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Abstract
Neuronal electrophysiology is paramount to the understanding of brain function and

its underlying mechanisms. However, obtaining reliable and rich data of the electrical

activity of multiple neurons has not been feasible until very recently thanks to the

use of dense micro-electrode arrays (MEA), allowing to record massive amounts of

multi-channel electrical data extracellularly. Due to the increased spatial and temporal

resolution achieved by such platforms, the amount of data that spike (action potentials

originated in neurons) detection algorithms has to process has become challenging to

be efficiently processed.

This project presents the parallel implementation of two spike detection algorithms in-

troduced by Muthmann et al. (2015) using modern C++ features and the new standard

for heterogeneous computing SYCL, a cutting-edge OpenCL abstraction layer.

The developed software yields a quasi-linear scaling of the processing time when com-

paring sequential, 2-threaded, and 4-threaded executions. Furthermore, the implemen-

tation is capable of real-time processing of the data on both algorithms.
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Chapter 1

Introduction

One of the keys to understanding the underlying mechanisms of the brain and pro-

vide accurate models of its functioning is to obtain reliable and extensive data. At

the heart of the modelling resides the field of neural coding, concerned with defining

the relationship that exists between stimulus and the neuronal response in the form of

electrical activity, ultimately represented by action potentials (i.e. spikes) of neurons

(see section 2.1). In order to obtain information about the spikes from neuronal tissue,

electrophysiologists have historically relied on single or simple multichannel record-

ings. Amongst these methods, the most common are the intracellular recordings such

as the patch clamp technique (accurate but limited to single neurons), or the extracel-

lular positioning of multiple electrodes together (e.g. polytrodes, Blanche et al., 2005),

which dramatically improves the task of identifying spikes (Gray et al., 1995; Harris

et al., 2000).

During the last decades, recent advances in miniaturisation and material engineering

have allowed high-density micro-electrode arrays (MEA) to become a reality. MAEs

allow to record a large number of channels simultaneously (see Figure 1.1), a number

that has been exponentially increasing over the latest years. However, as the number

and density of channels increases, the algorithms which process the signals have to

deal with quadratically larger and more complex data. Indeed, the algorithms respon-

sible for identifying action potentials have to handle noisy, massive and potentially

redundant1 data.
1The dense disposition of the electrodes (e.g. 42 - 81 µm for the 3BRAIN BioChip 4096 series) in

MAEs allows to capture the signals of individual neurons on multiple channels.

1



Chapter 1. Introduction 2

Figure 1.1: Schematic of a micro-electrode array (approx. BioCam 4096 by 3Brain

Inc.) with a CMOS sensor, similar in principle to the one used in digital cameras. After

placing neuronal tissue in a compatible solution, the chip is capable of recording 4096

electrical signals positioned in a 64x64 grid of channels with a total working area of 3x3

mm. The right diagram shows different signals for a unique spike (i.e. depolarisation).

1.1 Motivation

Modern MAE platforms used in research have a particularly high sampling rate fre-

quency. Using fast recordings together with large sets of channels can provide a better

discrimination of spikes but can also yield massive bandwidths2. In Muthmann et al.

(2015), the authors developed a set of algorithms aimed at performing the task of spike

detection (finding individual spikes on data) and spike sorting (assigning the detected

spikes to their source neurons). The efficiency of the first one is of a special impor-

tance. Since the amount of memory required to store spikes is immensely smaller

compared to the memory required to store whole recordings, it becomes crucial to pro-

cess the input signals fast enough so that spikes can be stored in real-time. This allows

not only to handle daylong recordings but also empower the implementation of solu-

tions which provide real-time feedback within the experimental steps. Specifically, the

paper introduces two algorithms: an online algorithm that performs spike detection on

each channel independently, and an interpolation-based algorithm that uses multichan-

nel data to improve the detection sensitivity and spatial accuracy (see chapter 3 for an

outline of the algorithms).

It is at this point that modern parallel computer architectures offer a scalable and rela-

2Frequencies of approximately 7 KHz for 4096 channels with a resolution of 12 bits per sample
(3Brain BioCam4096S) generate an output of 2.5 GB/minute. The newest systems by 3Brain can record
using sampling frequencies up to 18 KHz.
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tively simple solution to the aforementioned problems. Multi-core architectures such

as modern CPUs or GPUs provide a way of simultaneously executing programs on

multiple threads provided the implementation coordinates their work flow. The degree

of parallelistation that can ultimately be achieved (speed-up) is usually linked to the

constitution and data dependencies of the algorithms as well as the the kind of platform

in which it is executed. For this reason, and in search of a thorough analysis of the par-

allelisation capabilities of the algorithms explained by Muthmann et al., this project

details the development and assessment of parallel implementations in multiple forms.

Specifically, the developed software has employed the parallelisation features of mod-

ern C++ and the new Single-source Heterogeneous Programming (SYCL3) based on

OpenCL (see section 2.4).

1.2 Goals of the project

The objective of this MSc thesis is to research and implement a parallel version of the

algorithms explained in Muthmann et al. (2015) (chapter 3), which can be executed

in heterogeneous platforms (CPUs or GPUs). In detail, this can be separated into two

major tasks:

1. Implement a working parallel version of the online detection algorithm and detail

the corresponding speed-up.

2. Research and study how the interpolation-based spike detection algorithm can

or cannot be parallelised due to its intrinsic structure and explain the reasons as

well as explore feasible solutions.

In addition, documenting any findings regarding the applicability of parallel architec-

tures to spike detection algorithms is also a part of the scope of the project.

1.3 Achieved results

Overall, the project has produced several parallel implementations for the online spike

detection algorithm, with a maximum parallel speed-up of approximately x5 compared

3The Khronos Group Inc. SYCL - C Single-source Heterogeneous Programming for OpenCL
https://www.khronos.org/sycl

https://www.khronos.org/sycl
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to a new sequential implementation in C++. When comparing with the previous im-

plementation of the algorithm in C#, the total speed-up is of approximately 20x.

Regarding the interpolation-based spike detection algorithm, a sequential port to C++

has yielded a speed-up of approximately 3x comparing with the original C#. In ad-

dition, a new parallel implementation designed as a proof of concept, replicating the

base functionality of the original code but optimised for a parallel execution capable

of performing the interpolation-based algorithm in real time, has been developed and

tested. For more details, please examine chapter 5.



Chapter 2

Context and background research

2.1 Neuronal electrophysiology

Neurons are arguably the most important cells concerning the processing and trans-

mission of information in almost all animals. Their electrical and chemical properties

provide them with the ability to react to potentials sent by other neurons and transmit

signals in the form of synapses, which can be electrical or chemical (Purves et al.,

2001). In the chemical synapse, the most common, different kinds of neurotransmit-

ters (e.g. amino acids) released at the end of the axon of another cell trigger the flow of

ions (mainly, Na+, K+, Ca2+ and Cl-) across ion channels which, in turn, create volt-

age fluctuations in the soma. After the combination of both excitatory and inhibitory

synapses make the voltage of the post-synaptic cell exceed a certain threshold, a large

depolarisation (i.e. a spike) is unchained and sent along the axon to trigger another

synapse at its end.

Analysing where and when spikes are triggered can yield invaluable information on

how the brain encodes and decodes stimuli in the form of spikes (Dayan and Abbott,

2001). The consequences of developments in this field span across almost every aspect

of human life. For instance, understanding how the motor cortex encodes the motor

control has empowered the creation of brain-computer interfaces to control robotic

prosthetic limbs. Another example of successful application is the cochlear implant,

where the sound is directly encoded and transmitted to the auditory nerve bypassing

the defective inner ear.

