Handlers for Algebraic Effects in Links

Daniel Hillerström

Master of Science
Computer Science
School of Informatics
University of Edinburgh
2015
Abstract

Plotkin and Pretnar’s handlers for algebraic effects provide a compelling alternative to monads as a basis for effectful programming. In their programming model computations are composed from abstract operations. Handlers interpret abstract operations by instantiating them with concrete implementations. Consequently, the model promises a high degree of modularity.

We provide an implementation of handlers for algebraic effects using row polymorphism in the strict functional programming language Links. Row polymorphism enable us to truly compose computations from operations in any order.

Through a series of examples we demonstrate that the handler abstraction makes it easy to write modular, effectful programs. Furthermore, we show that the compositionality of handlers enable of us to extend the functionality of effectful programs effortlessly.

Finally, we also include a discussion of our implementation as well as an evaluation of our programming model, how handlers and effects fit into the Links language, and an account of the performance of handlers.
Acknowledgements

I would like to extend my sincere gratitude to my supervisor, Sam Lindley. Firstly, for accepting me as his student, and secondly, for introducing to the subject. Sam has provided invaluable guidance during the entire project period. We have enjoyed many conversations about programming language theory over the summer.

I would also like to thank Edwin Brady for inviting me to attend and deliver a talk about my work during the *Practical Types 2015*, summer school at the University of St. Andrews. It gave me an opportunity to receive some valuable feedback on my work.

Finally, thanks to John Longley, Paul Anderson, and Sam Lindley for their feedback during the midterm MSc progress seminar.
Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own except where explicitly stated otherwise in the text, and that this work has not been submitted for any other degree or professional qualification except as specified.

(Daniel Hillerström)
Preface

This report contains a variety of examples. Some of the examples elide aesthetic details to condense the code. The complete source code for every example, including instructions, is available at https://github.com/dhil/msc-dissertation

The repository also contains additional examples that are not presented in this report. Furthermore, the source code for the handlers implementation in Links is available at https://github.com/dhil/links-effect-handlers.
Contents

1 Introduction ... 1
 1.1 Problem analysis ... 1
 1.2 Problem statement .. 8
 1.3 Proposed solution ... 8
 1.4 Thesis structure ... 9

2 Background ... 11
 2.1 Handlers and algebraic effects 11
 2.2 Row polymorphism .. 14
 2.3 Links toplevel .. 15
 2.4 Related work ... 18

3 Programming with handlers in Links 21
 3.1 Discharging operations 21
 3.2 Closed handlers .. 22
 3.3 Open handlers .. 33

4 Implementation .. 49
 4.1 Early desugaring of handlers 49
 4.2 Type checking ... 51
 4.3 Pattern-matching compilation 52
 4.4 Interpreter .. 53

5 Evaluation .. 57
 5.1 Handlers with row polymorphic effects 57
 5.2 Handlers and user-defined effects in Links 58
 5.3 Relative performance 59

vii
Chapter 1

Introduction

Programs are effectful, i.e. they may operate on some state, divide by zero, halt prematurely. Imperative programs are inherently effectful as computations perform a series of implicit effects on a shared global state. Most imperative programming languages are not explicit effects, even though, effects underpin their foundational assumption \[14\]. In contrast pure functional programming languages often use monads as a basis for effectful programming. Unfortunately, monads impose an ordering on effects which impairs compositionality and modularity \[7\].

Plotkin and Pretnar’s handlers for algebraic effects \[18\] provide an alternative to monads, where effectful computations are composed from abstract operations which are interpreted by handlers. In this thesis, we join handlers and algebraic effects with row polymorphism. The result is a compelling programming model which unifies compositionality, modularity and explicit effectful programming. We implement and examine our programming model in the functional programming language Links.

The remainder of the chapter analyses the problem with monads as a basis for effectful programming.

1.1 Problem analysis

Programming languages vary greatly in their approach to effects. Some languages do not disclose potential runtime effects, e.g. the ML-family of languages. For example consider the signature \texttt{readFile} : \texttt{string} \rightarrow \texttt{[string]} for a function in SML, its suggestive name hints that given a file name the function reads the file and return the contents line by line. In order to read a file the function
must inevitably perform a side-effecting action, namely, accessing some storage medium. But this information is not conveyed in the function signature.

Other languages disclose effects, albeit with varying degree. For example Java requires programmers to annotate method signatures with potential unhandled checked exceptions that may be raised during runtime, e.g. the signature above may be written \texttt{String[]} \texttt{readFile(String f) throws IOException} in Java. But programmers can circumvent this requirement by raising unchecked exceptions, which appears to defeat the purpose of the effect system. Moreover, due to Java’s inheritance and subtyping it is a code breaking change to extend an interface with an additional effect annotation. Thus, often, programmers find it easier to avoid the effect system altogether \cite{22}.

The Haskell programming language is also explicit about effects, but, in contrast to Java, it offers no escape hatch to be implicit. Haskell insists that every effectful computation is encapsulated inside an appropriate monad. In Haskell the above signature could be written as \texttt{readFile :: String \rightarrow IO [String]}, where the \texttt{IO}-annotation signifies that the function might perform an input/output side-effect. We can think of \texttt{IO} as an effect type. In fact, Wadler and Thiemann gave the theoretical foundation for interpreting any monad as an effect type \cite{23}. Section 1.1.2 continues the discussion about monads as effects.

1.1.1 Benefits of being explicit about effects

An effect is a static description of the possible state-changing actions that a computation might perform. Types and effects are complementary, together they characterise computations. A type determines the possible outputs of a computation and an effect conveys information about what might happen during evaluation. This information may be exploited by an optimising compiler to transform a computation into an equivalent, more efficient computation. For example, fine-grained effects can tell us precisely when it is safe to reuse a particular piece of code \cite{8}, run it parallel, etc. Moreover, effects endow additional safety as they can aid in verification of programs up-front \cite{3}.

Finally, explicit effects provide additional documentation to the programmer about the code. As a result the programmer gain better insight into what the computation actually does without breaking the abstraction.

\footnote{Strictly speaking it is not true as any function can be defined in terms of side-effecting \texttt{error} function without being reflected in the type signature.}
1.1. Problem analysis

1.1.2 A monadic effectful coffee dispenser

Monads are powerful abstractions for structuring computations. In particular, monads have a simple interface. For instance in Haskell programmers often only need to concern themselves with the following two monadic operators:

- Bind operator (\(\gg= \)), whose type is \(ma \rightarrow (a \rightarrow mb) \rightarrow mb \), takes a monadic value of type \(ma \) and a function, which is applied to the value inside the monad to yield a monadic value of type \(mb \).

- Pure operator (return), which has type \(a \rightarrow ma \), lifts a pure value of type \(a \) into a monadic value of type \(ma \).

Monads combine using the bind operator, which works well as long as we are working inside the same monad. Because, sadly, monads do not compose well \[7\], and consequently it is difficult to give a monadic description of computations that might perform multiple effects. Consider the following attempt at modelling a coffee dispenser in Haskell:

Example 1.1 (Coffee dispenser using monads). The coffee dispenser is effectful, that is, it reacts to user input and may fail. Furthermore, we want to be explicit about the effects that the dispenser may perform.

First we define the sum type **Dispensable** with two labels **Coffee** and **Tea** which represents dispensable drinks:

```haskell
data Dispensable = Coffee | Tea deriving Show

type ItemCode = Integer
type Inventory = [(ItemCode, Dispensable)]
inventory = [(1, Coffee), (2, Tea)]
```

The **ItemCode** type models a button on the coffee machine, and **Inventory** associates buttons with dispensable items. The **inventory** will not change during runtime. We can capture this property in the effect signature by encapsulating the **inventory** inside a **Reader**-monad. Furthermore, we use the **Maybe**-type to capture the possibility of failure, e.g.

```haskell
dispenser :: ItemCode \rightarrow Reader Inventory (Maybe Dispensable)
dispenser n = do inv ← ask
    let item = lookup n inv
    return item
```

The type **Reader Inventory (Maybe Dispensable)** tells us that **dispenser** accesses a read-only instance of **Inventory** and maybe returns an instance of
Dispensable. The `Maybe`-type tell us that in the event of an error we get `Nothing`, for instance if the user requests an item that is not in the inventory, otherwise we get `Just` the requested item. The monadic operation `ask` retrieves the inventory from inside the `Reader`-monad and `lookup` checks whether the item `n` is in the inventory.

Although, `Maybe` is a monad we cannot use its monadic interface, because we are in the context of the `Reader`-monad. For this simple computation it is not an issue, but it would be desirable to be able to use the failure handling capabilities of the `Maybe`-monad. Ideally, we would want to be able to write

\[
\begin{align*}
\text{do } & \text{ inv } \leftarrow \text{ask} \\
& \text{ item } \leftarrow \text{lookup } n \text{ inv} \\
& \text{return } \text{item}
\end{align*}
\]

But using regular monads it is not possible to construct this type. To see why, let us desugar the above expression:

\[
\begin{align*}
\text{do } & \text{ inv } \leftarrow \text{ask} \\
& \text{ item } \leftarrow \text{lookup } n \text{ inv} \\
& \text{return } \text{item}
\end{align*}
\]

\[
\begin{align*}
\text{ask } \gg= \ \text{\ inv } \rightarrow \\
\text{lookup } n \text{ inv } \gg= \ \text{\ item } \rightarrow \\
\text{return } \text{item}
\end{align*}
\]

The bind operator (`\gg=`) is the problem. Recall its type

\[
\text{Monad } m \Rightarrow ma \rightarrow (a \rightarrow mb) \rightarrow mb
\]

Essentially, this type tells us that we cannot compose monads of different types as the monad type `m` is fixed throughout the computation. Consequently, it is not immediately clear how we may extend the coffee dispenser model with additional capabilities such as logging.

Suppose we want log when tea or coffee is being dispensed. The `Writer`-monad provide such capabilities. Ideally, we would want a monadic computation like:

\[
\begin{align*}
\text{do } & \text{ inv } \leftarrow \text{ask} \\
& \text{ item } \leftarrow \text{lookup } n \text{ inv} \\
& \text{tell } (\text{show } \text{item}) \\
& \text{return } \text{item}
\end{align*}
\]

Here the monadic operation `tell` writes to the medium contained in the `Writer`-monad. However as noted above we cannot achieve this using regular monads. Basically, we want a monad whose type is something like

\[
\text{Writer } w \square \text{ Reader } e \square \text{ Maybe Dispensable}
\]
where \(w \) is the type of the writable medium, \(e \) is the type of an environment and \(\Box \) is some “type-glue” that joins the types together. This type is an instance of Monad Transformer type which we will discuss in Section 1.1.3.

Effect granularity

It is possible to solve the problem using regular monads. However, it comes at a cost as suggested by the type signature of the bind operator we can compose one monad with another as long as they got the same monadic type. So, we could just use one monadic type to describe all effects. It is very tempting to bake everything into an IO-monad as we possibly want to I/O capabilities at some point. Albeit, IO is a very conservative estimate on which effects our computation might perform. Consequently, we obtain coarse-grained effect signatures as opposed to more specific, fine-grained effect signatures.

1.1.3 A better monadic effectful coffee dispenser

Monad Transformers enable us to combine two different monads by stacking one on top of the other. In particular, any Monad Transformer is itself a monad, and hence we can construct arbitrarily complex compositions. Incidentally, we can use Monad Transformers to describe computations that may perform several different effects. The following example rewrites the coffee dispenser model from Example 1.1 using Monad Transformers.

Example 1.2 (Coffee dispenser using Monad Transformers). Most monads have a Monad Transformer cousin; by convention Monad Transformers have a capital T suffix, e.g. the Reader-monad’s transformer is named ReaderT.

We rewrite Example 1.1 to use the WriterT, and ReaderT monad instead of Reader:

```haskell
dispenser1 :: ItemCode → WriterT String (ReaderT Inventory Maybe) Dispensable

dispenser1 n = do inv ← lift ask
  item ← lift (lift $ lookup n inv)
  tell (show item)
  return item
```

The type may look dubious. Basically, we have built a Monad Transformer stack with three monads:
• Top of the stack: WriterT with a writable medium of type String.
• Middle: ReaderT with read access to an environment of type Inventory.
• Bottom: Maybe provides exception handling capabilities.

Monad Transformers allow us to express something reminiscent of the “ideal”
monadic computation that we sought after in Section 1.1.2. It is worth noting
that, now, Maybe is employed as a monad as opposed to a ordinary type. The
benefits are obvious as we get the error handling capabilities of Maybe for “free”.

However, it is not entirely free as we have to introduce lift operations. The
lift operations are necessary in order to work with a specific effect down the
transformer stack. For example in order to use ask we have to lift once as the
ReaderT is the second type in the stack. Moreover, to use the monadic capabilities
of Maybe we have to lift twice because it is at the bottom of the stack. Using
tell requires no lifts in this example as WriterT is the top type. Consider
what happens when we add yet another monad to the stack:

dispenser2 :: ItemCode →
 RandT StdGen (WriterT String (ReaderT Inventory Maybe))
 Dispensable

dispenser2 n
 = do r ← getRandomR (1,20)
 inv ← lift ◦ lift $ ask
 item ← lift ◦ lift ◦ lift $ lookup’ r n inv
 lift ◦ tell ◦ show $ item
 return item
where
 lookup’ r n inv = if r > 10
 then lookup n inv
 else Nothing

Here we extended our model with randomness to capture the possibility of failure
caused by the system rather than the user. The RandT monad provides random
capabilities. Moreover, we added it to the top of the transformer stack. Accord-
ingly, we now have to use an additional lift operation everywhere, in particular,
we have to lift in order to use tell now.

