second qubit. 

 

2.1. Quantum Operators 
 

Starting from a composed quantum state, we need to determine a way to manipulate its 

constituent qubits in order to perform certain computations [6]. This thing is achieved using operators. 

Essentially, an operator 𝐴 is a function from a vector space 𝑉 of dimension 𝑛 to a vector space 𝑊 of 

dimension 𝑚 [29]. We can view 𝐴 as a matrix of 𝑚 lines and 𝑛 columns. Then, given an orthogonal 

basis (|𝑣1⟩, |𝑣2⟩,… , |𝑣𝑛⟩) for 𝑉 and an orthogonal basis (|𝑤1⟩, |𝑤2⟩,… , |𝑤𝑛⟩) for 𝑊, the operator 𝐴 

acts in the following way: 

𝐴|𝑣𝑖⟩ = ∑ 𝐴𝑗,𝑖|𝑤𝑗⟩
𝑚
𝑗=1   ∀ 𝑖 𝜖 {1,… , 𝑛} 

One important operator from any vector space 𝑉 to itself is the identity vector 𝐼, which applied on any 

quantum state |𝑣⟩ behaves like this: 𝐼 ⋅ |𝑣⟩ = |𝑣⟩. 

Another well-known operator is the outer product [1]. Consider 2 quantum states |𝑣⟩ 𝜖 𝑉 and |𝑤⟩ 𝜖 𝑊. 

Then, the outer product between |𝑣⟩ and |𝑤⟩, notated as |𝑤⟩⟨𝑣| (where ⟨𝑣| is the dual1 vector of |𝑣⟩) 

is an operator mapping vectors from 𝑉 to vectors from 𝑊: 

 (|𝑤⟩⟨𝑣|)|𝑧⟩  = |𝑤⟩ ⋅ ⟨𝑣|𝑧⟩ =  ⟨𝑣|𝑧⟩  ⋅ |𝑤⟩ 𝜖 𝑊 ∀ |𝑧⟩ 𝜖 𝑉 , as ⟨𝑣|𝑧⟩ is just a complex number. 

For any quantum operator 𝐴  we define an operator named the adjoint, 𝐴+ , which satisfies the 

property that for any 2 vectors |𝑎⟩ and |𝑏⟩ from a vector space 𝑉 we have that: 

- the inner product between |𝑣⟩ and 𝐴|𝑤⟩,  is equal to the inner product between 𝐴+|𝑣⟩ and 

|𝑤⟩,  (|𝑣⟩, 𝐴|𝑤⟩) = (𝐴+|𝑣⟩, |𝑤⟩). 

The operator 𝐴 is self-adjoint if it satisfies the condition 𝐴 =  𝐴+.  

An essential subset of self-adjoint operators refers to projectors [1, 4], which are mostly used in the 

context of state measurements. Such an operator 𝑃, projects a vector 𝑣 ϵ 𝑉 to a vector 𝑤 𝜖 𝑊, where 

𝑊  is a subspace of 𝑉 . Additionally, 𝑃  satisfies the property that: 𝑃2 = 𝑃 . Then, given the 

computational basis (|1⟩, |2⟩,… , |𝑚⟩) for the vector space 𝑊, the projector 𝑃 ∶ 𝑉 → 𝑊 is defined as: 

𝑃 = ∑ |𝑖⟩⟨𝑖|𝑚
𝑖=1  . 

                                                           
1 The inner product of 2 vectors |𝑣⟩ and |𝑤⟩ returns a complex number written as (|𝑣⟩, |𝑤⟩) or as ⟨𝑣|𝑤⟩.  
The dual of a vector |𝑣⟩ 𝜖 𝑉 is a function from 𝑉 to ℂ defined as: ⟨𝑣| = (|𝑣⟩,⋅) which generates the inner 
product between |𝑣⟩ and any vector from 𝑉. 
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For example, when 𝑉  is the 2-dimensional Hilbert space and 𝑃 = |1⟩⟨1|, for every |𝜓⟩ 𝜖 𝑉 , |𝜓⟩ =

𝑎|0⟩ + 𝑏|1⟩ we have: 

 𝑃|𝜓⟩ = (|1⟩⟨1|)(𝑎|0⟩ + 𝑏|1⟩) = 𝑏|1⟩. Therefore, 𝑃 is projecting any vector from 𝑉 to the subspace 

generated by the vector state |1⟩. 

A unitary operator is a function 𝑈 ∶ 𝑉 → 𝑉 such that 𝑈+𝑈 = 𝐼. One important property of this type of 

operator is that the application of a unitary on two vectors does not affect their inner product [3]: 

Consider 2 vectors from 𝑉, |𝑣1⟩ and |𝑣2⟩. We compute the inner product between 𝑈|𝑣1⟩ and 𝑈|𝑣2⟩: 

(𝑈|𝑣1⟩, 𝑈|𝑣2⟩) =  (𝑈|𝑣1⟩)
+(𝑈|𝑣2⟩) = ⟨𝑣1|𝑈

+𝑈|𝑣2⟩ =  ⟨𝑣1|𝐼|𝑣2⟩ =  ⟨𝑣1||𝑣2⟩ = (|𝑣1⟩, |𝑣2⟩)  

This characteristic of unitary operators tells us that if we have an orthonormal basis for 𝑉 , 𝐵 =

 (|𝑣1⟩, |𝑣2⟩, … , |𝑣𝑘⟩), then the set 𝐵′ = (|𝑣1′⟩, |𝑣2′⟩, … , |𝑣𝑘′⟩) obtained as |𝑣𝑖
′⟩ = 𝑈|𝑣𝑖⟩ ∀𝑖 𝜖 {1,… , 𝑘},  

is also an orthonormal basis for 𝑉, because the inner product between any 2 vectors |𝑣𝑖′⟩, |𝑣𝑗′⟩ of 𝐵′ 

is equal to the inner product of the correspondent vectors from 𝐵, |𝑣𝑖⟩ and |𝑣𝑗⟩. 

 

2.2. Quantum circuit model 
 

The quantum circuit model [6] defines a mechanism to implement any possible quantum 

computation.  

In the classical paradigm we have the boolean circuit model which allows us to determine the value 

of any boolean function 𝑓 by using a set of gates. These gates acting on a small number of bits, are 

applied sequentially in such a way that the resulting circuit can simulate the behaviour of 𝑓.  

Similarly, in the quantum case, we have the analogous quantum gates used to construct quantum 

circuits [1, 5]. Every quantum gate can be described by a unitary operator 𝑈. This fact reveals one 

major difference between classical and quantum gates: quantum gates are reversible, while their 

classical counterparts are not. This property refers to the ability to rebuild the input after the 

application of an operator on it. It is easy to observe that from the result of an OR-gate applied on 2 

bits, we cannot recover the values of the input bits. On the other hand, using the fact that every unitary 

operator is invertible: 𝑈−1 = 𝑈+, we are able to reconstruct any input by just applying the inverse of 

that operator. 

The most common quantum gates receive as input 1 or 2 qubits. Because a quantum state is a vector 

in a complex Hilbert Space, we can represent any quantum gate applied on it as a matrix. For instance, 

a quantum gate acting on one qubit is a 2𝑥2 matrix and in general, a quantum gate acting on 𝑛 qubits 

is written as a 2𝑛x2𝑛 matrix. This also brings an important remark, namely that the number of qubits 

given as input to a quantum gate must be equal to the number of qubits representing the output [29]. 

We will now enumerate some of the most common quantum gates which we are going to use in this 

project [1, 8]: 

 The Hadamard gate 𝐻 operates on single qubits and maps the |0⟩ state to the state  

|+⟩ =  
1

√2
(|0⟩  + |1⟩) and the |1⟩ state to |−⟩ =  

1

√2
(|0⟩  − |1⟩). Its matrix form is  

𝐻 =
1

√2
[
1 1
1 −1

] , while in a quantum circuit it is represented as: 

 The 𝑋 gate is the analogue of the classical 𝑁𝑂𝑇 gate, mapping |0⟩ to |1⟩ and |1⟩ to |0⟩. 

𝐻 
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It is represented as the matrix 𝑋 = [
0 1
1 0

]  

 The 𝑌 gate applies to a qubit a π-rotation around the Y-axis in the ℋ space, mapping |0⟩ to 

𝑖|1⟩ and |1⟩ to −𝑖|0⟩. It is represented as the matrix 𝑌 = [
0 −𝑖
𝑖 0

]  

 

 The 𝑍 gate applies to a qubit a π-rotation around the Z-axis in the ℋ space, mapping |0⟩ to 

|0⟩ and |1⟩ to −|1⟩. It is represented as the matrix 𝑍 = [
1 0
0 −1

]  

 

 The Phase Shift gate, 𝑅𝜃 , affects the phase of a qubit state, mapping |0⟩ to |0⟩ and |1⟩ to 

𝑒𝑖𝜃|1⟩. It is represented as the matrix 𝑅𝜃 = [
1 0
0 𝑒𝑖𝜃

] 

 The Controlled-NOT gate, 𝐶𝑁𝑂𝑇  is applied on 2 qubits and has the following result: 

𝐶𝑁𝑂𝑇 (|𝑥⟩ ⨂ |𝑦⟩)  =  |𝑥⟩ ⨂ |(𝑥 +  𝑦) 𝑚𝑜𝑑 2⟩. Its matrix representation is:  

𝐶𝑁𝑂𝑇 = [

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

] 

 The 𝑆𝑊𝐴𝑃 gate switches 2 qubit states: 𝑆𝑊𝐴𝑃(|𝑥⟩ ⨂ |𝑦⟩)  =  |𝑦⟩ ⨂ |𝑥⟩. Its matrix form is: 

𝑆𝑊𝐴𝑃 = [

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

] while its quantum circuit representation is: 

 The 𝐶𝑆𝐼𝐺𝑁 gate (or Controlled-Z) acts on 2 qubits in the following way:  

𝐶𝑆𝐼𝐺𝑁(|𝑥⟩ ⨂ |𝑦⟩)  =   (−1)𝑥⋅𝑦 (|𝑥⟩ ⨂ |𝑦⟩). It is represented as: 𝐶𝑆𝐼𝐺𝑁 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

]; 

 The 𝐶𝐶𝑆𝐼𝐺𝑁 (controlled-controlled sign) operates on 3 qubits: 

𝐶𝐶𝑆𝐼𝐺𝑁 [|𝑥⟩ ⨂ |𝑦⟩ ⨂ |𝑧⟩]  =  (−1)𝑥⋅𝑦⋅𝑧 [|𝑥⟩ ⨂ |𝑦⟩ ⨂ |𝑧⟩]] 

Now, what we would like to achieve using the quantum circuit model, is to be able to compute any 

possible function.  This property of a computational model, called universality, is accomplished using 

universal sets of gates [6]. A universal set of gates guarantees us that using a subset of quantum gates 

chosen from this set we are able to approximate any unitary operator. 

 Because the total number of quantum operators is infinite we cannot hope to precisely replicate the 

behaviour of any operator using only a finite set of quantum gates, but instead, we can reach a good 

approximation of them [7, 10]. Such an example of finite universal sets is: {𝐶𝑁𝑂𝑇, 𝐻, 𝑅𝜋

4
}   

Alternatively, if we would use an infinite universal set of gates, then we could obtain the exact output 

retrieved by any unitary operator. For example, the set containing the quantum gate 𝐶𝑁𝑂𝑇 along with 

any unitary operator acting on 1 qubit, or the set consisting of the gates 𝑋, 𝐶𝑁𝑂𝑇 and 𝑅𝜃  for any 

possible angle 𝜃, are both infinite universal sets, able to simulate any possible computation. 

After we have designed the quantum circuit which implements a specific computation, we take an 

input consisting of a number of qubits and sequentially apply the gates according to the scheme of 

the circuit [3, 29]. After this stage, we need to get the actual classical outcome of the computation by 

measuring(observing) the final qubits.  

We will next give a more detailed description of the quantum measurement process. 

𝐶𝑆𝐼𝐺𝑁 
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2.3. Quantum Measurements 
 

So far, we have only discussed about measuring a qubit in the computational basis {|0⟩, |1⟩} i.e. 

giving outcome either |0⟩  or |1⟩ . In fact, a measurement can be made in any basis 𝐵 =

 {|𝑏0⟩, |𝑏1⟩,… , |𝑏𝑘−1⟩}, which is a set of 𝑘 linearly independent vectors and 𝑘 is the dimension of the 

Hilbert space of our states [6, 13]. Any state |𝜓⟩ can be written as a linear combination of vectors from 

𝐵, |𝜓⟩ =  𝑐0|𝑏0⟩ + 𝑐1|𝑏1⟩ + ⋯+ 𝑐𝑘−1|𝑏𝑘−1⟩. As a result, a measurement made in the basis 𝐵 would 

yield as result one of these vectors |𝑏𝑖⟩ with the corresponding probability 𝑐𝑖
2.  

For example, take the quantum state |𝜓⟩ = 𝑎|0⟩ +  𝑏|1⟩. Then, by measuring in the computational 

basis we obtain that |𝜓⟩ is in state |0⟩ with probability |𝑎|2 and in state |1⟩ with probability |𝑏|2. But,  

suppose we choose to measure |𝜓⟩  in the basis 𝐵′ = {|+⟩, |−⟩}  where |+⟩ =
1

√2
(|0⟩  + |1⟩ ) and 

|−⟩ =
1

√2
(|0⟩  − |1⟩) . We can rewrite |𝜓⟩  as |𝜓⟩ =

𝑎+𝑏

√2
|+⟩ + 

𝑎−𝑏

√2
|−⟩ . Therefore, after a 

measurement in basis 𝐵′, we obtain that that |𝜓⟩ is in state |+⟩ with probability 
|𝑎+𝑏|2

2
 and in state 

|−⟩ with probability 
|𝑎−𝑏|2

2
. 

Now, consider a general quantum state |𝜙⟩ =  ∑ 𝑎𝑖|𝑖⟩
𝑚−1
𝑖−0 . By measuring this state we get one of the 

𝑚 possible outputs {0, 1, … ,𝑚 − 1}, each having a probability 𝑃(𝑖).  

For every possible measurement result we can associate an operator 𝑀𝑖, where 𝑀𝑖 is defined on the 

vector space of |𝜙⟩. Then, the probability of outcome 𝑖 is: 

𝑃(𝑖) = ⟨𝜙|𝑀𝑖
+𝑀𝑖|𝜙⟩ 

The measurement operators [1] must satisfy the property that:  ∑ 𝑀𝑖
+𝑀𝑖

𝑚−1
𝑖−0 = 1. In this way, we are 

assured that the sum of probabilities of all results is equal to 1: 

 ∑ 𝑃(𝑖)𝑚−1
𝑖=0 = ∑ ⟨𝜙|𝑀𝑖

+𝑀𝑖|𝜙⟩ =  ⟨𝜙|𝑚−1
𝑖=0 (∑ 𝑀𝑖

+𝑀𝑖
𝑚−1
𝑖=0 )|𝜙⟩ = ⟨𝜙||𝜙⟩ = 1 

After the measurement is performed, the original quantum state |𝜙⟩ is also modified depending on 

the outcome of the measurement [2, 29]. Therefore, supposing the outcome was 𝑗, the state |𝜙⟩ will 

now be equal to |𝜙′⟩ =
1

√𝑃(𝑗)
𝑀𝑗|𝜙⟩. 

Example.   Take |𝜙⟩, a unit norm vector from the 2-dim ℋ defined as: |𝜙⟩ = 𝑎0|0⟩ + 𝑎1|1⟩, such that 

|𝑎0|
2 + |𝑎1|

2 = 1. 

Then, for the outcome measurement 0 we define the operator 𝑀0 = |0⟩⟨0| =  [
1 0
0 0

] and similarly, 

for outcome measurement 1 we define the operator 𝑀1 = |1⟩⟨1| =  [
0 0
0 1

]. 

We observe that both 𝑀0 and 𝑀1 are self-adjoint projectors: 𝑀0 = 𝑀0
+ = 𝑀0

2 and 𝑀1 = 𝑀1
+ = 𝑀1

2 

Consequently, we can compute the probabilities for the 2 possible outcomes: 

   𝑃(0) =  ⟨𝜙|𝑀0
+𝑀0|𝜙⟩ = (⟨0|𝑎0̅̅ ̅ + ⟨1|𝑎1̅̅ ̅)𝑀0(𝑎0|0⟩ + 𝑎1|1⟩) =  𝑎0̅̅ ̅ ⋅  𝑎0 = |𝑎0|

2  

𝑃(1) =  ⟨𝜙|𝑀1
+𝑀1|𝜙⟩ = (⟨0|𝑎0̅̅ ̅ + ⟨1|𝑎1̅̅ ̅)𝑀1(𝑎0|0⟩ + 𝑎1|1⟩) =  𝑎1̅̅ ̅ ⋅  𝑎1 = |𝑎1|

2   2 

                                                           
22 �̅� is the complex conjugate of 𝑥; |𝑥| is the modulus of 𝑥 
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And the state after the measurement becomes: 

|𝜙⟩ →  |𝜙′⟩ =
1

√𝑃(0)
𝑀0|𝜙⟩ =

1

|𝑎0|
⋅ (𝑎0|0⟩), if the measurement result is 0, or 

|𝜙⟩ →  |𝜙′⟩ =
1

√𝑃(1)
𝑀1|𝜙⟩ =

1

|𝑎1|
⋅ (𝑎1|1⟩), if the measurement result is 1.  

This was an example of a projective measurement [10] where all operators 𝑀𝑖 are projectors. For this 

type of measurement, we observe that𝑀𝑖 satisfy the probability condition specified above: 

 ∑ 𝑀𝑖
+𝑀𝑖

𝑚−1
𝑖−0 = ∑ 𝑀𝑖

𝑚−1
𝑖−0 = 1.  

As we have seen, the new state after the measurement depends on the measurement result. Hence, 

in the time between the measurement is performed and the time we actually observe its result, the 

quantum state is known to be in a superposition of 𝑚 states, each associated with a probability 𝑃(𝑖). 

At that point, we can conclude that |𝜙⟩ is in the 
1

√𝑃(𝑗)
𝑀𝑗|𝜙⟩ state, with probability 𝑃(𝑗). 

In a quantum circuit, the symbol used for the measurement of a qubit is:  

 

2.4. Measurement Based Quantum Computing 
 

Measurement Based Quantum Computing(MBQC) is a model for quantum computing, equivalent 

to the circuit model [1, 4, 29]. While in the quantum circuit paradigm we applied a sequence of 

operators and then performed a measurement to obtain the classical result of the computation, in 

MBQC we execute a sequence of measurements to reach the desired result. 

The starting point of a computation in the MBQC model is a graph state, which is an entangled state 

containing a large number of qubits [6]. This graph state must be generic to allow for a wide range of 

computations to be completed from this pattern. Then, we perform measurements at proper basis on 

the qubits of this state in order to derive a certain computation. In this way, the initial entanglement 

of the graph state is destroyed by the measurements.   

Given a graph 𝐺 with 𝑉 its set of vertices and 𝐸 its set of edges, we build the graph state |𝐺⟩ in the 

following manner. Every vertex of 𝐺 is associated with a qubit in the |+⟩ state and every edge of 𝐺 is 

associated with a pair of entangled qubits, to which we apply the Controlled-Z operator. Consequently: 

|𝐺⟩ = ∏ (𝐶 − 𝑍|𝑖𝑗⟩) ⋅  |+⟩|𝑉|(𝑖,𝑗) 𝜖 𝐸 .  

The qubits in the graph are either measured in the {|0⟩, |1⟩} or in the {|+𝜃⟩, |−𝜃⟩}  basis (where 

|+𝜃⟩  =  
1

√2
(|0⟩ + 𝑒𝑖𝜃|1⟩) and |−𝜃⟩  =  

1

√2
(|0⟩ − 𝑒𝑖𝜃|1⟩)).  

Measurements in the base {|+𝜃⟩, |−𝜃⟩} are used to implement computations. On the other hand, we 

might need to reduce the graph state. For instance, if we want to compute an operator acting on a 

single qubit, we would require the graph to be in a 1-dimensional space. Removing qubits from the 

initial graph state in order to match the appropriate design pattern for our computation, is achieved 

through measurements in the {|0⟩, |1⟩} basis [29]. 

Now, we will focus on how does this model allow us to complete certain computations using 

{|+𝜃⟩, |−𝜃⟩} measurements. 
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For every single-qubit measurement, we decide upon a measurement angle 𝜃 based on the result of 

the previous measurements. Even though the outcomes of measurements are probabilistic we can 

modify the angles to make the final result of the computation deterministic [1, 6]. 

For example, if we want to compute the operator 𝐽(𝜃) = 𝐻𝑅𝜃, we can define the following MBQC 

pattern: 

 

 

The graph consists of 2 nodes, where the first one represents the input for the computation, |𝜙⟩  =

 𝑎|0⟩  +  𝑏|1⟩.  

Therefore, the graph state becomes:  

|𝐺⟩ =  𝐶 − 𝑍(|𝜙⟩|+⟩)  =  𝐶 − 𝑍 ((𝑎|0⟩  +  𝑏|1⟩) |+⟩)  =  𝑎|0⟩|+⟩  +  𝑏|1⟩|−⟩ 

Now, we measure the first qubit in the {|+𝜃⟩, |−𝜃⟩} basis. The measurement projectors are: 

𝑃+𝜃 = |+𝜃⟩⟨+𝜃| = 
1

2
(|0⟩⟨0|  + 𝑒−𝑖𝜃|0⟩⟨1|  + 𝑒𝑖𝜃|1⟩⟨0|  + |1⟩⟨1|) and 

𝑃−𝜃 = |−𝜃⟩⟨−𝜃| = 
1

2
(|0⟩⟨0|  − 𝑒−𝑖𝜃|0⟩⟨1|  − 𝑒𝑖𝜃|1⟩⟨0|  + |1⟩⟨1|) 

Then, if the outcome 𝑟 of the measurement equals to 1, our state becomes: 

𝑃+𝜃|𝐺⟩ = |+𝜃⟩(𝑎|+⟩  +  𝑏𝑒−𝑖𝜃|−⟩) 

But, we observe that the result of applying 𝐽(−𝜃) on the input state |𝜙⟩ is:  𝐽(−𝜃)|𝜙⟩  =  (𝑎|+⟩ +

 𝑏𝑒−𝑖𝜃|−⟩), which is exactly what we have obtained at the second qubit of our state. 

Therefore, if the outcome of the measurement is 1, the result of this MBQC pattern is 𝐽(−𝜃). 

Otherwise, if the result 𝑟 of the measurement is 0, our state becomes: 

𝑃−𝜃|𝐺⟩  =  |−𝜃⟩(𝑎|+⟩ −  𝑏𝑒−𝑖𝜃|−⟩) 

Using the relation 𝑋𝐽(−𝜃)|𝜙⟩  =  𝑎|+⟩ −  𝑏𝑒−𝑖𝜃|−⟩, we observe that in this case the outcome of the 

MBQC pattern is the application of the 𝑋𝐽(−𝜃) gate on the second qubit. 

Thus, to obtain the desired result we should apply the operator 𝑋𝑟. If the measurement result is 0, we 

get 𝑋0𝐽(−𝜃) = 𝐽(−𝜃) and if the result is 1, we obtain 𝑋 ⋅ 𝑋𝐽(−𝜃) =  𝐽(−𝜃). 

So, this means that using this MBQC pattern we can simulate the operator 𝐽(𝜃) for any angle 𝜃. Given 

the fact that every operator 𝑈 acting on a single qubit can be written as 𝑈 =  𝐽(0)  ⋅  𝐽(𝜃1)  ⋅  𝐽(𝜃2)  ⋅

 𝐽(𝜃3), we obtain that the MBQC model allows us to simulate any single-qubit operator 𝑈. 

Moreover, we can also simulate the Controlled-Z gate by just setting an edge between 2 input states. 

Now, because the set of gates {Controlled-Z, 𝐽(𝜃)} is universal, this tells us that the in MBQC we can 

implement any possible computation [30].  

One thing we observed in the example with the operator 𝐽(𝜃) is that depending on the result of a 

measurement, we might need to apply a correction operator (an 𝑋 gate in our example). Because the 

measurement results are not known at the moment when we define the MBQC scheme for a 

|ϕ⟩   |+⟩   

2   1   



13 
 

computation, we will instead modify the angles for the future measurements (for instance, measure 

the next qubit in the rotated basis if 𝑟 = 1). 

Adapting the angles of the measurements in order to overcome the randomness of the measurements 

outcomes, is based on the following relations [3]. Any measurement 𝑀𝑖 in the {|+𝜃⟩, |−𝜃⟩} basis 

adds the operator 𝑋𝑟  (𝑟 the result of 𝑀𝑖) for all the following qubits and the 𝑍𝑟 operator for all the 

qubits situated in graph at distance = 2 from qubit 𝑖. Also, any measurement 𝑀𝑗 in the {|0⟩, |1⟩} basis 

adds the operator 𝑍𝑟 (𝑟 the result of 𝑀𝑗) on all the qubits which are neighbours to 𝑗. 

Consequently, we set for every qubit 𝑖 in the graph an initial angle 𝛼𝑖 which allows us to perform a 

specific computation. An 𝑋 operator applied on qubit 𝑖 will change its initial angle 𝛼𝑖 to -𝛼𝑖, whereas 

a 𝑍 operator will change 𝛼𝑖 to 𝛼𝑖 + π. Therefore, for any qubit 𝑖 in the graph we cumulate all the angle 

modifications resulting from the previous measurements and we obtain that the new angle is:           

𝛼𝑖 ’= (−1)𝑠𝛼𝑖 + 𝑡𝜋, where 𝑠 = number of qubits where an 𝑋 correction is applied, 𝑡 = number of 

qubits where the 𝑍 correction is applied [4, 29]. 

 

 

3. Complexity Theory 

 

 

 After we presented an introduction to the field of Quantum Computing, we cover some 

necessary background in Complexity Theory, which is essential for the understanding of our project. 

We proceed by defining the complexity classes, both classical and quantum, which are going to be 

encountered in our proofs [17, 20, 21]. 

 𝑃 is the class of problems which can be solved efficiently in polynomial time by a deterministic 

Turing Machine [17]. We say that a language 𝐿  belongs to the class 𝑃  if we can build a 

deterministic Turing Machine 𝑀  running in polynomial time, such that for every 𝑥 𝜖 𝐿 , 𝑀 

accepts 𝑥 (returns 1) and for every 𝑥 ∉ 𝐿, 𝑀 rejects 𝑥 (returns 0).  

 𝑁𝑃 is the class of problems which can be computed in polynomial time by a nondeterministic 

Turing Machine [20]. Every 𝑁𝑃 algorithm has 2 stages: the first in which he makes a guess for 

the result of the problem and the second where he verifies in polynomial time if the guess was 

a correct answer. A useful way to describe the behaviour of any 𝑁𝑃 algorithm is by looking at 

its computational tree [21]. The computational tree indicates how does the algorithm work, 

given a specific input 𝑥 to the problem. The initial configuration of the Turing Machine on the 

input 𝑥 represents the root of the tree. Every internal node corresponds to a computation 

performed by the algorithm and the children of the node are the possible configurations which 

can be obtained in one computational step. For each nonterminal node, the choice for the 

next computation is made in a nondeterministic way [17]. 
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In a decision problem, the leaves of the computational tree are either accepting or rejecting 

states. Then, we say that a string 𝑠  is accepted by the language defined in the decision 

problem, if in the computational tree generated for 𝑠 there exists at least one path ending in 

an accepting state. On the other hand, a string 𝑠 is rejected if all possible paths of the tree end 

in a reject state [33]. 

o 𝑁𝑃 −𝐻𝑎𝑟𝑑 problems are the problems at least as difficult to solve as the hardest 

problems in the 𝑁𝑃  class. We say a problem 𝐺  belongs to 𝑁𝑃 − 𝐻𝑎𝑟𝑑  if every 

problem from 𝑁𝑃 can be reduced efficiently in polynomial time to 𝐺. 

o The  𝑁𝑃 − 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒  class contains the problems which are both in 𝑁𝑃  and in          

𝑁𝑃 −𝐻𝑎𝑟𝑑.  

o A decision problem 𝐺 belongs to the class 𝑐𝑜-𝑁𝑃, if the complement of 𝐺, obtained 

by switching the accepting answers with the rejecting answers and vice versa, is in the 

𝑁𝑃 class [20, 32]. In this way, we have that a string 𝑥 is accepted if every path of the 

computational tree ends in an accepting state and is rejected if there exists one path 

ending in a rejecting state. 

 The 𝐵𝑃𝑃 class (Bounded-error probabilistic polynomial time) contains the problems which can 

be solved by probabilistic Turing Machines [16, 34] in polynomial time, with the probability of 

giving a wrong answer being less than 
1

3
. We say a language 𝐿 is in the 𝐵𝑃𝑃 class if we can 

construct a probabilistic Turing Machine 𝑀 running in polynomial time such that: 

 If 𝑥 𝜖 𝐿, then 𝑀 accepts 𝑥 with probability 𝑝 ≥
2

3
 

 If 𝑥 ∉ 𝐿, then 𝑀 accepts 𝑥 with probability 𝑝 ≤
1

3
 

 The 𝑍𝑃𝑃 class (Zero-error probabilistic polynomial time) consists of the problems which can 

be solved in polynomial time by probabilistic Turing Machines which may also return the 

answer “Do not know” for some inputs. Specifically, a probabilistic Turing Machine 𝑀 which 

solves a problem 𝐺 from 𝑍𝑃𝑃 acts in the following way: 

 𝑀 gives the correct answer for an input 𝑥 with probability 𝑝 >
1

2
 

  𝑀 answers “Do not know” for an input 𝑥 with probability 𝑝 <
1

2
. 

 The 𝐵𝑄𝑃 class (Bounded-error quantum polynomial time) is the quantum equivalent of the 

𝐵𝑃𝑃 class. 𝐵𝑄𝑃 consists of the problems which can be solved in polynomial time by Quantum 

Turing Machines with the probability of giving a wrong answer being less than 
1

3
 [19]. We can 

prove that a decision problem 𝐺  belongs to 𝐵𝑄𝑃 by showing that there exists a quantum 

circuit of polynomial size (as defined in the quantum circuit model section) which can solve 𝐺 

with bounded-error [19, 30]. 

 

Now, we need to focus on 2 particular categories of problems: problems which can be solved by 

Turing Machines which receive an additional “help” called advice [28] and problems which can be 
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solved by Turing Machines which have access to an oracle [22] that can correctly answer to particular 

questions. We are going to give a thorough description of these two models of computation as they 

are directly connected with our major results. In order to prove our main statements, we need a full 

understanding of the behaviour of the machines which can solve these classes of problems. Hence, 

together with the formal definitions, we will also present examples and results regarding the two 

models, which we are going to use in our proofs. 

 

3.1. Advice Turing Machines 
 

An advice function is any function 𝑓:ℕ → Σ∗.  

Turing Machines with an advice function 𝑓 receive an additional help to solve problems, in the form 

of an advice string 𝑓(𝑛). The most important property of the advice function is that this external 

information does not depend on the value of the input for a problem, but only on the input size [20].  

That is, for a given input 𝑥, the received advice is 𝑓(|𝑥|). 

 

DEFINITION 1:  The class 𝒞/ℱ of languages recognized by Turing Machines with advice is the set of 

languages 𝐴 associated with a language 𝐶 from 𝒞 and an advice function 𝑓 from ℱ such that: 

 𝐴 = {𝑥 𝜖 Σ∗| 𝑡ℎ𝑒 𝑝𝑎𝑖𝑟 (𝑥, 𝑓(|𝑥|)) 𝜖 𝐶, 𝐶 𝜖 𝒞, 𝑓 𝜖 ℱ}.  

In other words, we say that there exists a function 𝑓 from ℱ, which gives the necessary additional 

information to a machine from the class 𝒞, in order to accept a more difficult language belonging to 

the class 𝒞/ℱ. 

We will now present a series of classes of advice languages and their interpretation [17, 18, 28]: 

 EXAMPLE 1: ℱ =  𝑙𝑜𝑔 represents the set of functions 𝑓 satisfying the property: 

 ∀𝑛 𝜖 ℕ ∃𝑐 𝜖 ℕ such that  |𝑓(𝑛)| ≤  𝑐 ⋅ log 𝑛. 