The most precise way to obtain the electrical activity of neurons is by measuring their

5



Chapter 2. Context and background research 6

voltage using electrodes. In our case, this is achieved by using thousands of electrodes

packed in a very dense array (i.e. micro-electrode array). However, getting from the

signals of the electrodes to the spike trains of each neuron involves a multistage process

named spike sorting (see Figure 2.1). Within this process, a first and crucial step is

to detect the spikes from the raw data (i.e. spike detection), where every signal is

in fact a mixture of electrical sources. The algorithms implemented in this project

only deal with this process and provide the input for the next steps (feature extraction

and clustering). It is worth mentioning that, for some applications (e.g. Ventura and

Gerkin, 2012), unsorted spikes provide enough information about the neural activity

on the regions captured by the array.

Raw data

Filtered data

Spikes

Features of spikes

Clusters per neuron

Spike 
detection

Spike 
sorting

Extracellular recording 
(MEA)

Figure 2.1: Spike sorting process. The spike detection phase, which is the part within

the scope of this project, has been highlighted.

2.2 Data involved in the project

The recordings used to test and compare the performance of the software developed in

the project are the same as in Hilgen et al. (2016). They were performed with light-

stimulated retinas obtained from adult mice and placed in a MEA BioChip 4096S

(3Brain GmbH., Switzerland), recording at 7-8 KHz.
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2.3 Previous work on spike detection algorithms

3Brain provides a complete software suite to interface the data input from the chip

and perform spike detection with three different methods i.e., a simple threshold, a

differential threshold (Novellino et al., 2009) and the Precise Time Spike Detection

(Maccione et al., 2009). All these methods have been efficiently implemented using

multithreaded code and are capable of performing detection on real time in modern

workstation CPUs (Maccione et al., 2015). This project intends to parallelise and

optimise two more complex spike detection algorithms (see chapter 3) based on online

estimates of percentiles of the voltage recordings used to determine the baseline and

variability of each signals. Naturally, in all these algorithms there is a trade-off between

missing spikes due a high threshold and getting false positives due to noise exceeding

low thresholds. Thus, choosing the correct threshold, and adapting it through time

depending on the characteristics of the signals, becomes the goal of every algorithm of

this kind.

Various types of algorithms can be found in the literature on spike detection (Rey

et al., 2015). In order to set a threshold that changes through time according to the

data characteristics, one of the easiest ways is to define it as a multiple of the standard

deviation of the noise (assuming that it follows a Gaussian distribution). For example, a

noise threshold-based detection and spike sorting by template matching was proposed

in Quiroga et al. (2004), as the preceding step to spike clustering. In this paper, the

authors proposed using an standard deviation of the noise of σ̂n = median(|X |)
0.6745 . Here,

X is the filtered signal and the denominator is defined as the cumulative distribution

function for the standard normal distribution at 0.75. With this estimation of σn, the

threshold can be defined as k · σ̂n where k is a constant.

Additionally, other methods have been presented, such as using wavelet transforma-

tions to detect and localise spikes (Nenadic and Burdick, 2005), a Hilbert transform

with probabilistic and fuzzy theory analysis (Azami et al., 2015), or derivatives of the

traditional pattern matching algorithm applied to spike detection with predefined spike

shapes (De Oliveira et al., 1983). For an early review on spike detection and sorting

algorithms, see Lewicki (1998).

Nonetheless, all the former methods suffer from the unavoidable problem of multiple

elements signalling through a shared media. That is, multiple neurons firing at the same

time and each electrode receiving a mixed signal containing more than one source.
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However, it has been shown that higher sampling rates increase the resolution enough

so that the amount of information available to discern between overlapping spikes is

sufficient to solve the majority of cases (Muthmann et al., 2015).

2.4 Parallelism

2.4.1 Multi-core processors

Since the release of the first commercially available microprocessors in the early 1970s,

the performance of processors has increased exponentially following the renowned

prediction by Goordon Moore (i.e. Moore’s law). That is, that the number of transis-

tors on integrated circuits, and by extension CPUs, would be doubled every two years

approximately (Schaller, 1997). However, at the start of the 21st century, and as the

size of transistors shrank to less than 100 nm, the CPU manufacturers (mainly Intel,

AMD and the AIM alliance) encountered two serious problems: First, the frequency

of the processors could not be incremented any more because the heat would not be

able to dissipate in such small surfaces. Secondly, the power required to work with

an exponentially increasing number of transistors became prohibitively large. While

the former problem was addressed and gradually solved through time (thanks to new

materials and better instructions per cycle, i.e. IPC, ratios in general), the first problem

was not so easy to address due to physical constraints. In order to provide a solution

and continue increasing the performance of computers, the decision of putting mul-

tiple processors (named cores) in a single die was made (see Figure 2.2). This way,

multiple programs would be executed at the same time, and the number of total transis-

tors would still increase thanks to smaller transistors1, and even single processes could

benefit from this parallelism if appropriately coded.

Multi-core general purpose processors not only introduced a game changing comput-

ing paradigm with an scalable future, but also produced various restrictions on how

any program could be accelerated by using multiple threads on different cores to en-

sure correct executions (e.g. avoiding race conditions, deadlocks, etc.). Moreover,

while incrementing the frequency of CPUs implied a symmetric increase in the per-

1Currently, Intel is developing processors with 10 nm transistors. However, other problems are
starting to appear when implementing transistors at such a small scale (e.g. quantum tunnelling). This
could imply the end of silicon-based processors in the near future.
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Figure 2.2: Modern 8-core CPU (i7-5960X) with its different components (Intel ©).

formance of the software (assuming same IPC ratios), parallelisation generaly only

accelerates the specific parts2 that are suitable for a multi-threaded execution and it

usually introduces an operating overhead.

2.4.2 Graphics processing units and OpenCL

Graphic processing units (i.e. GPUs) provide the hardware necessary to visualise

graphical interfaces with 2D and 3D renderings. This is internally achieved by us-

ing a pipeline in which one the most relevant steps is the use of shaders. Shaders are

small routines that are typically executed for every point or pixel to be rendered3. Since

computing the shaders for all geometry and pixels is a repetitive and simple task, early

GPUs already incorporated several simple processors designed with the sole purpose of

computing those shaders. In time, GPUs became massively parallel architectures capa-

ble of performing simple tasks related with geometric transformations with a very large

throughput (in terms of floating point operations per second) when compared to CPUs.

In order to use such architectures for computing, developers started manipulating the

input of the graphics cards to contain general data instead of only textures or geometry,

2The total performance gain (speed-up) in such application is computed using Amdahl’s law:
speed-up = 1

(1−p)+ p
s

where p is the percentage of the software subjected to parallelism, and s is the
speed-up of that part.

3Shaders can be separated into vertex (per point) and fragment shaders (per target pixel). More
recently, geometry shaders have been included to the pipeline to allow arbitrary transformation to geo-
metric primitives.
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starting the General-Purpose computing on GPUs (GPGPUs). Soon, manufacturers of

graphics cards developed tools (on software and hardware) to allow programmers to

accelerate their software using GPUs without having to rely on tricks (e.g. CUDA

by Nvidia, released in the 2007). Two years later (2009), the open source standard

OpenCL was created.