Example 1.2 demonstrates that we can compose monads at the cost of lifting.
The lift operations are additional boilerplate code that become necessary, be-
cause the transformer stack enforce a static ordering on effects and interactions
between effect layers [9].
Furthermore, the ordering leaks into the type signature which complicates modularity. For example, we may have a function which takes as input an effectful computation with type signature, say, \texttt{WriterT \, w \, Reader \, e \, a}. Now, the actual effectful computation has to have a type signature with the exact same ordering of effects even though \texttt{Writer} and \texttt{Reader} commute, i.e. the following types are isomorphic:

\[
\texttt{WriterT \, w \, Reader \, e \, a} \cong \texttt{ReaderT \, e \, Writer \, w \, a}.
\]

So, we would have to permute the type signature of the actual computation \[3\], e.g.

\[
\texttt{permute :: ReaderT \, e \, Writer \, w \, a} \rightarrow \texttt{WriterT \, w \, Reader \, e \, a}
\]

In this case it is safe because the two monads commute. But in general monads do not commute and therefore the consequence of permuting monads can be severe as we shall see in the next section.

The importance of effect ordering

The effect ordering hard wires the semantics and syntactical structure of computations. Consider the following example adapted from O’Sullivan et. al \[15\]:

\textbf{Example 1.3} (Importance of effect ordering \[15\]). We will demonstrate that the \texttt{Writer} and \texttt{Maybe} monads do not commute. Let \(A\) be the type \texttt{WriterT \ String \ Maybe} and \(B\) be the type \texttt{MaybeT \ (Writer \ String)}. The two types differ in their ordering of effects; type \(A\) has \texttt{Writer} as its outermost effect, whilst \(B\) has \texttt{Maybe} as its outermost effect. Now consider the following small program that performs one \texttt{tell} operation and then fails:

\[
\texttt{problem :: MonadWriter \ String \ m} \Rightarrow \texttt{m ()}
\]

\[
\texttt{problem = do}
\]

\[
\texttt{tell \ "this \ is \ where \ I \ fail"}
\]

\[
\texttt{fail \ "oops"}
\]

We have two possible concrete type instantiations of \(m\), namely, either \(A\) or \(B\). But as we shall see the two types enforce different semantics:

\[
\texttt{ghci} > \texttt{runWriterT \ (problem :: A ())}
\]

\texttt{Nothing}

\[
\texttt{ghci} > \texttt{runWriterT \ $ \ runMaybeT \ (problem :: B ())}
\]

\texttt{(Nothing, \ "this \ is \ where \ I \ fail")}

When using type \(A\) we lose the result from the \texttt{tell} operation. Type \(B\) preserves the result. Hence the two monads do not commute, and as a result the ordering of effects determine the semantics of the computation.
We have seen that, while we gain monad compositionality with Monad Transformers, we lose modularity.

1.2 Problem statement

In the previous section we argued that programming with explicit effect is desirable, but we pointed out that it is not painless to program with explicit effects. In particular, we demonstrated that the monadic approach lacks compositionality and modularity. But we could regain compositionality using Monad Transformers, however the transformer stack imposes a statical ordering on effects which impedes modularity. Compositionality and modularity are cornerstones of programming which we ideally would like to retain while being explicit about effects. This observation leads us to the following problem statement:

How may we achieve a programming model with modular, composable and unordered effects?

The desired programming model should unify the three concepts, and thereby make it easier to program with explicit effects. In the next section we propose a solution to the problem.

1.3 Proposed solution

Plotkin and Pretnar’s handlers for algebraic effects affords a very attractive model for programming with effects. The principal idea is to decouple the semantics and syntactic structure of effectful computations, i.e. an effect is a collection of abstract operations. By abstract we mean that the operation by itself has no concrete implementation. Abstract operations compose seamlessly to form the syntactical structure of computations. Independent of the structure handlers instantiate abstract operations with concrete implementations.

We suppose that handlers for algebraic provide the basis for a suitable model for effectful programming. However, handlers and algebraic effects alone do not make any promises to eliminate the effect ordering issue. Therefore, we propose handlers for algebraic effects with a small twist: We will use row polymorphism to eliminate effect ordering. By definition a row is orderless. We discuss row polymorphism in greater detail in Section 2.2.
1.3.1 Objectives, aim and scope

The aim is to examine the programming model achieved by combining handlers and row polymorphism. In order to examine the model we must first implement it, thus the primary objective is to implement handlers and support for user-defined effects in Links.

Links is a web-oriented functional programming language that already has a row-based effect system in place. Because Links has built-in support for numerous web-oriented features that are not key to our treatment, we restrict the scope to a working implementation in top-level Links. We will introduce the relevant parts of Links in Section 2.3.

1.3.2 Contributions

The main contributions are:

- An implementation of effect handlers in Links.
- Support for row polymorphic user-defined effects in Links.
- An examination of programming with handlers and row polymorphic effects.

1.4 Thesis structure

The remainder of the report is structured as follows: Chapter 2 introduces row polymorphism, handlers and algebraic effects. Additionally, it contains a brief introduction to Links which covers the relevant constructs that we will use later on. Finally, it includes a discussion of related work.

Chapter 3 dives right into programming with handlers in Links. A series of examples cover both closed and open handlers.

Chapter 4 gives a high level description of the implementation. Furthermore, the chapter discusses various design decisions.

Chapter 5 evaluates handlers for algebraic effects using row polymorphism as a model for programming with effects. Moreover, the retrofitting of handlers and user-defined effects into Links is evaluated. Finally, the chapter contains a relative performance comparison between handler-based and pure programs.

Chapter 6 concludes the work, and discusses future work.
Chapter 2

Background

2.1 Handlers and algebraic effects

Algebraic effects and handlers have their foundation in category theory \[\cite{17, 18}\]. Plotkin and Power \[\cite{16, 17}\] gave a categorical treatment of algebraic effects. The term “algebraic” implies that an effect ought to be accompanied by a set of equations, however we will only consider free algebras, which implies the theories we consider are equationless. Therefore we will not delve into the theoretical foundations of algebraic effects and handlers, rather, we will take a more pragmatic approach. Moreover, we will use the terms algebraic effect and effect interchangeably.

2.1.1 Algebraic effects

An algebraic effect is a collection of operation signatures \[\cite{11}\]. For example, we might define an algebraic effect \texttt{Choice} for making a boolean choice with the following signature:

\[
\text{Choice} \overset{\text{def}}{=} \{ \text{Choose} : () \to \text{Bool} \}
\]

Here \texttt{Choose} is a nullary operation whose return type is boolean. The effect \texttt{Choice} is the singleton set whose only member is \texttt{Choose}.

The operation \texttt{Choose} is abstract, that is, it has no concrete implementation. We say that computations composed from algebraic effects are abstract computations. Without handlers abstract computations are meaningless as handlers faithfully interpret effects by instantiating them with concrete implementations.
Chapter 2. Background

2.1.2 Effect handlers

Benton and Kennedy generalised exception handlers \[2\] (as known from SML, C#, Java, etc) to expose a continuation to the programmer. Later their work was adapted by Plotkin and Pretnar \[18\] to include arbitrary effects, thus they pioneered handlers for algebraic effects.

Intuitively, an effect handler is a generalised function which takes an abstract computation as input, and interprets the operations that may be discharged during evaluation of the computation.

2.1.3 Interpreting effects as computation trees

To develop intuition about handlers and effects we illustrate a diagrammatic interpretation of effects as computation trees \[11\]. We are going to assign different semantics to the same abstract computation:

\[
x = \text{if } \text{Choose}() \text{ then } 2 \text{ else } 4
\]
\[
y = \text{if } \text{Choose}() \text{ then } 8 \text{ else } 16
\]
\[
x + y
\]

The expression assigns either the value 2 or 4 to the variable \(x\), and similarly, it assigns either 8 or 16 to the variable \(y\), and adds \(x\) and \(y\). We can picture this expression as a tree where the nodes encode operations. The range of an operation determines the number of children. In this example the range of \text{Choose} is \text{Bool} which have two members: \text{true} and \text{false}. Therefore, \text{Choose}-nodes will have two children. Leaves encode concrete values (results, i.e. \(x + y\)). Figure 2.1 depicts the above expression as a computation tree.

![Computation Tree](image-url)
During evaluation of the expression we eventually have to interpret the root node \texttt{Choose} in Figure 2.1 and possibly its immediate subtrees. There are multiple possible interpretations. One interpretation is to always interpret \texttt{Choose} as \texttt{true} which figuratively corresponds to taking the left branch. The node we arrive at is also a \texttt{Choose}-node, so again we choose the left branch to arrive at a leaf that contains the concrete value 10. Hence under this interpretation the handler collapses the computation tree into the leaf 10. Dually, we could always choose \texttt{false} which leads to the output value 20. Figures 2.2a and 2.2b illustrate the two interpretations respectively. Alternatively, we could make a random choice between \texttt{true} and \texttt{false} at each branch. Again, this interpretation leads to one single output value. Albeit, the output value would be non-deterministic under this interpretation.

Yet another interpretation is to enumerate all possible choices. For example, we can decide to explore the left branch and thereafter the right branch at each node. This interpretation corresponds to performing a depth-first traversal of the computation tree. Therefore, under this interpretation the computation tree collapses into a set of its leaves. Figure 2.3 illustrates the tree traversal.

Essentially, our interpretations (handlers) correspond to particular folds over syntax trees (abstract computations) [7].
Chapter 2. Background

Choose ()

true

false

Choose ()

Choose ()

Choose ()

Choose ()

Figure 2.3: Enumerate all possible choices. Output: \{10,18,12,20\}.

2.2 Row polymorphism

Row polymorphism is a typing discipline for row-based types such as records and variants [19]. A row is an unordered collection of labels, e.g.

\[
\text{Employee} \equiv \{\text{name} : \text{String}, \text{dept} : \text{String}\}
\]

denotes a row type with two fields: name of type \text{String} and dept of type \text{String}. We use set notation to emphasise that a particular field may only appear once in a row. The record \text{emp} \equiv \{\text{name} = "John", \text{dept} = "Finance"\} is a possible instance of the row type \text{Employee}.

Consider a function which returns the projection of the name component and the row itself, e.g. \text{get_name}(r) \equiv (\pi_{\text{name}}(r), r), where \pi_l(r) is the projection of label \(l\) in row \(r\). This raises the question of how to type the function. One possible typing is

\[
\text{get_name} : \{\text{name} : a \mid \rho\} \rightarrow a \times \{\text{name} : a \mid \rho\}
\]

The type looks innocuous, however, assuming for a moment that the type \text{Employee} is a subtype of \{\text{name} : \text{String}\}, then

\[
\text{get_name}(\text{emp}) = ("John", \{\text{name} = "John"\})
\]

The output lost the dept field, because subtyping subsumed the field. However using row polymorphism, we can prevent the loss of information. The principal idea is to extend row types with a row variable \(\rho\) which can be instantiated with additional fields, thus we may type \text{get_name} as

\[
\text{get_name} : \{\text{name} : a \mid \rho\} \rightarrow (a \times \{\text{name} : a \mid \rho\})
\]

The row \{\text{name} : a \mid \rho\} is said to be open due to the presence of \(\rho\), conversely, the row \text{Employee} is said to be closed. Additionally, row polymorphism equip field
types with a presence flag which indicating whether a field is present or absent [19]. We will denote presence by $pre(\tau)$ and absence by abs where τ is the type of the field in question. If we attempt to apply get_name to emp under this typing then we obtain ("John", emp) as desired. Under the hood the type system has to solve the equation

$$\{\text{name} : pre(a) \mid \rho\} \sim \{\text{name} : pre(\text{String}), \text{dept} : pre(\text{String})\}$$

that is the two row types must be unified. The goal is to obtain a row where everything that is present on the left and right hand side are present in the solution. This implies that rows only can grow monotonically. The solution is to first instantiate the type variable a with String, and then instantiate ρ with the additional field dept of type $pre(\text{String})$. The result is a row that is identical in structure to the row type Employee. It is crucial that the left hand side row is open, otherwise the equation would have no solution.

As a final example, consider the row type $\{\text{name} : \text{String}, \text{at_job} : \theta\}$, where θ denotes the field is polymorphic in whether it is present or absent. A possible instance is $\{\text{name} = "Paul"\}$ because the field at_job does not have to be present. Applying the function get_name to the row gives rise to a similar equation:

$$\{\text{name} : pre(a) \mid \rho\} \sim \{\text{name} : pre(\text{String}), \text{at_job} : abs\}$$

Again, we unify field by field: The case for name is easy, we simply instantiate the type variable a with String. Next, we instantiate ρ with at_job set to abs. For all practical matter the two row types

$$\{\text{name} : pre(\text{String})\} \cong \{\text{name} : pre(\text{String}), \text{at_job} : abs\}$$

are identical in structure, because at_job is never accessed in an instance. In the remainder of the thesis we continue to use θ to denote presence polymorphism, but we omit the presence annotation pre as we will mostly work with rows where all fields are present.