 We define 𝑃/𝑙𝑜𝑔 as the class of languages 𝐿 =   {𝑥 | (𝑥, 𝑓(|𝑥|)) 𝜖 𝐴, 𝐴 𝜖 𝑃, 𝑓 𝜖 𝑙𝑜𝑔}. 

Thus, for any such language 𝐿 𝜖 𝑃/𝑝𝑜𝑙𝑦 we can determine if a string 𝑥 belongs to 𝐿 by using a 

deterministic polynomial time algorithm with the help of an external information 𝑠, where 

|𝑠|  =  𝑙𝑜𝑔(𝑥). 

 EXAMPLE 2:   ℱ =  𝑝𝑜𝑙𝑦 represents the set of functions 𝑓 satisfying the property: 

 ∀𝑛, ∃ a polynomial 𝑝 such that |𝑓(𝑛)| ≤  𝑝(𝑛). 

We define 𝑃/𝑝𝑜𝑙𝑦 as the class of languages 𝐿 =  {𝑥 | (𝑥, 𝑓(|𝑥|)) 𝜖 𝐴, 𝐴 𝜖 𝑃, 𝑓 𝜖 𝑝𝑜𝑙𝑦}. 

 EXAMPLE 3:  And similarly, 𝑁𝑃/𝑝𝑜𝑙𝑦 is represented by the set of languages: 

𝐿 =  {𝑥 | (𝑥, 𝑓(|𝑥|)) 𝜖 𝐴, 𝐴 𝜖 𝑁𝑃, 𝑓 𝜖 𝑝𝑜𝑙𝑦}. 

If the advice is the empty string then we obtain exactly the languages from the class 𝒞, therefore, we 

obtain that 𝒞 ⊆ 𝒞/ℱ, and particularly 𝑃 ⊆  𝑃/𝑝𝑜𝑙𝑦 or 𝑁𝑃 ⊆  𝑁𝑃/𝑙𝑜𝑔. 
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3.1.1. 𝑃/𝑝𝑜𝑙𝑦 

 

The external information can be an extremely powerful tool allowing a machine to decide 

complex languages which initially could not have been decided by the machine. 

This is best exemplified by the relation between bounded error probabilistic polynomial time 

machines (𝐵𝑃𝑃) and deterministic polynomial time machines (𝑃). As we know, every 𝑇𝑀 in 𝑃 can be 

simulated by a probabilistic 𝑇𝑀 in 𝐵𝑃𝑃, so 𝑃 ⊆  𝐵𝑃𝑃 [24]. 

But, we can show that by receiving a polynomial advice every deterministic machine is also able to 

simulate a probabilistic 𝑇𝑀 from 𝐵𝑃𝑃 [28]: 

THEOREM 1:   𝐵𝑃𝑃 ⊆  𝑃/𝑝𝑜𝑙𝑦. 

Proof. Consider a language 𝐿 𝜖 𝐵𝑃𝑃, decided by a 𝐵𝑃𝑃 machine 𝑀. 𝑀 receives 2 inputs: a string 𝑥 

and a random string 𝑟. Supposing the input 𝑥 is of length 𝑛, then as 𝑀 is a polynomial time machine, 

it runs on 𝑥 in 𝑝(𝑛) time, with 𝑝 a polynomial. Moreover, the length of the random string 𝑟 must also 

less or equal than 𝑝(𝑛). 

We intend to prove that we can use the random string as an advice to a deterministic polynomial time 

machine in order to decide 𝐿, so we must show that for every possible length 𝑚, there exists a random 

string 𝑟𝑚 of size 𝑝(𝑚) for which: 

 𝑀(𝑥, 𝑟𝑚) = {
1,   𝑥 𝜖 𝐿
0,   𝑥 ∉ L

  ∀𝑥 of length 𝑚.  

We define the set of wrong random strings as the strings which cannot be the advice:  

𝑤𝑟𝑜𝑛𝑔(𝑥)  =  {𝑟 ϵ {0, 1}𝑝(𝑛) | 𝑀(𝑥, 𝑟) gives an incorrect answer}. 

Therefore, what we need to show is that if we rule out all strings from the set 𝑤𝑟𝑜𝑛𝑔(𝑥) for all 𝑥, we 

will still have at least one string left in Σ∗ − ⋃ 𝑤𝑟𝑜𝑛𝑔(𝑥)𝑥 𝜖 {0,1}𝑛  and this string will allow 𝑀 to always 

give the correct answer. 

Using amplification of 𝐵𝑃𝑃 [21], we can obtain that the error probability of 𝑀 is at most 
1

22𝑛
.  

Then, this means that 𝑃(𝑟 𝜖 𝑤𝑟𝑜𝑛𝑔(𝑥), 𝑟 𝜖 {0, 1}𝑝(𝑛))  =  
1

22𝑛
 . 

Generalising for all inputs 𝑥 of length 𝑛 and by using Boole inequality3[34] we reach the relation: 

P(𝑟 𝜖 ⋃ 𝑤𝑟𝑜𝑛𝑔(𝑥)

𝑥 𝜖 {0,1}𝑛

) ≤  ∑ 𝑃(𝑟 𝜖 𝑤𝑟𝑜𝑛𝑔(𝑥))

𝑥 𝜖 {0,1}𝑛

= 2𝑛 ⋅
1

22𝑛
= 

1

2𝑛
   

This demonstrates that there is an exponentially small number of random strings which give the wrong 

answer. Consequently, we can choose one random string 𝑟𝑐 from the complement of the 𝑤𝑟𝑜𝑛𝑔 set. 

Then, we know that 𝑀(𝑥, 𝑟𝑐) must be correct for any input 𝑥 of length 𝑛. Therefore, if an “adviser” 

gives us this string 𝑟𝑐, we can use it as advice to always decide correctly if an input belongs or not to 

the language 𝐿.  □  

                                                           
3 Given a set of actions {𝐴1, 𝐴2, … , 𝐴𝑘}, the probability of at least one 𝐴𝑖  taking place is less or equal than the 
sum of probabilities that each action takes place: 

 𝑃(⋃ 𝐴𝑖
𝑘
𝑖=1 ) ≤  ∑ 𝑃(𝐴𝑖)

𝑘
𝑖=1  
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Another example of non-uniform models (where we basically have a different algorithm for every 

possible size of the input) refers to Boolean Circuits [17, 20].  

DEFINITION 1.1:  A Boolean Circuit helps us compute a binary function by sequentially applying the 

logical gates 𝐴𝑁𝐷, 𝑂𝑅, 𝑁𝑂𝑇 on a given input. The computation is represented as a directed graph 

with 𝑉 – the set of vertices, 𝐸 – set of edges and a tag function 𝑡 ∶ 𝑉 → {𝑥1, 𝑥2, … , 𝑥𝑚, 0, 1} ⋃ {𝑁𝑂𝑇, 

𝐴𝑁𝐷, 𝑂𝑅} ⋃ {𝑜𝑢𝑡𝑝𝑢𝑡}, defined as: 

𝑡(𝑣)  = {

𝑁𝑂𝑇,                                                                                                  𝑖𝑛 − 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) = 1
𝐴𝑁𝐷 | 𝑂𝑅,                                                                                         𝑖𝑛 − 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) = 2

𝑥1 | 𝑥2 |… | 𝑥𝑚 | 0 | 1,                                   𝑖𝑛 − 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) = 0 (𝑖𝑛𝑝𝑢𝑡 𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠)

𝑜𝑢𝑡𝑝𝑢𝑡,                                                   𝑖𝑛 − 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) = 1, 𝑜𝑢𝑡 − 𝑑𝑒𝑔𝑟𝑒𝑒(𝑣) = 0

  

Essentially, the graph consists of 𝑚 input nodes, 1 output node (which denotes the result of the 

computation) and internal nodes named gates which are tagged with the boolean operations 𝐴𝑁𝐷, 

𝑂𝑅, 𝑁𝑂𝑇 (Figure 2). We can consider that each node has a value associated with it: input nodes 𝑥𝑖 

have exactly the value 𝑥𝑖 , while for every other node, the value is obtained by applying the gate 

indicated by its tag to the values corresponding to its children nodes [21]. 

 

Figure 2. Example of Boolean Circuit which implements the XOR function 

 

The connection between Boolean Circuits and Advice Turing Machines can be observed in the fact that 

to decide a language 𝐿, then for every possible size 𝑛 of an input we need to define a new circuit which 

receives 𝑛 inputs. 

DEFINITION 1.2:  We say a language 𝐿 has polynomial circuits if there is a polynomial 𝑝 and an array of 

circuits {𝐶𝑛} satisfying the following properties: 

I. The number of gates in the circuit 𝐶𝑚 ≤ 𝑝(𝑚) ∀𝑚; 

II.  𝐶𝑚 receives 𝑚 inputs and returns 1 if 𝑥 𝜖 𝐿 and 0 if 𝑥 ∉ 𝐿  ∀𝑥 𝜖 {0, 1}𝑚; 

There is a strong relation between polynomial circuits and machines with polynomial advice [20]: 

THEOREM 2:  𝐿 𝜖 𝑃/𝑝𝑜𝑙𝑦 ⇔ 𝐿 has polynomial circuits. 

Proof. ”⇒”  Consider 𝐿 𝜖 𝑃/𝑝𝑜𝑙𝑦. Then, there exists a polynomial advice function 𝑓 and a set 𝐴 𝜖 𝑃, 

such that: 𝑥 𝜖 𝐿  ⇔   (𝑥, 𝑓(|𝑥|)) 𝜖 𝐴. 

For every possible length 𝑛 we can build a circuit 𝐶𝑚, which has as input nodes the bits of a input 𝑥 of 

length 𝑛 and the |𝑓(𝑛)| bits representing the advice. This circuit just returns the pair (𝑥, 𝑓(|𝑥|)) which 

is given as an input to a second circuit 𝐶𝑚′ implementing 𝐴 (𝐶𝑚′ must exist, as 𝐴 can be solved in 

polynomial time). Consequently, 𝐶𝑚′ will give the output 1 if (𝑥, 𝑓(|𝑥|)) 𝜖 𝐴 ⇔ 𝑥 𝜖 𝐿  and 0 otherwise 

(𝑥 ∉ 𝐿). In other words, every boolean circuit 𝐶𝑚′ decides 𝐿 for every input 𝑥 of length 𝑚.              □  
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”⇐”. Now, take a language 𝐿  which has polynomial circuits. We want to build a deterministic 

polynomial-time machine 𝑀 which decides 𝐿 with the aid of a polynomial external information. We 

can encode each circuit 𝐶𝑚 using the alphabet {0, 1} into a string 𝑠𝑚. According to the definition of 𝐿,  

there exists a polynomial 𝑝 such that 𝐶𝑚 ≤ 𝑝(𝑚). Then we also know that the resulting encoding of 

𝐶𝑚 can be determined in polynomial time, so |𝑠𝑚| ≤ 𝑝(𝑚). In this way, we can use 𝑠𝑚 as a polynomial 

advice for every input of size 𝑚 to figure whether an input of length 𝑚 is in 𝐿 or not. Therefore, 

𝐿 𝜖 𝑃/𝑝𝑜𝑙𝑦.          □  

The extra power brought by the polynomial advice to a deterministic polynomial-time machine can 

also be viewed in the following result [18, 24]: 

THEOREM 3:  The class 𝑃/𝑝𝑜𝑙𝑦 contains undecidable languages.  

This is a remarkable fact given that a non-recursive (undecidable) language [17] is a language 𝐿 for 

which there does not exist any 𝑇𝑀 which halts on any input 𝑥 and decides correctly if 𝑥 is or not in 𝐿. 

Proof: We demonstrate our claim by first showing that every unary language (language in which all 

the strings are of the form 1𝑘) is in the class 𝑃/𝑝𝑜𝑙𝑦. 

Take 𝐿𝑢, a unary language. As every element of 𝐿𝑢 has the form 1𝑘, there exists a unique element of 

length 𝑛 in 𝐿𝑢, ∀𝑛 𝜖 ℕ. Then, we can build the advice string for a deterministic polynomial time 𝑇𝑀 

𝑀 in the following way: for each possible length of the input, 𝑚, we have the advice string 𝑠𝑚 = 1, if 

1𝑚 ϵ 𝐿𝑢 and 𝑠𝑚 = 0 otherwise. 

Thus, 𝑀 decides correctly for every possible input if it belongs to 𝐿𝑢 or not. 

Secondly, we show that there exist unary languages which are undecidable.  

We select any undecidable language from {0, 1}∗ , call it 𝐿𝑁 . Starting from 𝐿𝑁  we construct the 

language: 

 𝐿𝑢’ = {1𝑘(𝑥) | 𝑥 𝜖 𝐿𝑁  and 𝑘(𝑥) is the number resulting from treating the binary string 𝑥 as a number} 

Obviously, 𝐿𝑢’ is a unary language. Moreover, since any machine which can decide 𝐿𝑢’ can also decide 

𝐿𝑁 (there is a reduction from the language 𝐿𝑁 to 𝐿𝑢’) and since 𝐿𝑁 is non-recursive, we deduce that 

𝐿𝑢’ is also non-recursive. □  

 

3.1.2. 𝑃/𝑙𝑜𝑔 

 

In the case of logarithmic advice, the external information can rather be seen as an index of an 

element in a set of uniformly created elements [20]. 

𝑃/𝑙𝑜𝑔  class also shows a separation from the uniform 𝑇𝑀s, as the logarithmic advice helps the 

deterministic machine solve additional problems which initially could not be determined. 

We will now present an interesting proof method [24, 30] involving the use of logarithmic advice which 

helped us gain intuition for our main proofs. 

In this approach we will take into consideration every possible advice and then eliminate the 

candidates which do not lead to a correct answer. We are going to adapt this technique for our proof 

that a particular problem cannot be solved by any deterministic machine receiving external advice. 
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THEOREM 4:  If the 𝑆𝐴𝑇 problem can be solved by a 𝑃/𝑙𝑜𝑔 algorithm, then 𝑃 = 𝑁𝑃.  

Proof: Consider a Boolean formula 𝐹 containing 𝑛 boolean variables: 𝑥1, 𝑥2, … , 𝑥𝑛. 

The advice being logarithmic in the size of the input, for the formula 𝐹 we get an advice 𝑠, such that:     

|𝑠| ≤ 𝑐 ⋅ log 𝑛, 𝑐 constant. 

Because 𝑆𝐴𝑇 𝜖 𝑃/𝑙𝑜𝑔, there exist a language 𝐴 in 𝑃 such that (𝐹, 𝑠) 𝜖 𝐴. 

Then, we show that we can determine if 𝐹 is satisfiable using the following deterministic polynomial 

time algorithm [20]. 

 

for every 𝑎 ϵ Σ∗ such that |𝑎| ≤ 𝑐 ⋅ 𝑛 do   // we try every potential logarithmic advice 

 𝐹’ = 𝐹 

 while 𝐹’ still contains variables: 

  choose a variable 𝑥𝑖  from 𝐹’ 

  𝐹1′ = formula obtained after replacing all occurrences of 𝑥𝑖  with 0 in 𝐹’  

  𝐹2′ = formula obtained after replacing all occurrences of 𝑥𝑖  with 1 in 𝐹’ 

  if (𝐹1′, 𝑎) ϵ 𝐴 then 𝐹’ = 𝐹1′ 

  else if (𝐹2′, 𝑎) ϵ 𝐴 then 𝐹’ = 𝐹2′ 

  else break; 

 end while 

 if 𝐹’ = true then halt and return “yes”  // found a satisfying assignment 

end for 

halt and reject      // no assignment has been found 

 

Using the variable 𝑎 we try every possible candidate for the logarithm advice for the input 𝐹. Even if 

at some point we find that for a string 𝑎 we have (𝐹, 𝑎) 𝜖 𝐴, we don’t stop here as this 𝑎 may not be 

the correct advice (it might be the case that 𝐹 is not satisfiable and as 𝑎 is not the real advice for 𝐹 

the pair (𝐹, 𝑎) is accepted by 𝐴). Instead, we continue assigning values to the variables in 𝐹 until there 

are no more variables in 𝐹. Only then we will be certain that the considered 𝑎 was the correct advice 

and that 𝐹 was indeed satisfiable.   

In this way, if the algorithm returns “yes”, then we know for sure that 𝐹  must be satisfiable. 

Furthermore, if 𝐹 is satisfiable, then there exists a value for the variable 𝑎 for which the machine 𝐴 

gives the correct answer.  

If 𝐹 contains 𝑛 variables, then the presented algorithm runs in 𝑂(𝑛) (as the while loop is executed 

2log𝑛 = 𝑛 times). 

Therefore, 𝑆𝐴𝑇 can be solved by a polynomial-time algorithm. However, because 𝑆𝐴𝑇 𝜖 𝑁𝑃Complete 

[17], meaning that every 𝑁𝑃 problem can be reduced to 𝑆𝐴𝑇, it results that 𝑁𝑃 =  𝑃.  □  
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3.2. Oracle Turing Machines 
 

 

DEFINITION 2:  An oracle 𝑇𝑀 is a machine with access to an oracle which can decide if a string is in 

a language 𝑂 ⊆ 𝛴∗.  

In addition to the standard 𝑇𝑀, an oracle 𝑇𝑀 has an oracle tape [20] which can be used to query for 

an extra input and the machine will receive in only one computational step an answer specifying if 

that input belongs to 𝑂 or not. 

Every normal 𝑇𝑀 can be considered an oracle 𝑇𝑀 by setting the empty set ∅ as the oracle’s language. 

We can encode oracle Turing Machines in the same manner we do for standard 𝑇𝑀 and by conversion 

to the alphabet Σ = {0, 1}∗, we can view these encoding as natural numbers [17]. This means that the 

set of oracle 𝑇𝑀 is countable, so we can enumerate all these machines: {𝑀𝑂
1 ,𝑀𝑂

2 , … ,𝑀𝑂
𝑛 , …}. 

For any oracle machine 𝑀𝑜 we are able to describe its computational tree as presented below. 

We first consider that the oracle’s language has not been set yet and we run 𝑀𝑜 on input 𝑚. Then, we 

set the configuration of 𝑀𝑜 on input 𝑚 as the root of the computational tree. Next, every inner node 

of the tree represents a query made by 𝑀𝑜 to the oracle 𝑂. For every such node we have 2 branches 

defining 2 different sets of computations which 𝑀𝑜  might perform depending on the result of the 

query[21].So, if the queried string belongs to 𝑂, then we proceed to the computations specified in the 

left branch, otherwise to the computations indicated by the right branch. In the nodes where no more 

queries are made (the leaves of the tree), 𝑀𝑜 will take a decision, if it is an accepting state or not[22]. 

Now, we set the language 𝐿 for the oracle 𝑂. Consequently, we will obtain a single path 𝜋 in the 

computation tree starting from the root and ending in an accept or reject node. For every node 𝑖 the 

path goes to its left child if the string labelled at node 𝑖 is inside the language 𝐿 and goes to its right 

child otherwise. 

Finally, we conclude that the initial input 𝑚 is in the language accepted by the oracle 𝑇𝑀 𝑀𝑜 if this 

resulted path π terminates in an accepting state. 

Comparing the structures of the computational trees of an oracle 𝑇𝑀 and of an nondeterministic 𝑇𝑀 

(described in the introduction of the 𝑁𝑃 class), we can intuit the relation between a nondeterministic 

𝑇𝑀 and a deterministic oracle 𝑇𝑀 [31]. Specifically, we can prove that we are able to simulate the 

behaviour of a nondeterministic 𝑇𝑀 on an oracle deterministic 𝑇𝑀 and also that the reversed relation 

is not true [30, 31]: 

THEOREM 5:  Any nondeterministic 𝑇𝑀 can be simulated by an oracle deterministic 𝑇𝑀. 

Proof. Let 𝑀𝑜 be an oracle deterministic machine and 𝑀’ be a nondeterministic machine. Then, we 

want 𝑀𝑜  to be able to simulate 𝑀’ using the oracle 𝑂. We remind that an oracle can decide any 

language 𝐿, so we define 𝑂 in a rather unusual way: 

 𝑂 will contain the encodings of all computations performed by the nondeterministic algorithm of 𝑀′. 

In this way, by querying the oracle we can check if a specific computation was indeed performed by 

𝑀′, or even better if a specific configuration is valid for 𝑀′. For every nondeterministic action of 𝑀’, 

𝑀𝑜 will use the oracle 𝑂 to decide between the possible following steps. 

This simulation procedure can be described in the next pseudocode. 
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 𝑠𝑡 = configuration of 𝑀 on input 𝑚 //st is the current node in the computation tree (now at the root) 

 𝑐𝑜𝑚𝑝 = “”                 // the computations completed so far 

repeat                 

  if 𝑠𝑡 is an accepting node then                                                                                                                  

                                                - halt and accept                                                                                                                        

                                else                                                                                                                                                               

                                                - add 𝑠𝑡 to 𝑐𝑜𝑚𝑝                                                                                                                           

                                                - determine the possible continuations 𝐶 from 𝑠𝑡 given by transition relation                

                                                - for every possible continuation 𝑐 𝜖 𝐶                                                                                      

                                                                𝑐𝑜𝑚𝑝’ = 𝑐𝑜𝑚𝑝 + 𝑐                                                                                                         

                                                                query oracle 𝑂 to check if 𝑐𝑜𝑚𝑝’ is a valid configuration of 𝑀′                                         
                                                                if the result of the query is “yes” then                                                                           

                                                                                𝑠𝑡 = 𝑐                                                                                                                

                                                                                break                                                                                                               

                                                - if the result of all queries was “no” then                                                                               

                                                                halt and reject                                                                                                               

 

We can observe that by querying the oracle we reproduce the nondeterminism of 𝑀’. Moreover, if  

𝑀’ accepts an input 𝑥, then this deterministic algorithm will find a path π in the computational tree of 

𝑀’ generated for 𝑥 such that π ends in an accepting state.  □  

 

LEMMA 5.1:  There exist deterministic oracle 𝑇𝑀𝑠  which cannot be simulated by nondeterministic 

standard 𝑇𝑀s. 

Proof. The intuition behind this statement is that, in general, oracle machines can be extremely 

powerful computational systems [20, 21], by defining languages difficult to decide. 

This can be illustrated by the fact that a deterministic oracle machine can decide any language 𝐿 solved 

by a nondeterministic machine 𝑀’ [17]. For instance, we can define the language of the oracle as the 

language accepted by 𝑀’. Consequently, a deterministic 𝑇𝑀 with oracle 𝑂 only needs to take the 

input for 𝑀’ and query 𝑂. Then, the answer received from the oracle is the output of 𝑀’.  □  

LEMMA 5.2: We can define an algorithm which allows the simulation of some oracle deterministic 𝑇𝑀 

by standard nondeterministic machines. 

Proof. Suppose we have a deterministic machine with oracle 𝑂, 𝑀𝑜 and a nondeterministic 𝑇𝑀 𝑀’. 

Then 𝑀’ could copy all the deterministic computations of 𝑀𝑜 until it makes a query to the oracle. At 

this point, 𝑀’ can use its nondeterminism to choose the continuation associated with a response for 

𝑀𝑜 from the oracle 𝑂. 

The main issue arises when the oracle queries the same input multiple times. Then, the 

nondeterministic machine might select different continuations (because it does not look at what 

choices it made previously), which leads to inconsistency (giving different results in response to 

queries for identical inputs) [22, 33]. 

Moreover, 𝑀’ does not know the language defined by the oracle 𝑂, so the only thing he can do is 

consider every possible oracle which 𝑀𝑜 might have, and accept an input 𝑥 if it is accepted by any of 

these resulting oracle 𝑇𝑀𝑠.   □  
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3.2.1. Examples of Oracle Turing Machines 
 

DEFINITION 3:  We define 𝑃𝑂  as the set of problems which can be solved by a deterministic 

polynomial-time 𝑇𝑀  which has access to the oracle 𝑂 . Similarly, we have that 𝑁𝑃𝑂  is the set of 

problems solved by a nondeterministic polynomial-time 𝑇𝑀 with access to the oracle 𝑂. 

Whenever 𝑂 is a language which cannot be decided by 𝑀, the oracle adds more computational power 

to 𝑀 [31]. For instance, 𝑃𝑆𝐴𝑇 represents the set of problems solved by a deterministic 𝑇𝑀 which also 

has access to an oracle capable of solving the 𝑆𝐴𝑇 problem. This oracle will obviously help compute 

more functions. In general, we have: 

AXIOM 6.1:  𝐶 ⊆ 𝐶𝑂 for any oracle 𝑂 and any complexity class 𝐶. 

LEMMA 6.2:  If 𝑂 can be solved by a deterministic polynomial time machine we can show that: 𝑃𝑂 = 𝑃.  

Proof. We already know from AXIOM 6.1 that 𝑃 ⊆  𝑃𝑂 (1). Now, since 𝑂 𝜖 𝑃, the verification algorithm 

used by the oracle to check if a string belongs to his language, is just a polynomial time procedure. 

Thus, we are able to convert every deterministic 𝑇𝑀 using oracle 𝑂 into a different deterministic 

polynomial time 𝑇𝑀. Consequently, we also have 𝑃𝑂 ⊆ 𝑃 (2). 

From (1) and (2) we obtain 𝑃𝑂 = 𝑃.  □  

Adding an oracle allows us to identify relations between different complexity classes. Therefore, 

proving separations between classes of problems, with respect to a given fixed oracle represents a 

strong evidence that those separations would also hold in the lack of the oracle [32, 33]. 

 THEOREM 7.  We can find an oracle 𝐵 such that the following crucial result holds: 𝑃𝐵 ≠ 𝑁𝑃𝐵. 

Proof. Given any language 𝐵 we build the language 𝐿𝐵 = {1𝑛 | ∃ string 𝑠 𝜖 𝐵 such that |𝑠|  =  𝑛}. 

To decide if a string 𝑠 = 1𝑚  is in 𝐿𝐵  we can simply make a choice for a string 𝑠 𝜖 {0, 1}𝑚 and then 

verify with the help of the oracle if 𝑠 𝜖 𝐵. Therefore, we have shown that 𝐿𝐵 ϵ 𝑁𝑃𝐵, ∀𝐵. 

Now, we want to build the language 𝐵 such that 𝐿𝐵 cannot be decided by any deterministic 𝑇𝑀 with 

access to the oracle 𝐵. 

The set of Turing Machines is countable, so we can list all deterministic 𝑇𝑀 [17], each of them being 

associated with a natural number 𝑖: 𝑀𝑖  𝜖 𝑃. We create the oracle 𝐵 in a series of steps, so that at     

step 𝑖 we make sure that 𝑀𝑖
𝐵 is not able to correctly decide 𝐿𝐵. 

Thus, when we reach step 𝑖 we already have determined if a number of strings {𝑠1, . . , 𝑠𝑘} belong to 𝐵. 

We pick 𝑚 such that 𝑚 >  |𝑠𝑖|  ∀𝑖 𝜖 {1,… , 𝑘}. Then, we run 𝑀𝑖 on the input 1𝑚 and we want 𝑀𝑖 to 

return the wrong answer.  

If 𝑀𝑖 returns “yes” for 1𝑚, we remove all the strings of length 𝑚 from the set 𝐵, so that we would 

have 1𝑚 ∉ 𝐿𝐵. 

If 𝑀𝑖  returns “no” for 1𝑚 , then we can add to 𝐵  a string 𝑠’, |𝑠’|  =  𝑚, such that 𝑠’ has not been 

queried before (we can find such a string because 𝑀𝑖 𝜖 𝑃 can query for a polynomial number of strings, 

but we have an exponential number of available strings of length 𝑚). Thereby, 1𝑚 ϵ  𝐿𝐵. 

By this construction, we made sure that 𝑀𝑖 returns the wrong answer, so we can conclude that 𝐿𝐵 

cannot be in the set 𝑃𝐵 and hence 𝑃𝐵 ≠ 𝑁𝑃𝐵.   □  
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It is worth mentioning that in the case of a nondeterministic oracle 𝑇𝑀 𝑀’, the computational tree of 

𝑀’ contains two types of nodes: nodes where the machine queries the oracle and nondeterministic 

nodes [20]. After setting an oracle, we define the continuation from the query nodes and we are left 

with the nondeterministic states. Then, 𝑀’ accepts an input 𝑥 if in this resulting computational tree 

there exists one accepting path [33]. 

 

In this project we aim to show that 2 complexity classes of problems 𝐵𝑄𝑃  and 𝑁𝑃/𝑝𝑜𝑙𝑦 ⋂ 

𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦 are different. Because there is no known relation between 𝐵𝑄𝑃 and  𝑁𝑃 [30], we give a 

strong evidence for our claim by stating that they are different with respect to an oracle 𝑂  [31]. 

Therefore, we define an oracle relative to which a problem is in the first class, but is not in the latter: 

∃ Oracle 𝑂 such that 𝐵𝑄𝑃𝑂 ⊈ 𝑁𝑃/𝑝𝑜𝑙𝑦𝑂⋂ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦𝑂   

Moreover, for the problems we considered to indicate the separation between the 2 classes, we use 

an oracle 𝑂, which instead of giving a yes/no answer, will return the value of a function on a given 

point. We can adapt the definition of an oracle to match this scenario in the following way. 

The oracle will receive a string containing: an index 𝑖 used to identify the desired function 𝑓𝑖 , the 

length of the input for 𝑓𝑖 , an input 𝑥 and the index 𝑗 of a bit. The oracle will return a 0/1 answer 

representing the 𝑗-th bit of the value of 𝑓𝑖 on input 𝑥: 

< 𝑖, 𝑛, 𝑥, 𝑗 >  
       𝑂𝑟𝑎𝑐𝑙𝑒 𝑂     
→           the 𝑗-th bit of 𝑓𝑖(𝑥) , where 𝑓𝑖 is the 𝑖-th function 𝑓𝑖 : {0, 1}

𝑛 → {0, 1}𝑛. 

Now, that we have covered all the necessary background we move to the central part of our project 

which focuses on the Generalised Encryption Scheme and the Complexity Theory results related to it. 

 

4. Generalised Encryption Scheme 
 

 

Consider the following situation: a client wants to compute a hard function. Because he does 

not have the necessary computational resources to do it by himself, he wants to use an untrusted 

server which is capable of solving difficult problems. In this case, the client needs to somehow encrypt 

his input to the problem, such that the server cannot find out any kind of information about it. 

This is the purpose of Generalised Encryption Scheme(GES) [16]. 

 DEFINITION 4: GES is an encryption scheme framework solving the delegated computation task [14] and 

can be described by the following sequence of steps: 

S1.  The client applies the encryption primitive on his input and sends the resulting cyphertext to 

the server. 

S2.  The sever performs the computation on the ciphered data and returns the outcome back to 

the client.  

S3.  The client applies the decryption procedure and in this way he obtains the result of his desired 

computation. 
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OBS 1:  A first observation is that this encryption scheme must satisfy the property that by applying the 

hard function on the encrypted input and then decrypting the resulting outcome, will give us the result 

of applying the function on the cleartext input. 

Basically, this scheme would allow any user with limited computational capabilities to solve any 

problem by exploiting a powerful server, while protecting the privacy of his input. Moreover, this 

scheme guarantees information-theoretic security [9]. This means that no matter how powerful a 

malicious server might be and no matter what actions he might try (or even if a third party could have 

access to the encrypted input), the security of this protocol cannot be broken [12]. 

OBS 2:  Achieving information-theoretic security implies that the encryption must not be based on 

computationally infeasible problems. If we assume that the server would have unlimited power, then 

he would be able to solve those problems [11] and obtain the plaintext input of the client. 

Therefore, by taking into consideration its security premises, this is an extremely important problem, 

as a GES protocol would bring major consequences in cloud computing and in principle it can 

guarantee secure processes over the Internet [4, 14]. 

Furthermore, this scheme has significant consequences in the field of Complexity Theory [16, 17]. We 

will next derive relations between the complexity of solving a problem 𝑓  and the complexity of 

encrypting 𝑓 in the GES scenario. Specifically, we will analyse the implications for a function which 

belongs to a complexity class 𝐶, to admit a GES scheme. 

Below, we are going to give a precise description of the GES framework. 