Since SYCL is based on OpenCL, some of its main standard conventions will now be

explained in order to provide some background before the description of the imple-

mentations of the algorithms in chapter 4.

OpenCL defines a device (a compatible GPU or CPU) as a collection of compute
units, were kernels (i.e. functions/procedures) are executed when a host (typically

a CPU) enqueues a command. Each compute unit executes an undefined number

of workgroups, but a workgroup is always executed in a single compute unit. In

OpenCL, a workgroup is a group of kernels that are executed together (not necessarily

at the same time, though), and it provides a mechanism to distribute the work of the

algorithm into equally sized groups of tasks with shared and faster memory (local

memory). All workgroups are composed of a number of workitems which is limited

by each device (e.g. the AMD FirePro 5100W has 12 compute units that can execute

workgroups with up to 256 workitems each). Figure 2.3 shows a device in OpenCL

terms.

Device

Compute unit

Global memory

Compute unit Compute unit

. . .

Local memory Local memory Local memory

Host

Memory

Task

Work-group

Work 
Item

Work 
Item

Work 
Item

Work-group

Work 
Item

Work 
Item

Work 
Item

Work-group

Work 
Item

Work 
Item

Work 
Item

Work-group

Work 
Item

Work 
Item

Work 
Item

. . .

. . .

. . .

. . .

. . .

Processing 
elements with 

private 
memory

Processing 
elements with 

private 
memory

Processing 
elements with 

private 
memory

Figure 2.3: Architecture the OpenCL paradigm including a device, a host and a task.
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Usually, kernels are executed in a workgroup at the same time using a compute-unit

with the maximum number of processing units4 available to maximise the computing

performance (the maximum number of workitems specified by its OpenCL implemen-

tation is, at least, the number of processing units per compute unit). In addition, such

compute units only reach their full potential when all kernels involve the same type of

operations and there are no different work-flows through control statements between

elements of the same workgroup. Otherwise, the execution flow will be executed se-

quentially for every group of workitems sharing the same branch, and reunited when

all threads in the workgroup return to the same scope.

2.4.3 Single-source Heterogeneous Programming (SYCL)

SYCL is the new open-source standard for implementing cross-platform C++ software

using an abstraction layer on top of OpenCL designed to run on heterogeneous devices.

Its single source design implies that, instead of compiling kernels and host code sep-

arately (as it is usually done), the new implementations of SYCL allow to write host

and device code within the same files using only C++11 syntax.

A simple example using SYCL syntax following the specification 1.2 is presented be-

low to illustrate a recurrent work-flow used in this project:

First, a SYCL device queue must be created to enqueue any command.

1using namespace cl::sycl;

2queue Q();

Then, in order for SYCL to know which variables will be required in the device (and

potentially copy them), buffers must be created using the memory directions in the host

and the range of elements. In this example, the one dimensional array V of N elements

will required in the device.

1buffer <int, 1> VBuffer (&V, range <1> (N));

The next step is to define the command that is going to be enqueued, which will define

a scope at the workgroup level.

1Q.submit([&] (handler& cgh) {

4Processing units are called streaming multiprocessors (NVIDIA) or stream processors (AMD) de-
pending on the vendor.
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Inside this context, the first thing to do is determine the kind of access required for the

buffers defined above. VPtr will be an accessor to V in the device memory with read

and write permissions, visible inside the kernel scope.

1auto VPtr = VBuffer.get_access < access::mode::read_write >(cgh);

In addition, we will create a local variable of size M shared between workitems in each

workgroup. In this case, M will also be the number of workitems per workgroup.

1accessor <int, 1, access::mode::read_write ,

2access::target::local > localV(range <1>(M), cgh);

Once the accessors are defined, the kernel code can be specified with an item vari-

able, which will provide an unique id to each kernel (to perform different tasks) within

the range of workitems for which the kernel is called. Since this is a simple one di-

mensional workspace, the index will return the global index when consulted with the

get global(dimension) function. Furthermore, the position of the workitem inside

all workgroups can be checked with get local(dimension) and the workgroup num-

ber can be accessed by calling get group(dimension). In the following code, each

workgroup will copy the elements to local memory, wait in a barrier for all the other

workitems in the workgroup to finish their copy, perform several additions to a pri-

vate variable accessing the local array (assume that M is substituted by its value), and

finally copy back the values to the global buffer.

1auto exampleKernel = ([=](nd_item <1> it) {

2auto i = it.get_global (0);

3auto local_i = it.get_local(0);

4localV[local_i] = V[i]; // Copy to local memory

5int privateVariable = 0; // Initialise private variable

6

7// Wait all workitems within the same workgroup

8it.barrier(access::fence_space::local_space);

9

10// Perform computation

11for (int i = 0; i < 10; i++)

12privateVariable += localV[(local_i + i)%M];

13

14// Copy back to global memory

15V[i] = privateVariable;

16}
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Before calling the kernel with parallel for, the range of elements for which it will

be executed must be defined. In this case, the total number of workitems (elements in

the array) is N and the workgroup size is M (both one dimensional spaces).

1auto workSpaceRange = nd_range <1>{ range <1>(N), range <1>(M) };

Finally, the kernel can be called and the command scope can be closed.

1cgh.parallel_for <class example >(workSpaceRange , exampleKernel);

2} // Close Q.submit



Chapter 3

Spike detection algorithms

This section outlines the two algorithms described in Muthmann et al. (2015). It is

worth noting that since the scope of the project does not include the tuning of parame-

ters in connection with the accuracy of the algorithms, their values will not be justified

here. Nonetheless, their name, value and function is presented below (Table 3.1) for

the sake of clarity.

Table 3.1: Default parameters for the algorithms described in Muthmann et al. (2015).

Parameter Value Description

θ 6 Detection threshold

θev 10.5 Minimum depolarisation area

θb 0 Repolarisation threshold

fs 7022 Hz Sampling rate

fv 0.03125 fsµV Variability update rate

fb 0.5 fsv Baseline update rate, where v is the estimation of the

variability of the baseline per channel

τevent 1 ms (7 frames) Maximum depolarisation width

τev 0.27 ms (2 frames) Interval for depolarisation (and window for coincident

events in the interpolation based algorithm)

τpre 1 ms (7 frames) Frames included in the output before the spike peak

τpost 2.2 ms (15 frames) Frames included in the output after the spike peak

wcs 4 Ratio between center and surrounding signals for the

5-channel interpolation

14
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3.1 Online spike detection algorithm

The first variant of the algorithms addressed in the project detects spikes over the raw

data of each signal or channel independently. The output contains the channel number

and time-step as well as the amplitude for each detected spike.

Specifically, the algorithm detects a spike when the voltage exceeds a specific thresh-

old. In order to account for global variations across all channels, the average voltage

per time-step (frame) is subtracted from all channels. Then, spikes are detected using a

threshold that is computed with respect to an estimated baseline of the signal for each

channel (see Figure 3.1). This estimation of the baseline (i.e. b) represents the local

33rd percentile of the signal and, together with an estimation of its variability (i.e. v),

is updated on each channel at every time-step as the algorithm advances through the

signals (i.e. s). Thus, it does not require all the data in advance (online algorithm). The

baselines and variabilities of the channels are updated as follows:

• b is increased by 1
2

fb
fs

if s ∈ (b+ v,∞) or decreased by fb
fs

if s ∈ (−∞,b− v).