2.3 Links toplevel

Links is a strongly-, statically-typed, web-oriented functional programming language that renders webprogramming tierless by enabling programmers to write their code in one single source language [4] [13]. However, we will not address
Links’ web-oriented features, instead we will give a brief introduction to relevant parts of the functional core language.

2.3.1 The basics

Links is an interpreted language. Launching the Links interpreter leaves us in a read-eval-print-loop (REPL), where we can execute arbitrary Links expressions. We will use the notation “links>” to denote when we use the REPL. The syntax of Links is similar to JavaScript’s syntax.

Functions and variables. Variables are declared using the `var` keyword followed by a variable name and definition:

```
links> var x = 42;
x = 42 : Int
```

Note, variables are single-assignment, there is no concept of mutable references in Links. Similarly, functions are declared using the `fun` keyword, followed by a list of parameters and a body definition. Furthermore, functions can be either anonymous or named:

```
links> fun id(x) { x };
id = fun : (a) → a
links> fun(x) { x };
fun : (a) → a
```

The above functions are the named and unnamed versions of the identity function.

A slightly more interesting function is the following:

```
fun meaning_of_life(y) {
    if (y == 42) { true }
    else { false } }
```

```
links> meaning_of_life(x); # The same x as defined above
true : Bool
```

The body of the function `meaning_of_life` is a conditional expression with two branches. Because it is an *expression* it must return a value, hence a conditional expression must have at least two branches to cover `true` and `false` cases.

Type annotation and aliasing. The Links type checker automatically infers types for expressions. But, we can define our own types using the `typename` keyword. Type and data constructors start with a capital letter. For instance, we can define a `Maybe` type constructor:
The variable \(a \) is a type variable. So, the type constructor `Maybe` takes one type \(a \) as input. The brackets ([|...|]) are syntax for denoting variant types. The data constructor `Just` wraps an element of type \(a \). Let us make an instance:

\[
\text{links} > \text{Just}(2); \\
\text{Just}(2) : [| \text{Just}: \text{Int} | \text{ρ} |]
\]

The Links type checker infers type a polymorphic variant type which is made explicit by the presence of \(ρ \). Links employ structural typing, that is, two types are equivalent if and only if they have identical structure. Often Links infers a more general type than needed, we can help the type checker by annotating an expression:

\[
\text{links} > \text{Just}(2) == (\text{Just}(2) : \text{Maybe}(\text{Int})); \\
\text{true} : \text{Bool}
\]

Indeed, the two types are compatible due to row polymorphism.

Pattern matching. We can use the `switch`-construct to pattern match on an expression. For example, we can define a function converts an instance of `Maybe` into an instance of `Bool`:

```plaintext
fun maybe2bool (maybe : Maybe(String)) { 
  switch(maybe) {
    case Just(p) → true 
    case Nothing → false
  }
}
```

\[
\text{links} > \text{maybe2bool}(\text{Just}(42)); \\
\text{true} : \text{Bool}
\]

The `case`-statements pattern matches on the expression `maybe`. Links supports deep pattern-matching, so the `switch`-construct can be used to decompose an expression.

2.3.2 The effect system

Links has a row-based effect system. Function types are annotated with effects, e.g. \((A_1,\ldots,xA_n) \xrightarrow{E} B \) denotes the type of a function that takes \(n \) arguments of types \(A_1,\ldots,A_n \), and might perform effects \(E \) before returning a value of type \(B \) [13]. The effects \(E \) are represented as a row type, where presence indicates that the effect might happen during runtime, while absence indicates that the effect will definitely not happen at runtime. Only function types can be annotated with effect, this implies that effects can only occur during function application.
For example the built-in function \texttt{print} prints a string to the standard output. Printing to standard output is an effectful action. Links assigns \texttt{print} the type \((\text{String}) \xrightarrow{\text{wild} | \rho} ()\). The \texttt{wild} effect is a syntactic, built-in effect \cite{13}. The effect system will also capture divergence. Consider the following recursive function:

\begin{verbatim}
fun div () { div () }
\end{verbatim}

Links assigns \texttt{div} the type \((()) \xrightarrow{\text{wild} | \rho} a\). Most higher-order functions in the prelude (standard library) have open effect rows, thus allowing effectful functions to be passed as input.

\section{Related work}

This section discusses and evaluates related work on programming models with handlers and effects.

\subsection{Languages with effects}

\textbf{Eff.} The \textsc{Eff} programming language, by Bauer and Pretnar \cite{1}, has first-class support for effect handlers and algebraic effects. The language has the look and feel of OCaml. \textsc{Eff} employs nominal typing for effects, therefore an effect is a named collection of abstract operations. To discharge an operation, the programmer has to generate an effect instance. Operations can be discharged through the effect instance. This interface is similar to the object-oriented interface in OCaml. \textsc{Eff} achieves unordered effects through effect subtyping.

\textbf{Frank.} The Frank programming language by McBride \cite{12} takes the notion of effect handlers to the extreme. In Frank there are no functions, there are only handlers. Consequently, a function is a special case of a handler. In particular, it only supports shallow handlers whereas our implementation only supports deep handlers. Shallow handlers handle computations nonuniformly. Additionally, Frank employs “call-by-push-value” (CBPV) evaluation semantics. Essentially, CBPV makes the distinction between computations and values explicit. Since Frank distinguishes between computations and values side-effects can only occur in computations. Hence there is a clear separation between segments of code where effects might occur and where effects are guaranteed never to occur.
Koka with row polymorphic effects. Leijen’s programming language Koka employs a row-based effect system \[10\] with support for arbitrary user-defined effects \[21\]. Notably, Koka uses row polymorphism to capture unordered effects, however, in contrast to our approach Koka allows an effect to occur multiple times in a row. Effect duplication is crucial to support scoping of effects. Furthermore, Koka has no notion of effect handler except for exception handlers which are to some extent reminiscent of those in Java, C#, etc.

2.4.2 Haskell libraries

There is no first-class support for handlers in Haskell, however there are several embeddings of effect handlers in Haskell. Furthermore, the implementations take advantage of Haskell’s lazy evaluation strategy.

Data types à la carte. In his functional pearl, Swierstra illustrates how to write effectful programs using free monads \[20\]. Free monads gives rise to a natural encoding of effect handlers \[12\].

Handlers in action. Kammar et al. \[7\] considers two different implementations of handlers in Haskell. One implementation is based on free monads, while the other is based on continuations.

They achieve unordered effects by encoding handlers as type classes. Therefore handlers also inherit the limitations of type classes. Type classes are not first-class in Haskell, so neither are handlers. Haskell do not permit local type class definitions, therefore handlers must be defined in the top-level. Furthermore, the order in which handlers are composed leak into the type signature, because their (open) handlers explicitly mention a parent handler \[7\]. However, this is less problematic than the effect ordering problem. They propose that using row polymorphism may yield a cleaner design \[7\]. To a large extent our implementation is inspired by their work. Moreover, they present a collection of examples, some of which we have reproduced in Links. We also take a similar approach to evaluating the relative performance of handlers.

Notably, they provide a Template Haskell interface which makes it easier to use their library.
Extensible effects. Kiselyov et al. presents an alternative framework to Monad Transformers based on free monads \cite{9}. Their framework is modelled after the syntax of Monad Transformers, but, allows effects to be combined in any order. Like Frank their framework only supports shallow handlers which gives the programmer additional flexibility, but, shallow handlers are often less efficient than deep handlers \cite{9}.

Handlers in scope Wu et al. investigates scoping constructs for handlers to delimit the scope of effects \cite{24}.

They present two solutions: The first solution extends an existing effect handler framework based on free monads with so-called scope markers to mark the beginning and ending of blocks that should be handled in a self-contained context. However they demonstrate that handlers along with scope markers are insufficient to capture higher-order scoped constructs properly. Their second approach provides a higher-order syntax which carries the scoped blocks directly \cite{24}. In addition, the second approach gives finer control how handlers traverse the syntax tree.

2.4.3 Idris’ Effects

Brady provide a library implementation of handlers called EFFECTS for the dependently-typed, functional programming language IDRIS \cite{3}. The purpose is to investigate the use of effects to reason about programs. So, the type checker does not infer effect types, rather it checks that effects are used correctly according to some specification given by the programmer.
Chapter 3

Programming with handlers in Links

Through a series of examples we will explore programming with two types of effect handlers in Links. Section 3.2 introduces closed handlers and in particular emphasises the high degree of modularity afforded by closed handlers. Section 3.3 introduces the slightly more generalised open handlers and focuses mainly on the compositionality of (open) handlers.

3.1 Discharging operations

Syntactically, operations are similar to type and data constructors in Links. Every operation name starts with a capital letter, e.g. Get, Put, etc. Every operation takes an input and yields an output. The output from discharging an operation is entirely decided by effect handlers in the evaluation context. That is, alone an operation does not have any semantics.

Operations are discharged using the do-primitive. However discharging an operation in an unhandled context yields an evaluation error:

```
links> do Get();
*** Error: Unhandled operation: Get()
```

The typing of operations is uniform because every operation takes exactly one input. Therefore the type of an operation is on the form \(a \rightarrow b \) where \(a \) and \(b \) are type variables. In order to simulate multiple parameters one can instantiate \(a \) to a record type, e.g. \(\text{Put}((\text{true},1)) \) is an operation of type \(\text{(Bool,Int)} \rightarrow b \).
3.2 Closed handlers

A handler assigns semantics to abstract operations. In Links, this is reflected in the syntax as a handler embodies a collection of pattern-matching cases, which map operation names to computations, e.g.

```hs
handler h(m) {
    case Get(p,k) → mGet
    case Put(p,k) → mPut
    case Return(x) → mReturn
}
```

The above defines a handler `h` that handles two operations `Get` and `Put`. In the previous section we said that every operation takes exactly one argument, yet, an operation case matches on two parameters. The first parameter `p` is the operation argument, whilst the second parameter `k` exposes a delimited continuation that accepts a single parameter. Invocation of the continuation transfers control back to the handled computation `m` at the point where the said operation was discharged. Both parameters may be referenced multiple times in their respective case-computation `mGet` or `mPut`. There may be a variable number of operation-cases, however, there must be at least one `Return`-case in every handler. The `Return`-case is a special case that is implicitly invoked when the handled computation `m` finishes. The purpose of `Return` is discussed in Section 3.2.2.

The formal parameter `m` is a name for the abstract computation which the handler interprets. Because Links employ a strict evaluation strategy computations are modelled as thunks, that is, the type of `m` is `() \rightarrow b` where `E` is the set of operations that `m` may discharge.

3.2.1 Typing closed handlers

A closed handler handles a fixed set of effects, that is, it puts an upper bound on which kind of effects a computation may perform. In Links this bound is made explicit in the handler’s type, e.g. the closed handler `h` above has the following type

\[(() \rightarrow_{\text{Get}:a_1\rightarrow a_2,\text{Put}:a_3\rightarrow a_4} b) \rightarrow c\]

where `b` is the return type of the computation `m`, and `c` is the type of `m_{Return}`, `m_{Get}` and `m_{Put}`. The absence of a row variable in the effect signature implies that the computation `m` may not perform any other effects than `Get` and `Put`.
It is considered a type error to attempt to handle a computation whose effect signature is not unifiable with the effect signature of \(m \).

This restriction introduces slack into the type system [6]. To illustrate the slack consider the following computation:

```plaintext
fun comp () {
    s = do Get ();
    if (false == true) { do Foo (); s }
    else { true }
}
```

The computation \(\text{comp} \) has type \(() \xrightarrow{\text{Get} : () \rightarrow \text{Bool}, \text{Foo} : () \rightarrow () | \rho} \text{Bool} \). Obviously, \(\text{Foo} \) never gets discharged. However, attempting to handle \(\text{comp} \) with the handler \(h \) gives rise to the following unsolvable equation

\[
\{ \text{Get} : a_1 \rightarrow a_2, \text{Put} : a_3 \rightarrow a_4 \} \sim \{ \text{Get} : () \rightarrow \text{Bool}, \text{Foo} : () \rightarrow () | \rho \}
\]

There is no solution as we cannot remove \(\text{Foo} \) from the right hand side.

The following sections will show increasingly interesting examples of programming with closed handlers in Links.

3.2.2 Transforming the results of computations

The first two examples show how to transform the output of a computation using handlers. We begin with a handler that appears to be rather boring, but in fact proves very useful as we shall see later in Section 3.3.

Example 3.1 (The force handler). We dub the handler \(\text{force} \) as it takes a computation (thunk) as input, evaluates it and returns its result. It has type \(() \rightarrow a \rightarrow a \) and it is defined as

```plaintext
handler force (m) {
    case Return(x) → x
}
```

Essentially, this handler applies the identity transformation to the result of the computation \(m \). Running \(\text{force} \) on a few examples should yield no surprises:

```plaintext
fun fortytwo () { 42 }
links> force (fortytwo);
42 : Int

fun hello () { "Hello" }
links> force (hello);
"Hello" : String
```

The handler \(\text{force} \) behaves as expected for these trivial examples. The \(\text{force} \) handler also runs side-effecting computations:
Chapter 3. Programming with handlers in Links

The `force` handler’s effect row implicitly contains the `wild` effect. Without the presence of the `wild` effect closed handlers would not be able to run computations that might diverge. Therefore disallowing the `wild` effect severely limit the class of computations that a closed handler can accept as input.