Suppose a client 𝐴 wants to compute the value of 𝒇(𝒙), where 𝑓 ∶ 𝑀 → 𝑁 and 𝑥 ϵ 𝑀. Then, 𝐴 must 

choose a key 𝒌 ϵ 𝒦 which will be used along the entire evolution of the protocol. The encryption 

primitive 𝑬  takes as input 𝑥  and the key 𝑘  and returns the cyphertext 𝑦 , 𝐸  : 𝑀 ×  𝒦 → 𝑀 . The 

obtained string 𝑦 is then sent to the server 𝐵 which applies the function 𝑓 and returns 𝑓(𝑦) to 𝐴.  

The decryption primitive 𝑫 takes 𝑓(𝑦), the input 𝑥 and the key 𝑘 and returns the desired result: 

 𝐷 ∶  𝑁 ×  𝑀 × 𝒦 → 𝑀 such that 𝐷(𝑓(𝑦), 𝑥, 𝑘) = 𝑓(𝑥), where 𝑦 = 𝐸(𝑥) 

 

 OBS 3:  In terms of privacy, the scheme does not necessarily need to hide everything about input 𝑥. 

For instance, the client may only want to hide the first half of the bits of the input.  

Therefore, we consider a function 𝐿 which takes as input a string from 𝑀 and defines how much does 

the scheme leak about an input 𝑥 (what is the maximum allowed information about an input 𝑥 𝜖 𝑀 

that can be inferred by the server 𝐵) [16]. From now on, all the results obtained for specific classes of 

problems solvable in the GES scenario will be made in relation to the function 𝐿. 

DEFINITION 5:  GES is defined in a broader context as an interactive protocol in which 𝐴 and 𝐵 will 

exchange  𝒎 pairs of messages in the following way: 

- At the beginning, 𝐴 uses a randomized key-generation procedure 𝑲() which receives 𝑥 and 

returns a key 𝑘 ϵ 𝒦 which will be used in all the 𝑚 sessions of communication; 

- Then, 𝐴 calls the encryption function 𝐸 on the pair (𝑥, 𝑘) and sends as a first message  

𝒂𝟏 = 𝐸(𝑥, 𝑘). Accordingly, 𝐵 responses back to 𝐴 with a message 𝒃𝟏; 

- For the next round, 𝐴 ’s encryption procedure will also consider 𝐵 ’s response 𝑏1  and will 

generate the new message 𝒂𝟐 = 𝐸(𝑥, 𝑘, [𝑏1]). Hence, at step 𝑖, 𝐴’s message will be based on 
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all previous message received from 𝐵: 𝒂𝒊 = 𝐸(𝑥, 𝑘, [𝑏1, 𝑏2, … , 𝑏𝑖−1]), which is thereafter sent 

to 𝐵; 

- 𝐵  chooses his messages, ( 𝑏1, 𝑏2, … , 𝑏𝑚 ), in such a way that after the last round of 

communication, when 𝐴 finally applies the decryption function which takes all  𝑚 messages 

received from 𝐵, the result 𝒓 = 𝐷(𝑥, 𝑘, [𝑏1, 𝑏2, … , 𝑏𝑚]) is equal to 𝑓(𝑥) with probability 

 
𝟏

𝟐
+ 

𝟏

|𝒙|𝒄
 , where 𝑐 is a constant. 

We can observe that 𝐵’s responses 𝑏𝑖 do not even have to be elements from the codomain of 𝑓; they 

can be chosen from any distribution known by 𝐵, as long as they satisfy the condition mentioned 

above. 

OBS 4:  Considering that the client 𝐴 has only limited computational power we must add the restraints 

that the number of rounds, 𝑚, must be polynomial in |𝑥| and that the procedures of encryption 𝐸( ) , 

decryption 𝐷( )  and key-generation 𝑘( )  must run in polynomial time. Particularly, as 𝑘( )  is a 

randomized algorithm, 𝑘( ) 𝜖 𝑍𝑃𝑃 [20]. 

 

We will now present some examples of hard problems [7, 17] and show how they are solved using the 

GES protocol, namely we describe how the encryption, decryption and key-generation functions are 

defined for each of these problems [16]. 

Example 1: Suppose 𝑓 is the discrete logarithm problem (which is known to be in 𝑁𝑃 and 𝐵𝑄𝑃). 

In this problem we are given a prime number 𝑝, a generator 𝑔 of the group ℤ𝑝 and an element 𝑢 

of ℤ𝑝, 𝑢 𝜖 {0, 1,… , 𝑝 − 1}. The problem asks us to determine the unique number 𝑒 ϵ ℤ𝑝 such that 

𝑔𝑒  ≡ 𝑢 𝑚𝑜𝑑 𝑝. 

Therefore, the input 𝑥 consists of the tuple (𝑝, 𝑔, 𝑢). We set the key-generation procedure to return a 

random number 𝑘 ϵ ℤ𝑝 and choose the encryption procedure to act in the following way:  

𝐸((𝑝, 𝑔, 𝑢), 𝑘) = (𝑝, 𝑔, 𝑣), where 𝑣 = (𝑢 ⋅ 𝑔𝑘) 𝑚𝑜𝑑 𝑝. 

Then, 𝐵 receives (𝑝, 𝑔, 𝑣) and solves the discrete logarithm problem for this input. This means that he 

determines the value 𝑒′𝜖 ℤ𝑝 such that 𝑔𝑒′  ≡ 𝑣 𝑚𝑜𝑑 𝑝. 

Now, we need to find a decryption procedure which given 𝑒′ and 𝑘 returns the desired result 𝑒. 

This decryption function is 𝐷(𝑒′, 𝑘) = (𝑒′ − 𝑘) 𝑚𝑜𝑑 𝑝. 

We can show that this procedure does return the correct solution by verifying that 𝑔𝑒  ≡ 𝑢 𝑚𝑜𝑑 𝑝, 

where 𝑒 = (𝑒′ − 𝑘)𝑚𝑜𝑑 𝑝.  

𝑔𝑒 = 𝑔(𝑒
′−𝑘)𝑚𝑜𝑑 𝑝  ≡  𝑔𝑒

′
⋅  (𝑔𝑘)

−1
 𝑚𝑜𝑑 𝑝  . But, we know that 𝑔𝑒

′
 ≡ 𝑣 𝑚𝑜𝑑 𝑝, so we obtain: 

𝑔𝑒  ≡ 𝑣 ⋅  (𝑔𝑘)
−1
 𝑚𝑜𝑑 𝑝 = 𝑢 𝑚𝑜𝑑 𝑝. 

In this way, we have defined a GES scheme for the discrete logarithm problem which leaks the values 

of 𝑝 and 𝑔 (as 𝑝 and 𝑔 are sent directly in plaintext to 𝐵). □    

Example 2: Consider 𝑓 to be the primitive root problem. This problem receives as input a prime 

number 𝑝  and an integer 𝑔  and checks if the number 𝑔  is a primitive root modulo 𝑝 . This is 

equivalent to verifying that for every integer 𝑎 coprime with 𝑝 there exists an integer 𝑘 such that 

𝑔𝑘  ≡ 𝑎 𝑚𝑜𝑑 𝑝. 
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The key-generation procedure returns an integer 𝑘 𝜖 {1,… , 𝑝 − 1} such that 𝑘 is coprime with 𝑝 − 1.  

The encryption procedure is defined as: 𝐸((𝑝, 𝑔), 𝑘) = (𝑝, 𝑔′), where 𝑔′ = 𝑔𝑘  𝑚𝑜𝑑 𝑝. 

Then, 𝐵  receives (𝑝, 𝑔′) and returns 1 if 𝑔 ’ is a primitive root modulo 𝑝  and 0 otherwise. Once 𝐴 

receives this outcome the decryption function just needs to copy this answer due to the next relation: 

 𝑔’ is primitive root mod 𝑝  𝑔 is a primitive root mod 𝑝. 

Thus, we found a GES scheme for the primitive root problem leaking 𝑝 and the order of 𝑔 𝑚𝑜𝑑 𝑝.   □ 

Example 3: Suppose 𝑓 is the quadratic residuosity problem. In this problem we are given a number 

𝑛, such that 𝑛 = 𝑝 ⋅ 𝑞, with 𝑝 and 𝑞 prime numbers and 𝑢 ϵ ℤ. We need to check if there exists a 

number 𝑏 ϵ ℤ , such that 𝑢 ≡  𝑏2 𝑚𝑜𝑑 𝑛.  

The key generation procedure returns a key 𝑘 consisting of a pair of numbers (𝑐, 𝑑), where 𝑐 𝜖 ℤ𝑛 and 

𝑑 𝜖 {0, 1}, both numbers selected at random. 

The encryption primitive is constructed as: 𝐸((𝑛, 𝑢), 𝑘) = (𝑛, 𝑣), where 𝑣 = (𝑢 ⋅ 𝑐2 ⋅ (−1)𝑑) 𝑚𝑜𝑑 𝑛 

Therefore, 𝐵 gets (𝑛 , 𝑣) and determines whether 𝑣 is a quadratic residue modulo 𝑛 and returns to 𝐴 

the answer 𝑟. 

The decryption function used by 𝐴 returns 𝑟 if 𝑑 was 0, and 1 − 𝑟 if 𝑑 was 1. 

As seen, this GES scheme built for the quadratic residuosity problem leaks only the number 𝑛.   □ 

  

We now move on to analyse the connections between the complexity class of a problem 𝑓 and how 

hard is solving 𝑓 using GES. The first important result is the following [16]: 

THEOREM 8.   If 𝑓  belongs to the class 𝑍𝑃𝑃 , then 𝑓  can be solved using a GES scheme that hides 

everything about the input. 

Proof.  If 𝑓 𝜖 𝑍𝑃𝑃 we can define the following GES scheme: 

We select a random number 𝑧 from the domain of 𝑓. Then, we can define the 3 primitives of the client 

in this way: 

𝐾(𝑥) = 𝑓(𝑥); 𝐸(𝑥, 𝑘) = 𝑧; 𝐷(𝑟, 𝑘, 𝑥) = 𝑘; 

Basically, because the problem is in 𝑍𝑃𝑃 it can be directly computed by the client. Therefore, the key-

generation procedure can be used to determine the desired result, 𝑓(𝑥). The encryption just returns 

a random element from the domain, making sure that the server cannot infer any information about 

𝑥, not even its size.   □  

 

THEOREM 9.   If 𝑓 can be solved using a GES scheme that hides even the length of the input, then 𝑓 must 

be in the class 𝑍𝑃𝑃. 

Proof.  Given a function 𝑓 computed in a GES scheme which hides everything about the input, including 

its length, we show that we can construct an algorithm in 𝑍𝑃𝑃 that can solve 𝑓. 

First, we select a fixed input 𝑧 from the domain of 𝑓. 
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We know that the encryption procedure runs in polynomial time (OBS 4), therefore there ∃ a 

polynomial 𝑝 such that ∀ 𝑘 ϵ 𝒦 valid for the input 𝑧, we have that 𝐸(𝑧, 𝑘) =  𝑦𝑘 and |𝑦𝑘| ≤ 𝑝(|𝑧|). 

We define the set 𝒴 = {𝑦 𝜖 𝐷𝑜𝑚𝑎𝑖𝑛(𝑓)| |𝑦| ≤ 𝑝(|𝑧|)}. Definitely, we have that 𝒴 is finite and that 

any possible encryption of 𝑧 must be in this set. 

Take 𝑥 any input for the function 𝑓. Because the protocol also needs to hide the size of 𝑥, then its 

encryption 𝑦 must lie in 𝒴. Otherwise, if |𝑦| > 𝑝(|𝑧|), then 𝐵 could infer some information about the 

length of 𝑥 (for instance that |𝑥| is different from |𝑧|).  

Now, as we know that the number of possible outcomes of 𝐸 is finite (less or equal than 𝑐𝑎𝑟𝑑(𝒴)) we 

can perform an initial computation [21](before the actual running of the algorithm), where we store 

in a table 𝑇 the values of 𝑓(𝑦) for any 𝑦 ϵ  𝒴. 

Then, the 𝑍𝑃𝑃 algorithm for solving 𝑓 is the following:  

Algorithm 𝑓(𝑥) { 

             Draw a key 𝑘 from 𝒦;   // this is the probabilistic part of the algorithm, as we might 

                                                            // select a key 𝑘 which is not valid for 𝑥, so there is a probability that     

                                                          // the final answer of this algorithm is “DO NOT KNOW” 

                                Compute 𝑦 = 𝐸(𝑥); 

                                Search the value of 𝑓(𝑦) in table 𝑇; 

                                Apply decryption 𝐷(𝑓(𝑦), 𝑘, 𝑥) = 𝑓(𝑥); 

} 

         □  

These 2 results show us that if GES can hide the length of the input, then the scheme can hide 

everything about it, but if we do not want to leak anything about the input, then the function must 

be in 𝒁𝑷𝑷 [16, 17]. 

Because this privacy constraint of hiding everything about the client’s data might be unnecessary and 

because it prevents any hard functions from being computed in the GES scenario, we will instead 

consider GES schemes that leak the size of the input, 𝐿(𝑥) = |𝑥|. 

Based on the proofs for the 𝑍𝑃𝑃 functions, we might be tempted to believe that the difficulty of 

encrypting functions using GES, grows with the difficulty of solving them. However, this is not the case, 

as illustrated by the next example. 

Example 4. We construct a function 𝑓 in the following manner: for each possible length 𝑛 of an input 

𝑥 we select a Turing Machine ℳ𝑛 whose encoding is a string 𝑠, such that |𝑠| = |𝑥| = 𝑛. 

Then 𝑓 is defined as: 

 𝑓(𝑥) = {
1,                  𝑖𝑓 ℳ|𝑥| ℎ𝑎𝑙𝑡𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑖𝑛𝑝𝑢𝑡𝑠

0,                                                                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Determining whether a 𝑇𝑀 halts on all inputs is known to be an undecidable problem [34](there does 

not exist any algorithm which can solve this decision problem). By the construction of 𝑓, we obtain 

that 𝑓 is also undecidable. 
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However, there exists a GES scheme which could solve 𝑓 and which leaks only the length of the input. 

The encryption function picks any random number 𝑦 from the domain of 𝑓 such that |𝑥|  =  |𝑦|. 

Then, 𝐵 would solve the problem for the input 𝑦, and the corresponding answer, 𝑓(𝑦), will be equal 

to the outcome for our input 𝑥 (because 𝑓(𝑥)  =  𝑓(𝑦) for any 𝑦 such that |𝑦|  =  |𝑥|).   

The presented counterexample indicates that if 𝑓(𝑥) can be written as a function of the length |𝑥|      

(∃ function ℎ such that 𝑓(𝑥) = ℎ(|𝑥|) ), then 𝑓  can be encrypted using a GES leaking 𝐿(𝑥) = |𝑥|. 

Therefore, in this case, no matter how hard is the function ℎ, 𝑓 can be solved using the GES protocol.

            □  

OBS 5:  This conclusion reveals the link between classes of problems solvable in the GES protocol and 

classes of problems solvable using advice functions.  

We remind that the advice function is an external information helping a machine to solve different 

problems, which does not depend on the value of the input, but only on its length [28]. For instance, 

𝑃/𝑝𝑜𝑙𝑦 is defined as the class of languages:  

𝐶 = {𝑥 | (𝑥, ℎ(|𝑥|))  𝜖 𝐴, 𝐴 𝜖 𝑃 𝑎𝑛𝑑 ℎ(𝑛)  ≤ 𝑝𝑜𝑙𝑦(𝑛) ∀ 𝑛}. 

Then, we observe that for every function 𝑓 such that  𝑓(𝑥) = ℎ(|𝑥|), we have that 𝑓 belongs to the 

class 𝑃/𝑝𝑜𝑙𝑦 [24]. This is because for any input 𝑥, the advice could directly give the value ℎ(|𝑥|), thus 

solving 𝑓. 

Using the result of Karp [20] which says that no 𝑁𝑃 − ℎ𝑎𝑟𝑑 problems can be solved by a 𝑃/𝑝𝑜𝑙𝑦 

machine, we obtain that if 𝑓 only depends on the length of its inputs and 𝑓 is 𝑁𝑃 − ℎ𝑎𝑟𝑑, then 𝑓 

cannot be solved using a GES protocol which leaks 𝐿(𝑥) = |𝑥|.  

 

Now, we want to move to the general case for any type of function 𝑓 and study the relation between 

encrypting 𝑓 and computing 𝑓 with the aid of an external advice. 

 

We have the following crucial result of Abadi [16]: 

MAIN THEOREM 1: If a function 𝒇 can be solved using a GES scheme which leaks the size of the input, 

then: 𝒇 𝝐 𝑵𝑷/𝒑𝒐𝒍𝒚 ⋂ 𝒄𝒐𝑵𝑷/𝒑𝒐𝒍𝒚. 

 

Basic case. We begin our proof from a simpler scenario of GES:  

- 1 round of communication between 𝐴 and 𝐵 in which 𝐴 sends 𝑦 = 𝐸(𝑥, 𝑘), 𝐵 computes 𝑓(𝑦) 

and returns it to 𝐴 and finally, 𝐴 decrypts 𝑓(𝑦) and obtains 𝑓(𝑥). 

We can define the following algorithm in 𝑁𝑃/𝑝𝑜𝑙𝑦 which computes the function 𝑓. 

For any possible length 𝑛 we consider the input string 0𝑛 and choose a valid key 𝑘𝑛 for 0𝑛. 

The advice can be any kind of information which could help an algorithm solve 𝑓, as long as it is the 

same piece of data for all inputs of the same length. Therefore, for the length 𝑛 we define the advice 

as the pair (𝑢𝑛, 𝑣𝑛), where 𝑢𝑛 = 𝐸(0𝑛, 𝑘𝑛) and 𝑣𝑛 = 𝑓(𝑢𝑛). 
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Then, the nondeterministic algorithm using this advice is the following [16]: 

𝑓(𝑥){ 

from the advice function we receive the pair (𝑢𝑛, 𝑣𝑛) where 𝑛 = |𝑥|; 

 𝑘 = choice from the space of keys, 𝒦, such that 𝐸(𝑥, 𝑘) = 𝑢𝑛; // the nondeterministic step 

 apply the decryption function 𝐷(𝑣𝑛 , 𝑘, 𝑥) = 𝑓(𝑥) ; 

} 

The correctness of this algorithm is guaranteed by the fact that we can find a key 𝑘 such that 𝐸(𝑥, 𝑘) 

= 𝐸(0𝑛, 𝑘𝑛). This is due to the fact that since the encryption function leaks only the input size, then 

for any inputs 𝑥1, 𝑥2 such that |𝑥1| = |𝑥2|, there exist 2 keys 𝑘1, 𝑘2 such that 𝐸(𝑥1, 𝑘1) = 𝐸(𝑥2, 𝑘2). 

            □  

Now, we can advance to the general GES scenario. The main issue in this case is not the fact 

that there are multiple rounds of interaction between 𝐴 and 𝐵, but that the final result 𝐴 obtains is 

𝑓(𝑥) only with some probability 𝑝 = (
1

2
+ 

1

|𝑥|𝑐
). Showing that 𝑓  can be solved by an 𝑁𝑃 algorithm 

using advice, implies we must always get the correct answer 𝑓(𝑥) [17]. 

DEFINITION 5.1:  We define a transcript 𝑡 as the set of pairs of messages exchanged between 𝐴 and 𝐵 

during the GES protocol, 𝑡 = [(𝑎1, 𝑏1), (𝑎2, 𝑏2), …,(𝑎𝑚, 𝑏𝑚)]. 

The final result derived by 𝐴 is based on the input 𝑥, a key 𝑘 (chosen by 𝐴 at the beginning of the 

protocol) and the transcript 𝑡 denoting the actual communication between 𝐴 and 𝐵. Therefore, this 

outcome is a function of 𝑥, 𝑘 and 𝑡, 𝑜𝑢𝑡 = 𝐹(𝑥, 𝑘, 𝑡) and from the definition of GES we know that 

𝑜𝑢𝑡 = 𝑓(𝑥) with probability 𝑝.  

We can associate for every input 𝑥, a distribution of possible transcripts 𝑡. As the encryption hides 

everything but the length of 𝑥, this probability distribution of transcripts is equal for all inputs of the 

same size. Therefore, for every possible length 𝑛  of the input, we have a corresponding random 

variable 𝑻𝒏 representing the transcript distribution [34]. 

Below, we are going to make some additional notations which will help us during the proof. 

DEFINITION 5.2:  We call a transcript 𝑡 suitable for a given input 𝑥 and a key 𝑘 if there is a strictly greater 

than 0 probability that the actual communication between 𝐴 and 𝐵, is equal to 𝑡, given 𝑥 and 𝑘. 

DEFINITION 5.3:  𝒌𝒙,𝒕 is the set of keys 𝑘𝑖 such that the transcript 𝑡 is suitable for 𝑥 and 𝑘𝑖. Verifying that 

a key belongs to this set can be done in polynomial time: we fix 𝐵’s responses exactly as they appear 

in transcript 𝑡, then compute 𝐴’s behaviour given the key 𝑘, input 𝑥 and 𝐵′s responses and lastly, 

verify if 𝐴′𝑠 messages match the set (𝑎1, …, 𝑎𝑚) from 𝑡. 

DEFINITION 5.4:  Thus, we say that a key 𝑘 is good for an input 𝑥 and a transcript 𝑡, if 𝑘 ϵ 𝑘𝑥,𝑡 and the 

final result obtained by 𝐴, 𝑜𝑢𝑡 = 𝐹(𝑥, 𝑘, 𝑡), is equal to 𝑓(𝑥); 𝒌𝒈𝒙,𝒕 is the set of good keys, while the 

rest of the keys, which we call wrong keys, are in the set 𝒌𝒘𝒙,𝒕. 

Looking back at the previous proof for the Basic case  (with 1 round of communication between 𝐴 and 

𝐵), we notice that the advice consisted of the pair (𝑦, 𝑓(𝑦)), which can be seen as a transcript with 

only 2 messages. In the general case of GES, we intend to determine a set 𝑆 = {𝑡1, … , 𝑡𝑙} containing a 
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polynomial number of well-chosen transcripts such that 𝑆  will be used as the advice to a 

nondeterministic machine in order to compute 𝑓(𝑥).  

While in the Basic case, the nondeterministic step was the choice of 𝑘  which led us to the same 

encryption 𝑢𝑛 for all inputs of size 𝑛, in the general GES scenario the nondeterministic computation 

will be represented by some choices of keys 𝑘 from the sets of good keys 𝑘𝑔𝑥,𝑡𝑖, where 𝑡𝑖 ϵ 𝑆. 

Suppose the advice 𝑆 would consist of only one transcript 𝑡. Then, we must be able to find a key 𝑘𝑖 

such that for any input 𝑥, 𝑘𝑖 is good for (𝑥, 𝑡). But there might be the case that using the same key 𝑘𝑖  

for any 𝑥, would not always generate the same transcript 𝑡 [32]. Therefore, we need to consider more 

than just one transcript for 𝑆. 

 

Now we must determine which transcripts should be chosen as advice.  

The key used by the 𝐴  along the entire protocol is the outcome of the random key-generation 

procedure 𝑘( ) which runs in polynomial time. As 𝑘( ) is a randomized algorithm (𝑘( ) 𝜖 𝑍𝑃𝑃), it uses 

an additional tape consisting of an infinite row of random bits. Thus, 𝑘( ) can be perceived as a 

deterministic procedure which receives 2 inputs: 𝑥 and 𝑤, where 𝑤 is comprised of random bits from 

that extra tape [17, 20]. 

We examine the case when this key-generation primitive 𝑘( ) has only a finite number of random bits 

which it can access and consider this number to be polynomial in 𝑛, 𝒓(𝒏). 

DEFINITION 5.5: For every choice of the polynomial 𝒓, we obtain a new reduced GES 𝑮𝒓 [16], created 

from the original GES 𝐺 . Consider 𝑘𝑟( )  the new key generation function that uses exactly 𝑟(𝑛) 

random bits for every 𝑥 of size 𝑛. Then, the reduced GES 𝐺𝑟 is defined in the following way: 

Given an input 𝑥, 𝑘𝑟( ) produces a key 𝑘′. Then, the bits of 𝑘′ will be used as a tape for the key-

generation procedure of 𝐺 , 𝑘( ). After 𝑘( ) returns a key 𝑘, 𝐺𝑟  just replicates the behaviour of 𝐺 . 

Essentially, we do not alter the algorithm of 𝑘( ), we just restrict the size of the domain for 𝑘( ).  

Therefore, 𝐺𝑟 should give us the same final answer we would have obtained if we used 𝐺. 

However, the key-generation procedure of 𝐺 𝑘( ), might require more than 𝑟(𝑛) random bits and in 

this case 𝐺𝑟 would stop and we would not have any transcript at all. 

We describe the probability of this event happening as:  

DEFINITION 5.6.  𝑏𝑟𝑒𝑎𝑘𝑟(𝑥, 𝑡) = 𝑃(𝑘( ) 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 𝑟(𝑛) 𝑏𝑖𝑡𝑠 | 𝑇𝑛 = 𝑡 𝑎𝑛𝑑 𝑋 = 𝑥). 

DEFINITION 5.7. We denote 𝐵𝑟𝑒𝑎𝑘𝑟(𝑥) as the expected value of 𝑏𝑟𝑒𝑎𝑘𝑟(𝑥, 𝑡) over the distribution of 𝑡 

Hence, 𝐵𝑟𝑒𝑎𝑘𝑟(𝑥) defines the probability that the reduced 𝐺𝑟  cannot deliver any transcript for an 

input 𝑥, if we only allow 𝑟(|𝑥|) random bits to 𝑘( ). 

To analyse how appropriate is a transcript to be used as advice, we need to consider the following 

indicators: 

𝒇𝒂𝒊𝒍(𝒙, 𝒕) = 𝑃(𝐺 𝑜𝑏𝑡𝑎𝑖𝑛𝑠 𝑎 𝑟𝑒𝑠𝑢𝑙𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑓(𝑥) |  𝑇𝑛 = 𝑡 𝑎𝑛𝑑 𝑋 = 𝑥)  

𝒇𝒂𝒊𝒍𝒓(𝒙, 𝒕) = 𝑃(𝐺 𝑜𝑏𝑡𝑎𝑖𝑛𝑠 𝑎 𝑟𝑒𝑠𝑢𝑙𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑓(𝑥) |  𝑇𝑛 = 𝑡 𝑎𝑛𝑑 𝑋 = 𝑥 𝑎𝑛𝑑                      

 𝑘( ) 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑠 𝑛𝑜 𝑚𝑜𝑟𝑒 𝑡ℎ𝑎𝑛 𝑟(𝑛) 𝑏𝑖𝑡𝑠) 

     = 𝑃(𝐺𝑟 𝑜𝑏𝑡𝑎𝑖𝑛𝑠 𝑎 𝑟𝑒𝑠𝑢𝑙𝑡 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑓𝑟𝑜𝑚 𝑓(𝑥) | 𝑇𝑛 = 𝑡 𝑎𝑛𝑑 𝑋 = 𝑥) 
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We observe that 𝑓𝑎𝑖𝑙𝑟(𝑥, 𝑡) = 1 if 𝐺  returns the correct answer only when 𝑘( ) needs more than 

𝑟(𝑛) bits.           (1) 

We use the conditional probability relation [34]: 𝑃(𝑈 | 𝑉,𝑊) =
𝑃(𝑈,𝑊,𝑉)

𝑃(𝑊,𝑉)
= 

𝑃(𝑈,𝑊 |𝑉)⋅𝑃(𝑉)

𝑃(𝑊|𝑉)⋅𝑃(𝑉)
= 

𝑃(𝑈,𝑊|𝑉)

𝑃(𝑊|𝑉)
. 

If we make the substitutions: 𝑈 = "𝐺 obtains the wrong result”,  𝑉 = “ 𝑇𝑛 = 𝑡 𝑎𝑛𝑑 𝑋 = 𝑥” and 𝑊 =

"𝑘()  uses at most 𝑟(𝑛)  bits”, we obtain that: 𝑓𝑎𝑖𝑙𝑟(𝑥, 𝑡)  = 𝑃(𝑈 | 𝑉,𝑊) , 𝑏𝑟𝑒𝑎𝑘𝑟(𝑥, 𝑡)  =

 1 –  𝑃(𝑊 | 𝑉) and 𝑓𝑎𝑖𝑙(𝑥, 𝑡)  =  𝑃(𝑈 | 𝑉). Therefore, we have: 

𝑓𝑎𝑖𝑙𝑟(𝑥, 𝑡) =  
𝑃(𝑈,𝑊 | 𝑉)

1− 𝑏𝑟𝑒𝑎𝑘𝑟(𝑥,𝑡)
≤ 

𝑓𝑎𝑖𝑙(𝑥,𝑡)

1− 𝑏𝑟𝑒𝑎𝑘𝑟(𝑥,𝑡)
 (we used (1) for the inequality)   (2) 

The choice for a transcript 𝑡 will be made using the following evaluation: 

DEFINITION 5.8: We say a transcript 𝑡 is reliable for an input 𝑥 if it satisfies the conditions:    

 𝑖) 𝑓𝑎𝑖𝑙𝑟(𝑥, 𝑡) <  
1

2𝑛
    𝑖𝑖) 𝑏𝑟𝑒𝑎𝑘𝑟(𝑥, 𝑡) <  

1

10
 ; 

The 2 values 
1

2𝑛
 and 

1

10
 just indicate that the 2 probabilities representing failures of the 𝐺𝐸𝑆 scheme, 

are close to 0 [21, 34]. 

We can rewrite these conditions using inequality (2) and thus, we obtain that 𝑡 is reliable when: 

{
 

 
𝑓𝑎𝑖𝑙(𝑥, 𝑡)

1 − 𝑏𝑟𝑒𝑎𝑘𝑟(𝑥, 𝑡)
<

1

2𝑛
 

𝑏𝑟𝑒𝑎𝑘𝑟(𝑥, 𝑡) <  
1

10

⇔ {
𝑓𝑎𝑖𝑙(𝑥, 𝑡) <  

9

10 ⋅  2𝑛

𝑏𝑟𝑒𝑎𝑘𝑟(𝑥, 𝑡) <  
1

10

 

The reason why we consider these reduced versions of GES (where we restrict the number of 

random bits available for 𝑘( )) is because they allow us to achieve new GES schemes with a lower 

failure rate, as we shall later see. But before that, we need to make some notations for the reduced 

𝐺𝑟, exactly as we had for the general GES: 𝒌𝒙,𝒕
𝒓  = {𝑘| 𝑡 is suitable for 𝑥 and 𝑘}, 𝒌𝒈𝒙,𝒕

𝒓  - the good keys 

for an input 𝑥 and transcript 𝑡 and 𝒌𝒘𝒙,𝒕
𝒓  - the wrong keys (which do not lead to a correct answer). 

Now, we can use the properties of reduced GES to formulate the following relations: 

We remind that 𝑘𝑟( ) generates equally probable keys all of length 𝑟(|𝑥|). 