• v is increased by fv
fs

if s ∈ (b− v,b]∪ (−∞,b− 6v] or decreased by fv
fs

if s ∈
(b− v,b].

13650 13700 13750 13800 13850 13900 13950

2000

0

2000

4000

6000

8000

Figure 3.1: Signal of a channel (displayed in black) with its baseline and threshold for

detecting spikes. The threshold (in red) is computed as θv, where v is the estimation of

the variability in the baseline (shown in blue), updated at every time-step.
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After a signal exceeds the threshold (i.e. the depolarisation is greater than θv), three

criteria are used to discard false positives (spikes must fulfil all of them):

• The signal repolarises within the following τevent frames after the spike.

• The spike voltage is the local minimum within the following τevent frames.

• The sum of the baselines subtracted signals of the following τevent frames is

larger in amplitude than θevv.

3.2 Interpolation-based spike detection algorithm

In order to exploit the signal spread over multiple channels during detection and hence

reduce the amount of false positives due to channel-specific noise, Muthmann et al.

proposed the use of interpolated signals amongst nearby channels as a preprocessing

step. Then, a similar baseline-threshold detection as in the aforementioned algorithm

could be used to detect the spikes.

In detail, the algorithm first computes a moving average of all signals in order to reduce

the noise. Next, baselines are computed for each channel and the minimum of every

two consecutive frames is stored. The reason behind this is that in high sampling

frequency recordings, spikes can be detected in contiguous frames for neighbouring

channels. With these baselines, the next step is computing the interpolations in two

different ways. A five-channel and a four-channel interpolation:

• The five-channel interpolation assigns a different weight to the signal of a central

channel and the 3 channels with largest amplitude of the four adjacent ones (see

Figure 3.2) and stores the weighted average in the position of the central chan-

nel. The factors used to interpolate the signals v are v wcs
3+wcs

and v 1
3+wcs

for the

central and peripheral channels respectively, where wcs determines the ratio of

contribution to the interpolated signal between centre and peripheral channels.

• The four-channel interpolation takes the three channels with largest amplitude

in each square of 4 channels (see Figure 3.2) and stores the average in a virtual

position placed at the centre of the subset.
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Figure 3.2: 5 and 4 channel interpolations. The 5-channel interpolated signals are

stored in the location of the central channels and the 4-channel interpolated signals are

stored in the centre of the 4 origin channel square. X indicates the channel with the

weakest signal, which is not taken into account in the resulting interpolation.

The detection is then performed on the interpolated signals following the same proce-

dure as in the online algorithm with a threshold-based spike detection. Furthermore,

the same criteria for discarding false positives is applied. Regarding the output of the

algorithm, the shapes of the spikes are printed on a file in order provide an input for an

spike sorting algorithm (Hilgen et al., 2016). This shape is defined as the voltage for

the channel with the largest depolarisation and the surrounding channels for any spike

at times t, including all respective frames within the range (t− τpre, t + τpost).
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Implementation of the algorithms

The programs developed during the course of the project and the decisions that shaped

their implementation are explained in this section.

4.1 Methodology

4.1.1 Considerations on the programming language

Implementing fast and optimised code is usually associated with the use of low-level

languages such as C or C++, where the programmer can control more explicitly the

computations and manage the memory associated with the algorithms. However, these

languages suffer from lower readability in comparison to others (e.g. python), compli-

cate modification of the algorithm parameters on the go, and limited usability by peo-

ple not aware of the internals of the software. Since the code developed in this project

is aimed at being used by anyone interested in spike detection, it has been deemed

necessary to use a high level interface in python. Nonetheless, the core has been im-

plemented in C++, starting with the standard version C++11 (naturally, C++14 and

posteriors are also supported), for two reasons:

• C++11 includes multithreading support in the standard library.

• SYCL requires (at least) C++11 (explained in subsection 2.4.3).

There are several libraries aimed at linking C++ and python code. For example, wrap-

pers such as SWIG, Boost.python or the newer pybind enable interoperability between

18
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languages by exposing C++ functions to python. Probably, the most common way of

writing python modules is using Cython (Behnel et al., 2011), a translator for pseudo

python code with C features, which is able to be called by pure python code and, in

turn, calls C++ functions (see Figure 4.1).

Compilation:

python setup.py build_ext --inplace

module.pyx module.cpp

others.cpp

cython

gcc1

msvc2

setup.py
configures

module.so1

module.pyd2

test.py

Execution:

python test.py

import module

Figure 4.1: Diagram of the compilation and execution of python modules using cython.

The file setup.py tells cython which files and compilers must use. This ultimately gen-

erates the compiled module files (1 for linux systems and 2 for windows) which can be

called after being imported in python as any generic module.

The fact that the python code is translated to C++ completely eliminates any overhead

that might occur when comparing with other wrappers, and yet maintains the readabil-

ity and usability at a medium level of abstraction.

4.1.2 Data input format

The format in which the data coming from the chip is acquired is not fixed to any

standard and might change depending on the vendor or even version of the chips’

firmware. In the original implementation (Muthmann et al., 2015), the data was han-

dled using proprietary libraries by 3Brain. However, during the course of this project,

their latest version of the software used the data model HDF5 together with a set of

transformations over the original data. In particular, the signals are presented within

a 2 dimensional matrix, stored by time-step in its first dimension, and by channel in
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the second one. To provide support for any future format and allow users to easily

extend the way the data is handled in during the read, all the input functions have been

writen in a file called readUtils.py. In the current version, HDF5 files are read using

the python module h5py and modified1 to match the old format. Therefore, the input

performance has not been addressed in the project beyond the fact of reading chunks

of data to maximise the throughput and reduce the overhead (see chapter 6).

Due to structural limitations of the MEAs, the amplifier of a signal may go out of

linear regime and reach saturation for a range of frames creating what it is known as

an outlier. Consequently, all implementations deal with this kind of invalid signals and

are able to isolate them from the variables used to estimate the baselines and other

on-going computations of the algorithms.

4.1.3 Work plan of the implementations

In order to understand the algorithms developed in this project, a first step has been

analysing the current prototype implementations in C# and their possible bottlenecks.

The majority of these bottlenecks (see section 4.3 and section 4.4) are related to the

way the algorithms structure the data that is processed and hence the data dependen-

cies underlying the existing control flow of the original implementations. By isolating

them, measuring their impact and researching and implementing possible workarounds,

many of these issues have been resolved or minimised.

Due to different hardware/software requirements, multiple versions have been devel-

oped for each algorithm. These implementations have been developed using the fol-

lowing sequence of pertinent tasks:

1. Porting the original online spike detection algorithm to C++ with a python inter-

face. This involved changing the syntax of the C# implementation and adapting

it to work with python and the new data format.

2. Adapting the online algorithm C++ port to run on an arbitrary number of threads

threads using only C++11 features.

3. Extending the parallel C++ port of the online algorithm to run with SYCL kernels

1Unsigned signals are subtracted to 4095 to invert their absolute amplitude and then concatenated in
a one dimensional array. The input files contain frames with 16-bit unsigned integer precision voltages
which are converted to match the C++ standard type unsigned short (guaranteed to fit 16 bits).



Chapter 4. Implementation of the algorithms 21

on both GPUs and CPUs.

4. Porting the original interpolation-based spike detection algorithm to C++, again,

with a python interface and compatible with the new data format.