The next example demonstrates an actual transformation.

Example 3.2 (The listify handler). The `listify` handler transforms the result of a handled computation into a singleton list. Its type is `((\() \to a) \to [a]` and its definition is straightforward:

```haskell
handler listify (m) {
  case Return (x) → [x]
}
```

Running it on a few examples we obtain:

```
links> listify (fortytwo);
[42] : [Int]
links> listify (hello);
["Hello"] : [String]
links> listify (fun () { [1,2,3] });
[[1,2,3]] : [[Int]]
```

This example also illustrates that the `Return`-case serves a similar purpose to the monadic `return`-function in Haskell which lifts a value into a monadic value, similarly, the `Return`-case lifts a value into a “handled” value.

In a similar fashion to the handler `listify` in Example 3.2 we can define handlers that increment results by 1, perform a complex calculation using the result of the computation, or wholly ignore the result. However, it must ensure that the type of the output is compatible with the output type of the handler. In the case for `listify` the output must be a list of whatever the computation yielded.

3.2.3 Exception handling

Until now we have only seen some simple transformations. Let us make things more interesting. Example 3.3 introduces our first practical handler `maybe`. It is similar to the `Maybe`-monad in Haskell. For reference we briefly sketched the behaviour of the `Maybe`-monad in Section 1.1.2.
3.2. Closed handlers

Example 3.3 (The maybe handler). The maybe handler handles one operation \(\text{Fail} : a_1 \rightarrow a_2 \) that can be used to indicate that something unexpected has occurred in a computation. The handler returns Nothing when Fail is raised, and Just the result when the computation succeeds, thus its type is

\[
((() \rightarrow \text{Fail} : a_1 \rightarrow a_2) \rightarrow b) \rightarrow \text{Maybe}(b).
\]

It is defined as

\[
\text{handler maybe}(m) \{
\text{case Fail}(_,_)(x) \rightarrow \text{Nothing}
\text{case Return}(x) \rightarrow \text{Just}(x)
\}
\]

When a computation discharges Fail the handler discards the remainder of the computation and returns Nothing immediately, e.g.

\[
\text{fun yikes}() \{
\text{var x = "Yikes!'};
\text{do Fail}();
\text{x}
\}
\]
\[
\text{links > maybe(yikes); Nothing()} : \text{Maybe(String)}
\]

and if the computation succeeds it wraps the result inside a Just, e.g.

\[
\text{fun success}() \{
\text{true}
\}
\]
\[
\text{links > maybe(success); Just(true)} : \text{Maybe(Bool)}
\]

3.2.4 Handling choice

In Section 2.1.3 we visualised some interpretations the abstract computation

\[
\text{fun choice}() \{
\text{var x = if (do Choose()) \{ 2 \} else \{ 4 \};}
\text{var y = if (do Choose()) \{ 8 \} else \{ 16 \};}
\text{y + x}
\}
\]

which uses the operation \(\text{Choice} : () \rightarrow \text{Bool} \). For completeness we show how to implement these interpretations in Links. Example 3.4 shows the positive interpretation and Example 3.5 shows the enumeration interpretation.
Example 3.4 (The “positive” interpretation (Figure 2.2a)). Whenever the operation \texttt{Choose} is discharged in the computation \texttt{choice} the handler has to decide whether to pick \texttt{true} or \texttt{false}. Therefore the type of the handler \texttt{positive} must be \((() \rightarrow \text{Bool}) \rightarrow a \rightarrow a\). The \texttt{positive} handler always picks \texttt{true}. To implement this behaviour, we invoke the continuation once with the argument \texttt{true}.

The value \texttt{true} becomes the concrete output of \texttt{do Choose} in the computation:

\[
\text{handler positive}(m) \{
\text{case Choose}_k \rightarrow k(\texttt{true}) \\
\text{case Return}(x) \rightarrow x
\}
\]

Running the handler on the computation \texttt{choice} yields the expected result:

\[
\text{links} > \text{positive}(\text{choice}) ; \quad 10 : \text{Int}
\]

The definition of the handler \texttt{negative} from Section 2.1.3 is analogous to \texttt{positive}.

Example 3.5 (The enumeration handler (Figure 2.3)). The handler \texttt{enumerate} traverses the entire computation tree as shown in Figure 2.3. To encode this behaviour we will invoke the continuation twice: First with \texttt{true} and then with \texttt{false}. The results of both invocations have to be collected in a list. It is the job of \texttt{Return} to lift a single result into a list. Therefore the type of \texttt{enumerate} is \((() \rightarrow \text{Bool}) \rightarrow a \rightarrow [a]\). The \texttt{Return}-case lifts a single element into a singleton list. Hence the two invocations of the continuation give us two lists which we can join together to form a single list, e.g.

\[
\text{handler enumerate}(m) \{
\text{case Choose}_k \rightarrow k(\texttt{true}) ++ k(\texttt{false}) \\
\text{case Return}(x) \rightarrow [x]
\}
\]

Applying \texttt{enumerate} to the computation \texttt{choice} yields the result we arrived at in Section 2.1.3:

\[
\text{links} > \text{enumerate}(\text{choice}) ; \\
[10, 18, 12, 20] : [\text{Int}]
\]

3.2.5 Interpreting Nim

The previous examples built intuition for how handlers work. In this section we will use the mathematical game Nim to demonstrate the power of modularity afforded by handlers. Nim is a strategic game in which two players take turns to
pick sticks from heaps on a table, and whoever takes the last stick wins. We will use a simplified version of Nim to demonstrate how handlers can give different interpretations of the same game. In our simplified version there is only one heap of \(n \) sticks. Any player may only take between one and three sticks at a time. Furthermore, we name players: Alice and Bob, and Alice always starts. Our model is adapted from Kammar et. al [7].

We encode the players as the sum type \(\text{Player} \overset{\text{def}}{=} [\text{Alice} | \text{Bob}] \) and model the game as two mutual recursive abstract computations, e.g.

<table>
<thead>
<tr>
<th>When Alice plays</th>
<th>When Bob plays</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fun aliceTurn(n) {</code></td>
<td><code>fun bobTurn(n) {</code></td>
</tr>
<tr>
<td><code> if (n == 0) { Bob }</code></td>
<td><code> if (n == 0) { Alice }</code></td>
</tr>
<tr>
<td><code> else {</code></td>
<td><code> else {</code></td>
</tr>
<tr>
<td><code> var take = do Move((Alice,n));</code></td>
<td><code> var take = do Move((Bob,n));</code></td>
</tr>
<tr>
<td><code> var r = n - take;</code></td>
<td><code> var r = n - take;</code></td>
</tr>
<tr>
<td><code> bobTurn(r)</code></td>
<td><code> aliceTurn(r)</code></td>
</tr>
<tr>
<td><code> } }</code></td>
<td><code> } }</code></td>
</tr>
</tbody>
</table>

The two computations are symmetrical. The input parameter \(n \) is the number of sticks left in the heap. First, Alice checks whether there are any sticks left, if the heap is empty then she declares Bob the winner, otherwise she performs her move and then she gives the turn to Bob. The game uses one abstract operation \(\text{Move} \) which has the type \(\text{Move} : (\text{Player}, \text{Int}) \rightarrow \text{Int} \), i.e. it takes the current game configuration as input:

1. Who’s turn it is,
2. and the number of remaining sticks.

The operation \(\text{Move} \) returns the number of sticks that the current player takes. At this point \(\text{Move} \) does not have a clear semantic interpretation. We only know that its range, the integers, is infinite, so \(\text{take} \) may be assigned any integer value.

The types of \(\text{aliceTurn} \) and \(\text{bobTurn} \) are

\[
\langle \text{Int} \rangle \{ \text{Move}(\text{Player}, \text{Int}) \rightarrow \text{Int} | \rho \} \rightarrow \text{Player}
\]

Because it is an unary function it cannot be used as an input to any handler. We rectify the problem by using a closure, i.e. we wrap the game function inside a nullary function like \(\text{fun()}\{\text{aliceTurn(n)}\} \) where \(n \) is a free variable captured by the surrounding context. For conveniency, we define an auxiliary function
play to abstract away these details. It takes as input a game handler \(gh \) and the number of sticks at the beginning of game \(n \). Moreover, the function play enforces the rule that Alice always starts, e.g.

```haskell
fun play(gh, n) {
  gh(fun() {
    aliceTurn(n)
  })
}
```

The following examples demonstrates how to use handlers to encode the strategic behaviour of the players.

Example 3.6 (A naïve strategy). A very naïve strategy is to take only one stick at every turn. We encode this behaviour by invoking the continuation with argument 1. This assigns 1 to take in aliceTurn or bobTurn depending on whom discharged Move. The implementation of the handler is straightforward:

```haskell
handler naive(m) {
  case Move(_,k) → k(1)
  case Return(x) → x
}
```

A moment’s thought reveals that we can easily predict the winner when using the naive strategy. The parity of \(n \), the number of sticks at the beginning, determines the winner. For odd \(n \) Alice wins and vice versa for even \(n \), e.g.

- `links> play(naive, 9); Alice() : Player`
- `links> play(naive, 18); Bob() : Player`
- `links> play(naive, 101); Alice() : Player`

Example 3.7 (A perfect strategy [7]). A perfect strategy makes an optimal move at each turn. In particular, an optimal move depends on the remaining number of sticks \(n \). Therefore the perfect move can be defined as a function of \(n \), e.g.

\[
\text{perfect}(n) = \max\{n \mod 4, 1\}
\]

In our restricted Nim game a perfect strategy is a winning strategy for Alice if and only if the number of remaining sticks is not divisible by 4.
3.2. Closed handlers

We implement the function \texttt{perfect} above with an addition: We pass it a continuation as second parameter:

\begin{verbatim}
fun perfect(n, k) {
 k(max(mod(n,4),1))
}
\end{verbatim}

The continuation is invoked with the optimal move. Now we can easily give a handler that assigns perfect strategies to both Alice and Bob, e.g.

\begin{verbatim}
handler pvp(m) {
 case Move((_,n),k) → perfect(n, k)
 case Return(x) → x
}
\end{verbatim}

Notice that this time we pattern match on \texttt{Move}'s argument to obtain the game configuration. By running some examples we witness that Alice wins when \(n \) is not divisible by four:

\begin{verbatim}
links> play(pvp, 9);
Alice() : Player

links> play(pvp, 18);
Alice() : Player

links> play(pvp, 36);
Bob() : Player
\end{verbatim}

\begin{example}{Mixed strategies}
A strategy often encountered in game theory is \textit{mixing} which implies a player randomises its strategies in order to confuse the opponent. In similar fashion to \texttt{perfect} from Example \ref{ex:perfect} we define a function \texttt{mix} which chooses a strategy

\begin{verbatim}
fun mix(n,k) {
 var r = mod(nextInt(), 3) + 1;
 if (r > 1 && n ≥ r) { k(r) }
 else { k(1) }
}
\end{verbatim}

The function \texttt{nextInt} returns the next integer in some random sequence. The random integer is projected into the set of valid moves \{1,2,3\}. If the random choice \(r \) is greater than the number of remaining sticks \(n \) then we default to take one (even though the optimal choice might be to take two).

The \texttt{mixed} strategy handler is similar to perfect-vs-perfect handler from Example \ref{ex:perfect}

\begin{verbatim}
handler mixed(m) {
 case Move((_,n),k) → mix(n,k)
 case Return(x) → x
}
\end{verbatim}

\end{example}
Replaying the same game a few times ought eventually yield the two possible outcomes:

```plaintext
links> play(mixed, 9);
Bob() : Player

links> play(mixed, 9);
Alice() : Player
```

Example 3.9 (Brute force strategy \[7\]). Examples 3.6-3.8 only invoked the continuation once per move. However, we can invoke the continuation multiple times to enumerate all possible future moves, this way we can brute force a winning strategy, if one exists. In order to brute force a winning strategy, we define a convenient utility function which computes the set of valid moves given the number of remaining sticks:

```plaintext
fun validMoves(n) {
    filter(fun(m) { m ≤ n }, [1,2,3])
}
```

The function simply filters out all illegal moves for a given game configuration \(n\). The function `bruteForce` computes the winning strategy for a particular player if such a strategy exists:

```plaintext
fun bruteForce(player, n, k) {
    var winners = map(k, validMoves(n));
    var hasPlayerWon = indexOf(player, winners);
    switch (hasPlayerWon) {
        case Nothing → k(1)
        case Just(i) → k(i+1)
    }
}
```

The first line inside `bruteForce` is the critical point. Here we map the continuation \(k\) over the possible moves in the current game configuration. Accordingly, the function simulates all possible future configurations yielding a list of possible winners. The auxiliary function `indexOf` looks up the position of `player` in the list of winners. The position plus one corresponds to the winning strategy because lists indexes are zero-based. If the player has a winning strategy then the (zero-based) position is returned inside a `Just`, otherwise `Nothing` is returned.