 𝑃(𝑇𝑛 = 𝑡 | 𝑋 = 𝑥) can be computed as the number of keys 𝑘 such that from (𝑘, 𝑥) we obtain the 

transcript 𝑡, divided by the total number of keys 𝑘 generated by 𝑘𝑟( ):    

𝑃(𝑇𝑛 = 𝑡 | 𝑋 = 𝑥) =  
|𝑘𝑥,𝑡

𝑟 |

2𝑟(|𝑥|)
 

 1 - 𝑏𝑟𝑒𝑎𝑘𝑟(𝑥, 𝑡) = 𝑃(𝑘( ) 𝑢𝑠𝑒𝑠 𝑙𝑒𝑠𝑠 𝑡ℎ𝑎𝑛 𝑟(𝑛) 𝑏𝑖𝑡𝑠 | 𝑋 = 𝑥 𝑎𝑛𝑑 𝑇𝑛 = 𝑡) which can be computed 

as the number of keys 𝑘 of size less than 𝑟(𝑛) such that (𝑘, 𝑥) can generate 𝑡, divided by the total 

number of keys which along with 𝑥 can produce 𝑡 ⇒   1 − 𝑏𝑟𝑒𝑎𝑘𝑟(𝑥, 𝑡) =  
|𝑘𝑥,𝑡

𝑟 |

|𝑘𝑥,𝑡|
 

 𝑓𝑎𝑖𝑙𝑟(𝑥, 𝑡) – can be computed as the ratio between the number of wrong keys and the total 

number of keys which along with 𝑥 can generate 𝑡 ⇒   𝑓𝑎𝑖𝑙𝑟(𝑥, 𝑡) = 
|𝑘𝑤𝑥,𝑡

𝑟 |

|𝑘𝑥,𝑡
𝑟 |

   (3) 

Using these definitions and the fact that 𝐺𝑟 hides everything but the input length, we obtain that for 

any 2 inputs 𝑥 and 𝑥′ such that |𝑥| = |𝑥’|, we have the following property: 

𝑃(𝑇𝑛=𝑡 | 𝑋=𝑥)

𝑃(𝑇𝑛=𝑡 | 𝑋=𝑥′)
=

|𝑘𝑥,𝑡
𝑟 |

|𝑘𝑥′,𝑡
𝑟 |

=
1 − 𝑏𝑟𝑒𝑎𝑘𝑟(𝑥,𝑡)

1 − 𝑏𝑟𝑒𝑎𝑘𝑟(𝑥′,𝑡)
                                   (4) 



32 
 

What we want is to ensure that we can reduce the probability that a GES gives an incorrect answer 

for 𝑓(𝑥), to a minimum, as close to 0 as possible, irrespective of the transcript between 𝐴 and 𝐵. 

 

We can show the following important result [16]: 

THEOREM 10.1 :  From any GES 𝐺 we can construct a reduced GES 𝐺𝑟, such that 𝐺𝑟 satisfies the following 

2 conditions: 

1)   𝐸(𝑓𝑎𝑖𝑙(𝑥, 𝑇𝑛))  <  
1

2𝑑⋅𝑛
    and     2)   𝐵𝑟𝑒𝑎𝑘𝑟(𝑥)  <  

1

𝑛𝑑
 ∀𝑑 constant 

Proof. Given the GES definition, we know that for any GES, there exists a constant 𝑐  such that 

𝐸(𝑓𝑎𝑖𝑙(𝑥, 𝑇𝑛)) < 
1

2𝑐⋅𝑛
. Thus, we only need to show that the 2 properties hold for any constant 𝑑 > 𝑐. 

Furthermore, because 𝑘( ) must run in expected polynomial time [22], there exists a polynomial 𝑞 

such that for any input 𝑥 the expected number of bits required by 𝑘( ) is less than the value of 𝑞(|𝑥|). 

 Then, we consider the reduced GES 𝐺𝑧, where the polynomial 𝑧 is defined as 𝑧(𝑛) =  𝑛𝑑 ⋅ 𝑞(𝑛). 

If we denote by 𝑍 the random variable [28] indicating the number of bits required by the function 𝑘( ), 

we obtain that the quantity 𝐵𝑟𝑒𝑎𝑘𝑧(𝑥) associated with the scheme 𝐺𝑧 is equal to the probability that 

𝑘( ) requires more than 𝑧(𝑛) bits, which is 𝑃(𝑍 > 𝑧(𝑛)). 

We have the following probability theory known result [34]: for any random positive variable 𝑋 and 

for any positive real number 𝑡: 𝑃(𝑋 > 𝑡) ≤
𝐸(𝑋)

𝑡
.             (5)            

Writing this relation for our case, we have that: 𝐵𝑟𝑒𝑎𝑘𝑧(𝑥) = 𝑃(𝑍 > 𝑧(𝑛)) ≤
𝐸(𝑍(𝑥))

𝑧(𝑛)
. But, by the 

definition of 𝑞, 𝐸(𝑍(𝑥)) = 𝑞(𝑛), so we reach the inequality: 𝐵𝑟𝑒𝑎𝑘𝑍(𝑥) ≤
𝑞(𝑛)

𝑞(𝑛)⋅𝑛𝑑
=

1

𝑛𝑑
. 

The probability that 𝐺𝑧 outputs a wrong outcome is by definition 
1

2
−

1

𝑛𝑐
 [16]. Therefore, we obtain 

𝑃(𝐺𝑧 𝑏𝑟𝑒𝑎𝑘𝑠 𝑜𝑟 𝑤𝑟𝑜𝑛𝑔 𝑜𝑢𝑡𝑝𝑢𝑡) =
1

2
−

1

𝑛𝑐
+

1

𝑛𝑑
  and because 𝑑 > 𝑐: 

𝑃(𝐺𝑧 𝑏𝑟𝑒𝑎𝑘𝑠 𝑜𝑟 𝑤𝑟𝑜𝑛𝑔 𝑜𝑢𝑡𝑝𝑢𝑡𝑠 ) <
1

2
 .  

Hence, if we simulate the reduced GES 𝐺𝑧 𝒎 = 𝒅 ⋅ 𝒏 times and choose the answer which appears with 

the highest frequency in these runs, then this probability becomes less than 
1

2
⋅ … ⋅

1

2
= 

1

2𝑑𝑛
. 

Using 𝐺𝑠, we construct a new reduced GES 𝐺𝑟 which respects the 2 conditions of THEOREM 10.1.  

We set 𝑟 such that 𝑟(𝑛) = 𝑧(𝑛) ⋅ 𝑚 ∀𝑛. 

 The key-generation primitive 𝑘𝑟( ) runs the key-generation procedure of 𝐺𝑧 𝑚 times, thus resulting 

a set of 𝑚 keys: 𝑘1, … , 𝑘𝑚. For each of these keys we essentially have a different run of a GES protocol, 

therefore, we obtain 𝑚 different transcripts at the end of which by applying the decryption algorithm 

of 𝐴, will result 𝑚 final outcomes (as candidates for 𝑓(𝑥)). Then, we can choose as our solution for 

𝑓(𝑥) the outcome with the highest frequency amongst these 𝑚 results [30]. 

This new defined scheme 𝐺𝑟 respects the settings of a GES, so now we need to check if it really satisfies 

the 2 conditions imposed by THEOREM 10.1. We have already shown that if we run the 𝐺𝑧 scheme 𝑚 =

𝑑 ⋅ 𝑛 times we obtain that  𝑃(𝑓𝑎𝑖𝑙(𝑥, 𝑇𝑛)) <  
1

2𝑑⋅𝑛
, so condition 1) is achieved. 
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 Additionally, the break probability of 𝐺𝑟 is equal to the probability that all 𝑚 runs of 𝐺𝑠 break and we 

saw that this probability is less than 
1

𝑛𝑑
. This concludes that condition 2) is also true, so we have 

constructed a GES 𝐺𝑟 originating from 𝐺, which satisfies both 1) and 2).  □  

 

As 𝐺 was any arbitrary GES, this means that for every GES we can use this algorithm to obtain a new 

GES with the properties that: 𝒂) 𝐸(𝑓𝑎𝑖𝑙(𝑥, 𝑇𝑛)) < 
1

2𝑑⋅𝑛
  and 𝒃) 𝐵𝑟𝑒𝑎𝑘𝑟(𝑥) < 

1

𝑛𝑑
 for any constant 𝑑. 

Therefore, we can assume that from now one we will work with a GES 𝐺 with these 2 properties. 

 

Now from this type of GES 𝐺 we show the following theorem [16]: 

THEOREM 10.2: There exists a fixed value 𝑒 and a number 𝑁, such that ∀𝑛 > 𝑁 we can find a set 𝑆𝑛 

consisting of 𝑛𝑒 transcripts, where more than a half of the transcripts are reliable for any input 𝑥 of 

length 𝑛. 

Proof.   We can intuit that from this set 𝑆𝑛 we would derive our advice, as most of the transcripts in 

𝑆𝑛 are reliable for all inputs. We remind that a transcript 𝑡 is reliable (DEFINITION 5.7) when 𝑓𝑎𝑖𝑙(𝑥, 𝑡) <

 
9

10⋅ 2𝑛
 and 𝑏𝑟𝑒𝑎𝑘(𝑥, 𝑡) <  

1

10
. 

Let’s first consider any possible transcript we could have for 𝐺 . We randomly choose any such 

transcript 𝑡 and analyse the probability that 𝑡 is not reliable. 

From property 𝒃) of 𝐺 we know that 𝐸(𝐵𝑟𝑒𝑎𝑘(𝑥)) <  
1

𝑛𝑑
  ∀𝑑 .We can choose 𝑑 = 2, so we obtain: 

𝐸(𝐵𝑟𝑒𝑎𝑘(𝑥)) <
1

1000
  for any 𝑛 > 𝑁 = √1000. 

Using the inequality (5) we have that 𝑃 (𝑏𝑟𝑒𝑎𝑘(𝑥, 𝑡) >
1

10
) ≤

𝐸(𝐵𝑟𝑒𝑎𝑘𝑟(𝑥))
1

10

≤
1

100
. 

Similarly, from property 𝒂) of 𝐺, we get that 𝐸(𝑓𝑎𝑖𝑙(𝑥, 𝑇𝑛)) < 
1

2𝑑⋅𝑛
 ∀𝑑. When 𝑑 = 2, we obtain: 

𝐸(𝑓𝑎𝑖𝑙(𝑥, 𝑇𝑛)) <
1

22𝑛
 ∀𝑛. 

Again, by applying inequality (5) we reach that 𝑃 (𝑓𝑎𝑖𝑙(𝑥, 𝑡) >  
9

10⋅ 2𝑛
) ≤

𝐸(𝑓𝑎𝑖𝑙(𝑥,𝑡))
9

10⋅2𝑛

≤
10

9⋅2𝑛
≤

1

100
   

This means that the probability that 𝑡 is not reliable for 𝑥 is less than 
1

100
+

1

100
, so the actual 

probability that 𝑡 is reliable for any 𝑥, 𝑃(𝑡 𝑖𝑠 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒) > 1 −
2

100
=

98

100
 

Now, if we have a set of 𝑘 independent transcripts 𝑡𝑖, we would like to see what is the probability 𝑃𝑟 

that less than half of them are reliable for any input 𝑥. (by looking at what THEOREM 10.2 requests, we 

want this probability to be as close to 0 as possible). 

 We can view 𝑃𝑟 as the discrete probability of the number of acceptances in a row of 𝑘 independent 

yes-no trials (yes = 𝑡𝑖 is reliable, no = 𝑡𝑖 is unreliable), each being accepted a probability 𝑝 (in our case 

𝑝 =
98

100
). In this way, we modelled the probability 𝑃𝑟 as a binomial distribution [34], so we have that:  

𝑃𝑟 = 𝑃 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠 𝑓𝑜𝑟 𝑥 <
𝑘

2
) = 𝐹(

𝑘

2
, 𝑘, 𝑝) , where 𝐹  is the cumulative 

distribution function for the binomial distribution [28]. 
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Using Chernoff’s inequality [21, 34] stating that: 𝐹(𝑚, 𝑛, 𝑝) ≤ 𝑒𝑥𝑝(−
1

2𝑝
⋅
(𝑛𝑝−𝑚)2

𝑛
), we obtain: 

𝑃 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠 𝑓𝑜𝑟 𝑥 <
𝑘

2
) < exp(−

1

2 ⋅
98
100

⋅
(
98𝑘
100

−
𝑘
2
)
2

𝑘
) =

1

2𝑂(𝑘)
 

Therefore, for a set 𝑆 of 𝑘 = 𝑛𝑒 transcripts,  𝑒 ≥ 1 constant, this probability is less than 
1

2𝑂(𝑛
𝑒) <

1

2𝑛
. 

But as there are 2𝑛 possible inputs of length 𝑛, when we cumulate this probability for every  input  we 

reach that :  𝑃 (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑙𝑖𝑎𝑏𝑙𝑒 𝑡𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑠 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 <
|𝑆|

2
) < 2𝑛 ⋅

1

2𝑛
= 1.  

Then, since the probability is strictly less than 1, this means that there must exist a set  𝑆𝑛 satisfying 

the conditions mentioned in THEOREM 10.2.  □  

 

OBS 6:  We make the next important observation: for any reliable transcript 𝑡 from 𝑆𝑛  we have an 

associated set of keys 𝑘 which could produce 𝑡, namely 𝑘(𝑥, 𝑡). But, in order to reach the correct 

result 𝑓(𝑥), we need to make a distinction between the subsets of good keys (the ones that lead to 

𝑓(𝑥)) and the set of wrong keys (the ones which lead to an incorrect answer). Then, we could use the 

good keys corresponding to the reliable transcript 𝑡, as part of the external advice to solve 𝑓(𝑥) in 𝑁𝑃. 

This separation between good and wrong keys is achieved through the use of Universal Hashing [35].  

DEFINITION 5.9: Universal hashing can be described as follows: we have 𝐻, a set of independent hash 

functions that map elements from any set 𝑆  to the set 𝑇 = {0,… ,𝑚 − 1} . 𝐻  has the important 

property that by randomly choosing any function ℎ from 𝐻, we have a small number of collisions:          

𝑃(ℎ(𝑎) = ℎ(𝑏)) <
1

𝑚
  ∀𝑎, 𝑏 𝜖 𝑆. 

In our case we use the universal hashing 𝐻 to map keys of 𝐺 to the set 𝑇 = {0,… ,𝑚 − 1}. 

Consequently, using the collision property of 𝐻 [35], we have that for a subset of 𝑝 keys, {𝑘1, … , 𝑘𝑝} 

and ℎ 𝜖 𝐻, the probability that all 𝑝 keys are mapped to exactly the same value is: 

 𝑃 (ℎ(𝑘1) = ⋯ = ℎ(𝑘𝑝)) =
1

𝑚
⋅
1

𝑚
⋅ … ⋅

1

𝑚
 =

1

𝑚𝑝−1 .  

DEFINITION 5.10:  We name a set of keys 𝐿 = {𝑘1, … , 𝑘𝑝} for which we have ℎ(𝑘1) =  … = ℎ(𝑘𝑝), a 

(ℎ, 𝑝)-collision set. 

The separation mentioned before, between good and wrong keys is based on the following result [16]: 

THEOREM 10.3 For any transcript 𝑡 there exist 2 numbers 𝑚 and 𝑝 and a function ℎ ϵ 𝐻 such that: 

(A) The set of good keys 𝑘𝑔𝑥,𝑡 includes a (ℎ, 𝑝)-collision set, for any 𝑥 such that 𝑡 is reliable for 𝑥; 

(B) The set of wrong keys 𝑘𝑤𝑥,𝑡  cannot include any (ℎ, 𝑝)-collision sets, for any 𝑥  such that 𝑡  is 

reliable for 𝑥; 

Proof.   We notice that if the number of good keys, |𝑘𝑔𝑥,𝑡| is larger than 𝑝 ⋅ 𝑚, then any hash function 

ℎ must map at least 𝑝 ⋅ 𝑚 keys to the 𝑚 elements of 𝑇 [34]. In this case, there needs to exist at least 

𝑝 keys such that ℎ maps them to the same element of 𝑇, which would result in a (ℎ, 𝑝)-collision set. 

To satisfy the (B) condition we must analyse the probability that for any randomly chosen ℎ 𝜖 𝐻, ℎ can 

produce a (ℎ, 𝑝) – collision set. After that, we determine values for 𝑚 and 𝑝 such that this probability 

is strictly less than 1. 

p - 1 
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Consider the class of all sets of wrong keys 𝑘𝑤𝑥𝑖,𝑡 corresponding to a 𝑥𝑖 such that t is reliable for 𝑥𝑖. 

We set 𝑈 to be the maximum of the cardinalities of these sets. 

For a given 𝑥𝑖, we can choose a subset of 𝑝 keys from a maximum number of 𝑈 keys in (𝑈
𝑝
) ways.  

The probability that any of these subsets could form a (ℎ, 𝑝)-collision set becomes (𝑈
𝑝
) ⋅  

1

𝑚𝑝−1 (by the 

definition of 𝐻). 

As the total number of inputs 𝑥𝑖, such that 𝑡 is reliable for them, is at most 2𝑛 ,we obtain that the 

probability of having a (ℎ, 𝑝) – collision set containing only wrong keys from 𝑘𝑤𝑥𝑖,𝑡 is less than  

(𝑈
𝑝
) ⋅  

1

𝑚𝑝−1 ⋅ 2
𝑛.  

This means that we need to find values for 𝑝 and 𝑚 such that this quantity is strictly less than 1. 

Using Stirling’s formula [21] we have that 𝑀 = (𝑈
𝑝
) ⋅

1

𝑚𝑝−1 ⋅ 2
𝑛 < (

𝑒𝑈

𝑝
)
𝑝
⋅  

1

𝑚𝑝−1 ⋅ 2
𝑛  = 𝑚 ⋅ 2𝑛 ⋅ (

𝑒𝑈

𝑝𝑚
)
𝑝
   

By setting the value of 𝑚 such that 𝑒𝑈 < 𝑚 < 2𝑒𝑈, we obtain that 𝑀 < 2𝑛 ⋅ 2𝑒𝑈 ⋅
𝑚𝑝

𝑝𝑝⋅𝑚𝑝 =
2𝑛+1𝑒𝑈

𝑝𝑝
. 

Because every key 𝑘 must be of polynomial size, there exists a constant 𝑞 such that 𝑘 < 𝑛𝑞. Then, 

since 𝑈 is a subset of all the possible keys, we have 𝑈 < 2𝑛
𝑞
. 

Therefore, 𝑀 < 
𝑒⋅2𝑛+1+𝑛

𝑞

𝑝𝑝
. Now, we just need to set the value of 𝑝 such that 𝑀 is always strictly less 

than 1: 

 
𝑒⋅2𝑛+1+𝑛

𝑞

𝑝𝑝
 < 1 ⇔ 2𝑛

𝑞+𝑛+1+𝑒𝑙𝑜𝑔(𝑒)−𝑝𝑙𝑜𝑔(𝑝) < 1 . So, by setting 𝑝 = 𝑛𝑞+1we have satisfied condition (B). 

We observed before that in order to meet condition (A) we must make sure that |𝑘𝑔𝑥,𝑡| > 𝑝 ⋅ 𝑚. 

To verify this we use the relation (4) which specifies that for any 2 inputs 𝑥, 𝑥′ we have: 

 
|𝑘𝑥,𝑡|

|𝑘𝑥′,𝑡|
= 

1 − 𝑏𝑟𝑒𝑎𝑘(𝑥,𝑡)

1 − 𝑏𝑟𝑒𝑎𝑘(𝑥′,𝑡)
. 

We choose 𝑥 and 𝑥′ in the following way: 

- 𝑥 is the input 𝑥𝑖 such that 𝑡 is reliable for 𝑥𝑖 and the corresponding set of keys 𝑘𝑥𝑖,𝑡, has the 

property that: |𝑘𝑥𝑖,𝑡| = min
𝑥𝑗

|𝑘𝑥𝑗,𝑡| 

- 𝑥′ is the input 𝑥𝑖 such that 𝑡 is reliable for 𝑥𝑖 and the corresponding set of keys 𝑘𝑥𝑖,𝑡, has the 

property that: |𝑘𝑥𝑖,𝑡| = max
𝑥𝑗

|𝑘𝑥𝑗,𝑡| 

Then, relation (4) becomes:  
min
𝑥𝑗

|𝑘𝑥𝑗,𝑡|

max
𝑥𝑗

|𝑘𝑥𝑗,𝑡|
= 

1 − 𝑏𝑟𝑒𝑎𝑘(𝑥,𝑡)

1 − 𝑏𝑟𝑒𝑎𝑘(𝑥′,𝑡)
 , which is equivalent to:                                                     

min
𝑥𝑗

|𝑘𝑥𝑗,𝑡| = 
max
𝑥𝑗

|𝑘𝑥𝑗,𝑡|⋅ (1 − 𝑏𝑟𝑒𝑎𝑘
(𝑥,𝑡))

1 − 𝑏𝑟𝑒𝑎𝑘(𝑥′,𝑡)
≥ max

𝑥𝑗
|𝑘𝑥𝑗,𝑡| ⋅  (1 −  𝑏𝑟𝑒𝑎𝑘(𝑥, 𝑡)) 

Additionally, we know that for any transcript 𝑡 of 𝐺 we have that 𝑏𝑟𝑒𝑎𝑘(𝑥, 𝑡) <
1

10
 , thus we obtain: 

min
𝑥𝑗

|𝑘𝑥𝑗,𝑡| >
9⋅max

𝑥𝑗
|𝑘𝑥𝑗,𝑡|

10
. By making the notation 𝑉 = max

𝑥𝑗
|𝑘𝑥𝑗,𝑡|, the inequality becomes: min

𝑥𝑗
|𝑘𝑥𝑗,𝑡| >

9⋅𝑉

10
. 
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Now, the quantity we are interested in, |𝑘𝑔𝑥,𝑡| is the difference between the total number of keys and 

the number of wrong keys: 

 |𝑘𝑔𝑥,𝑡| =  |𝑘𝑥,𝑡| − |𝑘𝑤𝑥,𝑡| ≥  min
𝑥𝑗

|𝑘𝑥𝑗,𝑡| − max𝑥𝑗
|𝑘𝑤𝑥𝑗,𝑡| = min

𝑥𝑗
|𝑘𝑥𝑗,𝑡| − 𝑈 >

9⋅𝑉

10
− 𝑈   

Using that 𝑓𝑎𝑖𝑙(𝑥, 𝑡) <
1

2𝑛
 and relation (3) we get that:   

𝑈

𝑉
< 

|𝑘𝑤𝑥,𝑡|

|𝑘𝑥,𝑡|
<

1

2𝑛
. 

Therefore, |𝑘𝑔𝑥,𝑡| >
9⋅2𝑛⋅𝑈

10
− 𝑈 = 𝑈(

9⋅2𝑛

10
− 1).From 𝑒𝑈 < 𝑚 < 2𝑒𝑈, we finally reach:                       

|𝑘𝑔𝑥,𝑡| >
𝑚

2𝑒
⋅  (

9⋅2𝑛

10
− 1) > 𝑝𝑚, which is exactly what we wanted to show.   □  

We now discuss the implications of THEOREM 10.3.  

OBS 7:  Consider any reliable transcript 𝑡 selected from 𝑆𝑛 and 𝐶 a (ℎ, 𝑝)-collision set as constructed 

above. THEOREM 10.3 tells us there are 2 possibilities:  

i) either the set of good keys corresponding to 𝑡 contains the subset 𝐶 of 𝑝 keys all mapped 

by ℎ to the same value or  

ii) 𝐶 contains both good keys and wrong keys (because the second case of THEOREM 10.3  tells 

us there can be no (ℎ, 𝑝)-collision set containing only wrong keys). 

Therefore, for any (ℎ, 𝑝)-collision set 𝐶 we can verify if 𝐶 ⊆ 𝑘(𝑥, 𝑡). If the outcomes obtained for 

𝑓(𝑥) from all keys in 𝐶 are equal (meaning that all keys in 𝐶 are good), then we can conclude that 

we are in case i) and we know for sure that this outcome is the real 𝑓(𝑥).                                                                                      

If we were in case ii), because 𝐶 had both good and wrong keys, we would have at least 2 different 

outcomes for 𝑓(𝑥) resulting from 1 good key and 1 wrong key. 

 

Algorithm to solve 𝒇 

Finally, we are able to define the 𝑁𝑃/𝑝𝑜𝑙𝑦 algorithm which computes 𝑓(𝑥). 

As suggested before, the advice received for all inputs of length 𝑛 consists of the set of transcripts 

𝑆𝑛 = {𝑡1, … , 𝑡𝑤} and for each transcript 𝑡𝑖  the advice also contains the associated universal hash 

function (ℎ𝑖, 𝑝𝑖 , 𝑚𝑖). 

The 𝑵𝑷 algorithm can be described as follows: 

 We receive the advice 𝑆𝑛 containing a majority of reliable transcripts. 

 The nondeterministic step tries every subset of 𝑆𝑛 of size larger than 
|𝑆𝑛|

2
 until we find the one 

consisting of the reliable transcripts of 𝑆𝑛. 

 Now, for each transcript 𝑡𝑖 from this subset we must find a (ℎ𝑖, 𝑝𝑖)-collision set                             

𝐶 = {𝑘𝑖1 , 𝑘𝑖2 , … , 𝑘𝑖𝑝𝑖
} containing only good keys. We use another nondeterministic choice 

to identify 𝐶. To check that 𝐶 is a (ℎ𝑖, 𝑝𝑖)-collision set, we look at the mappings ℎ𝑖(𝑘𝑖𝑗) and 

we test if they are all equal. Then, as described in OBS 7, we know that 𝐶 only consists of 

good keys if the outcomes obtained for 𝑓(𝑥) are all equal to the same value, call it 𝑦𝑖. 

 Finally, we verify that for all transcripts 𝑡𝑖 we have the same outcome 𝒚𝒊. We conclude that 

this value is exactly the desired 𝒇(𝒙).  

This algorithm ends the proof for the MAIN THEOREM 1 [16] by showing that 𝑓 can be computed by an 

𝑁𝑃/𝑝𝑜𝑙𝑦 algorithm.            □  
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We have seen which are the implications for solving any problem 𝑓 using the GES framework. Our 

main target is to decide whether a function 𝑓 𝜖 𝐵𝑄𝑃 could be computed in this scenario. But before 

that, we investigate a similar protocol called Universal Blind Quantum Computing, which has similar 

aim: to securely delegate a quantum computation. One of the main reasons why we consider this 

protocol is because Universal Blind Quantum Computing can solve any 𝐵𝑄𝑃 problem [15]. 

 Consequently, we will investigate and in fact develop an adaptation of the GES scheme in order 

to match the Universal Blind Quantum Computation definition. 

 

 

5. Universal Blind Quantum Computing 
 

 

 Universal Blind Quantum Computing (UBQC) is a quantum protocol proposed by Broadbent, 

Fitzsimons and Kashefi [26], in which a client with limited computational resources asks a server 

owning a quantum computer to solve a problem for him. The client gets the result of his computation 

in such a way that the server cannot infer anything about the input or even about the computation 

required by the client. In this scheme, the client must be able to prepare single qubits and then send 

them to the server, but does not need any other quantum resources. 

UBQC is an interactive protocol where the client and server exchange messages [11, 12]. In order to 

obtain the desired computation outcome, the client must indicate to the server what qubit 

measurements to perform depending on past measurements results. Additionally, the scheme also 

allows the client to address a problem which has either classical or quantum inputs/outputs [15]. 

UBQC protocol is constructed using the Measurement Based Quantum Computing model [29]. It 

creates a generic pattern for all quantum computations and sets apart the quantum and classical 

components of a given problem. As a result, the client does not need to make any quantum 

computation or to own quantum memory. 

Furthermore, we can also identify a malicious server which might try to deceive the client. Keeping 

the input and the computation private from the server is not based on the difficulty of solving hard 

problems (as it is the case for current classical cryptographic systems [9]) and its security can be 

maintained irrespective of what a malicious server might try to do. If the client would require the 

solution for an 𝑁𝑃 problem, then he could check if the result received from the server is correct 

(solutions to 𝑁𝑃 problems can be verified in polynomial time [17]). In this way, he would find out if 

the server should be trusted or not. However, for harder problems and in the cases where the server 

interferes with the computation [12], the client may be deceived. 

This scheme is universal, meaning that it can work for any quantum computation [6]. For instance, 

suppose the client would like to use the computational power of the server for the problem of 

factorization. Then, using the Shor’s algorithm [7] in the form of a blind computation, will allow the 

client to obtain the factorization, without the server knowing the input or even the fact that he is 

factorizing a number. In fact, this scheme can be used for any 𝐵𝑄𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problem, such as         

k-Forrelation [25](which will be discussed later).  
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UBQC can be understood as an interactive Measurement Based Quantum Computing [26], where both 

the client and the server contribute, in order to perform the computation: 

1) The client needs to build qubits 

2) The server generates the entangled resource and completes the measurements 

3)  The client is instructing the server upon the next measurements and is also adding some 

randomness to keep the computation private from the server. 

Now, suppose in the MBQC model the client would use the highly entangled graph state [1, 29]. As we 

remember, the graph state consisted of multiple qubits from which we derived our computation by 

making measurements in either the {|0⟩, |1⟩} or in the {|+𝜃⟩, |−𝜃⟩} basis [30]. The problem with this 

approach is that we might need different graphs for different problems, hence the client would leak 

some information about the desired computation. 

 

 

Figure 3. Brickwork state, where each cell corresponds to a qubit in the |+⟩ state 

 

We remind from the MBQC model, that measurements performed in the {|0⟩, |1⟩} basis affect the 

pattern of the graph state, in the sense that they remove qubits from the graph in order to match the 

design pattern required for the computation [29]. On the other hand, any measurement performed in 

the {|+𝜃⟩, |−𝜃⟩} basis was used to implement the computation and would leave the graph unchanged. 

Instead of working on a graph state, we use as starting point a brickwork state (Fig. 3) [26]. This state 

has the advantage that by performing only measurements in the {|+𝜃⟩, |−𝜃⟩} basis we can obtain any 

quantum operator. Even more, this state has the same pattern for all quantum computations and only 

depends on the size of input and size of computation. In the MBQC scenario, the measurements 

destroyed the initial graph state (removing certain qubits from the graph), so a malicious server can 

deduce the pattern of the graph. On the other hand, in the situation of using the brickwork state we 

only need to measure in the {|+𝜃⟩, |−𝜃⟩}  basis, so the brickwork state is not altered, remaining 

generic for all computations. Thus, it does not leak any information about the problem [15, 27]. 

Now, we will present how does the Universal Blind Quantum Computing work and what are 

the properties of this protocol. 

Suppose the client 𝐴 has a problem 𝒫, which he wants to solve using UBQC. Then, 𝐴 needs to have a 

description of the circuit using the brickwork state 𝐺 (Figure 3). Client 𝐴 randomly constructs qubits 
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in the states { 
1

√2
(|0⟩ + 𝑒𝑖𝜙|1⟩)| 𝜙 𝜖 {0,

𝜋

4
, … ,

7𝜋

4
} }  and delivers them to the server 𝐵 . Once 𝐵 

receives the qubits, he must entangle them in accordance with the state 𝐺. 

The brickwork state can be viewed as a matrix of qubits. For each line and for each qubit of the line, 

𝐴  will tell 𝐵  which is the angle of the measurement for that particular qubit [27]. As a result, 𝐵 

completes the measurement and announces 𝐴 about the result. Then, 𝐴 will do the same thing for 

the next qubits, but their angles determined by 𝐴, are based on the previous results received from 𝐵. 

𝐴 obtains the desired computation result once all the qubits in the brickwork state are measured [15].  

 

Consider that for the problem 𝒫 we have the brickwork state 𝐺 having 𝑙 lines and 𝑐 columns. Then, 

each qubit |𝜙𝑖,𝑗⟩ of this state is initially in the |+⟩ state and it has associated a measurement angle 

𝜌𝑖,𝑗. As in the MBQC model, these angles are affected by previous measurements: any {|+𝜃⟩, |−𝜃⟩} 

measurement implies possible 𝑋  corrections changing an initial angle ρ to –ρ and 𝑍  corrections 

changing an initial angle ρ to ρ + π [15]. Therefore, we have that the actual angles for every qubit are: 

𝜌𝑖,𝑗
′ =  (−1)𝑠𝜌𝑖,𝑗 + 𝑡𝜋, where 𝑠 is the number of previous 𝑋 corrections and 𝑡 is the number of 

previous 𝑍 corrections [29]. 

We can view the problem 𝒫 as a quantum operator 𝑈 and so, the client 𝐴 wants to obtain the result 

𝑈|0⟩. The UBQC scheme for computing 𝑈 is the following [26]: 

 

 Stage 1:  Qubits Setting 

For every column 𝑐 of 𝐺 and for every line 𝑙 of 𝐺: 

Client 𝐴 sets the qubit |𝜙𝑐,𝑟⟩ randomly chosen from the set 

 𝑆 = { 
1

√2
(|0⟩ + 𝑒𝑖𝜃𝑖,𝑗|1⟩)| 𝜃𝑖,𝑗 ϵ {0,

𝜋

4
, … ,

7𝜋

4
} } and sends |𝜙𝑐,𝑟⟩ to the server 𝐵; 

Using the qubits obtained from the client, the server builds the entangled state. This is achieved 

by applying the operator Controlled-Z between pairs of qubits, thus defining the structure of 𝐺.    