5. Implementing an equivalent interpolation-based algorithm from the ground up

taking into account a parallel execution flow using only C++11 features.

6. Extending the new interpolation-based algorithm with SYCL kernels on a suit-

able part of the algorithm.

4.2 Porting the algorithms to C++

Adapting C# code to C++ has involved a series of simple syntax conversions related

with array declarations and access, control statements (e.g. foreach), file input and

ouput statements, type declarations and built-in functions (e.g. sort and max). It is

worth noting that simple changes such as distributing the input data in a contiguous one

dimensional array (with stride access) instead of sparse bi-dimensional structures can

yield a significant improvement on performance if the algorithms can benefit from ac-

cessing cached data (locality of reference, spatially and temporally). This is discussed

with regard to the global average computation of the signals and other computations in

chapter 6.

One feature that has been kept the same way as in the original implementation is the

fact of processing the data in temporal chunks. Even though this contradicts the online

nature of both algorithms, it can be understood as using a buffer for the input data,

processed only when it reaches a minimum size. The use of a multi-step data chunk

allows for a faster processing of the data since it reduces the amount of time dedicated

to start all the different procedures that compose the algorithm. Otherwise, all those

procedures would be called at every time-step of the algorithm, which at high sampling

rates (e.g. 7022 Hz) would be prohibitively slow.

In addition, many parameters of the algorithms as well as some execution parameters

(e.g. data chunk sizes) have been externalised and placed at a python level. This allows

for a fine control of the algorithm without having to recompile the whole module (.pyx

and .cpp files) and it does not have any impact on performance (all parameters are

passed only once).
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4.3 Parallel implementation of the online spike detec-

tion algorithm

4.3.1 Standard C++ implementation

The online algorithm is mainly composed of three steps, which are performed on every

data chunk that is processed.

First, the data is read. Then, the global average signal is computed for each time-step.

This is, the average voltage for all channels at each time-step (excluding all outliers)

is stored to be used during detection. And finally, spike detection is performed for all

channels independently.

Assuming every data-chunk includes the voltage of a number of channels (i.e. NChan-

nels) for several time-steps (named tInc because it represents the amount of time-steps

increased every time the algorithm is called), the averaging and detecting sections have

been parallelised using the following distribution of work on a system with a maximum

number of threads nthreads.

Each thread computes the global average for the a number of time-steps distributed in

a loop executed by all of threads.

1int chunkSize = std::ceil( (float) tInc/ (float) nthreads );

2for (int t = threadID*chunkSize;

3t < tInc and t < (threadID+1)*chunkSize; t++) {

4// Compute global average across all channels at time t

5}

Here, threadID is a consecutive identifier different in all threads (0 to nthreads - 1).

For the spike detection, each channel can be processed independently. Thus, the former

loop is adapted to allow each thread to process a number of channels instead of a

number of time-steps.

1// Number of channels associated to a thread

2int chunkSize = std::ceil( (float) NChannels/ (float) nthreads);

3for (int t = 0; t < tInc; t++) {

4// Loop accross all channels associated to this thread

5for (int i = threadID*chunkSize;

6i < NChannels and i < (threadID+1)*chunkSize; i++) {

7// Spike detection at time t for channel i
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8}

9}

Note that the time loop has been left at the outermost level to make all threads advance

through time simultaneously (it is not explicitly forced though). Since the data is

organised by time-step, it is expected a better use of any intermediate memory cache

thanks to this execution flow.

In both cases, threads are called using the standard C++11 notation and joined right

after finishing their work.

1for (int threadID = 0; threadID < nthreads; threadID++) {

2threads[threadID] = std::thread( [=] {

3func(threadID , param1 , param2 , ...);

4});

5}

6for (int threadID = 0; threadID < nthreads; threadID++) {

7threads[threadID].join();

8}

In order to avoid errors when simultaneously writing to file, the output of the program

is managed with a mutual exclusion lock shared amongst threads. This means that

every time a thread finds a spike and needs to print, it locks the output by calling

output mtx.lock() and after writing the amplitude, time-step and channel identifier

the lock is released with output mtx.unlock()2.

Code:

onlineDetection/SpkDonline.cpp

↪→ MeanVoltage, MeanVoltageThread, Iterate and IterateThread

4.3.2 Heterogeneous C++ implementation

The part of the code that takes more time to execute is naturally the detection of spikes.

Therefore, since the overhead related to copying the data to the device (potentially an

external GPU) would already be bigger than the sequential execution time in a CPU for

2output mtx has the type std::mutex. All the functions related with threads and locks require
including <thread> and <mutex> in the header file.
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the averaging part, only the spike detection section has been parallelised using SYCL

(discussed in chapter 6).

As has been explained for the standard C++ implementation, the spike detection part

of the algorithm can be processed independently on each channel. Accordingly, every

thread (workitem in OpenCL terms) will now process a single channel independently

for the sake of simplicity. Following the steps explained in subsection 2.4.3, a SYCL

device is selected and a queue is created in order to assign the work. Then, multi-

ple buffers are used to refer to the variables in memory with different accessor per-

missions (read/write) depending on the kinds of accesses performed during the spike

detection. Finally, the kernel is called for the whole range of channels.

Internally, in order to avoid repetitive accesses to the global memory of the device, the

variables associated with the baseline, variability and evolution of the spike detection

for a channel in general, are copied to the private memory of each thread. Then, the

spike detection is performed in a loop across time. Before ending the kernel, all the

working variables are stored again in global memory to allow a putative next call of

the algorithm to continue from where it ended.

One of the major caveats of using SYCL and, more precisely, OpenCL, is that kernels

cannot directly write to files (or read them). To solve this, all spikes are now stored

in an array which can be updated by multiple threads at the same time. Specifically,

each kernel writes to different positions in memory. A drawback of writing in a array

is that memory for all spikes will need to be pre-allocated. Nevertheless, since the

number of spikes is relatively small comparing with the memory necessary to store the

input, a maximum number can be safely estimated beforehand to allow all threads to

write at different specific regions without overflowing. To maximise the throughput of

the implementation, the printing of the output is delayed until the next iteration or, in

its absence, the end of the program. The effects on the performance are displayed in

Figure 6.1.

Code:

onlineDetection/SpkDonline.cpp

↪→ IterateSYCL
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4.4 Interpolation-based spike detection algorithm

Porting the interpolation-based spike detection algorithm to C++ has been relatively

straightforward. However, the original C# algorithm computed everything (including

the baseline estimates, interpolations, and the detection of spikes) within the same loop.

The fact that there are precedence between the aforementioned variables (in the stated

order), and that all these tasks could be distributed in different functions specifically

optimised for each sub-task, has motivated the creation of an equivalent new algorithm

due to the infeasibility of adapting the existing one. The new implementation has been

programmed in a modular and more object oriented style, incorporating modern C++

features wherever possible as a proof of concept of a parallel version. Additionally,

the proposed implementation incorporates a new data structure aimed at reducing the

number of redundant spikes within a spatial region and a temporal interval.

Port code:

interpDetectionPort/SpkDslowFilter.cpp

4.4.1 New equivalent parallel implementation

In the new implementation, after reading each data chunk, the signals are processed in

4 major steps following the original algorithm (section 3.2):

Computation of the global voltage per frame:

Similar to the online spike detection algorithm. A group of equally sized time-steps is

processed independently by different threads disregarding the outliers.