We let Alice play the brute force strategy and Bob play the perfect strategy:

```plaintext
handler bfvp(m) {
    case Move((Alice,n),k) → bruteForce(Alice,n,k)
    case Move((Bob,n),k) → perfect(n,k)
    case Return(x) → x
}
```
Here we take advantage of deep pattern-matching to distinguish between when Alice and Bob’s moves. Obviously, the brute force strategy is inefficient as it redoes a lot of work for each move. The winning strategy that it discovers happens to be the same as the perfect strategy. Albeit, \texttt{bruteForce} computes it in exponential time whilst \texttt{perfect} computes it in constant time. The following outcomes witness that \texttt{bruteForce} and \texttt{perfect} behaves identically:

```
links> play(bfvp, 9);
Alice() : Player

links> play(bfvp, 18);
Alice() : Player

links> play(bfvp, 36);
Bob() : Player
```

Although, the \texttt{bruteForce} strategy is significantly slower than \texttt{perfect} strategy in Example 3.9 the point of interest here is not efficiency but rather modularity. Remark that during Examples 3.6-3.9 the game model remained unchanged. We interpreted the game by instantiating the operation \texttt{Move} with different implementations. Moreover, Example 3.9 nicely demonstrated that we may exchange two observable equivalent implementations (handlers) effortlessly. In practical terms this implies that one would be able to exchange a slow component with a faster, improved version effortlessly. The coupling between the game model and the handlers is low as they interface through the abstract operation \texttt{Move}. Furthermore, the handlers followed a similar pattern. It would be convenient to be able to abstract over this pattern by defining a generic game handler that, in addition to an abstract computation, takes two strategies as input. However, in the current implementation handlers cannot be parameterised.

Examples 3.6-3.9 gave different interpretations of the same game. Furthermore, they all computed the same thing, namely, the winner. In particular, each handler applied the identity transformation in the \texttt{Return}-case. However, by taking full advantage of the \texttt{Return}-case we can use handlers to compute data from computations. For example we can construct the game tree for a Nim game as Example 3.10 shows.

Example 3.10 (Game tree generator [7]). In a game tree a node represents a particular player’s turn, and outgoing edges corresponds to particular moves that the player may perform. A path down the game tree corresponds to a particular
sequence of moves taken by the players ending in a leaf node which corresponds to the winner. Figure 3.2 illustrates an example game tree when starting with 3 sticks. Our game tree is a ternary tree which we represent using a recursive variant type, e.g.

\[
\text{GameTree} \triangleq \; [\text{Take} : (\text{Player}, [(\text{Int}, \text{GameTree})])] | \text{Winner} : \text{Player}]
\]

Leaves are tagged with Winner, while nodes are tagged with Take. A Take node embeds a tuple where the first component is current player, and the second component contains the possible subgames. We define a function reifyMove which takes a player, the number of sticks, and a continuation to construct a node in the game tree, e.g.

```javascript
fun reifyMove (player, n, k) {
    var moves = map (k, validMoves (n));
    var subgames = zip ([1..length (moves)], moves);
    Take (player, subgames)
}
```

First, we map the continuation over the possible moves in the current game configuration to enumerate the subsequent game trees. We compute the subgames by zipping element-wise the two lists \(\{1, \ldots, |\text{moves}|\} \) and moves. Finally, we construct a node Take with player and the possible subsequent game trees.

The leaves are constructed by the Return-case in the handler:

```javascript
handler gtGen (m) {
    case Move ((player, n), k) \rightarrow reifyMove (player, n, k)
    case Return (x) \rightarrow Winner (x)
}
```

Again, we take advantage of full pattern-matching to decompose the game configuration. The inferred type for gtGen witnesses that the handler indeed constructs a game tree:

\[
\text{gtGen} : (\{(\text{Move} : (\text{Player}, \text{Int}) \rightarrow \text{Int})\} \rightarrow \text{Player}) \rightarrow \text{GameTree}
\]

Figure 3.2 depicts the game tree generated by the handler when starting with 3 sticks.
3.3. **Open handlers**

Open handlers are the dual to closed handlers when we think in terms of bounds on effects. An open handler give a lower bound on the kind of effects it will handle. Through composition of open handlers we can achieve a tighter bound on the handled effects. Consequently, one can delegate responsibility to *specialised* handlers that handle a particular subset of the computational effects. Unhandled operations are forwarded to subsequent handlers. In other words, an open handler partially interprets an abstract computation and leaves the remainder abstract for other handlers to interpret.

In Links the concrete syntax for open handlers is similar to that for closed handlers. To declare an open handler one simply prepends the keyword *open* in the handler declaration, e.g.

```plaintext
open handler h1(m) {
  case Get(p,k) -> mGet
  case Put(p,k) -> mPut
  case Return(x) -> mReturn
}
```

Notice that even though the game model remains unchanged we have been able to encode strategic behaviours and generate data from the game by interpreting the game using different handlers. This emphasises the modularity afforded by handlers.

![Game tree](attachment:image.png)

Figure 3.2: Pretty print of the game tree generated by `play(gtGen, 3)`.
The type of the open handler h_1 is more complex than its closed counterpart:

$$h_1 : (()) \xrightarrow{\{\text{Get: } a_1 \rightarrow a_2, \text{Put: } a_3 \rightarrow a_4 \mid \rho\}} b \rightarrow (()) \xrightarrow{\{\text{Get: } \theta_1, \text{Put: } \theta_2 \mid \rho\}} c$$

Notice that the effect row of the input computation is *polymorphic* as signified by the presence of the row variable ρ. Accordingly, the input computation may perform more operations than the handler handles. The output type of an open handler looks very similar to its input type. The input and output are both thunks. Moreover, their effect rows share the same polymorphic row variable ρ. But their operation signatures differ. The operations in the output effect row are polymorphic over their presence.

3.3.1 Composing handlers

It is no coincidence that the input type and output type of open handlers are both thunks. Both types are compatible with the notion of computation for handlers. Therefore, we can compose open handlers seamlessly. For example, imagine a handler h_2 whose signature is

$$h_2 : (()) \xrightarrow{\{\text{Choose: } a'_1 \rightarrow a'_2 \mid \rho'\}} b' \rightarrow (()) \xrightarrow{\{\text{Choose: } \theta_3 \mid \rho'\}} c'$$

The composition $(h_2 \circ h_1)(m)$ gives rise to the following equation

$$\{\text{Choose: } a'_1 \rightarrow a'_2 \mid \rho'\} \sim \{\text{Get: } \theta_1, \text{Put: } \theta_2 \mid \rho\}$$

which has the following solution

$$\{\text{Choose: } a'_1 \rightarrow a'_2, \text{Get: } \theta_1, \text{Put: } \theta_2 \mid \rho'\}$$

The solution encompasses the three fields, where *Get* and *Put* remains polymorphic in their presence unless they are discharged by either handler. It is worth to emphasise that the row variable ρ' is shared by the input and output effect row. The implication is that additional operation names are propagated throughout composition. Hence $(h_2 \circ h_1)(m)$ ultimately yields a computation with type

$$(()) \xrightarrow{\{\text{Get: } \theta_1, \text{Put: } \theta_2, \text{Choose: } \theta_3 \mid \rho'\}} b'$$

This is under the assumption that neither handler discharges any of the operations, otherwise the said operations would have to be *present* in the effect row.
To see why the operations are presence polymorphic in the output effect row, consider a closed handler $h_3: ((_)) \to b' \to b'$ then the composition $(h_3 \circ h_2 \circ h_1)(m)$ gives rise to the equation:

$$\emptyset \sim \{\text{Get} : \theta_1, \text{Put} : \theta_2, \text{Choose} : \theta_3 \mid \rho'\}$$

Since we cannot shrink rows, there can only be one solution which is identical in structure on runtime:

$$\{\text{Get} : \text{abs}, \text{Put} : \text{abs}, \text{Choose} : \text{abs}\}$$

If the operations were not presence polymorphic then we would not be able to compose an open handler with a closed handler.

Implicit handler stack

The order of composition implicitly defines a stack of handlers. For example the composition of three handlers $(g_1 \circ g_2 \circ g_3)(m)$ applied to some computation m defines a stack where g_3 is the top-most element. Thus the handler stack is built outside in. When an operation is discharged in m the runtime system unwinds the handler stack to find a suitable candidate to handle the operation. The composition order determines the order in which handlers are invoked. First the top-most handler is invoked, and if it cannot handle the discharged operation then the operation is forwarded to the second top-most handler and so forth.

Consequently, the order of composition may affect the semantics, say, g_1 and g_2 interpret the same operation differently, then, $g_1 \circ g_2$ and $g_2 \circ g_1$ potentially yield different results. In other words composition is not commutative.

The result of an application of some open handler to some computation is itself a computation. For example $(g_1 \circ g_2 \circ g_3)(m)$ will yield some nullary function $(_ \to a$ which we must invoke to obtain the result of the computation m. In order to avoid this extra invocation recall the *force* handler from Section 3.2.2. We may compose force with the open handlers to obtain the result of m directly, e.g. $(\text{force} \circ g_1 \circ g_2 \circ g_3)(m)$ yields a value of type a immediately.

3.3.2 An effectful coffee dispenser in Links

In Section 1.1.2 and 1.1.3 we implemented a model of a coffee dispenser in Haskell using monads (Examples 1.1 and 1.2). However, it was difficult to extend the
model to include more properties like writing to a display and system failures without resorting to Monad Transformers due to regular monads’ lack of compositionality.

In contrast, the modularity and compositionality afforded by (open) handlers enable us to easily implement a highly modular coffee dispenser model in Links. Example 3.11 implements the model.

Example 3.11 (Effectful coffee dispenser). The coffee dispenser performs two operations directly:

1. **Ask**: () \(\rightarrow\) **Inventory** retrieves the inventory.
2. **Tell**: **Dispensable** \(\rightarrow\) **String** writes a description of a drink to some medium.

Indirectly, the coffee dispenser may perform the **Fail** operation when it looks up an item. Thus the type of the dispenser is

\[
\text{dispenser} : (\text{Int} \rightarrow (\text{Ask} : a \rightarrow \text{Inventory} | \rho) \rightarrow b, \text{Tell} : \text{Dispensable} \rightarrow \text{String} | \rho) \rightarrow \text{String}
\]

We compose the coffee dispenser from the aforementioned operations and the look-up function, e.g.

```
fun dispenser (n) {
    var inv = do Ask ();
    var item = lookup (n, inv);
    do Tell (item)
}
```

The monadic coffee dispenser model used three monads: **Reader**, **Writer** and **Maybe** to model the desired behaviour. We will implement three handlers which resemble the monads. First, let us implement **Reader**-monad as the handler **reader** whose type is

\[
(() \rightarrow \text{Inventory} | \rho) \rightarrow (\text{Ask} : a \rightarrow \text{Inventory} | \rho) \rightarrow b
\]

For simplicity we hard-code the inventory into the handler

```
open handler reader (m) {
    case Ask (_, k) \rightarrow k([(1, Coffee), (2, Tea)])
    case Return (x) \rightarrow x
}
```

When handling the operation **Ask** the handler simply invokes the continuation k with the inventory as parameter. Like in Example 1.1 we model the inventory as an association list.
Secondly, we implement the handler \texttt{writer} which provide capabilities to write to a medium. We let the medium be a regular string. The handler’s type is
\[
(\langle \text{Tell} : \text{Dispensable} \rightarrow \text{String} \mid \rho \rangle \rightarrow a) \rightarrow (\langle \text{Tell} : \theta \mid \rho \rangle \rightarrow a)
\]
and its definition is
\[
\text{open handler writer}(m) \{ \\
\text{case Tell}(\text{Coffee}, k) \rightarrow k(\text{"Coffee"}) \\
\text{case Tell}(\text{Tea}, k) \rightarrow k(\text{"Tea"}) \\
\text{case Return}(x) \rightarrow x \\
\}
\]
Here we use pattern-matching to convert \texttt{Coffee} and \texttt{Tea} into their respective string representations.

Finally, the \texttt{lookup} function traverses an association list in order to find the element associated with the given key. If the key exists, then the element is returned, otherwise the \texttt{Fail} operation is discharged to signal failure. We will not show its implementation here. To handle failure we reuse the \texttt{maybe}-handler from Section \texttt{3.2.3} with the slight change that we make it an open handler. Now, we can glue the components together:
\[
\text{fun runDispenser}(n) \{ \\
\text{force} \left(\text{maybe} \left(\text{writer} \left(\text{reader} \left(\text{fun} () \{ \text{dispenser} (n) \} \right) \right) \right) \right) \\
\}
\]
Note, that in this example the order in which we compose handlers is irrelevant.