 

 Stage 2: Qubits measurement and communication client-server 

For every column 𝑐 and line 𝑙 of 𝐺: 

The client computes the standard angle of measurement 𝜌𝑖,𝑗
′  in order to obtain 𝑈 

𝐴 also adds an element of randomness to hide the computation from 𝐵, 𝑟𝑎𝑛𝑑 𝜖 {0, 1} and sets 

the angle of measurement as: 𝛿𝑖,𝑗 = 𝜌𝑖,𝑗
′  + 𝜃𝑖,𝑗 + 𝑟𝑎𝑛𝑑 ⋅ π. 

This new angle is received by the server 𝐵. Consequently, 𝐵 measures the qubit in the basis 

{
1

√2
(|0⟩ + 𝑒𝑖𝛿𝑖,𝑗|1⟩), 

1

√2
(|0⟩ − 𝑒𝑖𝛿𝑖,𝑗|1⟩)} and obtains the result 𝑟 𝜖 {0, 1} which is sent to the client. 

 The client needs to modify the result 𝑟 to compensate for the randomness he added, so the result 

of the measurement becomes 𝑟’ =  |𝑟𝑎𝑛𝑑 –  𝑟| 
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The Universal Blind Quantum Computing protocol has 3 important properties: universality, 

correctness and blindness [6, 9], which we will next define. 

 

DEFINITION 6.1: Universality refers to the fact that the scheme allows the computation of any quantum 

operator [6]. This is achieved due to the fact that the MBQC model is universal and in fact we can 

obtain this property by only performing measurements with the angles: {−
𝜋

2
, −

𝜋

4
, 0,

𝜋

4
,
𝜋

2
 }.       □  

 

DEFINITION 6.2: Showing that the result returned by the protocol is indeed 𝑈|0⟩ means the protocol is 

correct [15].   

The stage 1 of the protocol involves the rotations of the qubits around the 𝑍-axis with the angle θ and 

the application of the Controlled-𝑍  gate on pairs of qubits. These operations do not affect the 

brickwork state (as opposed to the graph state case), but only modify the phase of qubits as if the 

Controlled-𝑍 gate was first applied and then the qubits were rotated with the angle θ.  

Furthermore, 𝐴 changing the angle of measurement from 𝜌′ to 𝜌′ + 𝜃 is equivalent to adjusting the 

state on which we applied the measurement from |𝜙⟩ to 𝑍(𝜃)|𝜙⟩. Therefore, as 𝐴’s choice for the 

new measurement angle is defined as: 𝛿𝑖,𝑗 = 𝜌𝑖,𝑗
′  + 𝜃𝑖,𝑗  + rand ⋅ π, then if 𝑟𝑎𝑛𝑑 = 0  the server’s 

outcome 𝑟 is exactly the result 𝐴 should have and if 𝑟𝑎𝑛𝑑 = 1, then 𝐴 just needs to change the result 

to 1 − 𝑟.            □  

 

DEFINITION 6.3: The blindness property refers to the fact that 𝐵 cannot infer anything about 𝐴’s input 

or the actual computation (except their size), no matter what 𝐵’s actions might be [26]. 

We can view this task of blind computation in the following perspective: the client 𝐴 needs to solve 

the problem 𝒫 by exchanging messages with the quantum server 𝐵. Then, for a given input 𝑥 and the 

description of 𝒫 as an operator 𝑈, 𝐴’s input for the protocol becomes 𝐼 =  (𝑈, 𝑥).   

DEFINITION 6.4:  We say a delegated quantum computation acting on input 𝐼 is blind hiding everything 

except 𝐻(𝐼) [27] if the knowledge inferred by a malicious server 𝐵 has no connection with the input 𝐼 

and the quantum state of 𝐵 is also uncorrelated with 𝐼. 

 

THEOREM 11. We are now able to show that the UBQC scheme is a delegated quantum computation 

hiding everything but the size of the brickwork state [15](the number of lines 𝑙 and the number of 

columns 𝑐). 

Proof. As we have already shown, the generic brickwork state allows the computation of any operator 

𝑈 , without being modified in any way by the measurements. Therefore, we do not reveal any 

information about 𝑈, except the size of the problem, 𝑙 and 𝑐. 

The client 𝐴 has the initial measurement angles 𝜌𝑖,𝑗  for every qubit, needed to obtain 𝑈. Then, these 

angles are altered based on the outcome of the previous measurements executed by 𝐵, to form the 

new angles: 𝜌𝑖,𝑗
′ = (−1)𝑠𝜌𝑖,𝑗 + 𝑡𝜋 . 𝐴  does not send to 𝐵  exactly these angles, but instead, the 

classical knowledge 𝐵 obtains is represented by the measurement angles: 𝛿𝑖,𝑗 = 𝜌𝑖,𝑗
′  + 𝜃𝑖,𝑗 + rand ⋅ π.  
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Therefore, what we need to prove is that 𝛿𝑖,𝑗 (the classical knowledge of 𝐵) is not connected with 𝜌𝑖,𝑗 

(the input of the problem). 

We know the fact that 𝜃𝑖,𝑗 is randomly drawn from the set {0,
𝜋

4
, … ,

7𝜋

4
}. Thus, because  𝛿𝑖,𝑗 = 𝜌𝑖,𝑗

′  + 

𝜃𝑖,𝑗 + rand ⋅ π, we have that 𝛿𝑖,𝑗 cannot be based on 𝜌𝑖,𝑗 [29]. 

 

At this point, we analyse the quantum state of 𝐵 resulted after 𝐴’s qubits preparation, call it 𝑆.  

For each qubit of 𝑆, |𝜙𝑖,𝑗⟩ we need to consider 2 cases: 

- If 𝑟𝑎𝑛𝑑 = 0, then the angle received by 𝐵 is 𝛿𝑖,𝑗 = 𝜌𝑖,𝑗
′  + 𝜃𝑖,𝑗 and thus, the qubit state is:  

|𝜙𝑖,𝑗⟩ = 
1

√2
(|0⟩ + 𝑒𝑖𝜃𝑖,𝑗|1⟩) = 

1

√2
(|0⟩ + 𝑒𝑖(𝛿𝑖,𝑗−𝜌𝑖,𝑗

′ ) |1⟩) 

- If 𝑟𝑎𝑛𝑑 = 1 then the angle received by 𝐵 is 𝛿𝑖,𝑗 = 𝜌𝑖,𝑗
′ + 𝜃𝑖,𝑗 + 𝜋 and thus, the qubit state is: 

|𝜙𝑖,𝑗⟩ = 
1

√2
(|0⟩  + 𝑒𝑖(𝜃𝑖,𝑗 +𝜋)|1⟩) = 

1

√2
(|0⟩ − 𝑒𝑖(𝛿𝑖,𝑗−𝜌𝑖,𝑗

′ ) |1⟩) 

We observe that if we fix the value of 𝛿𝑖,𝑗, then 𝜃𝑖,𝑗 will depend on  𝜌𝑖,𝑗
′  (𝜃𝑖,𝑗 = 𝛿𝑖,𝑗 − 𝜃𝑖,𝑗 + 𝑟𝑎𝑛𝑑 ⋅ 𝜋). 

However, 𝑟𝑎𝑛𝑑 is chosen independently at random from {0, 1}, therefore 𝑆 contains qubits from the 

brickwork state, which are not based on the input 𝜌𝑖,𝑗.  □  

 

We can now illustrate the usefulness of this blindness property of UBQC by presenting 2 attack 

examples [26, 27]. 

 

Example 1: Assume 𝐵  owns some additional prior information about the input 𝐼 . But using the 

blindness definition, it results that this prior information is not connected with 𝐼 and therefore, the 

only knowledge inferred by 𝐵 is the leaked information, the size of the computation. 

 

Example 2: Assume 𝐵 aims to find some information about the output of the computation. However, 

because the output would be based on the input 𝐼 and we know that 𝐵 cannot find out anything about 

the input, then this situation is also impossible. 
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6. Classical Universal Blind Quantum Computing 
 

 

In the Universal Blind Quantum Computing protocol, the client does not need to possess 

quantum memory or the ability to perform quantum computations, however, he must be able to 

prepare qubits in different states, so he is not an entirely classical client [26, 29]. 

What we want to investigate is the possibility of the existence of a “Classical Universal Blind Quantum 

Computing” (CUBQC) scheme, where the client is purely classical and where the interaction between 

the client and the quantum computer must also be classical.  

A similar scheme for this type of blind delegated computation involving one entirely classical client 

was proposed by Broadbent et al [15]. Unfortunately, this protocol requires 2 entangled quantum 

servers: the first one completes the quantum work done by the client in the UBQC scenario (prepares 

randomly selected qubits) while the second one performs the actual computation. 

This classical UBQC protocol which we propose must obey the UBQC scheme definition according to 

whom the input, output and the computation itself must be private to the quantum server. Moreover, 

it should respect the 3 main properties discussed before: universality, correctness and blindness [27]. 

 

We relate the existence of CUBQC with the Generalised Encryption Scheme. To be more 

specific, we will prove that CUBQC can be represented as an instance of the GES framework and thus, 

this would imply that any major result known for GES is also applicable to CUBQC. 

To begin with, by comparing CUBQC with GES, we notice that the major difference between the two 

interactive delegated computation schemes is the following:  

In GES, the server already knows the problem needed by the client and we use the encryption 

procedure to hide only the input and the output of a problem, whereas in UBQC the actual 

computation is also kept secret from the server. 

Therefore, we need to make the modifications such that in the GES scenario we also encode the actual 

computation in the input string given to the encryption algorithm, with the resulting cyphertext being 

sent afterwards to the server. 

At this moment is worth mentioning a brief review of the main GES principles [16]: 

Client 𝐴 
     𝑦=𝐸(𝑥)     
→         Server 𝐵 

Client 𝐴  
        𝑓(𝑦)        
←         Server 𝐵 

The client 𝐴 needs to determine the value of a function 𝑓 applied on an input 𝑥. He encrypts this input, 

𝑦 = 𝐸(𝑥) , and sends the encryption 𝑦 to the server. The server then applies the function 𝑓 on 𝑦 and 

sends the result back to 𝐴. Finally, 𝐴 only needs to apply the decryption function to obtain 𝑓(𝑥). 

Therefore, the encryption and decryption primitives must satisfy the important property that: 

𝐷 (𝑓(𝐸(𝑥))) = 𝑓(𝑥). 

Furthermore, because the client 𝐴  has only limited computational resources the encryption and 

decryption functions must run in polynomial time. 
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Before proceeding to the main proof, we need to outline some essential notions which will 

be used in our arguments. 

 

DEFINITION  7. A Quantum Turing Machine (𝑄𝑇𝑀) is the correspondent in the quantum perspective 

of the Probabilistic 𝑇𝑀 [6]. The classical probabilistic machine evolves according to a probability 

distribution describing the likelihood of every future state of the machine. In the quantum machine 

case, we are dealing with a quantum superposition of possible states where every coefficient of a state 

represents its amplitude [10]. 

The internal states of a 𝑄𝑇𝑀 𝑀 are represented by states in the Hilbert Space [1], while the 

transition function is a unitary operator. 𝑀 can be described by the tuple (𝛴, 𝑄, 𝛿, 𝑞0, 𝑞𝑓), where 𝛴 is 

the set of input symbols, 𝑄 is 𝑀’s set of states from the Hilbert Space, 𝛿 is the transition function of 

the machine, 𝑞0 is the initial state and 𝑞𝑓 is the accepting state. 

𝑀 halts on an input 𝑥 if the machine state gets in a superposition of possible configurations, all in the 

accepting state 𝑞𝑓. We say that 𝑀 is a polynomial-time Quantum 𝑇𝑀 if it halts on every possible input 

𝑥 and the running time of the machine is polynomial in |𝑥| [10, 17]. 

 

Using these descriptions, we are now ready to define a Universal Quantum Turing Machine (the 

quantum version of the classical Universal 𝑇𝑀).  

A Universal Quantum Turing Machine would allow us to simulate any 𝑄𝑇𝑀  𝑀, by describing the 

specification of 𝑀 and sending it as an input to the universal machine.  

Bernstein and Vazirani proved the existence of this generic machine [10], we will call it 𝑀𝑈. Specifically, 

𝑀𝑈 receives as input: the representation of a 𝑄𝑇𝑀 𝑀, an input 𝑥 for 𝑀 and a precision ℰ  and returns 

a quantum superposition ψ, such that the distance between ψ and the superposition of 𝑀 applied on 

𝑥 is less than ℰ.  

The way 𝑀𝑈 functions is very straightforward: it is based on a deterministic Turing Machine extended 

with only one quantum procedure: a quantum analogue of a coin flip which rotates individual qubits 

[1]. It was proved that in order to simulate any quantum 𝑇𝑀 it suffices to apply this operation using 

the amplitudes 
3

5
 and 

4

5
 [30]. Additionally, the running time of 𝑀𝑈 is polynomial in the length of the 

input.  

What is left, is to define the representation of any 𝑄𝑇𝑀 as a string which would then be given as part 

of the input to 𝑀𝑈. For a given 𝑄𝑇𝑀 𝑀 we can encode it in a string 𝑆 which contains the following: 

the finite alphabet 𝛴, the number of states from 𝑄 and the description of the transition function δ.  

Every input of the δ function consists of a tuple (𝑞1, 𝑠1, 𝑠2, 𝑞2, 𝑑), where 𝑞1 represents the current state 

of 𝑀, 𝑠1 is the symbol on the infinite tape, indicated by the tape’s head, 𝑠2 is the symbol 𝑀 will write 

on the tape, 𝑑 expresses whether the head of the tape is moving left, right or remains at the same 

position and 𝑞2 is the next state of 𝑀. The transition can be illustrated like this: suppose 𝑀 is in state 

𝑞𝑖 . Then, at next step the machine will be in the quantum superposition ψ = ∑ 𝑞𝑗 ⋅  𝛼𝑗𝑗 , with 𝑞𝑗 

representing a possible future state and 𝛼𝑗  the amplitude associated with a transition tuple 

(𝑞𝑖, 𝑠𝑖,1, 𝑠𝑖,2, 𝑞𝑗, 𝑑) (𝛼𝑗
2 is the probability of this transition) [20, 30]. Therefore, the encoding string 𝑆 

must contain the amplitudes associated with all these possible tuples (which are in number of 3 ⋅ 

|𝑄|2 ⋅ |Σ|2). 
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Now we can return to our problem and describe one of our primary contributions. 

THEOREM 12. CUBQC can be represented as an instance of the GES protocol. 

Proof.   In the GES scheme the server holds the function 𝑓  and he applies it on whatever input 

(encrypted input) he receives from the client. 

We change 𝑓 so that instead of denoting the computation required by the client, 𝑓 will represent a 

Universal Quantum Turing Machine 𝑀𝑈. 

Suppose the client wants to compute a problem 𝒫 for the input 𝑥. We know that there must exist a 

𝑄𝑇𝑀 𝑀 which is able to solve 𝒫. Then, we can encode the behaviour of 𝑀 in a string 𝑆, using the 

method described above. It is worth mentioning that the encoding can be done efficiently in 

polynomial time, so the client having only 𝐵𝑃𝑃 computational power can perform this procedure.  

Then, the client’s input 𝐼 would consist of 𝑆 and the input 𝑥 for 𝑀,  𝐼 = (𝑆, 𝑥). From this point, the 

client proceeds as in the GES scheme. He applies the encryption primitive 𝐸 to obtain 𝐽 = 𝐸(𝐼) and 

sends 𝐽 to the server.  

The server uses 𝐽  as input for the generic 𝑈𝑄𝑇𝑀  𝑀𝑈  and sends back to the client the outcome 

returned by 𝑀𝑈. Finally, the client applies the decryption function on the outcome received from the 

server and obtains the desired result 𝑓(𝑥). 

The encryption and decryption procedures must satisfy the property: 𝐷(𝑀𝑈(𝐸(𝑆, 𝑥))) = 𝑓(𝑥).   (∗) 

In this way, by using the Universal 𝑄𝑇𝑀 we assured that the server cannot find anything about the 

computation needed by the client, since the problem is also sent to the server as an encrypted input. 

 

We need to verify if the 3 properties assured in the UBQC protocol are also available here. 

The correctness property, which refers to the fact that the client obtains in the end 𝑓(𝑥), is guaranteed 

by the GES scheme, specifically by the decryption and encryption functions property (∗). 

Universality is obtained because the 𝑈𝑄𝑇𝑀 𝑀𝑈 allows the simulation of any 𝑄𝑇𝑀 𝑀, therefore the 

client can use this scheme for any computation [10]. 

Because the GES protocol has the privacy property that the server cannot infer anything about his 

input except its length [16], this implies that CUBQC is blind, leaking only the size of the computation 

and the length of the input, which is exactly the level of security guaranteed in the UBQC protocol. 

Consequently, we defined the Classical UBQC scheme, represented as an instance of GES.     □   

Therefore, any complexity theoretic result regarding classes of problems which can or cannot be solved 

using GES also applies to the CUBQC protocol. 

Let’s consider that the client 𝐴 wants to compute a problem 𝒫 on an input 𝑥, where 𝒫 is from 

the 𝐵𝑄𝑃 class. Because 𝒫 𝜖 𝐵𝑄𝑃, there exists a polynomial-time 𝑄𝑇𝑀 𝑀 which can solve 𝒫 [19]. Then, 

𝐴 encodes the representation of 𝑀  and obtains the string 𝑆 = 𝜌(𝑀). 𝐴 encrypts 𝑆  along with the 

input 𝑥 and sends the resulting encryption 𝑒 to the server 𝐵. 𝐵 runs the 𝑈𝑄𝑇𝑀 𝑀𝑈 on the input 𝑒 and 

sends back to 𝐴  the outcome of 𝑀𝑈 . In the end, 𝐴  decrypts this outcome and gets 𝒫 (𝑥) .                                                                                 

However, we will next present strong evidence that the GES scheme cannot solve 𝐵𝑄𝑃 − ℎ𝑎𝑟𝑑 

problems. This tells us that the no-go result also stands for Classical UBQC, namely that there does 

not exist any CUBQC scheme which could solve for 𝑩𝑸𝑷− 𝒉𝒂𝒓𝒅 problems. 
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Our Main Results 

Next, we will proceed to the central part of the research project which depicts our most 

important contribution: analyse the possibility of 𝐵𝑄𝑃 − ℎ𝑎𝑟𝑑 problems being solved using GES. 

 We base our proofs on the main result of Abadi obtained for GES (described in MAIN THEOREM 1), 

according to which any problem solvable using GES must belong to the class 𝑁𝑃/𝑝𝑜𝑙𝑦 ⋂ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦. 

Then, the statement “No 𝐵𝑄𝑃 − ℎ𝑎𝑟𝑑 problems can be solved using GES” is equivalent to showing 

that 𝐵𝑄𝑃 − 𝐻𝑎𝑟𝑑 ⊈ 𝑁𝑃/𝑝𝑜𝑙𝑦 ⋂ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦. Our target is to give strong evidence for this major 

complexity-theory result. 

In the following 2 sections, we explore two problems which indicate the oracle separation between 

the classes 𝐵𝑄𝑃 and 𝑁𝑃/𝑝𝑜𝑙𝑦 ⋂ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦, namely: Simon’s problem and k-Forrelation. 

 

7. Simon Problem 
 

 

Simon problem is a decision problem involving a “black-box” [21] function 𝑓, where we need 
to determine what kind of function is 𝑓  given a promise about it. More exactly, we are promised that 
𝑓 is either 1-to-1 or 2-to-1 and we need to determine whether 𝑓 is of the former or latter type [23]. 

 
DEFINITION  8.1:  We call a function 𝑓: {0,1}𝑛 → {0,1}𝑛  1-to-1 if 𝑓 is bijective. 
DEFINITION  8.2:  We say a function 𝑓: {0,1}𝑛 → {0,1}𝑛  is 2-to-1 if it satisfies the following property: 

∃𝑠 𝜖 {0, 1}𝑛- {0} such that ∀𝑥, 𝑥′ we have: 𝑓(𝑥) = 𝑓(𝑥′) ⇔ 𝑥′ = 𝑥 ⨁ 𝑠. We call 𝑠 the xor mask of 𝑓.  

 

𝑓 is a “black-box” function refers to the fact that 𝑓 is given in the form of an oracle (we cannot see its 

explicit definition, but we can ask the oracle for values of 𝑓 at different points).  

Classical Algorithm for Simon 

In order to solve this problem deterministically, we would need 𝑂(2𝑛) queries [23]. For instance, 

we could search for an element 𝑚, 1 ≤ 𝑚 ≤  2𝑛 − 1 such that 𝑓(0) = 𝑓(𝑚). If we find such an 𝑚, 

then 𝑓 must be 2-to-1 (it cannot be bijective) and its xor mask is 𝑚. Otherwise, if no such 𝑚 exists we 

conclude that 𝑓 must be bijective. However, using a classical randomized algorithm we can obtain a 

better time-complexity [28], solving this problem with only 𝑂(√2𝑛) queries. We pick some input 

values 𝑥𝑖 at random, and for each, we consult the oracle to get 𝑓(𝑥𝑖). Once we find a collision pair, 

namely 2 input values 𝑥𝑖 and 𝑥𝑗 such that 𝑓(𝑥𝑖) = 𝑓(𝑥𝑗), we know 𝑓 is 2-to-1 and 𝑠 = 𝑥𝑖  ⨁ 𝑥𝑗. Using 

the “birthday paradox”4  [34] we achieve that with only √2𝑛  queries the problem can be solved. 

Moreover, it can also be proven that since 𝑓 can only be accessed through the oracle which computes 

its values, the classical query complexity √2𝑛 is optimal. 

                                                           
4 The probability that 2 persons have the same birthday. Given there are 365 days in a year and birthdays are 

almost uniformly distributed, what matters is the number of pairs of people: if we have √𝑛 persons, where n is 
the number of days in a year, there are 𝑛 different pairs of people who can have the same birthday and with 
high probability one of them will succeed. 
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7.1.  Quantum Algorithm 
 

In the quantum paradigm, this problem can be solved using 𝑛 queries to the oracle 𝑂, thus 

showing an exponential speedup compared to its classical probabilistic counterpart [30]. 

  
Figure 4. Quantum Circuit for Simon's Algorithm 

We can prove our problem is in the 𝐵𝑄𝑃 class by presenting an expected quantum polynomial-time 

algorithm which always gives the correct answer for Simon problem. 

 

MAIN THEOREM 2.1. 𝑆𝑖𝑚𝑜𝑛 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 𝜖 𝐵𝑄𝑃𝑂 

Proof. In order to solve this problem, we are going to use Simon’s algorithm [23] (Figure 4). 

The initial state is |ᴪ0⟩ = (|0⟩ ⨂… ⨂ |0⟩) ⨂ (|0⟩⨂…⨂|0⟩) = |0⟩⨂n⨁|0⟩⨂n (2 registers of 𝑛 qubits) 

The first thing we do is create an equal superposition over all 2𝑛 possible inputs to 𝑓 and we achieve 

this by applying 𝑛 Hadamard operators on the first register. 

After applying the 𝑛 Hadamard gates on the first 𝑛 qubits (first register), we get the state: 

 |ᴪ1⟩ = |+⟩⨂n |0⟩⨂n = 
1

√2
𝑛 (|0⟩ + |1⟩)𝑛 |0⟩⨂n = 

1

√2
𝑛  (∑ |𝑥⟩𝑥 𝜖 {0,1}𝑛 )⨂|0⟩⨂n 

The next step is querying 𝑓. 

Applying the black-box operator for 𝑓 has the following effect [29]: 

 

 

 

Thus, in our case we obtain: 

|ᴪ2⟩ = 
1

√2
𝑛  ∑ |𝑥⟩𝑥 𝜖 {0,1}𝑛 ⨂|0𝑛⨁𝑓(𝑥)⟩ =  

1

√2
𝑛  ∑ |𝑥⟩𝑥 𝜖 {0,1}𝑛 ⨂ |𝑓(𝑥)⟩ - we have reached a 

superposition of all values of 𝑓 in the second register. 

|𝑥⟩  

|𝑦 ⨁ 𝑓(𝑥)⟩  |𝑦⟩  

|𝑥⟩       𝑈𝑓  
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As we can see in the circuit, in state |ᴪ2⟩ we will measure the second register which contains 𝑓(𝑥).  

After the measurement, what is left in the first register, will be a superposition over all possible inputs 

𝑥 that could have produced the 𝑓(𝑥) we observed. This superposition is 
1

√2
(|𝑥⟩ + |𝑦⟩) where 𝑥 and 𝑦 

are 2 inputs with the property that 𝑓(𝑥) = 𝑓(𝑦).  

Next, we apply 𝑛 Hadamard gates on the first register (which now only consists of 
1

√2
(|𝑥⟩ + |𝑦⟩)). 

Applying Hadamard on an input |𝑥⟩ consisting of 𝑛 qubits has the following effect [1]: 

|𝑥⟩ 
       𝐻𝑛      
→       

1

√2
𝑛∑ (−1)𝑥 · 𝑤 |𝑤⟩𝑤 𝜖  {0,1}𝑛 , where if we have 𝑥 =  𝑥1… 𝑥𝑛 𝑎𝑛𝑑  𝑤 =  𝑤1… 𝑤𝑛 , 

 then  𝑥 · 𝑤 =  𝑥1𝑤1 ⨁ 𝑥2𝑤2 ⨁ … ⨁ 𝑥𝑛𝑤𝑛. 

When we apply Hadamard to  
1

√2
(|𝑥⟩ + |𝑦⟩) we get: 

1

√2
(|𝑥⟩ + |𝑦⟩) 

       𝐻𝑛      
→       

1

√2
 (

1

√2
𝑛 ∑ (−1)𝑥 · 𝑤 |𝑤⟩𝑤 𝜖  {0,1}𝑛  + 

1

√2
𝑛 ∑ (−1)𝑦 · 𝑤 |𝑤⟩𝑤 𝜖  {0,1}𝑛 ) =  

1

√2
𝑛+1 ∑ [(−1)𝑥 · 𝑤 + (−1)𝑦 · 𝑤] |𝑤⟩𝑤 𝜖  {0,1}𝑛  

Therefore, we obtained a superposition of all inputs 𝑤, each with amplitude (−1)𝑥 · 𝑤 + (−1)𝑦 · 𝑤. 

Finally, we measure each of these qubits from the first register in the (|0⟩, |1⟩) basis [12]. 

We notice that if (−1)𝑥 · 𝑤 and (−1)𝑦 · 𝑤 are equal, then it is possible to observe the corresponding 

state 𝑤 after the measurement. 

But, if (−1)𝑥 · 𝑤 and (−1)𝑦 · 𝑤 are different, they cancel each other, so 𝑤 cannot be observed. 

Hence, after the measurement we are going to be left with a random input 𝑤, such that: (−1)𝑥 · 𝑤 =

(−1)𝑦 · 𝑤. We can rewrite this relation as: 

(−1)𝑥 · 𝑤 = (−1)𝑦 · 𝑤  𝑥 · 𝑤 ≡ 𝑦 · 𝑤 𝑚𝑜𝑑 2,  

which is equivalent to  (𝑥 ⨁ 𝑦) · 𝑤 ≡ 0 𝑚𝑜𝑑 2. 

But 𝑥 ⨁ 𝑦 = 𝑠, thus we obtain 𝑠 · 𝑤 ≡ 0 𝑚𝑜𝑑 2. 

Consequently, we have a random linear equation satisfied by the xor mask 𝑠. 

We can repeat this whole process (run again Simon’s algorithm) to obtain a second linear equation: 

𝑠 ·  𝑤1 ≡ 0 𝑚𝑜𝑑 2 

𝑠 ·  𝑤2 ≡ 0 𝑚𝑜𝑑 2 

In this way, if we repeat the algorithm 𝑂(𝑛) times, we will get with high probability 𝑛 linear equations, 

independent of each other and we can efficiently solve this system of linear equations [30] (for 

instance using Gaussian Elimination). 

Then, if the system has only 1 solution 𝑠 = 0, this means that 𝑓 must be bijective. Otherwise, we will 

obtain 2 solutions, 𝑠1 = 0 and 𝑠2 ≠ 0 , where 𝑠2 represents the xor mask for 𝑓. 

Every time we run Simon’s algorithm we query 𝑓 only 1 time, so in total we need 𝑂(𝑛) queries to 𝑓. 
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As a result, we have proved that Simon’s problem can be solved by a quantum computer in polynomial 

time with bounded error probability, using an oracle 𝑂 which returns the values of 𝑓: 

𝑆𝑖𝑚𝑜𝑛 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 𝜖 𝐵𝑄𝑃𝑂      □  

 

7.2.  Classical no-go Result 
 

We remind that our goal is to show that 𝐵𝑄𝑃 ⊈ 𝑁𝑃/𝑝𝑜𝑙𝑦 ⋂ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦. We want to give 

strong evidence in favour of this relation by proving that it is true with respect to an oracle 𝑂: 

 𝐵𝑄𝑃𝑂 ⊈ 𝑁𝑃/𝑝𝑜𝑙𝑦𝑂  ⋂ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦𝑂 

This is the reason why we are looking for a problem which can be shown to be solvable in 𝐵𝑄𝑃𝑂, but 

which cannot be solved in 𝑁𝑃/𝑝𝑜𝑙𝑦𝑂 ⋂ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦𝑂. 

The 𝐵𝑄𝑃 class is closed under complement [17], which means that the complement of any problem 

from 𝐵𝑄𝑃 is also in 𝐵𝑄𝑃. Therefore, the complement of Simon’s problem (coSimon) belongs to the 

𝐵𝑄𝑃 class. We can obtain coSimon by reversing the yes and no answers to Simon’s problem [20]: 

The coSimon decision problem will return “yes” if a function 𝑓 is a bijection and “no” if 𝑓 is a 2-to-1 

function. 

From this point on, we will be working only with the coSimon problem. Our aim is to prove that 

coSimon is not in the set 𝑁𝑃/𝑝𝑜𝑙𝑦𝑂, hence it cannot be in the set 𝑁𝑃/𝑝𝑜𝑙𝑦𝑂 ⋂ 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦𝑂 either. 

The reason why we are considering coSimon and not directly the Simon problem is the following: 

Simon problem can be solved by a 𝑇𝑀 in 𝑁𝑃𝑂, so it also belongs to the 𝑁𝑃/𝑝𝑜𝑙𝑦𝑂 class. Therefore, 

we would have needed to prove that it is not in 𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦𝑂. But, while the complement of 𝑁𝑃 is the 

class 𝑐𝑜𝑁𝑃, (𝑐𝑜𝑁𝑃)𝑂 is not the complement of the class 𝑁𝑃𝑂. Since we do not have a definition of 

the class of problems represented by (𝑐𝑜𝑁𝑃)𝑂 or by (𝑐𝑜𝑁𝑃/𝑝𝑜𝑙𝑦)𝑂, we will instead work with the 

complement of Simon’s problem and show that it cannot be in 𝑁𝑃/𝑝𝑜𝑙𝑦𝑂. 

 

7.2.1. 𝑁𝑃-Impossibility 
 

We begin by demonstrating the coSimon problem is not in the complexity class 𝑁𝑃𝑂. 

MAIN THEOREM 2.2: 𝑆𝑖𝑚𝑜𝑛 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 ∉ 𝑁𝑃𝑂.  

Proof. Assume coSimon ϵ 𝑁𝑃𝑂. Then, there exist an Oracle Turing Machine 𝑀 𝜖 𝑁𝑃 which accepts a 

function 𝑓 when 𝑓 is bijective and rejects 𝑓 when 𝑓 is 2-to-1. 

As this is an oracle problem, the input for 𝑀 will not be an explicit description of a function 𝑓 [21, 22] 

(for example, the value of 𝑓 in every element of his domain). 

Instead, we use the fact that the set of 1-to-1 and 2-to-1 functions 𝑓 ∶  {0, 1}𝑛 → {0, 1}𝑛  is countable 
and thus we can associate for any such function a natural number index.   
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Then, 𝑀 will receive as input the pair (𝑖, 𝑛), where 𝑖 represents the index of the function and 𝑛 (which 
is written in the unary system) specifies the size of any element from the domain of the function:  
(𝑖, 𝑛) maps to 𝑓𝑖 ∶  {0, 1}

𝑛 → {0, 1}𝑛. 
 