Code:

newInterpDetection/InterpSpkDetection.cpp

↪→ computeMean

Estimation of the global average subtracted baselines:

In this case, two major differences can be pointed out when comparing with the original

algorithm. First, a moving average of a parametrised length is taken as the input signal

instead of the raw one. This average is calculated at every time-step incrementally:

1vMovingAvg[ch] += ((int) vm[ch + t*NChannels] - (int) v_old)

2*scale / movingWindowLength;
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Where v old contains the voltage at the time-step t−movingWindowLength, ch is the

index for the channel, and scale is a factor multiplying all signals to provide more

resolution during the interpolation and spike detection phases (the original data with

unsigned int type is scaled and stored as int to provide more resolution without

having to rely on floating point types).

The second main difference is that the minimum of every two consecutive frames is

stored. Nonetheless, the work is distrbuted across threads using the same chunk-based

method:

1// Number of channels associated to a thread

2int chunkSize = std::ceil( (float) NChannels/ (float) nthreads);

3for (int t = start; t < tInc; t++) {

4// Loop accross all channels associated to this thread

5for (int ch = threadID*chunkSize;

6ch < NChannels and ch < (threadID+1)*chunkSize; ch++) {

7// Estimation of the global average substracted baselines

8}

9

10}

Code:

newInterpDetection/InterpSpkDetection.cpp

↪→ preprocessData

Interpolation of the signals (4 and 5 channels):

The computation of the interpolations can be performed independently for all time-

steps and channels. Still, threads have been given a chunk of time-steps with all their

corresponding frames (all channels) to interpolate as their part of work. The reason

is that every interpolation takes multiple values, and different interpolations within a

same frame use signals from the same channels (when computing surrounding inter-

polations). This way, threads can have faster access to the variables thanks to cached

memory because they might already accessed that direction.

1int chunkSize = std::ceil( (float) (tInc - start)/ (float) nthreads);

2// Loop accross all channels associated to this thread

3for (int t = start + threadID*chunkSize;

4t < tInc and t < (threadID+1)*chunkSize; t++) {

5// Compute 4/5-channel interpolations on all channels at time t

6}



Chapter 4. Implementation of the algorithms 27

In detail, the 4-channel interpolation code takes the average of the three largest negative

voltages of a four neighbour channels. When an outlier is found in one of the channels,

the execution flow is interrupted and an mark (i.e. outlierMark) is returned instead.

1int values[] = {V[ch + t*NChannels],

2V[ch + 1 + t*NChannels],

3V[ch + chCols + t*NChannels],

4V[ch + chCols + 1 + t*NChannels]};

5int interp = 0;

6int maxValue = 0;

7bool outlier = false;

8for (auto v : values) { // Add all the values and find the minimum

9if (v == outlierMark) {

10outlier = true;

11break;

12}

13interp += v;

14maxValue = max(maxValue , v);

15}

16if (outlier) return outlierMark;

17else return (interp - maxValue)/3;

Similarly, the 5-channel interpolation takes the weighted average of the three largest

surrounding channels surrounding another, together with the value of this central chan-

nel with a larger weight using the ratio defined by wcs. Again, when any of the values

is identified as an outlier, the interpolation is stopped and the outlier mark is returned.

1int values[] = {V[ch - chCols + t*NChannels],

2V[ch + 1 + t*NChannels],

3V[ch + chCols + t*NChannels],

4V[ch - 1 + t*NChannels]};

5int interp = (V[ch + t*NChannels]*w_cs)/(3 + w_cs);

6int maxValue = values [0]/(3 + w_cs);

7bool outlier = (V[ch + t*NChannels] == outlierMark);

8if (outlier) return outlierMark;

9for (auto v : values) { // Add all the values and find the minimum

10if (v == outlierMark) {

11outlier = true;

12break;

13}

14int weightedValue = v/(3 + w_cs);

15interp += weightedValue;

16maxValue = max(maxValue , weightedValue);
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17}

18if (outlier) return outlierMark;

19else return interp - maxValue;

In both codes, the smaller3 signal amplitude is subtracted at the end to keep the com-

putations as light as possible.

Code:

newInterpDetection/InterpSpkDetection.cpp

↪→ computeFourChInterp and computeFiveChInterp

Spike detection:

The spike detection part is fairly simple compared with the online algorithm. Since

the baselines have already been computed and interpolated, the signals are processed

to find negative peaks (exceeding a threshold) across all channels. In order to take

the maximum depolarisation of a series of values surpassing the threshold, the largest

signal and its time step is stored during several frames until a valid repolarisation (end

of the spike) is found.

However, taking the largest depolarisation of a certain region has involved creating a

custom data structure described below. The data structure aims at solving the problem

of detecting redundant spikes (i.e. spikes originated by a single neuron which are

reported on multiple adjacent channels and wrongly detected more than once).

The channel space is divided into different squared chunks, where the width (d in

Figure 4.2) of a chunk is mandatorily larger than the minimum distance used to discard

spikes because of being too close. When a spike is found, its largest amplitude is stored

in the corresponding chunk together with its source channel id. In addition, a queue

data structure is used to store all recent spikes using the first in first out method. The

underlying motivation of this structure is that, whenever a new spike is found, it will

only be compared with the spikes found within its chunk and the surrounding ones,

thus, comparing with the set of spikes that contain all possible relevant spikes. If a

new spike is larger than any other within a set distance, the other ones are deactivated

(an internal Boolean value is set to false). Otherwise, if a new spike is smaller than any

other nearby spike, it is stored being already deactivated. Temporally, after every time

step is processed, the global queue is checked and all spikes old enough so that it is

3Since we are dealing with negative voltages, the smallest signal amplitude is taken as the max
(smallest depolarisation).
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impossible for them to be overshadowed by a new one are eliminated from both queue

and corresponding chunk. However, before any spike is eliminated, if its Boolean

relevance value is still set to true, it is printed to file. This way, only the largest spikes

in a temporal and spatial region are stored.

d

Figure 4.2: Subdivision of the 4096 channel space into 64 chunks of 8x8 channels

each. Whenever a spike (in red) is found, its amplitude is compared with only those

found in the same and surrounding chunks.

This ensures a linear number of comparisons between spikes (if the number of chunks

is increased as the number of channels does) instead of a quadratic one. Furthermore,

since the global queue will contain in its front position the oldest (or as old as others)

spike, eliminating all the spikes older than a certain time-step becomes trivial.

Code:

newInterpDetection/InterpSpkDetection.cpp

↪→ findSpikes

4.4.2 Heterogeneous C++ implementation

In order to show that the former code can also be parallelised using an heterogeneous

implementation, the interpolations have been programmed to work with SYCL as well.

The interpolations are specially suitable for being computed in a GPU because involve

performing many simple computations that share spatially distributed portions of the
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data, and are the section that takes most of the time when computed sequentially (see

chapter 5).

This time, instead of calling a thread (workitem in OpenCL terms) per channel, 256

items per work group will process 16 channels each (4x4) in a single time-step. That

is, every workgroup processes 4096 channels (the entire span of the chip) for a time-

step. In addition, the local memory4 of a workgroup is shared and preloaded using

all workitems before computing the interpolations to take advantage of the repeated

access to memory amongst nearby channels.

Figure 4.3: Distribution and execution flow of workgroups for the 5-channel interpo-

lation using local memory (shared among workitems within a workgroup). Note that

even though interpolations are computed for the fist/last column and row with invalid

numbers, they will not be used during the spike detection phase.