Running a few examples we see that it behaves as expected:

\begin{verbatim}
 links > runDispenser(1)
 Just("Coffee") : Maybe(String)

 links > runDispenser(2)
 Just("Tea") : Maybe(String)

 links > runDispenser(3)
 Nothing() : Maybe(String)
\end{verbatim}

Observe that when we implemented the monadic version of the \texttt{dispenser} using Monad Transformers we had to pay careful attention to the ordering of effects up front because we had to lift certain operations. This issue is no longer present with handlers. In fact, we first defined \texttt{dispenser} without considering the concrete the interpretation of the operations \texttt{Ask} and \texttt{Tell} (and \texttt{Fail}). Furthermore, the effect ordering does not leak into the effect row as opposed to Monad Transformers. The row polymorphism is key to the elimination of the
effect ordering issue. Additionally, row polymorphism increases modularity, and eased compositionality. Using this programming model programmers can truly implement modular and composable components independently.

3.3.3 Reinterpreting Nim

In Section 3.2.5 we gave various interpretations of Nim using closed handlers. Example 3.12 demonstrates how to use the compositionality of open handlers to extend the game with an additional cheat detection mechanism without breaking a sweat. We reuse the game model and auxiliary functions from Section 3.3.3.

Example 3.12 (Cheat detection in Nim [7]). First, we implement a function that given a player, the number of remaining sticks \(n \), and a continuation \(k \) determines whether the player cheats. We call this function `checkChoice`, it will perform two operations: `Move` and `Cheat`, the former simulates a particular move whilst the latter operation is used to signal that cheating has occurred. The type of the function is

\[
\text{checkChoice} : (\text{Player}, \text{Int}, \text{Int} \xrightarrow{E} \text{Player}) \xrightarrow{E} \text{Player}
\]

where \(E \overset{\text{def}}{=} \{\text{Cheat} : (\text{Player}, \text{Int}) \rightarrow c, \text{Move} : (\text{Player}, \text{Int}) \rightarrow \text{Int}|\rho\} \). The following is its implementation:

```nim
fun checkChoice(player, n, k) {
  var take = do Move(player, n);
  if (take < 1 || 3 < take) { # Cheater detected!
    do Cheat(player, take)
  } else { # Otherwise OK
    k(take)
  }
}
```

First, we simulate the player’s move. If the player’s choice is not in the set of valid moves \(\{1, 2, 3\} \) then the function signals that cheating has occurred, otherwise the continuation \(k \) is invoked to actually perform the move. Now, it is straightforward to implement a handler which uses `checkChoice` to detect cheating, e.g.

```nim
open handler checkGame(m) {
  case Move((player, n), k) \rightarrow checkChoice(player, n, k)
  case Return(x) \rightarrow x
}
```

The type of `checkGame` is \((() \xrightarrow{E} \text{Player}) \rightarrow () \xrightarrow{E} \text{Player}\) where the effect row \(E \) is the same as above. Hence `checkGame` is itself an abstract computation. Therefore we will need two more handlers which interpret the `Cheat` and `Move`
3.3. Open handlers

operations. We encode the cheater’s strategy into the handler which handles the additional Move operation discharged by checkGame:

\[
\begin{align*}
\text{fun cheater}(n, k) & \Rightarrow k(n) \\
\text{open handler aliceCheats}(m) & \Rightarrow \\
& \begin{cases}
\text{case Move}((\text{Alice}, n), k) & \Rightarrow \text{cheater}(n, k) \\
\text{case Move}((\text{Bob}, n), k) & \Rightarrow \text{perfect}(n, k) \\
\text{case Return}(x) & \Rightarrow x
\end{cases}
\end{align*}
\]

Here a cheater’s strategy is simply to take all sticks in the heap and thereby win the game in one single move. In the handler aliceCheats we assign the cheater’s strategy to Alice whilst Bob plays the perfect strategy. Thus if we play without cheat detection then Alice will always win in a single move because she always starts.

Finally, we interpret the Cheat operation by halting the game and reporting the cheater, e.g.

\[
\begin{align*}
\text{open handler cheatReport}(m) & \Rightarrow \\
& \begin{cases}
\text{case Cheat}((\text{Alice}, n), k) & \Rightarrow \text{error}(\text{"Cheater Alice took " } \text{intToString}(n) \text{ " sticks"}) \\
\text{case Cheat}((\text{Bob}, n), k) & \Rightarrow \text{error}(\text{"Cheater Bob took " } \text{intToString}(n) \text{ " sticks"}) \\
\text{case Return}(x) & \Rightarrow x
\end{cases}
\end{align*}
\]

Here, we pattern match on the player to determine who cheated. The error function halts the game and reports the cheater along with the number of sticks the cheater took. Now, we can put everything together and try a few examples:

\[
\begin{align*}
\text{fun checkedGame}(m) & \Rightarrow \\
& \text{force(aliceCheats(cheatReport(checkGame(m))))} \\
\text{links} > \text{play(checkedGame, 36)};\\n\text{**** Fatal error : Cheater Alice took 36 sticks}
\end{align*}
\]

\[
\begin{align*}
\text{links} > \text{play(checkedGame, 3);}\\
\text{Alice()} : \text{Player}
\end{align*}
\]

Alice still wins when \(0 < n \leq 3\) because in this particular game configuration it is a legal move to take all sticks. Moreover, observe that the order in which we compose handlers matters in this example because checkGame is itself an abstract computation, therefore if we swap aliceCheats and checkGame the cheat detection mechanism never gets invoked. Accordingly, Alice would always win because she cheats.
Like in the previous Nim game examples we changed the strategic behaviour of the players without changing the game model (\texttt{aliceTurn} and \texttt{bobTurn}), however, in addition we also extended the game mechanics without changing the game model.

3.3.4 Simulating state

We can use handlers to simulate stateful computations, and thereby enabling us to abstract over how state is interpreted. To handle state we need two operations:

- \textit{Get}: () \rightarrow s that reads the current state.
- \textit{Put}: s \rightarrow () that updates the state.

We will use the following simple stateful computation to illustrate stateful interpretations:

```plaintext
fun scomp () {
    var s = do Get(); do Put(s + 2);
    var s = do Get(); do Put(s + s);
    do Get()
}
```

First, the computation reads the current integer state, then the state is incremented by 2. The new state is then read and doubled before returning the final state. Example 3.13 gives a direct interpretation of state.

Example 3.13 (State handler [7]). Since Links does not have mutable variables we have to find another way to implement state. A pure functional approach is to pass the state around as an explicit parameter. Basically, we adopt this approach to implement state, however, we will introduce an extra layer of indirection to pass the state around. We will abstract over state by encapsulating it inside a function. The function will take a concrete state s as input parameter. For the Get-, Put- and Return-cases the handler returns a new state-encapsulating function. The state handler is defined as follows

```plaintext
open handler state (m) {
    case Get(_,k) $\rightarrow$ fun(s) { k(s)(s) }
    case Put(p,k) $\rightarrow$ fun(s) { k(())(p) }
    case Return(x) $\rightarrow$ fun(s) { x }
}
```

The state handler is partially lazy as when either Get and Put are discharged the handler returns a single parameter function. Therefore the handler basically suspends the handled computation first time an operation is discharged.
At first glance the state handler may seem dubious. Essentially, the handler builds a chain of functions which passes the state around. Let us break it down: The state function returned by the Get-case invokes the continuation with the current state which is substituted at the invocation site of Get. The continuation returns the next state function to which the same state is passed. The Put-case invokes the continuation with unit and passes the modified state \(p \) as input to the next state function. When a stateful computation finishes the Return-case lifts the result into a function, that ignores its argument. In addition, the function ends the chain of functions as it does not invoke another function. The type of the state handler is

\[
(\theta_1 \rightarrow \rho_2 \rightarrow \theta_2_1 \rightarrow \rho_1 \rightarrow a) \rightarrow (\theta_{1_1_1} \rightarrow \rho_{1_1} \rightarrow a)
\]

where \(s \rightarrow a \) is the type of a state function. The type variable \(s \) is the type of the initial state. In order to execute a stateful computation it is convenient to have a driver function runState which abstracts away these details, e.g.

```haskell
def runState (s0, m) {
    force (state(m))(s0)
}
```

Applying runState to some initial state \(s_0 \) and scomp we obtain:

```haskell
links > runState (0, scomp);
2 : Int
links > runState (-2, scomp);
-2 : Int
links > runState (3, scomp);
8 : Int
```

The state handler in Example 3.13 returns the most recent state. Incidentally, taking advantage of the composition, we can give a different interpretation which track state changes as Example 3.14 demonstrates.

Example 3.14 (Stateful logging \([7]\)). We extend the state handler with a logging capability, however, we will not add this capability directly to the handler. Instead we are going to use composition to construct a stateful handler which keeps track of state changes. The idea is to introduce a new operation LogPut : \(s \rightarrow () \) which logs some state of type \(s \). Further, we introduce two new handlers:

- putLogger : \(() \rightarrow (LogPut:s\rightarrow() \rightarrow s) \rightarrow () \rightarrow (LogPut:s\rightarrow() \rightarrow s) \rightarrow s \)
- logState : \(() \rightarrow (LogPut:s\rightarrow() \rightarrow s) \rightarrow () \rightarrow (LogPut:s\rightarrow() \rightarrow s) \rightarrow (s, [s]) \)
The \texttt{putLogger} handler handles a \texttt{Put} operation, however, it also discharges a \texttt{Put}-operation itself along with a \texttt{LogPut}-operation as signified by their presence in the output effect signature. We implement \texttt{putLogger} as follows

\begin{verbatim}
open handler putLogger (m) {
 case Put (p,k) → { do LogPut (p); do Put (p); k (()) }
 case Return (x) → x
}
\end{verbatim}

In the \texttt{Put}-case the handler first discharges \texttt{LogPut} to log the state change, and then it performs the actual state change by discharging \texttt{Put}. In some sense \texttt{putLogger} acts as a “middleman” because it relies wholly on other handlers to interpret \texttt{LogPut} and \texttt{Put}.

The \texttt{logState} handler builds the log, e.g.

\begin{verbatim}
open handler logState (m) {
 case LogPut (x,k) → {
 var s = k (());
 var xs = second (s);
 (first (p), (x :: xs))
 }
 case Return (x) → (x, [])
}
\end{verbatim}

The handler returns the final state along with a list of previous state changes. In the \texttt{LogPut}-case the handler first invokes the continuation in order to advance the stateful computation. The continuation returns a pair which contains the final state along with a list of changes. The handler preserves the first component, but it extends the second component with the previous state \texttt{x}. In order to handle \texttt{Get} and \texttt{Put} we compose the above handlers with the \texttt{state} handler. Finally, we can reinterpret the computation \texttt{scomp}:

\begin{verbatim}
links > runState (0, scomp);
(2, [1, 2]) : (Int, [Int])
links > runState (-2, scomp);
(-2, [-1, -2]) : (Int, [Int])
links > runState (3, scomp);
(8, [4, 8]) : (Int, [Int])
\end{verbatim}

\section{A handler based parsing framework}

The state handler enable us to implement abstract, stateful handlers that employ the state operations. In this section we will demonstrate how to implement a simple, but highly modular, backtracking parser as a handler that interprets parser combinators. The result is a small parser library in Links.
To demonstrate the library we will implement a parser for the simple language
\(\text{PALINDROMES} \overset{\text{def}}{=} \{ w \in \{a, b\}^* \mid w \text{ is a palindrome} \} \). The language \(\text{PALINDROMES} \) is generated by the following grammar

\[
P ::= a \mid b \mid aPa \mid bPb \mid \varepsilon
\]

(3.1)

The grammar is simple, yet it contains choice, concatenation, recursion and the empty string (\(\varepsilon \)) which are sufficient to make an interesting example.

Parser combinators

The principal idea behind parser combinators is to compose parsers from smaller, simpler parsers. In our library parsers are abstract computations composed using the following three operations:

- **Choose**: \(() \to \text{Bool} \) that makes a nondeterministic choice.
- **Token**: \(() \to \text{Char} \) that consumes a character from the input stream.
- **Fail**: \(() \to () \) that signals failure.

The parsers are implemented as functions whose types are \(() \xrightarrow{E} () \), where \(E \) is an open effect row that contains either all, some or none of the above operations. In other words, a parser is a nullary function which may cause several effects, and returns unit. From its signature it is not clear, that a parser does anything sensible. In fact, the purpose of parsers is to capture the structure of a grammar; concerns regarding the parsing state are left to a handler.

The two simplest parsers are **empty** and **char** which accepts the empty string and one particular character, respectively. Their definitions are given below:

Empty string parser

\[
\text{fun empty}() \{ () \}
\]

Single character parser

\[
\text{fun char}(c) \{
\text{fun}() \{
\text{var} t = \text{do Token}();
\text{if} (t == c) \{ () \}
\text{else} \{ \text{do Fail}() \}
\}\}
\]

The parser `empty` does nothing, it simply returns unit. The function `char` is not really a parser, but rather a **parser generator**. It takes a character `c` as input, and generates a parser that checks whether `c` is the next character in the
input stream. If \(c \) is the next character, then the parser returns unit otherwise it signals failure.

We require two more basic parser generators: Choice and sequence. The choice generator takes two parsers as input, and makes a nondeterministic choice between the two. The sequence generator takes two parsers, and applies them in sequence. For syntactic conveniency, we define them as binary operators in Links:

<table>
<thead>
<tr>
<th>Choice parser</th>
<th>Sequence parser</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{op p <</td>
<td>> q { \text{fun() { \text{if (do Choose()) { p() } \text{else { q() }} } }} }})</td>
</tr>
</tbody>
</table>

Choice (\(<|>\)) generates a parser which discharges \(\text{Choose} \) to decide whether to apply parser \(p \) or \(q \). Sequence (\(<=>\)) generates a parser which applies parsers \(p \) and \(q \) in sequence.