The oracle 𝑂 works in the following way: it receives the index 𝑖 of the function, the length 𝑛 and an 
element 𝑥 𝜖 {0,1}𝑛 and returns to 𝑀 the value of 𝑓𝑖(𝑥) in only one computational step:  
𝑂(𝑛, 𝑖, 𝑥)  =  𝑓𝑖(𝑥). 
 
Suppose we would have a random oracle 𝑂  [22]. Then, given the length 𝑛 , 𝑂  is either uniformly 
distributed among bijective functions or is distributed uniformly among 2-to-1 functions. 

For each possible length 𝑛 we have an oracle 𝑂𝑛  and suppose we have 
𝑁𝑛

2
 bijections and 

𝑁𝑛

2
 2-to-1 

functions chosen for 𝑂𝑛, with 𝑁𝑛 = 𝑂(2𝑛). 

Then we can consider our oracle 𝑂 as the union of all oracles 𝑂𝑛 ∀𝑛 𝜖 ℕ . 𝑂 has 
𝑁

2
 bijections and 

𝑁

2
 2-

to-1 functions (𝑁 = ∑ 𝑁𝑖𝑖 ). 

Consequently, given an index 𝑖 we have 𝑃(𝑓𝑖 is bijective) = 𝑃(𝑓𝑖 is 2-to-1) = 
1

2
. 

For instance, the oracle 𝑂 could be built in the following way: ∀𝑛 𝜖 ℕ and for 𝑖 𝜖 {1, … ,2 ⋅ 𝑁𝑛}  
we randomly selected a bit 𝑏𝑛,𝑖 and a string 𝑠𝑛,𝑖 of length 𝑛. If 𝑏𝑛,𝑖 = 1 then the function  

𝑓𝑖 ∶  {0, 1}
𝑛 → {0, 1}𝑛 chosen to be computed by oracle 𝑂, is 2-to-1 with the xor mask 𝑠𝑛,𝑖. 

If 𝑏𝑛,𝑖 = 1 then the function 𝑓𝑖 ∶  {0, 1}
𝑛 → {0, 1}𝑛 is bijective. 

 
Instead of having a random oracle, the oracle used for our problem is adversarial [31]. This implies 

that 𝑂 does not hold any 𝑁 1-to-1 or 2-to-1 functions chosen uniformly at random, but 𝑂 is allowed 

to choose 𝑁𝑛  1-to-1 or 2-to-1 functions for any length 𝑛  (out of the  (2𝑛) ! total number of 

permutations and out of the (2𝑛 − 1)2
𝑛
⋅ 2𝑛 total number of 2-to-1 functions). 

 

Consequently, we need to build the oracle 𝑂 (select the 𝑁𝑛 functions owned by 𝑂) in such a way that 

𝑐𝑜𝑆𝑖𝑚𝑜𝑛𝑂 ∉ 𝑁𝑃𝑂. 

 

Our proof is based on diagonalization [16]. 

The set of nondeterministic 𝑇𝑀  is countable [21] so we can consider an enumeration of them: 

𝑀1,𝑀2, … ,𝑀𝑘 , … . 

Therefore, we must construct the adversarial oracle 𝑂 such that: 

∀𝑖 𝜖 ℕ  𝑐𝑜𝑆𝑖𝑚𝑜𝑛𝑂 ∉ 𝑀𝑖
𝑂 

Initially,the set of functions chosen for 𝑂, ℱ is empty and at each step 𝑖 we add another function to it. 

Suppose we are at step 𝑖 and we have the oracle nondeterministic 𝑇𝑀 𝑀𝑖
𝑂.  

The adversarial oracle 𝑂 knows the computational tree of 𝑀𝑖. We can view 𝑀𝑖 as an algorithm which 

uses the oracle to take decisions for the paths in its computational tree. The root of the tree contains 

the initial configuration of 𝑀𝑖 on an input, whereas all the internal nodes are queries made to the 

oracle. When no more queries are made on a path, we reach a final node (a leaf), which is either an 

accepting or a rejecting state [20]. 

The input for 𝑀𝑖 consists of the index of the function and the size of any element from the function’s 

domain. Thus, for the input (𝑖𝑛𝑑𝑒𝑥, 𝑛), the computational tree of 𝑀𝑖 would look as seen in Figure 5: 
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Figure 5. Computational tree of 𝑀𝑖 on input <index, n> 

We now describe 𝑂’s behaviour which must make sure that 𝑀𝑖
𝑂 cannot always solve correctly coSimon. 

The oracle picks any 1-to-1 function 𝑔 : {0, 1}𝑛 → {0, 1}𝑛 , which is correctly accepted by 𝑀𝑖 . This 

means that if the input to 𝑀𝑖 is (𝑖𝑛𝑑𝑒𝑥, 𝑛), the oracle will place 𝑔 on the position 𝑖𝑛𝑑𝑒𝑥 inside his 

function set ℱ. 𝑀𝑖 accepts 𝑔 is equivalent to: there exists a path in the computational tree of 𝑀𝑖 on 

input (𝑖𝑛𝑑𝑒𝑥, 𝑛) which ends in an accepting state. This path contains 𝑙 strings 𝑥1, … , 𝑥𝑙  for which  𝑀𝑖 

queries 𝑂 . We call this path 𝜋 = 𝑥1, 𝑥2, … , 𝑥𝑙 . Because 𝑀𝑖  is a nondeterministic polynomial time 

machine, 𝑙 must be polynomial in the size of input, 𝑙 = 𝑝𝑜𝑙𝑦(𝑛). 

For each node 𝑥𝑖 𝜖 𝜋, 𝑀𝑖 queries the oracle 𝑂 and obtains 𝑔(𝑥𝑖) =  𝑦𝑖. 
Based on these results 𝑦𝑖, 𝑀𝑖 takes the decision that 𝜋 is an accepting path. 
In other words, we can view this as if 𝑀𝑖 has a function 𝐹, which encodes its decision algorithm. The 
only things 𝑀 knows after reaching the end of π are: the input he received at the beginning and the 
oracle’s answers (𝑦1, 𝑦2, … , 𝑦𝑙). Therefore, 𝐹’s output can only depend on these values, so we have 
that 𝐹(𝑦1, 𝑦2, … , 𝑦𝑙 , 𝑖𝑛𝑑𝑒𝑥, 𝑛) = 1. 
 
Now, what 𝑂 basically found, is that given the input (𝑖𝑛𝑑𝑒𝑥, 𝑛) and a series of strings 𝑦𝑖, 𝑖 𝜖 {1,… , 𝑙}, 

received by 𝑀𝑖  in response for the queries for some inputs 𝑥𝑖 , 𝑖 𝜖 {1,… , 𝑙}, the path 𝜋  will be an 

accepting path and therefore 𝑀𝑖 will accept the function on the position 𝑖𝑛𝑑𝑒𝑥. 

The adversarial oracle 𝑂 wants to force 𝑀𝑖 to give a wrong answer. All 𝑂 needs to do is find a 2-to-1 

function 𝑓 : {0, 1}𝑛 → {0, 1}𝑛 which will be placed on position 𝑖𝑛𝑑𝑒𝑥 in  ℱ (replace the function 𝑔, 

which was initially set on that position) and which must satisfy the following conditions: 

{
 

 
𝑓(𝑥1)  =  𝑦1
𝑓(𝑥2)  =  𝑦2

…
𝑓(𝑥𝑙)  =  𝑦𝑙

          (𝐶1) 

In this way, when 𝑀𝑖
𝑂 runs the input (𝑖𝑛𝑑𝑒𝑥, 𝑛) for the function 𝑓, the path 𝜋 will end in an accepting 

state because the machine gets exactly the same answers as for the function 𝑔 which was accepted 

by π. Thus, 𝑀𝑖
𝑂 will decide that 𝑓 is bijective, which is false. 

At this point we need to show there exists such a function 𝑓 satisfying (𝐶1) and we need to properly 

define it. All the inputs along any path of the computation tree of a nondeterministic machine must 

be different, thus (𝑥1, 𝑥2, … , 𝑥𝑙) must all be distinct. Because 𝑔 is bijective this means that 𝑔(𝑥1), 

𝑔(𝑥2),… , 𝑔(𝑥𝑙) are also distinct. 
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Therefore, we need to make sure that for the 2-to-1 function 𝑓, there can be no pair (𝑝, 𝑞), with 1 ≤

𝑝 < 𝑞 ≤ 𝑙, such that  𝑓(𝑥𝑝) =  𝑓(𝑥𝑞). 

Hence, we must also set some constraints about the associated xor mask string 𝑠’ of function 𝑓. 

We know that 𝑓(𝑥𝑝) =  𝑓(𝑥𝑞) if and only if 𝑠′ = 𝑥𝑝⨁𝑥𝑞 . 

This means that we must consider all the possible pairs of inputs from path 𝜋, (𝑥𝑝, 𝑥𝑞) and make sure 

that 𝑠’ is different from 𝑥𝑝⨁𝑥𝑞 . 

The number of all possible distinct strings 𝑐𝑝,𝑞 =  𝑥𝑝⨁𝑥𝑞 is at most (𝑙
2
) =

(𝑙−1)𝑙

2
. 

𝑀𝑖  is a nondeterministic polynomial-time 𝑇𝑀 , so every path in the computational tree contains a 

polynomial in 𝑛 number of queries, 𝑙 ≤ 𝑝(𝑛). Therefore, 
(𝑙−1)𝑙

2
 < 2𝑛.  

We can choose 𝑠𝑘 be any of the 2𝑛 strings in {0, 1}𝑛 except those 
(𝑙−1)𝑙

2
  𝑐𝑝,𝑞 strings.  (𝐶2) 

Now, since 𝑓 is 2-to-1 with the xor mask 𝑠’ we have 𝑓(𝑥’) = 𝑓(𝑥) if and only if 𝑥’ = 𝑥 ⨁ 𝑠’. 

Thus, after we satisfy condition (𝐶2) we will have all 𝑓(𝑥𝑖) distinct from each other, 1 ≤ 𝑖 ≤ 𝑙. 

When defining a 2-to-1 function ℎ ∶ {0, 1}𝑛 → {0, 1}𝑛 given a xor mask 𝑠, it suffices to set the values 

for half of the inputs ( 𝑥𝑖1 , 𝑥𝑖2 , … , 𝑥𝑖
2𝑛−1

) such that: ∀ 1 ≤  𝑎, 𝑏 ≤  2𝑛−1   𝑥𝑖𝑎  ≠  𝑥𝑖𝑏  ⨁ 𝑠  and     

ℎ(𝑥𝑖𝑎) ≠  ℎ(𝑥𝑖𝑏). For the other half of the inputs, the values of ℎ are set by the relation:  

h(𝑥𝑖𝑗  ⨁ 𝑠) = ℎ(𝑥𝑖𝑗) ∀ 1 ≤ 𝑗 ≤  2𝑛−1. 

Therefore, in order to define 𝑓 , we can set the values 𝑓(𝑥1) = 𝑓(𝑥1 ⨁𝑠′) =  𝑦1 , …, 𝑓′(𝑥𝑙) =

 𝑓′(𝑥𝑙  ⨁𝑠′) = 𝑦𝑙, whereas for the rest of the inputs we can pair them together (𝑥𝑖𝑗 , 𝑥𝑖𝑗  ⨁ 𝑠′) and assign 

to both of them a value from {0, 1}𝑛 which has not been given to any of the previously assigned inputs. 

Consequently, we have constructed a 2-to-1 function 𝑓 satisfying (𝐶1) and we know that 𝑀𝑖 will give 

a wrong answer for 𝑓 (by accepting it). 

We repeat the same procedure for all nondeterministic 𝑇𝑀 𝑀𝑖, obtaining that for all of them we can 

define a 2-to-1 function which the machines will mistakenly identify as 1-to-1. 

 

OBS 8. Another aspect we need to take into consideration is that the index specified in the input used 

to deceive the Turing Machine 𝑀𝑖, should be different from the previously selected indices used to 

deceive the Turing Machines 𝑀1, 𝑀2, … . ,𝑀𝑖−1. 

 The reason is that if the input to 𝑀𝑖 maps to an already set position in ℱ, occupied by some 2-to-1 

function 𝑓′ used to trick the machine 𝑀𝑘, 𝑘 <  𝑖, then we will replace 𝑓′ by a new function 𝑓′′ such 

that 𝑀𝑖 gives the wrong answer for 𝑓′′. However, it can be the case that 𝑓′′ may now be correctly 

rejected by 𝑀𝑘. Thus, we wouldn’t have any more that 𝑀𝑘 cannot decide coSimon. 

In order to avoid this problem, at each step 𝑖, we run 𝑀𝑖 on the input with index 𝑖, and hence we add 

in ℱ the resulting 2-to-1 function on position 𝑖. 

Consequently, 𝑐𝑜𝑆𝑖𝑚𝑜𝑛𝑂 ∉ 𝑀𝑖
𝑂  ∀𝑖 𝜖 ℕ, 𝑀𝑖 𝜖 𝑁𝑃, or in other words, 𝒄𝒐𝑺𝒊𝒎𝒐𝒏𝑶 ∉ 𝑵𝑷𝑶.   □
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7.2.2. 𝑁𝑃/𝑝𝑜𝑙𝑦-Impossibility 
 

The next step is proving that coSimon cannot be solved by a nondeterministic polynomial time 

algorithm receiving help from a polynomial advice: 

MAIN THEOREM 2.3:  coSimon ∉ 𝑵𝑷/𝒑𝒐𝒍𝒚𝑶.  

Proof. In order to show this, we need to indicate how the adversarial oracle 𝑂  can deceive any 

nondeterministic 𝑇𝑀 𝑀𝑖, irrespective of what advice string the machine might receive. 

Again, we proceed with a proof by contradiction. 

Suppose coSimon ϵ 𝑁𝑃/𝑝𝑜𝑙𝑦𝑂. 

Then, there exists an Oracle Turing Machine 𝑀 in 𝑁𝑃/𝑝𝑜𝑙𝑦 which returns “yes” when 𝑓 is bijective 

and “no” when 𝑓 is 2-to-1. 

As opposed to the 𝑁𝑃 case, now 𝑀 also receives some nonuniform information [18] to help decide if 

a function is bijective or not. This information is given by an advice function, ℎ ∶ ℕ → Σ∗, such that 

|ℎ(𝑛)| ≤ 𝑝(𝑛) ∀𝑛, 𝑝 a polynomial. However, this advice is the same for all inputs of 𝑀 which have the 

same length [20, 24]. 

The input for 𝑀 is represented by 𝑖 the index of a function, which is a natural number between 1 and 
𝑁𝑛 and 𝑛 the size of the inputs for that function, with 𝑛 represented in the unary system. 
This means that for any function 𝑓𝑖 ∶ {0, 1}

𝑚 → {0, 1}𝑚 (1-to-1 or 2-to-1) we have the same string 
advice 𝑠𝑎𝑑𝑣𝑖𝑐𝑒 such that |𝑠𝑎𝑑𝑣𝑖𝑐𝑒| ≤ 𝑝(𝑚 + log(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠 𝑔𝑖𝑣𝑒𝑛 𝑚)). 

Suppose the number of functions the oracle holds for any length 𝑚 is 𝑁𝑚 = 2𝑞(𝑚), 𝑞 polynomial. Then, 
|𝑠𝑎𝑑𝑣𝑖𝑐𝑒|  ≤  𝑝(𝑚 + 𝑞(𝑚)) , so  |𝑠𝑎𝑑𝑣𝑖𝑐𝑒| = 𝑂(𝑝(𝑞(𝑚))). 
 
We first present the intuition of the proof by contradiction. 

Intuitive proof. The number of 2-to-1 and 1-to-1 functions defined on the set {0, 1}𝑛 is 𝑁𝑛 = 2𝑞(𝑛) 
which is exponential, but we receive the same advice of length polynomial in 𝑛, for all these functions.  
The advice could help the nondeterministic machine by giving for each of these 𝑁𝑛 functions some 
information which can be used in the process of decision. 

However, we have the same external information of length 𝑝(𝑞(𝑛)) for any of the 2𝑞(𝑛) functions [18]. 

Because 𝑝(𝑞(𝑛)) ≤ 2𝑞(𝑛) ∀𝑝, 𝑞 polynomials this would mean that the advice cannot even provide one 
single bit of information for each of these functions, necessary to distinguish between them. 
If instead, the size of the advice would have been equal to 𝑁𝑛, then we would have 1 bit of information 
assigned for each function. In this case, the advice string could have indicated directly the solution: 
each bit of advice 𝑏𝑖 would be 𝑏𝑖 = 0 if the function 𝑓𝑖 is 2-to-1 and 𝑏𝑖 = 1 if 𝑓𝑖 is bijective and thus 
the machine could have determined the type of any function. 
But in general, if the number of functions is larger than the number of bits of the advice shared 
between all functions, we cannot obtain any kind of information for each of these functions. 
 
Despite this, the advice string could provide external information [28] for a polynomial number of 
functions. For example, considering the first 𝑝(𝑞(𝑛)) functions, the advice could provide one bit of 
information for each of these functions and therefore, 𝑀 could decide for them if they are bijective 
or not. Nonetheless, for the rest of the functions, the 𝑁𝑃  machine would receive no additional 
external help to decide whether to accept them or reject. 

Therefore, for any length of the input 𝑛, we would have 2𝑞(𝑛) –  𝑝(𝑞(𝑛)) functions for which the 𝑁𝑃 
machine 𝑀 would have no extra information and thus the proof reduces to the case of coSimon ∉ 

𝑁𝑃𝑂 discussed before.          □  
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𝐼𝑑𝑥 

advice 

2𝑝(𝑞(𝑛))  

2𝑞(𝑛) 

We will next present a more formal evidence for the MAIN THEOREM 2.3. 

Formal proof. Suppose there exists a 𝑁𝑃/𝑝𝑜𝑙𝑦𝑂  𝑇𝑀 𝑀𝑖 solving the coSimon problem. 
The input for 𝑀𝑖 is a string 𝐼𝑑𝑥 encoding the index of the function and the length of the input for that 

function (𝐼𝑑𝑥 = (𝑖𝑛𝑑𝑒𝑥, 𝑛)). 

Suppose from now on we will work only with a fixed length 𝑛 (the results we will obtain can then be 

generalised for all possible lengths). The maximum index of a function is a number exponential in 𝑛, 

|𝑖𝑛𝑑𝑒𝑥|  =  𝑞(𝑛), 𝑞 polynomial. Therefore, we obtain that the size of the input for 𝑀𝑖  is 𝑂(𝑞(𝑛)).        

In this situation, the advice received by 𝑀𝑖 for all functions has the property that |𝑎𝑑𝑣𝑖𝑐𝑒|  =  𝑝(𝑞(𝑛)), 

𝑝 polynomial. As 𝑛 is fixed, we can assume that 𝐼𝑑𝑥 only refers to a function index in ℱ. 

 

To build our proof we will start from some simplified problems. 

Problem 1. Let’s first assume 𝑀𝑖 decides the type of the function associated with the input 𝐼𝑑𝑥, only 

based on the advice string and on 𝐼𝑑𝑥. In other words, 𝑀𝑖 makes no queries to the oracle and the 

decision procedure for a path can be viewed as: 𝐹(𝐼𝑑𝑥, 𝑎𝑑𝑣𝑖𝑐𝑒). 

Solution. We can view the problem in this way: we have no control upon what the advice string might 

be, but we do control what function to associate for an input 𝐼𝑑𝑥 such that we deceive 𝑀𝑖. 

We build a matrix 𝑀𝑎𝑡  (Figure 6), where each row represents a possible advice which 𝑀𝑖  might 

receive and each column represents a possible input to 𝑀𝑖. Each cell in 𝑀𝑎𝑡, 𝑀𝑎𝑡𝑗,𝑘 contains a binary 

value, specifying whether 𝑀𝑖 , by receiving the advice 𝑎𝑑𝑣𝑗 , says that the function on position 𝑘 is 

bijective (𝑀𝑎𝑡𝑗,𝑘 = 1) or 2-to-1 (𝑀𝑎𝑡𝑗,𝑘 = 0). 

 

 00…0 00…01 … 11…11 

00…00 1 0  1 

…     

11…11 0 1  0 

 

Figure 6. Example of matrix recording the decisions made by 𝑀𝑖, depending on the advice received 

For every input 𝐼𝑑𝑥 the oracle 𝑂 chooses a function which maximizes the number of wrong answers 

given by 𝑀𝑖
𝑂. 

For the first column, we have  2𝑝(𝑞(𝑛)) responses, 0 or 1, depending on the advice received by 𝑀𝑖. We 

count the number of 0(“reject”) and 1(“accept”) responses gave by 𝑀𝑖  and we obtain 𝑢  “accept” 

answers and 𝑣 “reject” responses, such that 𝑢 + 𝑣 = 2𝑝(𝑞(𝑛)).  

If 𝑢 > 𝑣 , then for the first position in the set of functions the oracle selects a 2-to-1 function. 

Otherwise, the oracle selects a 1-to-1 function. In this way, for more than a half of the total number 

of advices, 𝑀𝑖 gave the wrong answer, so we can rule out these advices. Then, out of the total  2𝑝(𝑞(𝑛)) 

advices we now look at only 𝑚𝑖𝑛(𝑢, 𝑣) number of advices for the next column, where 𝑚𝑖𝑛(𝑢, 𝑣) is 

obviously less than 
2𝑝(𝑞(𝑛))

2
.  
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Index function 

query answers 

advice/ k-queries 

And at the second column, we proceed in a similar manner: we look at the responses 𝑀𝑖 gave for the 

remaining advices and consider a function of the other type than the type specified by the majority of 

answers. This function will be placed on the second position. The number of advices left is now less 

than  
2𝑝(𝑞(𝑛))

22
. In this manner, for every column we reduce with more than a half the number of advices 

which could be correct. 

Therefore, at the 𝑝(𝑞(𝑛)) + 1 column of 𝑀𝑎𝑡 we will definitely be left with no correct advice and we 

conclude that there is no polynomial advice which could help 𝑀𝑖 solve this problem.  □  

 
Problem 2. Now, we move to a second problem, specifically, showing that 𝒄𝒐𝑺𝒊𝒎𝒐𝒏 ∉ 𝑷/𝒑𝒐𝒍𝒚.  

Solution. We use a similar demonstration based on the construction of a matrix recording all the 

possibilities for the behaviour of a 𝑃/𝑝𝑜𝑙𝑦 𝑇𝑀 𝑀𝑖 which would be able to solve coSimon. For this case 

when 𝑀𝑖 is a deterministic polynomial time machine, we know that it can only query the oracle 𝑂 for 

a polynomial number of times [17, 20]. 

Suppose 𝑀𝑖 queries 𝑂 at most 𝑘 times (𝑘 polynomial in 𝑛), with all the inputs queried distinct from 

one another. These queries can be any strings of length 𝑛, and we name them : 𝑥1, 𝑥2, … , 𝑥𝑘. 

We build a new matrix 𝑴𝒂𝒕’ (Figure 7). The rows of 𝑀𝑎𝑡’ represent the possible advices which 𝑀𝑖 

could have received and the possible 𝑘 inputs queried by 𝑀𝑖 . The columns represent the function 

indices and the answers given by 𝑂 in response to the 𝑘 queries. The values in each cell of 𝑀𝑎𝑡’𝑗,𝑖𝑛𝑑𝑒𝑥 

specify whether 𝑀𝑖 receiving a particular advice and a particular set of responses from the oracle, 

accepts or not the function positioned at 𝑖𝑛𝑑𝑒𝑥. 

If 𝑀𝑖  would have not received any external advice, the oracle 𝑂 would know its algorithm and so 

would know the queries the machine is going to make [22]. However, an advice can change the 

behaviour of 𝑀𝑖 and determine a new sequence of queries requested by 𝑀𝑖.  

Thus, for every possible external information, we have to consider a new behaviour of 𝑀𝑖, each of 

them can be seen as a new different deterministic polynomial time 𝑇𝑀  [21]. Since each such 

deterministic polynomial-time 𝑇𝑀 is identified by a sequence of at most 𝑘 queries, we only need to 

take into account every possible array of 𝒌 different queries.  

Hence, each advice 𝑎𝑑𝑣𝑖  corresponds to a sequence (𝑥𝑖,1, 𝑥𝑖,2, … , 𝑥𝑖,𝑘) (which we call 𝒌-sequence), 

𝑥𝑖,𝑗 𝜖 {0, 1}
𝑛  ∀𝑗 𝜖 {1, . . . , 𝑘}, ∀𝑖 𝜖 {1, . . . , 2𝑝(𝑞(𝑛))}. We name 𝒌-answer, the array of the 𝑘  answers 

given by the oracle in response to a 𝑘-sequence. Our goal is that, for every function index, to eliminate 

a fraction of these possible 𝑘-sequences such that, for the last index we will be left with no possible 

𝑘-sequence. Then, we conclude that no advice can help a 𝑃 machine solve the coSimon problem.  

 Index function = 1 … Index function = 2𝑞(𝑛) 

(𝑥1,1, … , 𝑥1,𝑘) … (𝑥𝑅,1, … , 𝑥𝑅,𝑘) … (𝑥1,1, … , 𝑥1,𝑘) … (𝑥𝑅,1, … , 𝑥𝑅,𝑘) 

𝑎𝑑𝑣1 (𝑥1,1, … , 𝑥1,𝑘) 1 … 0 … 1 … 0 

𝑎𝑑𝑣2 (𝑥2,1, … , 𝑥2,𝑘) 0 … 0 … - … 1 

…   …    …  

𝑎𝑑𝑣2𝑝(𝑞(𝑛)) (𝑥2𝑝(𝑞(𝑛)),1, . . , 𝑥2𝑝(𝑞(𝑛)),𝑘) - … 1 … 1 … 0 

    Figure 7. Example of matrix for the P/poly case 



55 
 

Every response to a query is a number between 0 and 2𝑛 − 1. Thus, the number of possible 

𝑘-answers (containing 𝑘 distinct answers) given in response to a 𝑘-sequence asked by 𝑀𝑖 is equal to 

the number of arrangements of 2𝑛 answers taken 𝑘 at a time, 𝑃(2𝑛, 𝑘).  However, the function may 

be 2-to-1, so a 𝑘-answer must not always contain 𝑘 distinct answers (we need to also allow for some 

pairs from the 𝑘 values to be equal). We could consider any possible xor mask for 𝑓 and determine for 

which inputs (𝑥𝑖, 𝑥𝑗) we can have 𝑓(𝑥𝑖) = 𝑓(𝑥𝑗). One solution might be listing all possible 2𝑛 values 

for the elements of a 𝑘-answer and then we invalidate the entries in the matrix which cannot be a 

subset of the set of values of any bijective or 2-to-1 function. For example, we could insert in those 

invalid corresponding cells the symbol “- “).  

Therefore, the number of columns of  𝑀𝑎𝑡’ is 𝑉, where 2𝑞(𝑛) ⋅ 𝑃(2𝑛, 𝑘) < 𝑉 < 2𝑞(𝑛) ⋅ 2𝑛𝑘. 

Unlike the previous problem, for each function index we now have a block of columns (instead of just 

one column) and every column represents a possible 𝑘-answer. 

Consequently, for function 𝑖𝑛𝑑𝑒𝑥 = 𝑖 we initially set a 1-to-1 function 𝑓. We then look at the results 

provided by 𝑀𝑖 (accept/reject) given each of the advices available at this stage. We count the total 

number of accepts and rejects. If the number of rejects is greater than the number of accepts, then it 

means that more than a half of the advices are wrong and we can eliminate them and move to the 

next step (function index 𝑖 + 1). 

Otherwise, we can proceed in the following way. We select half of the inputs, for instance the first  

2𝑛−1  inputs, 𝑆 = {0, 1,… , 2𝑛−1 − 1 } and construct a 2-to-1 function 𝑔 , such that 𝑔(0)  =  𝑓(0) , 

𝑔(1)  =  𝑓(1), …, 𝑔(2𝑛−1 − 1)  =  𝑓(2𝑛−1 − 1). 

We can build such a function 𝑔 , by setting its associated xor mask 𝑠𝑔  such that 𝑠𝑔 ≠ 𝑢 ⨁ 𝑣             

∀𝑢, 𝑣 𝜖 { 0, … , 2𝑛−1 − 1}, 𝑢 ≠ 𝑣 . Such a string 𝑠𝑔  exists, because we notice that all the values of 

𝑢 ⨁ 𝑣 are less than 2𝑛−1 − 1, so, for example, we can set 𝑠𝑔 = 2𝑛−1. 

We now consider the majority of advices 𝑎𝑑𝑣𝑗 , the ones for which the resulting deterministic 

polynomial time 𝑇𝑀s are saying that the function with the 𝑖𝑛𝑑𝑒𝑥 = 𝑖 is bijective. Each of these 𝑇𝑀s 

corresponds to a 𝑘 -sequence and suppose the number of these machines is 𝐿  (we know that               

𝐿 >
1

2
 ⋅  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑎𝑑𝑣𝑖𝑐𝑒𝑠). Now, in the worst case, each advice 𝑎𝑑𝑣𝑗 corresponds to a 

different 𝑘-sequence,  meaning that 𝐿 = (2
𝑛

𝑘
). This situation is possible because we cannot control 

the exact size of the advice, we just know that the external advice must be polynomial in the size of 

input. Thus, in the worst case, we can have |𝑎𝑑𝑣𝑖𝑐𝑒| = log (2
𝑛

𝑘
), which is a polynomial function in 𝑛.  

By selecting only the deterministic 𝑇𝑀𝑠 whose queries consist of inputs from the set 𝑆, we have that 

all these 𝑇𝑀s will accept function 𝑔, as they get the same query responses as for the 𝑓 function. But, 

since 𝑔  is 2-to-1, they are all wrong and therefore, we can eliminate the lines of the matrix 

corresponding to these advices. The number of 𝑘-sequences consisting of inputs only from the set 𝑆 

is (2
𝑛−1

𝑘
), so at each step we can eliminate at least (2

𝑛−1

𝑘
) lines of the matrix 𝑀𝑎𝑡’. 

We can further improve the number of eliminations by making the next essential observation.  

OBS 8. We can additionally eliminate 𝑘-sequences which also contain inputs 𝑥’ from the other half of 

inputs ({0, 1}𝑛 –  𝑆) as long as 𝑥’ ≠ 𝑥 ⨁ 𝑠𝑔 ∀𝑥 𝜖 𝑆. This is because we are assuming that each of the 

remaining 𝑇𝑀s can solve the coSimon problem, therefore, they always accept correctly a bijective 

function. In other words, if the oracle returns any 𝑘 values which could be the values of any bijective 

function (not only from 𝑓), then these 𝑇𝑀𝑠 will accept.  
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advice/resulted NP machine 

Index function 

query answers 

Thus, the only condition the oracle must satisfy in order to deceive a deterministic 𝑇𝑀, is that for          

𝒌  distinct inputs to return 𝒌  distinct values. For this reason, we now take into account any 𝑘 -

sequence for which the fixed 2-to-1 function 𝑔 returns distinct values. 

Therefore, the number of 𝑘-sequences we can select is: 𝐸 = (2
𝑛−1

0
) ⋅ (2

𝑛−1

𝑘
) + (2

𝑛−1

1
) ⋅ (2

𝑛−1−1
𝑘−1

) +

⋯ +  (2
𝑛−1

𝑘
) ⋅ (2

𝑛−1−𝑘
0

)  =  ∑ (2
𝑛−1

𝑖
)  ⋅  (2

𝑛−1−𝑖
𝑘−𝑖

)𝑘
𝑖=0  

We further obtain that 𝐸 = ∑
(2𝑛−1)!

𝑖!⋅(2𝑛−1−𝑖)!
⋅  

(2𝑛−1−𝑖)!

(𝑘−𝑖)! ⋅(2𝑛−1−𝑘)! 

𝑘
𝑖=0 = 

(2𝑛−1)!