In order to provide an homogeneous execution across workitems in a workgroup, the 5-

channel interpolation assumes that the signal from the surrounding channels is always

available (see Figure 4.3). Since the data is contained in a one dimensional array,

this would imply that in order to compute the interpolation of the channels in the first

or last row/column of channels (which is computed as any other one for the sake of

homogeneity), non existing locations (the surrounding channels of boundary channels)

would be accessed. To solve this, a local memory accessor is pre-allocated using 66x66

channels and used with an offset of +1 on each dimension instead of 64x64 channels.

1auto workSpaceRange = nd_range <3>{ range <3>(tInc , 16, 16),

2range <3>(1, 16,16) };

Here, the first dimension is the time-step and the other two are the vertical and horizon-

tal position of the chunk. The first range determines the global number of workitems,

4A whole frame fits in the local memory of the device (FirePro W5100, 32 KB of local memory for
each compute unit) used to test SYCL.
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and the second one determines the range of workitems for a workgroup. Therefore,

there will be tInc workgroups.

Distinct workitems copy different subsets of channels preparing first a set of global

offsets (with regard to the global memory) and local offsets (with regard to the lo-

cal memory of the workgroup). In order to identify each workitem and workgroup,

multidimensional indices have been used:

1// The first dimension indicates the time

2int t = it.get_group(0);

3// Block position

4int bx = 4*it.get_local(1);

5int by = 4*it.get_local(2);

6// Prepare offsets (global and local)

7int chOffsets [16];

8int chOffsetsL [16];

9for (int i = 0; i < 16; i++) {

10chOffsets [i] = bx + by*chCols + i%4*chCols + i/4;

11chOffsetsL[i] = 1 + bx + by*chColsL + i%4*chColsL + i/4;

12}

13// Copy memory (blocks of 16)

14for (int i = 0; i < 16; ++i)

15localV[chOffsetsL[i]] = VPtr[chOffsets[i] + t*NChannels];

The synchronisation across workitems within a workgroup is achieved using a a local

barrier (shown below), and then, interpolations are computed for all channels in the

same manner as in the parallel C++ implementation explained before.

1it.barrier(access::fence_space::local_space);

Code:

newInterpDetection/InterpSpkDetection.cpp

↪→ computeInterpSYCL
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Performance results

This section presents the execution times for the algorithms developed in the project

under different configurations to show how well does the implemented parallelisation

perform.

All tests have been performed in a server with the following specifications:

• CPU: Intel® Xeon® CPU E5-2630 v2 with a base frequency of 2.60 GHz (3.1

GHz max single core) and a (L3) memory cache of 15 MB. This processor has

6 cores with the capability of executing 12 threads at the same time by means of

hyper-treading (a form of simultaneous multithreading, Tullsen et al., 1995).

• GPU: AMD FirePro W5100 with a total of 4 GB of memory, and 32 KB of

memory per compute unit.

• Memory: 32 GB of DDR3 RAM.

• Mechanical hard-drive (note that the file reading times have been omitted in the

parallelisation analysis).

Many of the tests involved using a different number of cores in the CPU to test the

scalability of the developed software. In the case of SYCL kernels, those have been

executed in the GPU. It is worth mentioning that the number of CPU cores in the SYCL

executions has been of 2 in the interest of representing the performance of a system

with an mid-range CPU using a GPU to accelerate some computations. That is, display

the performance of a cost-effective system as discussed in chapter 6. Nevertheless,

there is no actual reason to not use all cores and the GPU at once in this system to

maximise its performance.

32
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Figure 5.1 and Figure 5.2 show how the new C++ implementation for the online spike

detection algorithm performs when executed with different levels of parallelisation. In

all cases, real-time performance is achieved (the minimum amount of frames to achieve

it is displayed with a dashed line).

Both figures show a significantly large speed-up comparing the sequential execution

and the 2-core version of the algorithm. As the number of cores increases, the speed-

up becomes relatively less prominent (i.e. sub-linear scaling) due to the additional

overhead of using more cores within the same CPU. Therefore, the benefits of using

12 cores instead of 6 are marginal.
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Figure 5.1: Execution time on different data chunk sizes for different levels of paral-

lelism (1-12 CPU cores and 2 CPU cores + SYCL on a GPU for the spike detection

part). Each point represents the average time of 6 executions on different data. The

marginal variability between executions is displayed with error bars measuring the stan-

dard deviation. The dashed line represents the boundary of real-time processing for the

MAE sampling frequency of the recording (7022 Hz).

In theory, there is nothing in the implementation preventing the same linear scaling

for bigger data chunks from occurring provided the system has enough memory. In

our case, sizes higher than 15 · 104 can yield execution errors or significantly larger



Chapter 5. Performance results 34

execution times due to the lack of memory. In addition, for very small data chunks, the

SYCL implementation displays a relatively higher execution time when compared to

the other executions.
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Figure 5.2: Distribution of the execution time with a data chunk of 100000 frames for

different levels of parallelism (1-12 CPU cores and 2 CPU cores + SYCL on GPU for

the spike detection part). Each set of times represents the average time of 6 executions

on different data.

Figure 5.3 and Figure 5.3 show that by means of a parallel execution and a reorgan-

isation of the computations of the interpolation-based spike detection algorithm, the

execution time can be reduced to work in real-time with a recording of 4096 channels

at 7022 Hz.

Since the complexity of the computations performed in the implementation is signif-

icantly higher compared to the online algorithm, even with local memory optimised

kernels, the performance shown when using 2 cores + SYCL (GPU computing the in-

terpolations) does not reach the same level of performance as for 4 cores. However, it

provides a sufficient boost to achieve real-time performance (drawn as a dashed line).

Overall, the different executions show a quasi-linear scaling with the size of the data

chunks (number of frames per iteration). The implementation with SYCL kernels dis-
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plays a (marginally) sub-linear scaling which allows to achieve real-time performance

for data chunks larger than approximately 104 with only two CPU cores.
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Figure 5.3: Execution time on different data chunk sizes for different levels of parallelism

(1-12 CPU cores and 2 CPU cores + SYCL on a GPU used to compute the interpola-

tions). Each point represents the average time of 10 executions on different data. The

variability between executions is displayed with error bars showing the standard devi-

ation. The dashed line represents the boundary of real-time processing for the MAE

sampling frequency of the recording (7022 Hz).

Figure 5.4 shows the execution time for the different parts of the algorithm. In all cases,

the spike detection phase is performed sequentially. Preliminary tests to parallelise

such section have yielded somewhat longer execution times and, therefore, have not

been included in the final implementation of the algorithm. Other sections show a

much shorter execution time, which is specially significant in the estimation of the

baselines and the computation of the interpolations (which is the longest part in the

sequential execution of the algorithm).

Note that the only difference between the execution with 2 cores and the execution

with 2 cores with SYCL kernels is that the interpolations are computed in the GPU.
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Figure 5.4: Execution time on a data chunk size of 15000 frames for different levels

of parallelism (1-12 CPU cores and 2 cores with SYCL on GPU used to compute the

interpolations). Each point represents the average time of 10 executions on different

data.
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Discussion

6.1 Performance speed-up

The parallelisation of the algorithms first introduced in Muthmann et al. (2015), has

significantly shortened their execution time (see Table 6.1). For the online algorithm,

which before ran for about ten times the length of the recordings, can now be processed

not only in real time but in up to 6 times faster than that. For instance, for a 130 seconds

recording, the fastest implementation takes around 20 seconds to finish.