Later, Example 3.15 demonstrates how to compose these four parsers to construct a parser for \textsc{Palindromes}.

Interpreting parsers

The previous section gave the building blocks for constructing parsers. In this section we will implement an abstract, stateful handler which interprets parsers. The handler has to handle the three operations \(\text{Choose} \), \(\text{Token} \) and \(\text{Fail} \). Furthermore, it will use the state operations \(\text{Get} \) and \(\text{Put} \) to manipulate the parsing state. The parsing state is a pair \(\text{PState} \overset{\text{def}}{=} ([\text{Char}], [\text{Char}]) \) where the first component contains parsed symbols, and the second component contains the remainder of the input stream. Furthermore, if the input string is not in the language then the handler should produce an error, otherwise it should return the parsed string. Thus, the handler has the rather involved type

\[
(()) \overset{\text{Choose}(\cdot) \rightarrow \text{Bool}, \text{Fail}(\cdot_1 \rightarrow \cdot_2), \text{Get}(\cdot) \rightarrow \text{PState}, \text{Put}(\cdot) \rightarrow \text{PState}, \text{Token}(\cdot) \rightarrow \text{Char} \mid \rho) \rightarrow \text{b})
\]

\[
\rightarrow (()) \overset{\text{Choose}(\cdot_1, \cdot_2), \text{Get}(\cdot) \rightarrow \text{PState}, \text{Put}(\cdot) \rightarrow \text{PState}, \text{Token}(\cdot) \mid \rho) \rightarrow \text{Maybe}([\text{Char}])
\]

This type witnesses a cosmetic issue with the implementation, because effects are not explicitly named the effect signature easily blows up and therefore becomes
difficult to read. The handler is more involved than the previous handlers we implemented. Therefore, we implement it one case at a time. We name the handler `parserh`. The easiest case is `Fail` which, regardless of the state, returns `Nothing`. We will not show it here, instead we begin with the case for `Token`:

```haskell
  case Token(_,k) \rightarrow \{ 
    \hspace{1em} \text{var } s = \text{do } \text{Get}(); 
    \hspace{1em} \text{var } stream = \text{second}(s); 
    \hspace{1em} \text{switch } (\text{stream}) \{ 
      \hspace{1em} \text{case } [] \rightarrow \text{Nothing} 
      \hspace{1em} \text{case } (x :: xs) \rightarrow \{ \text{do } \text{Put}((x :: \text{first}(s), xs)); k(x) \} 
    \hspace{1em} \} 
  \}
```

First the handler retrieves the current parsing state, and then pattern matches on the current state of the input stream. In the event that the input stream is empty the handler returns `Nothing`. Otherwise, it consumes the next character `x` and conses it onto the list of parsed symbols. Thereafter the continuation is invoked to return the character `x` to the `token-parser` that discharged `Token`. If the subsequent parsing is successful, then `k` returns `Just` the result, otherwise it returns `Nothing`. The case for `Choose` follows a similar pattern:

```haskell
  case Choose(_,k) \rightarrow \{ 
    \hspace{1em} \text{var } s = \text{do } \text{Get}(); 
    \hspace{1em} \text{switch } (k(\text{true})) \{ 
      \hspace{1em} \text{case } \text{Nothing} \rightarrow \{ \text{do } \text{Put}(s); k(\text{false}) \} 
      \hspace{1em} \text{case } \text{Just}(x) \rightarrow \text{Just}(x) 
    \hspace{1em} \} 
  \}
```

Again the handler retrieves the current parsing state `s`. Thereafter we pattern match on the result of choosing the `true`-branch. If it leads to failure, then we restore the previous state `s` by discharging a `Put`-operation, and then subsequently try the `false`-branch. Further, `k` returns either `Just` the result or `Nothing`. If the choice led to success, then we simply return the identity. Finally, we implement the `Return`-case which is somewhat similar to the `Token`-case, e.g.

```haskell
  case Return(x) \rightarrow \{ 
    \hspace{1em} \text{var } s = \text{do } \text{Get}(); 
    \hspace{1em} \text{var } stream = \text{second}(s); 
    \hspace{1em} \text{switch } (\text{stream}) \{ 
      \hspace{1em} \text{case } [] \rightarrow \text{Just}(\text{reverse}(\text{first}(s))) 
      \hspace{1em} \text{case } \text{other} \rightarrow \text{Nothing} 
    \hspace{1em} \} 
  \}
```

Here, we pattern match on the input stream to determine whether all input has been consumed. If the stream is empty, then we return `Just` the reversed list of parsed symbols, otherwise we return `Nothing`. As a final function we implement a convenient driver function `parse` to abstract away the details of running the
The `parse` function takes a parser `p` and a string `source` as input parameters:

```haskell
fun parse(p, source) {
  var s = ([], explode(source));
  switch (runState(parserh(p), s)) {
    case Just(r) → Just(implode(r))
    case Nothing → Nothing
  }
}
```

The function builds the initial state `s`, where the first component is the empty list, and the second component contains the input string as a list of characters. The `switch`-expression runs the parser with the initial state, and pattern matches on the result. If the parser was successful, then the list of characters is converted back into a string, otherwise it returns the identity.

Parsing palindromes

The previous two sections provided the basic building blocks for parsing. Now, we are ready to put them into action. Example 3.15 demonstrates how to parse the PALINDROMES language.

Example 3.15 (PALINDROMES parser). We implement a parser for the grammar (3.1) using parser combinators. The structure of the resulting parser will closely resemble the structure of the grammar e.g.

```haskell
fun p() {
  var a = char('a'); var b = char('b');
  var apa = a <<< p <<< a;
  var bpb = b <<< p <<< b;
  var p = apa <|> bpb <|> a <|> b <|> empty;
  p()
}
```

The function `p` is a parser as its type is `(E → E)`. The first line in `p` constructs two parsers `a` and `b` which parses a single character each. Next, the parser `apa` parses a palindrome which starts with an 'a'. Similarly, `bpb` parses a palindrome starting with a 'b'. Finally, the parsers are combined to form a parser for the PALINDROMES grammar (3.1). Notably, the definition of the resulting parser `p` corresponds closely to the definition of the nonterminal `P` in grammar (3.1). Note that the parsers in `p` are combined in a carefully chosen order to cope with the ambiguity of the grammar. Running the parser on a few examples we obtain:

```haskell
links> parse(p, "abba");
Just("abba") : Maybe(String)
links> parse(p, "bbaabaabbbbbb");
```
The entire implementation is less than 90 lines. Yet, the library is quite general. Shifting all parsing state maintenance to a handler greatly simplifies parser combinators. The combinators do not have to be concerned about the parsing state, and as a consequence they can focus entirely on recognising structure. On the other hand the parser handler is not concerned with the syntactic structure of the language, it only has to focus on maintaining the parsing state. Furthermore, the parser handler has no concerns about the interpretation of state as the a separate handler is responsible for interpreting state. Accordingly, we obtain a clear separation of concerns between individual components which communicates through fine-grained abstract interfaces.
The Links compiler is a multi-pass compiler with several distinct stages. Coarsely, we can divide the compiler into two major components the front-end and back-end. We can further subdivide the front-end into

- **Parser**: Transforms the input source into a syntax tree.
- **Early desugar**: Performs source-to-source transformations before source analysis.
- **Type checker**: Analyses the source, performs type inference, and ensures terms are well-typed.

The compiler has more front-end components, but these are the most relevant for our implementation. Similarly, the back-end can be further subdivided

- **IR Compiler**: Transforms the source into an intermediate representation used by the interpreter.
- **Pattern-matching compiler**: Aids the IR compiler by compiling pattern-matching constructs into the intermediate representation.

Figure 4.1 provides a high level picture of how control flow through the different relevant stages. The subsequent sections discuss implementation specific details.

4.1 Early desugaring of handlers

The **handler** and **open handler** constructs are syntactic sugar. They get desugared into a legacy construct from an early implementation. The initial imple-
Chapter 4. Implementation

Figure 4.1: Links compiler phases overview.

The implementation used a `handle`-construct for handlers. Figure 4.2 displays the conceptual transformation of `handler` to `handle`. This desugaring takes place right after the parsing phase. The early desugaring is beneficial because it allows us to take full advantage of the earlier implementation, whilst providing a more convenient syntax for handlers.

```
handler(m) {  
    case 0p_i(p_i,k_i) → b_i  
    case Return(x) → b  
}
```

```
fun(m) {  
    handle(m) {  
        case 0p_i(p_i,k_i) → b_i  
        case Return(x) → b  
    }  
}
```

Figure 4.2: The `handler`-construct gets desugared into a `handle`-construct where the computation `m` is abstracted over using a function.

The `open handler`-constructs get desugared in a similar fashion, but, with a small twist: The `handle`-construct gets wrapped inside a thunk. The extra layer of indirection entailed by this transformation is the key to make handlers composable. The crucial insight is that by transforming every open handler into a thunk compositionality follows for free. Figure 4.3 shows the conceptual transformation for `open handler`-constructs.
4.2 Type checking

The type checker implements the following typing rule for open handlers \cite{7}:

\[
\begin{align*}
E_{in} & \equiv \{0p_i : A_i \rightarrow B_i\}_i \uplus \rho \\
E_{out} & \equiv E_{forward} \uplus \rho \\
H & \equiv \{\text{Return}(x) \mapsto M\} \uplus \{0p_i(p,k) \mapsto N_i\}_i \\
(\Gamma,p : A_i,k : U_{E_{out}}(B_i \rightarrow C)) & \vdash_{E_{out}} N_i : C \\
\Gamma, m : A & \vdash_{E_{out}} M : C \\
\Gamma & \vdash H : A \vdash_{E_{in}} E_{out} \Rightarrow C
\end{align*}
\] (4.1)

The rule says, that if a computation \(m \) of type \(A \) performs effects \(E_{in} \), and the type signatures of the operations handled by the handler \(H \) agree with \(E_{in} \), and the return clause has type \(C \), then \(H \) handles an effectful computation \(m \) with effects \(E_{in} \), and may itself cause effects \(E_{out} \) and returns a computation of type \(M \). The typing rule for closed handlers is similar, however, it leaves out the row variable \(\rho \).

4.2.1 Implementation details

The type checker for handlers take advantage of the existing infrastructure for the switch-construct which also embodies a collection of case-expressions. Figure 4.4 displays the two constructs side-by-side.

In order to determine which operations a handler handles the type checker invokes the type checking procedure for case-expressions. This procedure returns a list of the patterns being matched. In the concrete case for handlers the procedure infers that the case-expressions pattern match on a variant type. The tags in the variant are precisely the names of the operations that the handler handles. This also reveals why operations resemble type and data constructors so closely.
Chapter 4. Implementation

Internally, a variant is represented by a row. So, the handler type checker extracts the row from the inferred variant type, thereafter it applies the typing rule [4.1] to obtain the desired effect row.

4.3 Pattern-matching compilation

Syntactically, the handler-construct and switch-construct are similar. Figure 4.4 depicts their similarities. Notably, their semantics differ as switch allows

\[
\begin{align*}
\text{handler}(m) & \{ \\
& \quad \text{case } \text{Op}_i(p_i, k_i) \rightarrow b_i \\
& \quad \text{case } \text{Return}(x) \rightarrow b \\
& \} \\
\text{switch}(e) & \{ \\
& \quad \text{case } \text{Pattern}_j \rightarrow b_j \\
& \quad \text{case other} \rightarrow b' \\
& \}
\end{align*}
\]

Figure 4.4: The handler-construct resembles the switch-construct syntactically.

arbitrary pattern matching on an expression \(x \) and handler only allows pattern matching on possible operation names in some computation \(m \). Furthermore, switch has a default case other which is not allowed in handler. Their syntactic similarities give rise to a similar internal representation as well. Although, the internal representation of handler contains extra attributes such as whether the handler is open or closed. The resemblance has certain benefits:

- Syntactical commonalities make handlers feel like a natural integrated part in Links,
- and we can reuse the switch pattern-matching compilation infrastructure for handler.

The switch pattern-matching compiler supports deep pattern-matching which we want for matching on actual operation parameters, but only a handful of patterns are permitted for matching on continuation parameters. Figure 4.5 shows the legal pattern-matching on a continuation parameter. Moreover, the Return-case must only take one parameter. These small subtleties prevent us from using the switch pattern-matching compiler directly.
4.4 Interpreter

The Links compiler uses A-Normal Form (ANF) as an intermediate representation. In particular, the Links interpreter directly interprets ANF code. ANF is a relatively simple direct-style language which partitions expressions into two classes: atomic expressions and complex expressions. An expression is considered atomic if it is pure, i.e. it causes no effects and it terminates [5]. On the other hand, every complex expression must be assigned a fresh name. For example the Links expression \(g(f(h(x))) \) gets translated into the Links-ANF computation \(\{ \text{let } y = h(x), \text{ let } z = f(y), g(z) \} \) where the first component is a list of let-bound intermediate computations, and the second component is a tail computation. Incidentally, it is straightforward to implement first-class control
Chapter 4. Implementation

in the source language as the current continuation can be built from the Links-ANF computation. Moreover, the simplicity of ANF makes it amendable as an interpreted language.