(2𝑛−1−𝑘)!
⋅ ∑

1

𝑖!⋅(𝑘−𝑖)!
= 𝑘

𝑖=0  

(2𝑛−1)!

(2𝑛−1−𝑘)!
⋅
1

𝑘!
⋅ ∑

𝑘!

𝑖!⋅(𝑘−𝑖)!
= 𝑘

𝑖=0

(2𝑛−1)!

(2𝑛−1−𝑘)!
⋅
1

𝑘!
⋅ ∑ (𝑘𝑖)

𝑘
𝑖=0 =

(2𝑛−1)!

(2𝑛−1−𝑘)!
⋅
1

𝑘!
⋅ 2𝑘 = (2

𝑛−1

𝑘 ) ⋅ 2𝑘. 

 
For all these 𝐸 queries the resulting 𝑇𝑀𝑠 will give the wrong answer (saying that 𝑔 is bijective), so we 
can eliminate 𝐸 lines of the matrix 𝑀𝑎𝑡’ in one step.  
We can see that we are now left with queries containing inputs both from 𝑆 and from {0, 1}𝑛 –  𝑆, 
such that we have at least one pair (𝑥, 𝑥’), where 𝑥 𝜖 𝑆, 𝑥’ 𝜖 {0, 1}𝑛 – 𝑆 and 𝑥’ = 𝑥 ⨁ 𝑠.  
 

Then, we can repeat the whole procedure for all 2𝑞(𝑛) function indices. We obtain that we are able 

to eliminate in the worst case at least  2𝑞(𝑛) ⋅ (2
𝑛−1

𝑘
) ⋅ 2𝑘 advices. As  2𝑞(𝑛) ⋅ (2

𝑛−1

𝑘
) ⋅ 2𝑘 > (2

𝑛

𝑘
), this 

means that we have discarded all lines of 𝑴𝒂𝒕’, so no possible polynomial advice could help any 

deterministic machine solve coSimon. Therefore, 𝒄𝒐𝑺𝒊𝒎𝒐𝒏 ∉ 𝑷/𝒑𝒐𝒍𝒚.     □  
 

Using the proof techniques used in Problem 1 and Problem 2, we can finally proceed to demonstrate 
MAIN THEOREM 2.3. 

Suppose ∃𝑀𝑖 𝜖 𝑁𝑃/𝑝𝑜𝑙𝑦 solving coSimon. 

Once again, we need to take into consideration every possible advice received by 𝑀𝑖 . As in the 

previous problems, the number of advices is 2𝑝(𝑞(𝑛)), where 𝑝 and 𝑞 are 2 polynomials. 

For each of these possible advice strings which 𝑀𝑖 might receive, we obtain a new nondeterministic 

polynomial-time machine 𝑴𝒊,𝒋  [17, 20] and we must demonstrate that none of these resulting 

machines is able to solve our coSimon. 

Following the same strategy, we build a new matrix 𝑴𝒂𝒕’’ (Figure 8), where each line corresponds to 

a possible advice (the resulting 𝑁𝑃 machine) and for each possible function index we have a block of 

columns corresponding to possible 𝑘-answers returned by the oracle 𝑂. 

 Index function = 1 … Index function = 2𝑞(𝑛) 

(𝑥1,1, … , 𝑥1,𝑀) … (𝑥𝑅,1, … , 𝑥𝑅,𝑀) … (𝑥1,1, … , 𝑥1,𝑀) … (𝑥𝑅,1, … , 𝑥𝑅,𝑀) 

𝑎𝑑𝑣1 𝑀𝑖,1 1 … 0 … 1 … 0 

𝑎𝑑𝑣2 𝑀𝑖,2 0 … 0 … 0 … 1 

…   …  …  …  

𝑎𝑑𝑣2𝑝(𝑞(𝑛)) 𝑀𝑖,2𝑝(𝑞(𝑛)) 1 … 1 … 1 … 0 

Figure 8. Example of matrix for the P/poly case 
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For the first step (function 𝑖𝑛𝑑𝑒𝑥 = 1), we choose a bijective function 𝑓 ∶  {0, 1}𝑛 → {0, 1}𝑛. 

In this way, we fixed the answers the oracle will return to each 𝑀𝑖,𝑗. This results in a single column for 

𝑖𝑛𝑑𝑒𝑥 = 1, no matter what the computational trees of each 𝑀𝑖,𝑗 would look like. Each of the values 

in this column will be a 0 or 1 specifying if 𝑀𝑖,𝑗  accepts or not this 𝑓. We then iterate through all 

possible advices and look at the answers gave by each machine 𝑀𝑖,𝑗. 

We can count the number of accepts and rejects. If the number of rejects is larger, this means that 

the more than a half of the 𝑇𝑀𝑠 are wrong and we can eliminate this majority for the following step. 

Now, consider the case when the number of “yes” answers is in majority. Suppose the number of 

these machines is 𝐿, 𝐿 >  
2𝑝(𝑞(𝑛))

2
. Then, we want to show that we can eliminate at each stage a 

fraction of these 𝐿  lines, such that at the final step 𝑖𝑛𝑑𝑒𝑥 = 2𝑞(𝑛)  , we are left with no possible 

nondeterministic machines capable of solving our problem. If we can eliminate at each step a constant 

fraction of lines 𝑐, then at step 𝑖 we would have 2𝑝(𝑞(𝑛)) ⋅ (1 − 𝑐)𝑖 remaining lines and until we reach 

the last index function we would eliminate all advices. 

From the selected 1-to-1 function 𝑓 we want to build a 2-to-1 function 𝑓 in the following manner:  

We choose  the first  2𝑛−1 inputs 𝑆 = {0, 1, … , 2𝑛−1} and construct a 2-to-1 function 𝑓 with the xor 

mask 𝑠 , such that 𝑓 ( 0) = 𝑓(0) , 𝑓 ( 1) = 𝑓(1) , …, 𝑓 ( 2𝑛−1) = 𝑓(2𝑛−1)  and 𝑠 ≠ 𝑢 ⨁ 𝑣             

∀𝑢, 𝑣 𝜖 { 0, … , 2𝑛−1 − 1}, 𝑢 ≠ 𝑣 (for instance 𝑠 = 2𝑛−1). 

Each of the 𝐿 machines is incorrectly accepting 𝑓. Because they are nondeterministic polynomial-time 

machines, this fact is equivalent to saying that: for any of these 𝑇𝑀𝑠, there exists a path containing a 

polynomial number of queries, such that the path ends in an accepting state [20, 33].   

Therefore, for each advice 𝑎𝑑𝑣𝑗  we can associate an accepting path 𝜋𝑗  of the machine 𝑀𝑖,𝑗 . We 

suppose each of these paths contains a sequence of at most 𝑘  queries to the oracle, where 𝑘  is 

polynomial in 𝑛. Hence, if we assume that for a given advice, the correspondent machine 𝑀𝑖,𝑗 always 

accepts correctly a bijective function, then by giving the answers to the 𝑘-sequence as coming from 

any bijective function, 𝑀𝑖,𝑗 must accept the given function. 

We pick an accepting path for each of these nondeterministic machines. Then, we can deceive a path 

𝜋𝑗 by returning in response to the queries along 𝜋𝑗, a 𝑘-answer consisting of distinct values coming 

from a 2-to-1 function. We can see each of these accepting paths 𝝅𝒋 as a deterministic polynomial 

time machine. Then, we deduce that we only need to consider all possible 𝑘-sequences and eliminate 

them until the last step (function 𝑖𝑛𝑑𝑒𝑥 = 2𝑞(𝑛)). Consequently, the proof reduces to the Problem 2 

of showing that no 𝑃/𝑝𝑜𝑙𝑦 machine can solve the coSimon problem, so we conclude that: 

𝒄𝒐𝑺𝒊𝒎𝒐𝒏 ∉ 𝑵𝑷/𝒑𝒐𝒍𝒚       □  

 

In this section we have described the problem coSimon solvable by a 𝐵𝑄𝑃 machine and we 

presented both an intuitive and a formal proof that coSimon ∉  𝑁𝑃/𝑝𝑜𝑙𝑦𝑂. Using the fact that coSimon 

𝜖 𝐵𝑄𝑃𝑂  and that any problem in 𝐵𝑄𝑃𝑂  can be reduced in polynomial time to a problem 𝐺  from 

𝐵𝑄𝑃 − 𝐻𝑎𝑟𝑑𝑂 [17], we can derive that no 𝐵𝑄𝑃 − 𝐻𝑎𝑟𝑑𝑂 problem can be solved by a machine from 

the class 𝑁𝑃/𝑝𝑜𝑙𝑦𝑂.  

In the next part, we will present and analyse another problem named Forrelation [25], which suggests 

the gap between the complexity classes 𝐵𝑄𝑃 and 𝑁𝑃/𝑝𝑜𝑙𝑦. 
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8. Forrelation Problem 
 

 

Another interesting problem we study in order to indicate the separation between the 𝐵𝑄𝑃 

and the 𝑁𝑃/𝑝𝑜𝑙𝑦 classes is called the Forrelation Problem [25]. One reason why we delve into this 

problem is that it proves the highest gap known so far between classical and quantum complexity. 

DEFINITION  9: The Forrelation problem determines whether one Boolean function 𝑓 ∶ {0, 1}𝑛 →

{−1, 1} is highly correlated with the Fourier transform �̃� of a second Boolean function 𝑔 ∶ {0, 1}𝑛 →

 {−1, 1}, given the promise that 𝑓 and �̃� are either highly correlated or strongly uncorrelated. 

Specifically, the level of correlation between 𝑓 and �̃� is measured by the quantity: 

𝚯𝒇,𝒈 = 
1

2
3𝑛
2

⋅  ∑ (−1)𝑥⋅𝑦 𝑓(𝑥)𝑔(𝑦)𝑥,𝑦 𝜖 {0,1}𝑛 . The Forrelation problem tells us that either |𝚯𝒇,𝒈| <  
𝟏

𝟏𝟎𝟎
  

- corresponding to a high correlation or 𝚯𝒇,𝒈 ≥ 
𝟑

𝟓
 – corresponding to a large uncorrelation. 

As in the case of Simon’s problem, we do not have direct access to the table values of the 2 functions, 

but we have an oracle 𝑂 which given an input can return the values of the 2 functions in that point. 

While classically we would need at least 
2𝑛−1

𝑛
 queries to solve the problem [25, 30], we will 

demonstrate that in the quantum paradigm Forrelation can be solved using only 1 query to the oracle. 

 

8.1. Quantum Algorithm 
 

THEOREM 3.1. 𝐹𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑏𝑙𝑒𝑚 𝜖 𝐵𝑄𝑃𝑂 

Proof. The Forrelation problem can be solved using the quantum circuit in Figure 9: 

 

Figure 9. Circuit for solving the Forrelation problem 

The initial state is |ᴪ0⟩ = |0⟩⨂n. After we apply 𝑛 Hadamard gates we reach the state [1]:  

|ᴪ1⟩ =
1

(√2)𝑛
⋅  (|0⟩ + |1⟩)𝑛 =

1

(√2)𝑛
⋅ ∑ |𝑥⟩𝑥 𝜖 {0,1}𝑛 . 
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Next, we execute the unitary for the 𝑓 function [29], which has the following effect: 

|𝑥⟩
𝑈𝑓  
→  𝑓(𝑥) ⋅ |𝑥⟩ 

Therefore, we obtain |ᴪ2⟩ =
1

(√2)𝑛
⋅ ∑ 𝑓(𝑥) ⋅ |𝑥⟩𝑥 𝜖 {0,1}𝑛  

The second round of Hadamards, will transform this state to: 

 |ᴪ3⟩ =
1

(√2)
𝑛 ⋅  

1

(√2)
𝑛 ⋅  ∑ (∑ (−1)𝑥⋅𝑦 ⋅ 𝑓(𝑥) ⋅ |𝑦⟩𝑦 𝜖 {0,1}𝑛 )𝑥 𝜖 {0,1}𝑛  

Following this, we apply the second unitary for the 𝑔 function, 𝑈𝑔, obtaining the state |ᴪ4⟩: 

|ᴪ4⟩ = 
1

2𝑛
⋅  ∑ (∑ (−1)𝑥⋅𝑦 ⋅ 𝑓(𝑥) ⋅ 𝑓(𝑦) ⋅ |𝑦⟩𝑦 𝜖 {0,1}𝑛 )𝑥 𝜖 {0,1}𝑛  

Finally, the last set of Hadamard gates will lead us to the state |ᴪ5⟩: 

|ᴪ5⟩ =  
1

2𝑛
⋅  

1

(√2)𝑛
 ⋅ ∑ (∑ ∑ (−1)𝑦⋅𝑧 ⋅  (−1)𝑥⋅𝑦 ⋅ 𝑓(𝑥) ⋅ 𝑔(𝑦) ⋅ |𝑧⟩𝑧 𝜖 {0,1}𝑛𝑦 𝜖 {0,1}𝑛 )𝑥 𝜖 {0,1}𝑛  

Now, we measure the probability of getting |0⟩⨂n [12]. 

Using the projector 𝑃0 = |0⟩⨂n ⟨0|⨂n, we obtain the probability equals to 𝑃(0) = ⟨ᴪ5|𝑃0
+𝑃0||ᴪ5⟩ 

𝑃(0) = [ 
1

2
3𝑛
2

⋅ ∑ (−1)𝑥⋅𝑦 𝑓(𝑥)𝑔(𝑦)𝑥,𝑦 𝜖 {0,1}𝑛 ] ⋅ [ 
1

2
3𝑛
2

 ⋅ ∑ (−1)𝑥⋅𝑦 𝑓(𝑥)𝑔(𝑦)𝑥,𝑦 𝜖 {0,1}𝑛 ]. 

The amplitude associated with the state |0⟩⨂n is 𝐴 = √𝑃(0) =
1

2
3𝑛
2

⋅ ∑ (−1)𝑥⋅𝑦𝑓(𝑥)𝑔(𝑦)𝑥,𝑦 𝜖 {0,1}𝑛 , 

which is exactly the quantity Θ𝑓,𝑔 we needed.  

Moreover, we observe that we obtained Θ𝑓,𝑔 with a single query to the oracle for 𝑓 and a single query 

to the oracle for 𝑔. Consequently, we have described a 𝐵𝑄𝑃 algorithm solving the Forrelation problem.

           □  

 

8.2. 𝑘-Forrelation 
 

We create a generalization of this problem, called 𝑘-Forrelation [25] which involves 𝑘 Boolean 

functions. We choose to discuss about this problem because it has the important property of being a 

𝐵𝑄𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problem [17, 19]. 

DEFINITION  10.  In the 𝑘 -Forrelation we have the functions 𝑓1, 𝑓2, … , 𝑓𝑘  with 𝑓𝑖: {0, 1}
𝑛 → {−1, 1} ,   

∀𝑖 𝜖 {1,… , 𝑘}. We compute the value of:   

Θ𝑓1,𝑓2,…,𝑓𝑘 =
1

2
(𝑘+1)𝑛

2

⋅ ∑ (−1)𝑥1⋅𝑥2 ⋅

𝑥1,𝑥2,…,𝑥𝑘 𝜖 {0,1}
𝑛

(−1)𝑥2⋅𝑥3 ⋅ … ⋅ (−1)𝑥𝑘−1⋅𝑥𝑘 ⋅ 𝑓1(𝑥1) ⋅ … ⋅ 𝑓𝑘(𝑥𝑘) 

and need to decide whether 𝚯𝒇𝟏,𝒇𝟐,…,𝒇𝒌 ≥ 
𝟑

𝟓
 or |𝚯𝒇𝟏,𝒇𝟐,…,𝒇𝒌| ≤  

𝟏

𝟏𝟎𝟎
. 

To prove that 𝑘-Forrelation is a 𝐵𝑄𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problem, we need to show that it is both a 𝐵𝑄𝑃 and 

a 𝐵𝑄𝑃 − ℎ𝑎𝑟𝑑 problem [20]. 
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THEOREM 3.1.1: 𝑘-Forrelation ϵ 𝐵𝑄𝑃𝑂 

Proof. We can follow a generalisation of the proof for THEOREM 3.1 (Fig. 10). 

 

Figure 10. 𝐶𝐹𝑜𝑟𝑟 Circuit for k-Forrelation 

As in the case of the Forrelation problem, the value of quantity we are interested in, Θ𝑓1,𝑓2,…,𝑓𝑘, is 

represented by the amplitude corresponding to the state |0⟩⨂𝑛 from the final superposition quantum 

state resulted from the above 𝐶𝐹𝑜𝑟𝑟 circuit [25]. 

We can see that we only need to make one query to the oracles for each of the 𝑘 functions, so the     

𝑘-Forrelation problem can be solved using 𝑘 quantum queries.     □  

THEOREM 3.1.2: 𝑘-Forrelation ϵ 𝐵𝑄𝑃 − 𝐻𝑎𝑟𝑑𝑂. 

Proof. In order to show that it is a 𝐵𝑄𝑃 − ℎ𝑎𝑟𝑑 problem, we use a polynomial-time reduction [32] 

from a problem known to be in 𝐵𝑄𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒: the QSIM problem [30]. In QSIM we receive as input 

a quantum circuit 𝑄 containing only Hadamard and 𝐶𝑆𝐼𝐺𝑁 quantum gates. The problem asks us to 

decide whether the probability of 𝑄 ending in the state |0⟩⨂𝑛 resides in one of 2 possible intervals. To 

be more specific, given that for amplitude corresponding to this probability 𝑆𝑄 = ⟨0|⨂𝑛𝑄|0⟩⨂𝑛 we 

have that either |𝑆𝑄| ≤
1

100
 or 𝑆𝑄 ≥

3

5
, the QSIM problem requires us to identify which of the 2 cases 

holds for the quantum circuit 𝑄.  

We notice that both 𝑆𝑄 in the QSIM problem and Θ𝑓1,𝑓2,…,𝑓𝑘  in the 𝑘-Forrelation are promised to be in 

the exact same intervals [25, 30]. Therefore, a reduction from QSIM to 𝑘-Forrelation entails showing 

that for any circuit 𝑄  consisting of Hadamard or 𝐶𝐶𝑆𝐼𝐺𝑁  gates we are able to find 𝑘  Boolean 

functions 𝑓1, 𝑓2, … , 𝑓𝑘 such that 𝑆𝑄 = Θ𝑓1,𝑓2,…,𝑓𝑘. 

As seen in Figure 10, Θ𝑓1,𝑓2,…,𝑓𝑘  is obtained from a circuit (𝐶𝐹𝑜𝑟𝑟) which contains 𝑘 blocks of gates, 

where each block has a Hadamard gate applied on every qubit, followed by a unitary operator for a 

function.  

Our reduction implies that this circuit 𝐶𝐹𝑜𝑟𝑟 must match any possible circuit consisting of Hadamard 

and 𝐶𝐶𝑆𝐼𝐺𝑁  gates only. 𝐶𝐹𝑜𝑟𝑟  already contains Hadamard gates, thus, we must use the function 

operators 𝑈𝑓𝑖  to simulate 𝐶𝐶𝑆𝐼𝐺𝑁 gates [1]. 

We remind that the 𝐶𝐶𝑆𝐼𝐺𝑁 unitary takes as input 3 qubits |𝑥⟩|𝑦⟩|𝑧⟩  and returns (−1)𝑥⋅𝑦⋅𝑧|𝑥⟩|𝑦⟩|𝑧⟩. 

Suppose 𝑄 receives an 𝑛 qubits input and contains a 𝐶𝐶𝑆𝐼𝐺𝑁 gate applied on the qubits 𝑥𝑖, 𝑥𝑗 and 𝑥𝑘. 

Then, we can simulate 𝑄 by selecting one of our 𝑘 functions to be 𝑓𝑙(𝑥1, 𝑥2, . . , 𝑥𝑛) = (−1)𝑥𝑖⋅𝑥𝑗⋅𝑥𝑘. 

Therefore, 𝑓𝑙 affects only the 3 qubits and leaves the rest of them unchanged. 
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However, as seen in 𝐶𝐹𝑜𝑟𝑟, any unitary 𝑈𝑓𝑖  is also surrounded by 𝑛 Hadamards to the left and 𝑛 to the 

right. If we just want to apply a 𝐶𝐶𝑆𝐼𝐺𝑁 on 3 qubits and have no Hadamards applied before or after, 

then we can set the functions 𝑓𝑙−1 and 𝑓𝑙+1 to be constant: 𝑓𝑙−1 = 𝑓𝑙+1 = 1. If 𝑓𝑙−1 = 1, then for 𝑓𝑙−1 

we have: a block containing 𝑛 Hadamards followed by the unitary for 𝑓𝑙−1, which is now the identity 

matrix, followed by another 𝑛 Hadamards. Thus, the structure for 𝑓𝑙−1 reduces to a pair of Hadamards 

applied to each qubit. But since we know that 𝐻2 = 𝐼 [29], all these Hadamards cancel each other. 

The same process takes place for 𝑓𝑙+1, so we are only left with the 𝐶𝐶𝑆𝐼𝐺𝑁 gate obtained by 𝑓𝑙. 

So far we treated the cases when we apply Hadamards on all 𝑛 qubits or we cancel all Hadamards. 

Now, we must find a solution when in 𝑄 there are 𝐻 gates applied only to a subset of the 𝑛 qubits. 

Suppose we want to apply a Hadamard to only 2 qubits 𝑥𝑖, 𝑥𝑗, without affecting the rest of the qubits.  

In this case we add 3 functions: 𝑓𝑙, 𝑓𝑙+1, 𝑓𝑙+2, such that:  

 𝑓𝑙(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑓𝑙+1(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑓𝑙+2 (𝑥1, 𝑥2, … , 𝑥𝑛) = (−1)𝑥𝑖⋅𝑥𝑗 

Then, this would result in the following fragment of the 𝐶𝐹𝑜𝑟𝑟 circuit [25] (Figure 11). 

 

Figure 11. Fragment of Forrelation circuit to simulate Hadamard on 2 qubits 

The result of this circuit is the application on the qubits 𝑥𝑖, 𝑥𝑗 of the operator: 

𝑈 =  𝐻2 ⋅ 𝐶𝑆𝐼𝐺𝑁 ⋅  𝐻2 ⋅ 𝐶𝑆𝐼𝐺𝑁 ⋅  𝐻2 ⋅ 𝐶𝑆𝐼𝐺𝑁 ⋅  𝐻2 

We use the relation that (𝐻2  ⋅  𝐶𝑆𝐼𝐺𝑁)
3 = 𝑆𝑊𝐴𝑃 [3, 12]. Therefore, we have 𝑈 = 𝑆𝑊𝐴𝑃 ⋅ 𝐻2. 

On the other hand, for the other 𝑛 − 2 qubits (different from 𝑥𝑖, 𝑥𝑗), the 3 functions 𝑓𝑙, 𝑓𝑙+1, 𝑓𝑙+2 do 

not alter them, so we only apply the Hadamards on those 𝑛 − 2  qubits, resulting the following 

operator acting on them: 

𝑈’ = 𝐻 ⋅ 𝐼 ⋅ 𝐻 ⋅ 𝐼 ⋅ 𝐻 ⋅ 𝐼 ⋅ 𝐻 = 𝐻4 = 𝐼, 

which means that the other 𝑛 − 2  qubits remain unchanged as we wanted. 

However, we saw that the operator 𝑈  acting on 𝑥𝑖 , 𝑥𝑗  has besides the Hadamard, an additional 

operator, 𝑆𝑊𝐴𝑃. But, since we are aware of this fact, all we need to do is to swap the 2 qubits 𝑥𝑖, 𝑥𝑗 

every time we want to apply a Hadamard on them. 

Now, we can generalize our result for the application of Hadamard gates on a subset of qubits, of size 

larger than 2. Consider we want 𝐻 gates acting on 𝑚 qubits. Then, if 𝑚 is even we can group these 

qubits into 
𝑚

2
 pairs and use for each pair the procedure presented above (Figure 11) [25]. If instead, 

𝑚 is odd, then we can add an extra qubit in the circuit, so that we can group again all qubits into pairs 

and repeat the same algorithm. 
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The last remaining problem occurs in the case where in 𝑄  we have 2 consecutive 𝐶𝐶𝑆𝐼𝐺𝑁  gates 

applied on the same qubits (call them 𝑥, 𝑦, 𝑧). In this situation, we would need 2 functions equal to 

(−1)𝑥⋅𝑦⋅𝑧. To get rid of the Hadamards in between the 𝐶𝐶𝑆𝐼𝐺𝑁 operators, we insert another function 

𝑓’, such that 𝑓𝑗  = (−1)𝑥⋅𝑦⋅𝑧 , 𝑓𝑗+1 = 𝑓′, 𝑓𝑗+2  = (−1)𝑥⋅𝑦⋅𝑧  and 𝑓’ = 1. Consequently, the Hadamards 

between 𝑓𝑗 and 𝑓𝑗+1 will be cancelled by the Hadamards between 𝑓𝑗+1 and 𝑓𝑗+2 and we will remain 

with 2 consecutive 𝐶𝐶𝑆𝐼𝐺𝑁 gates [1, 29]. 

All in all, we simulated each 𝐶𝐶𝑆𝐼𝐺𝑁 gate of the circuit 𝑄 using 1 function in the Forrelation problem 

and each 𝐻 gate using 3 functions. 

Therefore, starting from a quantum circuit 𝑄 containing 𝑀 gates: Hadamards or 𝐶𝐶𝑆𝐼𝐺𝑁, we are able 

to find 𝑘  functions, 𝑓1, 𝑓2, … , 𝑓𝑘  such that the Forrelation circuit simulates the circuit of 𝑄                         

(𝑆𝑄 = Θ𝑓1,𝑓2,…,𝑓𝑘), where 𝑘 = 𝑂(𝑀)). Moreover, we obtained that any of the 𝑘 functions is of the form 

𝑓𝑖 ∶ {0,1}
𝑛+1 → {−1, 1}   𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑛+1) = (−1)𝑥𝑎⋅ 𝑥𝑏  or 𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑛+1) = (−1)𝑥𝑢⋅ 𝑥𝑣⋅𝑥𝑤     

(the input has length 𝑛 + 1, because we might need to add an extra bit to solve the Hadamard issue  

described above). 

Then, we have found a reduction in polynomial time from a 𝐵𝑄𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problem (QSIM) to        

𝑘-Forrelation, when 𝑘 = 𝑂(𝑛). Additionally, we have given a 𝐵𝑄𝑃 algorithm to this problem, thus, we 

have shown that 𝒌-Forrelation is in 𝑩𝑸𝑷− 𝒄𝒐𝒎𝒑𝒍𝒆𝒕𝒆.    □  

 

At this point, we could not find a way to relate the k-Forrelation to the class 𝑁𝑃/𝑝𝑜𝑙𝑦. Instead, we are 

now going to link this 𝐵𝑄𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problem to a similar oracle problem [25, 30] which is easier 

to work on. 

 

8.3. Real Forrelation 
 

DEFINITION  11. In the Real Forrelation problem [25] we are given 2 functions 𝑓, 𝑔 ∶  {0, 1}𝑛 →

ℝ and we can obtain values of these functions in different points through an oracle 𝑂. Given the fact 

that there are possible 2 scenarios involving the 2 input functions, we are asked to determine in which 

of the 2 cases we are. The 2 scenarios are the next ones: 

i. For all 𝑥, 𝑦 𝜖 {0, 1}𝑛, 𝑓(𝑥) and 𝑔(𝑦) are both drawn from normal distributions with mean 0 

and  variance 1 

ii. For all 𝑥 𝜖 {0, 1}𝑛, 𝑓(𝑥) are drawn from the normal distribution, but function 𝑔 depends on 

the values of 𝑓: 𝑔(𝑥) =
1

√2𝑛
∑ 𝑓(𝑦) ⋅ (−1)𝑥⋅𝑦𝑦 𝜖 {0,1}𝑛  

The second case can be rewritten as: 𝑔 = 𝐻 ⋅ 𝑓, where we considered 𝑓 and 𝑔 as 2 vectors containing 

the values of the functions and 𝐻 is the Hadamard matrix [4].  

What we want to show is the following essential property [25]: 

 THEOREM 3.2.1. Real Forrelation is at most as difficult to solve as the Forrelation problem. Then, by 

showing that we can obtain a negative answer for Real Forrelation being solved by a 𝑇𝑀 in 𝑁𝑃/𝑝𝑜𝑙𝑦, 

this would imply the same negative result for Forrelation. 

Proof. Showing that Forrelation is at least as difficult as Real Forrelation can be achieved by finding a 

polynomial reduction from Real Forrelation to Forrelation (Real Forrelation≤𝑝𝑜𝑙𝑦Forrelation) [20].  



63 
 

Given an input for the Real Forrelation problem, consisting of 2 real functions, we need to create an 

instance of the Forrelation problem. 

In other words, from 𝑓, 𝑔 : {0, 1}𝑛 → ℝ we need to create 2 Boolean functions 𝐹, 𝐺 : {0, 1}𝑛 → {−1,1} 

such that if 𝑓, 𝑔 are uncorrelated then we have |Θ𝐹,𝐺| ≤  
1

100
 and if 𝑔 = 𝐻𝑓 we have Θ𝐹,𝐺 ≥ 

3

5
 . 

We build 𝐹 and 𝐺 in the following way: 

𝐹(𝑥) = 𝑠𝑖𝑔𝑛(𝑓(𝑥)) ∀𝑥 𝜖 {0, 1}𝑛 

𝐺(𝑥) = 𝑠𝑖𝑔𝑛(𝑔(𝑥)) ∀𝑥 𝜖 {0, 1}𝑛 

Now, given that 𝑔 = 𝐻𝑓, we need to show that |Θ𝐹,𝐺| ≤  
1

100
 

 Θ𝐹,𝐺 = 
1

2
3𝑛
2

⋅  ∑ (−1)𝑥⋅𝑦 𝐹(𝑥)𝐺(𝑦)𝑥,𝑦 𝜖 {0,1}𝑛  

𝑔(𝑥) = (𝐻𝑓)𝑥 = (−1)𝑥⋅0 ⋅ 𝑓(0) + (−1)𝑥⋅1 ⋅ 𝑓(1)+. . . +(−1)𝑥⋅(2
𝑛−1) ⋅ 𝑓(2𝑛 − 1) = ∑ (−1)𝑥⋅𝑖 ⋅ 𝑓(𝑖)2𝑛−1

𝑖=0  

We compute the estimated value [34] of each term of Θ𝐹,𝐺: 

𝑇𝑥,𝑦 = 𝐸[(−1)𝑥⋅𝑦 ⋅ 𝐹(𝑥) ⋅ 𝐺(𝑦)] = 𝐸[(−1)𝑥⋅𝑦 ⋅ 𝑠𝑖𝑔𝑛(𝑓(𝑥)) ⋅ 𝑠𝑖𝑔𝑛(∑ (−1)𝑦⋅𝑖 ⋅ 𝑓(𝑖)2𝑛−1
𝑖=0 )]  

We can rewrite 𝑇𝑥,𝑦 as 𝑇𝑥,𝑦 = 𝐸[(−1)𝑥⋅𝑦 ⋅ 𝑠𝑖𝑔𝑛(𝑓(𝑥)) ⋅ 𝑠𝑖𝑔𝑛(𝐶 + (−1)𝑦⋅𝑥 ⋅ 𝑓(𝑥))], where  

𝐶 =  ∑ (−1)𝑦⋅𝑖 ⋅ 𝑓(𝑖)2𝑛−1
𝑖=0
𝑖 ≠𝑥

. 