Table 6.1: Example execution times of different versions and levels parallelism for the

methods implemented in the project and the original C# implementations (Muthmann

et al., 2015) on the same 130 seconds recording of 4096 channels with a sampling

frequency of 7022 Hz (a total of 912032 frames per channel).

Algorithm Version Parallelism Par. speed-up Exec. time

Online Original C# - - 750.07 s

Online New C++ - 1 88.63 s

Online New C++ 2 cores + SYCL 3.46 25.63 s

Online New C++ 12 cores 4.33 20.46 s

Interpolated Original C# - - 1569.79 s

Interpolated C++ port - - 533.03 s

Interpolated New C++ - 1 254.72 s

Interpolated New C++ 2 cores + SYCL 2.21 115.47 s

Interpolated New C++ 12 cores 3.39 75.18 s

37
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The translation of the interpolation-based algorithm has accelerated the execution and

shorted its execution time to be approximately a third of the original execution time.

In addition, the new implementation of the interpolation-based algorithm has achieved

real-time performance thanks to the use of multiple threads in two possible configura-

tions: a high CPU load on a high-end CPU, or a less aggressive CPU load combined

with a GPU to accelerate the computation of interpolations.

6.1.1 Online spike detection algorithm

The .HDF5 format, different from the one the original implementation used, provides

the data indexed by time-step. To exploit this, the new implementation uses a trans-

posed access to the data (channel+time·NChannels instead of channel ·NTimeSteps+

time), which significantly eases the computation of the global potential at each time-

step because all the signals of a time-step are contiguously stored in memory. In addi-

tion, the fact that all threads perform the spike detection algorithm advancing through

time at the same time, allows for a better management of the memory hierarchy present

in the test computer.

One of the reasons for the sub-linear scaling when incrementing the number of cores

is that all cores ultimately share the same L3 cache, and its usage across is limited

by the amount of memory size which has. Furthermore, as happens in many modern

processors, when multiple cores are used at their full potential, the CPU (its firmware)

automatically reduces the frequency from turbo (only used when few cores are exten-

sively used to perform single threaded tasks) to its base frequency to avoid any damage

to the CPU die due to high temperatures (i.e. reduce the electric energy consumption).

A major benefit of using a GPU is that it liberates the CPU from work load, allowing

it to perform other computations. This has been taken advantage of in the implemen-

tation, where spikes are printed in the subsequent iteration of the algorithm. That is,

spikes are stored in memory by the GPU (which cannot directly write to file), and dur-

ing the next iteration of algorithm, the CPU prints a copy of the results and waits for

the ongoing GPU spike detection to finish. Compared to a sequential print of the re-

sults right after finishing the computations, it has a higher throughput (see Figure 6.1).

In addition, it is worth noting that the use of a GPU thanks to SYCL together with

2 CPU cores provided a significant boost to the performance when compared to the

simple 2-core execution time.
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READ SYCL DETECTIONAVG OUT

READ SYCL DETECTIONAVG READ SYCL DETECTIONAVG READ SYCL DETECTIONAVG
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C++ Parallel

C++ Parallel + SYCL

C++ Parallel + SYCL with delayed output
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C++ Sequential port*
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Figure 6.1: Diagram showing the execution times for different versions of the algorithm (sequential, 4-core, 4-core with SYCL for the detection

part with and without a delayed output of the spikes). The different colours indicate the different parts of the algorithm: the file input (READ)

appears in red and the computation of the global average signal (AVG) across signals in yellow. The output of the spikes is performed differently

between the standard C++ implementation and the implementation with SYCL kernels: in the first case, the output is done asynchronously

during the the detection phase (in dark blue) whilst in the second one the output is performed right after the spike detection (in blue) is

completed or with a delay (in green). Note that the sizes are to scale, but that both SYCL executions would actually be a bit shorter than what

is displayed for the sake of clarity (in consistency with Figure 5.2).
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Taking into account that the cost of the utilised GPU is lower than the CPU1, and that

the performance with only two cores joined with the GPU provides a similar level

of performance to the one achieved when using all cores, it seems reasonable to say

that a cost-effective solution would be using a more affordable CPU together with

an medium-range GPU. All these considerations are based on the performance of the

current implementation of SYCL provided by Codeplay®, which is provisional and

hence its performance has not yet been completely optimised. Therefore, the benefits

of using GPUs to accelerate some computations could be larger than the ones presented

before.

6.1.2 Interpolation-based spike detection algorithm

Overall, the new implementation performs much more efficiently the algorithm when

compared to the original C# implementation. Using optimised functions for each sub-

task allows the developer to conveniently focus on each calculation more easily, iden-

tify redundant computations, and distribute the work to make a better use the data

distributed in memory. Moreover, using a more object oriented approach can facilitate

the task of optimising the code for the compiler. Nevertheless, the developed imple-

mentation has been implemented, so far, as a proof of concept to show an example of

parallelisation and integration of SYCL kernels on spike detection algorithms. Thus,

the algorithm is not identical to the original implementation, albeit it should be feasi-

ble to achieve the same results with simple extensions and a tuning of the parameters

thanks to its modular architecture.

In all cases, the benefits of hyper-threading are pretty limited. Jumping from 6 (real)

cores to 12 (virtual) cores does not present a significant speed-up even though being

slightly faster. As stated previously, different kinds of overhead diminish its perfor-

mance speed-up to the level where using the maximum number of virtual cores might

not necessarily be the best configuration. In addition, when using a number of cores

slightly above the number of real cores (e.g. 8), the performance may actually be

somewhat worse compared to using only the total number of physical cores in the

CPU. Finally, the SYCL implementation displays a marginally sub-linear scaling with

the number of frames per iteration because all tests suffer from a approximately sta-

1The recommended retail price of the Intel® Xeon® CPU E5-2630 v2 started at 612.00 $ at the time
of release. For the AMD FirePro W5100, the retail price at its release was of approximately 400 $.
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ble overhead coming from the initialisation and copying of variables to the device

(i.e. GPU), which is relatively exacerbated when the number of frames per iteration is

small.

6.2 Future work

Following the same method shown for the delayed output of the online algorithm, it

could be interesting to see how this concept could be exploited in the delayed com-

putation of tasks in the interpolation-based algorithm when used in combination with

the GPU. That is, maximise the throughput by delaying the spike detection part to be

performed while the GPU computes the interpolations of a consecutive iteration.

In addition, this project could be used as a starting point to be generalised to other

chips and platforms in general in order to create a python library of spike detection

algorithms implemented in C++.

Conclusively, as soon as implementations of SYCL become available to the public

and their device support expands to include NVIDIA GPUs and Intel/AMD integrated

graphics, it would be interesting to see how well the developed implementations per-

form on such new architectures. The case of integrated graphics is of a special interest

because it could provide a speed-up when comparing with using only CPU cores, but

without having to rely on a separate device (i.e. GPU). The benefits include using the

same memory instead of copying the data to and from the VRAM in a GPU and still,

use two computing devices at once. This would require performing an extensive profil-

ing of the resources utilised during the executions of the algorithms in terms of memory

usage, disk input/output and CPU/GPU load. In addition, the distribution of the work

and parallelisation of certain tasks shown in this project together with the aforemen-

tioned profiling could be used to aid in the design of hardware aimed at specifically

performing the task of detecting spikes in high density electrophysiological data.
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