The Links interpreter is written in continuation-passing style (CPS) which threads the current continuation directly through the program. Originally, the continuation was implemented as a stack of continuation frames which capture computations along with their contexts. Formally, a continuation frame is quadruple \(F \equiv (S, B, E, C) \) where

- \(C \) is a computation.
- \(E \) is an environment that binds names in \(C \).
- \(B \) is a binder for the computation.
- \(S \) denotes the scope of the computation.

For example the expression above gets encoded as the following continuation frame

\[
(\text{scope}(y), y, \text{localise}(y), (\{\text{let } z = f(y)\}, g(z)))
\]

where \text{scope} and \text{localise} are two functions, that return the scope of a binder and localises the binder in the current environment, respectively.

This particular notion of continuation is problematic for handlers because we need delimited control for continuations assigned by handlers. Therefore it is necessary to generalise the notion of continuation in the Links interpreter. Fortunately, the generalisation is conceptual simple: Lift the continuation into a stack, i.e. let it become a stack of stacks of continuation frames. In other words the generalised continuation embeds the previous continuation layout. Figure 4.6 illustrates the embedding. This scheme effectively turns every stack of continuation frames into a delimited continuation, i.e. a continuation that returns control to the caller.
4.4. Interpreter

Original continuation layout

\[
F_n \quad F_{n-1} \quad F_{n-2} \quad \cdots
\]

Generalised continuation layout

\[
F_{n_1} \quad F_{n_1-1} \quad F_{n_1-2} \quad \cdots \quad \cdots \quad \cdots \quad \cdots
\]

Figure 4.6: The generalised continuation embeds the previous continuation layout.

The generalised continuation is built in parallel with a stack of handlers. Whenever the interpreter encounters a handler, it pushes the handler onto the handlers’ stack and allocates a new delimited continuation which is pushed onto the stack inside the generalised continuation. The top-most delimited continuation grows as the evaluation progresses. Conversely, when the top-most delimited continuation is depleted the proper \texttt{Return}-case of the top-most handler is invoked. Additionally, both elements are popped from their respective stacks. The evaluation terminates when the entire generalised continuation has been consumed.

Operation invocation follows a rather simple scheme: Upon encountering an operation the interpreter pops and invokes the top-most handler, if the handler does not handle the operation, then the second top-most handler is popped and invoked and so forth. If no matching case is found then an “unhandled operation” error is emitted. The interpreter maintains the popped handlers in a separate temporary stack along with their corresponding delimited continuations. The temporary stack is a “slice” of the program state which merged back into the program state when continuation is invoked. This ensures that the \texttt{Return}-cases are invoked in the proper order when the handled computation finishes.
Chapter 5
Evaluation

Section 5.1 briefly summarises and evaluates handlers for algebraic effects using row polymorphism as an effectful programming model with respect to modularity and compositionality, and Section 5.2 evaluates to which extent handlers and user-defined effects coalesce with the Links language. Section 5.3 evaluates the relative performance cost incurred by handlers.

5.1 Handlers with row polymorphic effects

Through a series of examples in Chapter 3 we demonstrated that handlers for algebraic effects indeed afford a high-degree of modularity, and, that the compositionality of open handlers enables us to extend the interpretation of an abstract computation effortlessly. In particular, row polymorphism makes programming with effects an uniform experience as it effectively eliminates the ordering issue we discussed in Section 1.1.3.

In our experience, we have found that handler code tend to be concise. This probably stems from the fact that handlers simply map operation names to computations. Hence, in its essence, a handler boils down to a command dispatcher.

Handlers also raise the level of abstraction substantially. Accordingly, it can be difficult for the programmer to trace a computation. This is especially true when one has a stack of open handlers. The interaction between handlers can be difficult to grasp which can make it hard to debug handler-based programs. Even though a particular composition of handlers type checks, it is by no means a guarantee that the resulting handler has the desired semantics. Row polymorphism along with the way open handlers compose in our implementation makes it easy to get

57
the composition wrong. Handlers also require the programmer to be confident with continuations as they are key to programming with handlers.

5.2 Handlers and user-defined effects in Links

Syntax-wise handlers appear as a well-integrated part of Links because they borrow their syntax from the `switch`-construct. Furthermore, handlers are first-class citizens in Links, i.e. a handler can be passed as argument to a function, returned from a function or assigned a name. The first-class property is inherited from functions, because, essentially handlers desugar into functions. As a result the Links language remains coherent.

User-defined effects exploit Links’ structural typing, therefore the programmer never has to declare effects or operations in advance. The Links compiler automatically infers the type of operations. This fits well with a read-eval-print-loop style of development as employed by the Links top-level interpreter. Unfortunately, it may cause effect signatures to blow up. For example, if a computation is composed from many different operations, or a (closed) handler is recursive. In such cases the Links interpreter infers some verbose operation signatures. The issue can be solved to some extent by annotating operation cases and invocations with types. Currently, effects are implicitly given by the present operations in the effect row, it would be desirable to have effect-name aliasing, for example something like

\[
\text{effectname State}(s) = \{ \text{Get} : () \rightarrow s, \text{Put} : s \rightarrow () \}
\]

This would help condense verbose effect signatures. The current design of operations does not integrate as well with the language as handlers. This is mainly due to two things:

1. Operations use type and data constructor syntax, but acts like a function,

2. and operations have to be explicitly discharged using the `do`-primitive.

Neither type constructors nor operations are first-class in Links, but one might expect to able to pass an operation as parameter or return one. If one tries to do this, then the type checker will infer a variant type, rather than an operation, which can steer confusion.
Finally, the do-primitive is rather strange in Links, because it is a syntactic construct that does not compose with the rest of the language. A do must be immediately followed by an operation name. Moreover, it appears as a prefix operator, but “do” is not a legal operator name in Links.

5.3 Relative performance

Since Links is an interpreted language it does not make sense to measure the raw execution speed of handled computations as the overhead incurred by the interpreter is likely to be dominant. Instead, we will measure the relative cost incurred by using handlers.

5.3.1 Benchmarks setup

The experiments were conducted on a standard Informatics DICE Machine\(^1\). The following three different micro benchmarks were used:

- Stateful counting: Counting down from \(10^7\) to 0 using a closed state handler.

- Stateful counting with logging: Counting down from \(10^7\) to 0 using the state logging handler from Example 3.14.

- Nim game tree generation: Generation of game tree with starting configuration \(n = 20\) using the handler from Example 3.10.

Each handler program has two pure counterparts. For the stateful counting benchmarks the first pure version is a direct, tail-recursive implementation which passes the current state as an explicit parameter between invocation. The second pure implementation encapsulates state inside a function in similar fashion to the state handler.

The first pure game tree generator program is a hard-coded, direct implementation for the specific restricted version of Nim we used in Section 3.2.5. The second pure version is more general, and will generate the game tree under any rules. Thus it resembles the handler version. The generality is achieved through use of higher-order functions such as \texttt{map}, \texttt{zip}, etc.

\(^1\)Machine name: Enna. Specifications: Intel Core i5-4570 3.20 Ghz, 8 GB Ram, Scientific Linux 6.6 (Carbon) running Linux kernel 2.6.32-504.16.2.el6.x86_64
Chapter 5. Evaluation

The benchmark programs were not optimised. Each benchmark was sampled ten times. The built-in performance-measuring mechanism in the Links interpreter has been used to measure the execution time. The execution time only includes the run time of the program, that is it does not include loading up the Links interpreter or program compilation.

5.3.2 Results

Table 5.1 displays the results obtained from the first stateful counting benchmark. The direct, tail-recursive implementation is twice as fast as the alternative implementations. The reason for this is that a state change does not incur an extra cost, because it is passed as an explicit parameter between invocations. However, the handler implementation and the second pure implementation both use functions to encapsulate state, therefore each state change causes a new function allocation. The results would suggest that there is a high penalty for repetitive allocation of functions.

<table>
<thead>
<tr>
<th>Time (ms)</th>
<th>Relative speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure I, tail-recursive</td>
<td>9629.14</td>
</tr>
<tr>
<td>Pure II, function state</td>
<td>20364.6</td>
</tr>
<tr>
<td>Closed handler</td>
<td>14406.11</td>
</tr>
</tbody>
</table>

Table 5.1: Results obtained from the stateful counting benchmark.

The same seems to be evident for the second stateful counting benchmark. The results are shown in Table 5.2. The tail-recursive pure implementation is significantly faster than the two alternative implementations. It is roughly 3.5 times faster than the pure implementation that encapsulates state inside functions, and further it is about 8 times faster than the handler version. However, this time there is a big difference between the the second pure implementation and the handler implementation. The pure version is little less than twice as fast as the handler version. The additional cost is incurred by the handler design. Each change in state causes two additional operations to be discharged. In addition the handler stack is unwound three times. In particular, three different delimited continuations are invoked during one state change. When a continuation returns control to a handler, it implicitly passes through the return-cases of that partic-
ular handler’s predecessors (in order to lift the result of the computation). So, the open handler stack incurs a large extra cost.

<table>
<thead>
<tr>
<th></th>
<th>Time (ms)</th>
<th>Relative speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure I, tail-recursive</td>
<td>19097.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Pure II, function state</td>
<td>68615.1</td>
<td>0.28</td>
</tr>
<tr>
<td>Open handler (stack size: 4)</td>
<td>161458.15</td>
<td>0.12</td>
</tr>
</tbody>
</table>

Table 5.2: Results obtained from the stateful counting with logging benchmark.

Finally, in the Nim game tree generator benchmark the hard-coded pure version is superior in terms of execution speed. The handler implementation and generic pure implementation perform, respectively, at 6% and 7% of the hard-coded version. The results are shown in table 5.3. The generic pure implementation is about 14% faster than the handler implementation.

<table>
<thead>
<tr>
<th></th>
<th>Time (ms)</th>
<th>Relative speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pure I, hard-coded</td>
<td>814.98</td>
<td>1.0</td>
</tr>
<tr>
<td>Pure II, generic</td>
<td>12441.01</td>
<td>0.07</td>
</tr>
<tr>
<td>Closed handler</td>
<td>14406.11</td>
<td>0.06</td>
</tr>
</tbody>
</table>

Table 5.3: Results obtained from the Nim game tree generation benchmark.

These results suggest that there is plenty of room for optimisations. Kammar et al. achieve better relative performance results than us with their embedding of handlers in Haskell [7]. However their handlers desugar into monads which the Haskell compiler extensively optimises. Thus, it is likely that with optimisations with could achieve far better performance figures.
Chapter 6

Conclusion and future work

In Section 1.2 we asked whether we could achieve an effectful programming model in which compositionality and modularity coexist. We proposed to use Plotkin and Pretnar’s handlers for algebraic effects \[18\] with the addition of row polymorphism as a basis for effectful programming.

In order to be able to examine the programming model, we implemented it in Links, taking advantage of Links’ row-based effect system. As a result Links now has first-class handlers and user-defined effects. Through a series of examples in Chapter 3 we demonstrated that the programming model indeed affords a high-degree of modularity. Furthermore, due to our design of computations as thunks and row polymorphism we were able to achieve compositionality for open handlers under the strict evaluation strategy employed by Links. Composable handlers give additional flexibility as individual, specialised program parts can be developed independently of each other.

We find that row polymorphism eliminates the effect ordering issue altogether. Consequently, it is easy to write reusable effectful code. Incidentally, one amusing activity is to discover new, initially unintended, applications of existing code.

Performance-wise our handlers are terrible. This is mainly due to the code being interpreted unoptimised. Better code generation and optimisations must be employed to make programming with handlers practical for general purpose programming.
6.1 Future work

Closed and open handlers provide a fine basis, however there are several interesting generalisation to consider such as parameterisable and shallow handlers.

In our implementation handlers only take one argument: the input computation. Parameterisable handlers would help reduce the amount of boilerplate code, and even further increase modularity.

Our handlers handle computations uniformly, i.e. the continuation of an operation is handled by the current handler. However, one can also imagine handlers that handle computations nonuniformly such handlers are called shallow handlers. In a shallow handler the continuation of an operation is an abstract computation that must be explicitly handled.

Notably, most of the infrastructure to support parameterisable and shallow handlers are already in place in Links, however, the typing rule and interpreter need to be updated. In addition, it would be worthwhile to investigate how to make handlers efficient.

We only enabled handlers in the toplevel (server-side). It would be interesting to enable handlers on the client side as well. Links compiles client side code to JavaScript, so one could possibly translate the CPS encoding of handlers into an equivalent CPS encoding in JavaScript.

Our closed handlers implicitly allow the wild to occur, however, we also have pure closed handlers that disallow wild. Pure handlers only provide structural recursion which is guaranteed to terminate, therefore handler evaluation could be added to the Links query normalisation procedure\(^1\).

The Links interpreter has yet to be formalised. A formalisation could possibly help improve the implementation and gives additional insight to the behaviour of handlers in a strict language.

\(^1\)Credit for this observation is due to Sam Lindley.