Because we know that all values of 𝑓 are independently drawn from 𝒩(0, 1), we have that 𝑓(𝑥) and  

𝐶 are also independent [33, 34] (as 𝐶 involves every value of 𝑓 except the one on input 𝑥) and hence:  

𝐸[(−1)𝑥⋅𝑦 ⋅ 𝑠𝑖𝑔𝑛(𝑓(𝑥)) ⋅ 𝑠𝑖𝑔𝑛(𝐶)] = 0 

Now, when we add (−1)𝑦⋅𝑥 ⋅ 𝑓(𝑥) to 𝐶 there are 2 possibilities: 

a) 𝑠𝑖𝑔𝑛(𝐶 + (−1)𝑦⋅𝑥 ⋅ 𝑓(𝑥)) = 𝑠𝑖𝑔𝑛(𝐶) , so 𝑇𝑥,𝑦 = 𝐸[(−1)𝑥⋅𝑦 ⋅ 𝑠𝑖𝑔𝑛(𝑓(𝑥)) ⋅ 𝑠𝑖𝑔𝑛(𝐶)] = 0 

b)𝑠𝑖𝑔𝑛(𝐶 + (−1)𝑦⋅𝑥 ⋅ 𝑓(𝑥)) = 𝑠𝑖𝑔𝑛((−1)𝑦⋅𝑥 ⋅ 𝑓(𝑥)) and 𝑠𝑖𝑔𝑛((−1)𝑦⋅𝑥 ⋅ 𝑓(𝑥)) ≠ 𝑠𝑖𝑔𝑛(𝐶) 

Therefore, we obtain that 𝑇𝑥,𝑦 = 2 ⋅ 𝑃 (𝑠𝑖𝑔𝑛(𝐶 + (−1)𝑦⋅𝑥 ⋅ 𝑓(𝑥)) ≠ 𝑠𝑖𝑔𝑛(𝐶)) 

𝑠𝑖𝑔𝑛(𝐶 + (−1)𝑦⋅𝑥 ⋅ 𝑓(𝑥)) ≠ 𝑠𝑖𝑔𝑛(𝐶) can only happen when:   

𝑠𝑖𝑔𝑛(𝐶) ≠ 𝑠𝑖𝑔𝑛((−1)𝑦⋅𝑥 ⋅ 𝑓(𝑥)) 𝑎𝑛𝑑 |𝐶| < |(−1)𝑦⋅𝑥 ⋅ 𝑓(𝑥)| . 

Consider 𝐶(𝑡) the continuous random variable of 𝐶 [34]. Then, we have that: 

𝑇𝑥,𝑦 =  2 ⋅ ∫ 𝑃(|𝑡|  < |(−1)𝑦⋅𝑥 ⋅ 𝑓(𝑥)|) ⋅ 𝐶(𝑡)𝑑𝑡 
+∞

−∞
= 4 ⋅ ∫ 𝑃(𝑡 <  (−1)𝑦⋅𝑥 ⋅ 𝑓(𝑥)) ⋅ 𝐶(𝑡)𝑑𝑡 

+∞

0
  

Since 𝐶 = ∑ (−1)𝑦⋅𝑖 ⋅ 𝑓(𝑖)2𝑛−1
𝑖=0
𝑖 ≠𝑥

 and each 𝑓(𝑖) represents a Gaussian 𝒩(0, 1), we obtain that 𝐶 is also 

a Gaussian with mean 0 and variance 2𝑛 – 1, namely that 𝐶(𝑡) =  
1

√2𝜋(2𝑛 – 1)
⋅  𝑒

− 
𝑥2

 2(2𝑛 – 1).  

Moreover, due to the fact that the mean of 𝑓 is 0 and  that (−1)𝑦⋅𝑥 can only take values −1 or 1 it 

suffices to consider the case (−1)𝑦⋅𝑥 = 1. 
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Hence, 𝑇𝑥,𝑦 =  4 ⋅  ∫ 𝑃(𝑡 < 𝑓(𝑥)) ⋅ 
+∞

0

1

√2𝜋(2𝑛 – 1)
⋅  𝑒

− 
𝑡2

 2(2𝑛 – 1) 𝑑𝑡 

Using the fact that the function  𝑒
− 

𝑡2

 2(2𝑛 – 1) is strictly decreasing on the interval (0,∞), then 

𝑒
− 

𝑡2

 2(2𝑛 – 1) < 1 and we get: 

𝑇𝑥,𝑦 ≤ 
4

√2𝜋(2𝑛 –  1)
⋅  ∫ 𝑃(𝑡 < 𝑓(𝑥)) 𝑑𝑡

+∞

0

 

But, ∫ 𝑃(𝑡 < 𝑓(𝑥)) 𝑑𝑡
+∞

0
= 𝐸(𝑓(𝑥)) 

As any value 𝑓(𝑥) is an independent 𝒩(0,1) its probability density function [33] is equal to 
1

√2𝜋
⋅𝑒− 

𝑥2

2  

Thus, 𝐸(𝑓(𝑥)) =  ∫
1

√2𝜋
⋅ 𝑒− 

𝑡2

2 ⋅ 𝑡 𝑑𝑡
+∞

0
= 

1

√2𝜋
⋅ (−𝑒

− 
𝑡2

2 )│∞
0
 =

1

√2𝜋
⋅ (1 − 𝑒−∞) =

1

√2𝜋
 

Therefore, 𝑇𝑥,𝑦 ≤ 
4

√2𝜋(2𝑛 – 1)
⋅  

1

√2𝜋
 = 

2

𝜋√2𝑛−1
≤  

2

𝜋√2𝑛
+ 𝑂 (

1

2
3𝑛
2

)       ∀𝑥, 𝑦 𝜖 {0,1}𝑛 

On the other hand, for any constant 𝐷 > 0 we have that: 

𝑇𝑥,𝑦 = 
4

√2𝜋(2𝑛 –  1)
⋅ [∫ 𝑃(𝑡 < 𝑓(𝑥)) ⋅ 

𝐷

0

𝑒
− 

𝑡2

 2(2𝑛 – 1) 𝑑𝑡 + ∫ 𝑃(𝑡 < 𝑓(𝑥)) ⋅ 
+∞

𝐷

𝑒
− 

𝑡2

 2(2𝑛 – 1) 𝑑𝑡] 

Then, 𝑇𝑥,𝑦 ≥ 
4

√2𝜋⋅2𝑛
⋅  ∫ 𝑃(𝑡 < 𝑓(𝑥)) ⋅ 

𝐷

0
𝑒
− 

𝑡2

 2(2𝑛 – 1) 𝑑𝑡 

 

Again, using that the function  𝑒
− 

𝑡2

 2(2𝑛 – 1) is strictly decreasing on the interval (0,∞), we obtain that: 

𝑇𝑥,𝑦 ≥
4

√2𝜋⋅2𝑛
⋅ 𝑒

− 
𝐷2

 2(2𝑛 – 1) ⋅ ∫ 𝑃(𝑡 < 𝑓(𝑥)) 𝑑𝑡 
𝐷

0
=

4

√2𝜋⋅2𝑛
⋅ 𝑒

− 
𝐷2

 2(2𝑛 – 1) ⋅ (∫ 𝑃(𝑡 < 𝑓(𝑥)) 𝑑𝑡 
∞

0
− 

∫ 𝑃(𝑡 < 𝑓(𝑥)) 𝑑𝑡 
∞

𝐷
) 

𝑇𝑥,𝑦 ≥
4

√2𝜋 ⋅ 2𝑛
⋅ 𝑒

− 
𝐷2

 2(2𝑛 – 1)  ⋅  (∫
1

√2𝜋
⋅ 𝑒− 

𝑡2

2 ⋅ 𝑡 𝑑𝑡
+∞

0

 −  ∫
1

√2𝜋
⋅ 𝑒− 

𝑡2

2 ⋅ 𝑡 𝑑𝑡
+∞

𝐷

) 

𝑇𝑥,𝑦 ≥
4

√2𝜋 ⋅ 2𝑛
⋅ 𝑒

− 
𝐷2

 2(2𝑛 – 1)  ⋅  (
1

√2𝜋
− 

𝑒− 
𝐷2

2

√2𝜋
)  =  

2

𝜋 ⋅ √2𝑛
⋅ 𝑒

− 
𝐷2

 2(2𝑛 – 1) ⋅ (1 − 𝑒− 
𝐷2

2 ) 

If we choose 𝐷 = √2𝑛 we will obtain: 

𝑇𝑥,𝑦 ≥ 
2

𝜋⋅√2𝑛
⋅ 𝑒− 

𝑛

2𝑛−1 ⋅ (1 − 𝑒−𝑛) ≥  
2

𝜋√2𝑛
− 𝑂 (

𝑛

2
3𝑛
2

)          ∀𝑥, 𝑦 𝜖 {0,1}𝑛 

Θ𝐹,𝐺 has 2𝑛 ⋅ 2𝑛 terms 𝑇𝑥,𝑦 , therefore we reach that: 

 E(Θ𝐹,𝐺) ≤  
1

2
3𝑛
2

⋅ 2𝑛 ⋅ 2𝑛 ⋅ (
2

𝜋√2𝑛
+ 𝑂 (

1

2
3𝑛
2

)) =  
2

𝜋
+ 𝑂 (

1

2𝑛
)      (1) 

≥ 0 
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𝐸(Θ𝐹,𝐺) ≥  
1

2
3𝑛
2

⋅ 2𝑛 ⋅ 2𝑛 ⋅ (
2

𝜋√2𝑛
−𝑂 (

𝑛

2
3𝑛
2

)) =  
2

𝜋
−𝑂 (

𝑛

2𝑛
)                  (2) 

From (1) and (2) we get 𝐸(Θ𝐹,𝐺)  ≅  
2

𝜋
≥ 

3

5
 [32], which is what we wanted to show. 

 

The second part of the reduction consists of proving that if every 𝑓(𝑥) and 𝑔(𝑦) are uncorrelated, 

then |Θ𝐹,𝐺| ≤  
1

100
. 

In this case, 𝑇𝑥,𝑦 = 𝐸[(−1)𝑥⋅𝑦 ⋅ 𝐹(𝑥) ⋅ 𝐺(𝑦)] = 0 ∀𝑥, 𝑦 𝜖 ϵ {0,1}𝑛, 𝑥 ≠ 𝑦 (as now 𝐹(𝑥) and 𝐺(𝑦) are 

also independent [34]) 

Then, in the Θ𝐹,𝐺 sum we are left with only 2𝑛 terms, so we obtain: 

𝐸[Θ𝐹,𝐺] =  
1

2
3𝑛
2

 ⋅ 2𝑛 = 
1

2
𝑛
2

<
1

100
. 

Consequently, we have shown that there exists a reduction from the Real Forrelation problem to 

Forrelation.           □  

 

Because we need to relate Real Forrelation to the 𝑘 -Forrelation problem (only the 𝑘 -Forrelation 

problem is 𝐵𝑄𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒  when 𝑘 =  𝑂(𝑛) ), we also build a version of the Real Forrelation 

problem involving 𝑘 functions. 

 

DEFINITION  12. In the 𝑘-Real Forrelation [25] we have a sequence of 𝑘 functions 𝑓1, 𝑓2, … , 𝑓𝑘 , where 

𝑓1, 𝑓2, … , 𝑓𝑘−2 : {0, 1}𝑛 → {−1,1}  and 𝑓𝑘−1, 𝑓𝑘 ∶  {0,1}
𝑛 → ℝ . We know that all values 

𝑓𝑖(𝑥) ∀𝑖 𝜖 {1,… , 𝑘 − 2} are independently drawn from the set {−1, 1}. Moreover, we are promised 

that for  𝑓𝑘−1, 𝑓𝑘, one of the following 2 cases hold: 

i)  Every 𝑓𝑘−1(𝑥) and 𝑓𝑘(𝑦) are both drawn from 2 normal distributions ∀𝑥, 𝑦 𝜖 {0,1}𝑛 

ii) Every 𝑓𝑘−1(𝑥) is drawn from a normal distribution, but the function 𝑓𝑘 depends on the 

values of all other 𝑘 − 1 functions: 

 𝑓𝑘(𝑥) =
1

2
(𝑘−1)𝑛

2

∑ (−1)𝑥1⋅𝑥2 ⋅ … ⋅  (−1)𝑥𝑘−1⋅𝑥 ⋅  𝑓1(𝑥1) ⋅ … ⋅  𝑓𝑘−1(𝑥𝑘−1)𝑥1,𝑥2,..,𝑥𝑘−1𝜖 {0,1}
𝑛  

As before, the problem asks  to determine which of the cases applies given a sequence of 𝑘 functions. 

 

THEOREM 3.2.2. 𝑘-Real Forrelation is equivalent to the problem Real Forrelation [25]. 

Proof. Consider (𝑓1, 𝑓2, … , 𝑓𝑘) an instance of the 𝑘-Real Forrelation. Then, we can build 2 functions            

 𝑓, 𝑔 ∶  {0, 1}𝑛 → {−1,1} in the following way: 

𝑔(𝑥) =  𝑓𝑘(𝑥)  

𝑓(𝑥) =  𝑓𝑘−1(𝑥) ⋅ 𝑑𝑥, with 

 𝑑𝑥 =
1

2
(𝑘−2)𝑛

2

∑ (−1)𝑥1⋅𝑥2 ⋅ … ⋅ (−1)𝑥𝑘−3⋅𝑥𝑘−2 ⋅ 𝑥1…𝑥𝑘−2 𝜖 {0,1}
𝑛 𝑓1(𝑥1) ⋅ … ⋅ 𝑓𝑘−2(𝑥𝑘−2) ⋅ (−1)

𝑥𝑘−2⋅𝑥  
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We make the first observation that: Θ𝑓,𝑔 = Θ𝑓1,𝑓2,…,𝑓𝑘. Indeed, if we replace 𝑓 and 𝑔 with their 

definitions in Θ𝑓,𝑔, we get: 

Θ𝑓,𝑔 = 
1

2
3𝑛
2

 ∑ (−1)𝑥⋅𝑦𝑥,𝑦 𝜖 {0,1}𝑛 𝑔(𝑦) ⋅ 𝑓(𝑥) =  
1

2
3𝑛
2

 ∑ (−1)𝑥⋅𝑦𝑥,𝑦 𝜖 {0,1}𝑛 𝑓𝑘(𝑦) ⋅ 𝑓𝑘−1(𝑥) ⋅  𝑑𝑥 =  

= 
1

2
3𝑛
2

∑ (−1)𝑥⋅𝑦𝑥,𝑦 𝜖 {0,1}𝑛 𝑓𝑘(𝑦) ⋅ 𝑓𝑘−1(𝑥) ⋅ [
1

2
(𝑘−2)𝑛

2

∑ (−1)𝑥1⋅𝑥2 ⋅ … ⋅ (−1)𝑥𝑘−3⋅𝑥𝑘−2 ⋅𝑥1…𝑥𝑘−2 𝜖 {0,1}
𝑛 

 𝑓1(𝑥1) ⋅ … ⋅ 𝑓𝑘−2(𝑥𝑘−2) ⋅ (−1)
𝑥𝑘−2⋅𝑥] = 

= 
1

2
(𝑘+1)𝑛

2

∑ (−1)𝑥1⋅𝑥2 …(−1)𝑥𝑘−2⋅𝑥(−1)𝑥⋅𝑦𝑥,𝑦,𝑥1…𝑥𝑘−2 𝜖 {0,1}
𝑛 𝑓𝑘(𝑦) ⋅ 𝑓𝑘−1(𝑥)⋅ 𝑓1(𝑥1) ⋅ … ⋅ 𝑓𝑘−2(𝑥𝑘−2) 

= Θ𝑓1,𝑓2,…,𝑓𝑘 

Now if 𝑓𝑘−1(𝑥) and 𝑓𝑘(𝑥) are both uncorrelated normal distributions, then because 𝑔 = 𝑓𝑘 and 𝑓 is a 

linear combination of values of the functions 𝑓1, 𝑓2, … , 𝑓𝑘−2 , we obtain that every 𝑓(𝑥)  and 𝑔(𝑥) 

values are uncorrelated normal distributions [28, 34]. 

What is left to show is that if the functions {𝑓1(𝑥), …𝑓𝑘−1(𝑥), 𝑓𝑘(𝑥)} are in the second case of 𝑘-Real 

Forrelation, then 𝑓 and 𝑔 are also in the second scenario of Real Forrelation. 

We have 𝑔(𝑥) = 𝑓𝑘(𝑥) =
1

2
(𝑘−1)𝑛

2

∑ (−1)𝑥1⋅𝑥2 ⋅ … ⋅ (−1)𝑥𝑘−1⋅𝑥 ⋅ 𝑓1(𝑥1) ⋅ … ⋅  𝑓𝑘−1(𝑥𝑘−1)𝑥1,…,𝑥𝑘−1𝜖 {0,1}
𝑛  

𝑔(𝑥) = ∑ 𝑓𝑘−1(𝑥𝑘−1)𝑥𝑘−1𝜖 {0,1}
𝑛 ⋅

1

2
(𝑘−1)𝑛

2

∑ (−1)𝑥1⋅𝑥2 ⋅ … ⋅ (−1)𝑥𝑘−1⋅ 𝑥 ⋅ 𝑓1(𝑥1) ⋅ … ⋅𝑥1..𝑥𝑘−2𝜖 {0,1}
𝑛

 𝑓𝑘−2(𝑥𝑘−2) =  
1

√2𝑛
∑ 𝑓𝑘−1(𝑥𝑘−1)𝑥𝑘−1𝜖 {0,1}

𝑛 ⋅  𝑑𝑥𝑘−1 ⋅ (−1)
𝑥𝑘−1⋅𝑥  

𝑔(𝑥) =
1

√2𝑛
 ∑ 𝑓(𝑥𝑘−1)𝑥𝑘−1𝜖 {0,1}

𝑛 ⋅ (−1)𝑥𝑘−1⋅𝑥 

Therefore, we have proved that the 𝑘-Real Forrelation problem is equivalent to the problem Real 

Forrelation (with only 2 functions).        □  

Now, we can finally show that 𝒌-Real Forrelation can be reduced to 𝒌-Forrelation. 

Proof. Given an instance of 𝑘-Real Forrelation, 𝑓1, 𝑓2, … , 𝑓𝑘−2 : {0, 1}𝑛 → {−1,1} and 𝑓𝑘−1, 𝑓𝑘 ∶

 {0,1}𝑛 → ℝ, we build an instance of 𝑘-Forrelation 𝐹1, 𝐹2, … , 𝐹𝑘 : {0, 1}𝑛 → {−1,1} in this way: 

𝐹1(𝑥) =  𝑓1(𝑥), … . , 𝐹𝑘−2(𝑥) = 𝑓𝑘−2(𝑥) 

𝐹𝑘−1(𝑥) = 𝑠𝑔𝑛(𝑓𝑘−1(𝑥)), 𝐹𝑘(𝑥) = 𝑠𝑔𝑛(𝑓𝑘(𝑥))  

Then, Θ𝐹1,𝐹2,…,𝐹𝑘 = 
1

2
(𝑘+1)𝑛

2

⋅  ∑ (−1)𝑥1⋅𝑥2 ⋅ … ⋅ (−1)𝑥𝑘−1⋅𝑥𝑘 ⋅  𝑓1(𝑥1) ⋅ … ⋅ 𝑓𝑘−2(𝑥𝑘−1)𝑥1,𝑥2,..,𝑥𝑘 𝜖 {0,1}
𝑛 ⋅

𝐹𝑘−1(𝑥𝑘−1 ) ⋅ 𝐹𝑘(𝑥𝑘 ) =
1

2
3𝑛
2

 ∑ (−1)𝑥𝑘−1⋅𝑥𝑘 ⋅𝑥𝑘−1,𝑥𝑘 𝜖 {0,1}
𝑛 𝐹𝑘−1(𝑥𝑘−1 ) ⋅ 𝐹𝑘(𝑥𝑘 ) ⋅ 𝑑𝑥𝑘−1  

Next, we can take the expected value of each term of this sum, 𝐸(𝐹𝑘−1(𝑥) ⋅ 𝐹𝑘(𝑦) ⋅ 𝑑𝑥) and show as 

we did for the Real Forrelation – Forrelation reduction that 𝐸(Θ𝐹1,𝐹2,…,𝐹𝑘) ≅  
2

𝜋
≥ 

3

5
  when 𝑓𝑘 depends 

on the values of 𝑓1, 𝑓2, … , 𝑓𝑘−1 and 𝐸(Θ𝐹1,𝐹2,…,𝐹𝑘) ≅ 0 ≤ 
1

100
 [30, 32] when  𝑓𝑘 values are uncorrelated. 

Therefore, we have obtained that 𝑘-Forrelation is harder to solve than 𝑘-Real Forrelation, which in 

turn is equivalent to Real Forrelation.         □ 
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At this point, the remaining part is to show that Real Forrelation cannot be solved by any machine in 

𝑁𝑃/𝑝𝑜𝑙𝑦𝑂.  

     

8.3.1. Distribution Correlation 
 

Instead of working with Real Forrelation, we consider an abstraction of this problem, called 

Distribution Correlation [25]. 

DEFINITION  13. In Distribution Correlation we have a set of 2𝑛+1 vectors, 𝒲 = {𝑤1, 𝑤2, … , 𝑤2𝑛+1}, where 

𝑤𝑖 𝜖 ℝ
2𝑛. This problem is a “black box” model [23], for each vector 𝑤𝑖 queried we receive in response 

a random number 𝑐𝑖, with the promise that either: 

𝑖) all responses for all vectors {𝑐1, 𝑐2, … , 𝑐2𝑛+1} are independently chosen from a normal distribution 

or  

𝑖𝑖) For every response, we have that: 𝑐𝑖 = (𝑤𝑖, 𝑣) - the inner vector between 𝑤𝑖 and 𝑣, where 𝑣 is a 

fixed vector from ℝ2𝑛+1. 

The problem asks to determine if {𝑐1, 𝑐2, … , 𝑐2𝑁} are chosen from the normal distribution (case 𝑖) or if 

there exists a positive covariance [28] between them (case 𝑖𝑖). 

 The complexity reduces to the number of queries we have to make in order to decide in which of the 

2 situations we are. 

 

OBS 10. We notice that we can solve this problem deterministically using at most 2𝑛 + 1 queries. We 

can view Distribution Correlation as the problem of deciding if there exists a vector 𝑣 ϵ ℝ2𝑛, such that 

for any response 𝑐𝑖, we have that 𝑐𝑖 = (𝑤𝑖, 𝑣). Suppose there exists such a vector 𝑣. 

Then, for each query we make, we get a new linear equation involving the vector 𝑣: 

{

(𝑤1, 𝑣)  = 𝑐1
(𝑤2, 𝑣)  = 𝑐2

…
  (𝑤2𝑛 , 𝑣)  = 𝑐2𝑛

 

 

Consequently, after 2𝑛 queries we obtain a system of 2𝑛 linear equations containing the 2𝑛 

elements of 𝑣. Therefore, we can solve the resulting linear system and obtain 𝑣. To determine in which 

of the 2 cases of the problem we are, all we need to do is to make one more query for the vector 

𝑤2𝑛+1 . Then, we check if the response we receive from the oracle,  𝑐2𝑛+1 , verifies the relation:                                

𝑐2𝑛+1  = (𝑤2𝑛+1, 𝑣) (with the 𝑣 computed before). If it does, this implies that there actually exists a 

positive covariance between the oracle’s responses, so we must be in the second case. Otherwise, it 

means that not all query responses 𝑐𝑖  verify the property that there exists a vector 𝑣  such that:                 

𝑐𝑖 = (𝑤𝑖, 𝑣), so we are in the former situation. 

OBS 10. Analysing the Distribution Correlation problem, we deduce it is similar to Simon’s problem. 

Simon’s problem can be solved if we show the existence of the bit-mask string 𝑠, while the Distribution 

Correlation problem can be decided if we prove the existence of the vector 𝑣. 
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Furthermore, in Simon’s problem we queried the oracle for the input 𝑥𝑖 to obtain the value of the 

function in that point, 𝑓(𝑥𝑖) . Equivalently in the current problem we query 𝑤𝑖  to obtain the 

corresponding random value 𝑐𝑖.  

Both Simon and Distribution Correlation can only be solved by Oracle Turing Machines [10]. 

 Thus, any machine 𝑀 solving the Distribution Correlation problem would have in its computational 

tree at each node a query 𝑤𝑖 to the oracle. Then, based on all the query answers (𝑐1, … , 𝑐𝑙) along a 

path in its computational tree, 𝑀 will decide whether all 𝑐𝑖’s are independent or not. 

Considering all these arguments, we can follow the same proofs we used for MAIN THEOREM 

2.2 and MAIN THEOREM 2.3, in order to show the two results below.  

COROLLARY 2: Distribution Correlation ∉ 𝑁𝑃𝑂. 

Proof Sketch. The oracle receives the dimensions of our vectors, 2𝑛 , and the vector with the 

associated index 𝑖, and returns 𝑐𝑖. We can show that Distribution Correlation cannot be solved by a 

nondeterministic machine using diagonalization [21]. For each nondeterministic 𝑇𝑀 𝑀𝑖 , the oracle 𝑂 

finds a vector of responses {𝑐1, … , 𝑐2𝑛} which is accepted by 𝑀𝑖. Because the adversarial oracle knows 

the computational tree of 𝑀𝑖 he can trick 𝑀𝑖 in giving the wrong decision [31]. 𝑀𝑖 accepts an input 𝐼 

is equivalent to saying that there exists a path π in his computational tree containing a polynomial 

number of queries {𝑤𝑗1 , 𝑤𝑗2 , … , 𝑤𝑗𝑘}  (with their associated answers {𝑐𝑗1 , 𝑐𝑗2 , … , 𝑐𝑗𝑘}), 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝜋 

accept 𝐼. Then, the oracle 𝑂 can keep the answers to these 𝑘 queries, but can still set the values for 

the rest of the answers 𝑐𝑖  such that there exists a vector 𝑣 with the property that < 𝑤𝑗, 𝑣 > =  𝑐𝑗 

∀𝑖 𝜖 {1,… , 2𝑛}. By fixing the answers {𝑐𝑗1 , 𝑐𝑗2 , … , 𝑐𝑗𝑘} we just set 𝑘 out of 2𝑛  elements of 𝑣, so no 

matter what 𝑀𝑖 queries on path 𝜋, the oracle can deceive him to accept the input.   □  

COROLLARY 3: Distribution Correlation ∉ 𝑁𝑃/𝑝𝑜𝑙𝑦𝑂. 

Proof Sketch. For the 𝑁𝑃/𝑝𝑜𝑙𝑦  case we take into consideration every polynomial-size advice a 

nondeterministic machine 𝑀𝑖  can receive [32, 33]. For each of them we basically have a new 

nondeterministic machine which could solve Distribution Correlation. Our aim is to show that we can 

eliminate all these machines by properly setting a different set of answers {𝑐1, … , 𝑐2𝑛} for each input 

index. Because 𝑀𝑖 receives the same advice for all sets of vectors from ℝ2𝑛, for every input to 𝑀𝑖, we 

can eliminate a fraction of the total number of these advices the same way we did for the coSimon 

problem [23]. □  

 

In this section we have presented another candidate problem which suggests the oracle separation 

between 𝐵𝑄𝑃 and 𝑁𝑃/𝑝𝑜𝑙𝑦. We have started from a 𝐵𝑄𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 problem, 𝑘-Forrelation, and 

through a sequence of equivalences and reductions between problems, we have reached the 

Distribution Correlation problem. By observing a series of similarities between Distribution Correlation 

and Simon’s problem, we applied similar arguments to indicate that Distribution Correlation cannot 

belong to the class 𝑁𝑃/𝑝𝑜𝑙𝑦𝑂.  

Because the chain of relations described in THEOREM 3.2.1 and THEOREM 3.2.2 tell us that Distribution 

Correlation is at most as “difficult” as the 𝐵𝑄𝑃 − 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑘-Forrelation problem, this would imply 

that the no-go result also holds for 𝒌-Forrelation. 

Consequently, because 𝐵𝑄𝑃 − ℎ𝑎𝑟𝑑 represents the most difficult problems from 𝐵𝑄𝑃 [19], we infer 

that for any problem 𝒫 in 𝐵𝑄𝑃 − ℎ𝑎𝑟𝑑 there is no oracle 𝑁𝑃/𝑝𝑜𝑙𝑦 machine that can solve 𝒫. 
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9. Conclusions 
 

 

Quantum technologies are evolving at a rapid pace motivated by the staggering potential of 

quantum computers to reach a computational efficiency unattainable by any classical machine [3]. 

The prospect of such a powerful computer puts us in the position to address the following vital 

problem: To what extent we can take advantage of the computational resources of a quantum 

computer in a way that our data is protected? 

In this paper we have analysed the encryption scheme GES which allows a classical client to delegate 

an unfeasible computation to a quantum server and derive the result of the computation such that 

his input remains private from the server. 

We illustrated the usefulness of the GES framework by defining encryption schemes which solve 

efficiently some hard problems (discrete logarithm, primitive root, quadratic residuosity) [16].  

Then, we focused on the main theme of the project: the relation between the difficulty of encrypting 

a function using a GES protocol and the difficulty of solving it. We studied this problem from a 

complexity theoretic point of view. Firstly, we reviewed the recent work of Abadi who proved that 

there is a connection between encryptability and nonuniform complexity [16, 24]. 

 Based on this result, we investigated if the class of problems efficiently solvable by a quantum 

computer (𝐵𝑄𝑃 problems) admits a GES protocol. We conjecture that not all 𝐵𝑄𝑃 problems can be 

solved in the GES scenario. This would be equivalent to showing an outstanding complexity theory 

result: 𝐵𝑄𝑃  is not included in the nonuniform class 𝑁𝑃/𝑝𝑜𝑙𝑦. However, proving that 𝐵𝑄𝑃  is not 

contained in 𝑁𝑃/𝑝𝑜𝑙𝑦  is at least as difficult as showing that 𝑃  is not contained in 𝑁𝑃  [17, 20]. 

Consequently, we decided to give strong arguments in favour of the separation between the 2 classes 

by showing that 𝐵𝑄𝑃 cannot be included in 𝑁𝑃/𝑝𝑜𝑙𝑦 with respect to an oracle (we relativized [31] 

the relation between the quantum and the classical complexity class). 

To prove the oracle separation between 𝐵𝑄𝑃 and 𝑁𝑃/𝑝𝑜𝑙𝑦 we considered two candidates: Simon’s 

problem and Forrelation. We first proved that the two problems can be solved using 𝐵𝑄𝑃 algorithms. 

Then, using an innovative method akin to an exhaustive search, we showed that we can define an 

oracle 𝑂 such that no possible polynomial advice could help an 𝑁𝑃 machine solve these problems. 

Consequently, they cannot belong to the class 𝑁𝑃/𝑝𝑜𝑙𝑦𝑂. Finally, because all problems from 𝐵𝑄𝑃 −

𝐻𝑎𝑟𝑑 are more difficult than any problem from 𝐵𝑄𝑃 (including Simon and Forrelation), this implies 

that none of these problems can be solved by an 𝑁𝑃/𝑝𝑜𝑙𝑦𝑂 algorithm. 

As a result, we presented powerful evidence that 𝐵𝑄𝑃 − 𝐻𝑎𝑟𝑑 problems cannot be solved in this 

secure delegated computation task. 

 Our second contribution was related to the 𝑈𝐵𝑄𝐶  quantum protocol [26] which allows a 

client possessing some minimal quantum abilities, to determine the result of a hard computation by 

communicating with a quantum computer, while keeping the input and the computation itself private. 

 Inspired by the idea of having a purely classical client who could benefit from the security 

advantages guaranteed by UBQC, we investigated the existence of a classical version of UBQC (CUBQC). 

We proved that this resulting scheme could be represented as an instance of the GES. Therefore, 

CUBQC inherits all the complexity theoretic results known for GES. 
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 All these results achieved in our project inspire us to pose the following open problems: 

 Do the no-go theorems regarding the encryptability of 𝑁𝑃 − 𝐻𝑎𝑟𝑑  and 𝐵𝑄𝑃 − 𝐻𝑎𝑟𝑑 

functions still hold if we modify the security conditions of the GES framework (for instance 

allowing the server to infer more than just the size of the input)? 

 Consider a quantum generalization of the GES scheme, QGES, where the client has some 

limited quantum abilities, but still requires the superior computational abilities of a quantum 

server. Can we derive quantum analogue complexity theory results for QGES; namely, can we 

derive that in the QGES scenario any 𝐵𝑄𝑃 function can be encrypted without leaking anything 

and that any encryptable function can be solved by a 𝑄𝑁𝑃/𝑝𝑜𝑙𝑦 algorithm? 

 

                In conclusion, we accomplished the goals we set for this project and the no-go results we 

indicated lead to many new questions which must be dealt with, in order to fully understand what are 

the limitations imposed by a secure exploit of the high performance of a quantum computer. 
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